Serialized Form
-
Package weka.associations
-
Class weka.associations.AbstractAssociator
class AbstractAssociator extends Object implements Serializable- serialVersionUID:
- -3017644543382432070L
-
Serialized Fields
-
m_DoNotCheckCapabilities
boolean m_DoNotCheckCapabilities
Whether capabilities should not be checked
-
-
Class weka.associations.Apriori
class Apriori extends AbstractAssociator implements Serializable- serialVersionUID:
- 3277498842319212687L
-
Serialized Fields
-
m_allTheRules
ArrayList<Object>[] m_allTheRules
The list of all generated rules. -
m_car
boolean m_car
Flag indicating whether class association rules are mined. -
m_classIndex
int m_classIndex
The class index. -
m_cycles
int m_cycles
Number of cycles used before required number of rules was one. -
m_delta
double m_delta
Delta by which m_minSupport is decreased in each iteration. -
m_hashtables
ArrayList<Hashtable<ItemSet,
Integer>> m_hashtables The same information stored in hash tables. -
m_instances
Instances m_instances
The instances (transactions) to be used for generating the association rules. -
m_lowerBoundMinSupport
double m_lowerBoundMinSupport
The lower bound for the minimum support. -
m_Ls
ArrayList<ArrayList<Object>> m_Ls
The set of all sets of itemsets L. -
m_metricType
int m_metricType
The selected metric type. -
m_minMetric
double m_minMetric
The minimum metric score. -
m_minSupport
double m_minSupport
The minimum support. -
m_numRules
int m_numRules
The maximum number of rules that are output. -
m_onlyClass
Instances m_onlyClass
Only the class attribute of all Instances. -
m_outputItemSets
boolean m_outputItemSets
Output itemsets found? -
m_removeMissingCols
boolean m_removeMissingCols
Remove columns with all missing values -
m_significanceLevel
double m_significanceLevel
Significance level for optional significance test. -
m_toStringDelimiters
String m_toStringDelimiters
ToString delimiters, if any -
m_treatZeroAsMissing
boolean m_treatZeroAsMissing
Treat zeros as missing (rather than a value in their own right) -
m_upperBoundMinSupport
double m_upperBoundMinSupport
The upper bound on the support -
m_verbose
boolean m_verbose
Report progress iteratively
-
-
Class weka.associations.AprioriItemSet
class AprioriItemSet extends ItemSet implements Serializable- serialVersionUID:
- 7684467755712672058L
-
Class weka.associations.AssociationRules
class AssociationRules extends Object implements Serializable- serialVersionUID:
- 8889198755948056749L
-
Serialized Fields
-
m_producer
String m_producer
The scheme that produced these rules -
m_rules
List<AssociationRule> m_rules
The list of rules
-
-
Class weka.associations.BinaryItem
class BinaryItem extends NominalItem implements Serializable- serialVersionUID:
- -3372941834914147669L
-
Class weka.associations.DefaultAssociationRule
class DefaultAssociationRule extends AssociationRule implements Serializable- serialVersionUID:
- -661269018702294489L
-
Serialized Fields
-
m_consequence
Collection<Item> m_consequence
The consequence of the rule -
m_consequenceSupport
int m_consequenceSupport
The support for the consequence -
m_metricType
DefaultAssociationRule.METRIC_TYPE m_metricType
The metric type for this rule -
m_premise
Collection<Item> m_premise
The premise of the rule -
m_premiseSupport
int m_premiseSupport
The support for the premise -
m_totalSupport
int m_totalSupport
The total support for the item set (premise + consequence) -
m_totalTransactions
int m_totalTransactions
The total number of transactions in the data
-
-
Class weka.associations.FilteredAssociationRules
class FilteredAssociationRules extends AssociationRules implements Serializable- serialVersionUID:
- -4223408305476916955L
-
Serialized Fields
-
m_filter
Filter m_filter
-
m_wrappedRules
AssociationRules m_wrappedRules
-
-
Class weka.associations.FilteredAssociator
class FilteredAssociator extends SingleAssociatorEnhancer implements Serializable- serialVersionUID:
- -4523450618538717400L
-
Class weka.associations.FPGrowth
class FPGrowth extends AbstractAssociator implements Serializable- serialVersionUID:
- 3620717108603442911L
-
Serialized Fields
-
m_delta
double m_delta
The amount by which to decrease the support in each iteration -
m_findAllRulesForSupportLevel
boolean m_findAllRulesForSupportLevel
If true, just all rules meeting the lower bound on the minimum support will be found. The number of rules to find will be ignored and the iterative reduction of support will not be done. -
m_largeItemSets
weka.associations.FPGrowth.FrequentItemSets m_largeItemSets
Holds the large item sets found -
m_lowerBoundMinSupport
double m_lowerBoundMinSupport
The lower bound on minimum support -
m_maxItems
int m_maxItems
-
m_metric
DefaultAssociationRule.METRIC_TYPE m_metric
-
m_metricThreshold
double m_metricThreshold
-
m_mustContainOR
boolean m_mustContainOR
Use OR rather than AND when considering must contain lists -
m_numInstances
int m_numInstances
The number of instances in the data -
m_numRulesToFind
int m_numRulesToFind
The number of rules to find -
m_offDiskReportingFrequency
int m_offDiskReportingFrequency
When processing data off of disk report progress this frequently (number of instances). -
m_positiveIndex
int m_positiveIndex
The index (1 based) of binary attributes to treat as the positive value -
m_rules
List<AssociationRule> m_rules
Holds the rules -
m_rulesMustContain
String m_rulesMustContain
If set, then only output rules containing these itmes -
m_transactionsMustContain
String m_transactionsMustContain
If set, limit the transactions (instances) input to the algorithm to those that contain these items -
m_upperBoundMinSupport
double m_upperBoundMinSupport
The upper bound on the minimum support
-
-
Class weka.associations.FPGrowth.FPTreeNode
class FPTreeNode extends Object implements Serializable- serialVersionUID:
- 4396315323673737660L
-
Serialized Fields
-
m_children
Map<BinaryItem,
weka.associations.FPGrowth.FPTreeNode> m_children the children of this node -
m_ID
int m_ID
ID (for graphing the tree) -
m_item
BinaryItem m_item
item at this node -
m_levelSibling
weka.associations.FPGrowth.FPTreeNode m_levelSibling
link to another sibling at this level in the tree -
m_parent
weka.associations.FPGrowth.FPTreeNode m_parent
link to the parent node -
m_projectedCounts
weka.associations.FPGrowth.ShadowCounts m_projectedCounts
counts associated with projected versions of this node
-
-
Class weka.associations.FPGrowth.FPTreeRoot.Header
class Header extends Object implements Serializable- serialVersionUID:
- -6583156284891368909L
-
Serialized Fields
-
m_headerList
List<weka.associations.FPGrowth.FPTreeNode> m_headerList
The list of pointers into the tree structure -
m_projectedHeaderCounts
weka.associations.FPGrowth.ShadowCounts m_projectedHeaderCounts
Projected header counts for this entry
-
-
Class weka.associations.FPGrowth.FrequentBinaryItemSet
class FrequentBinaryItemSet extends Object implements Serializable- serialVersionUID:
- -6543815873565829448L
-
Serialized Fields
-
m_items
ArrayList<BinaryItem> m_items
The list of items in the item set -
m_support
int m_support
the support of this item set
-
-
Class weka.associations.FPGrowth.FrequentItemSets
class FrequentItemSets extends Object implements Serializable- serialVersionUID:
- 4173606872363973588L
-
Serialized Fields
-
m_numberOfTransactions
int m_numberOfTransactions
The total number of transactions in the data -
m_sets
ArrayList<weka.associations.FPGrowth.FrequentBinaryItemSet> m_sets
The list of frequent item sets
-
-
Class weka.associations.FPGrowth.ShadowCounts
class ShadowCounts extends Object implements Serializable- serialVersionUID:
- 4435433714185969155L
-
Class weka.associations.Item
class Item extends Object implements Serializable- serialVersionUID:
- -430198211081183575L
-
Serialized Fields
-
m_attribute
Attribute m_attribute
The attribute that backs this item -
m_frequency
int m_frequency
The frequency of this item
-
-
Class weka.associations.ItemSet
class ItemSet extends Object implements Serializable- serialVersionUID:
- 2724000045282835791L
-
Serialized Fields
-
m_counter
int m_counter
Counter for how many transactions contain this item set. -
m_items
int[] m_items
The items stored as an array of of ints. -
m_secondaryCounter
int m_secondaryCounter
Holds support of consequence only in the case where this ItemSet is a consequence of a rule (as m_counter in this case actually holds the support of the rule as a whole, i.e. premise and consequence) -
m_totalTransactions
int m_totalTransactions
The total number of transactions
-
-
Class weka.associations.LabeledItemSet
class LabeledItemSet extends ItemSet implements Serializable- serialVersionUID:
- 4158771925518299903L
-
Serialized Fields
-
m_classLabel
int m_classLabel
The class label. -
m_ruleSupCounter
int m_ruleSupCounter
The support of the rule.
-
-
Class weka.associations.NominalItem
class NominalItem extends Item implements Serializable- serialVersionUID:
- 2182122099990462066L
-
Serialized Fields
-
m_valueIndex
int m_valueIndex
The index of the value considered to be positive
-
-
Class weka.associations.NumericItem
class NumericItem extends Item implements Serializable- serialVersionUID:
- -7869433770765864800L
-
Serialized Fields
-
m_comparison
NumericItem.Comparison m_comparison
The comparison operator -
m_splitPoint
double m_splitPoint
The numeric test
-
-
Class weka.associations.SingleAssociatorEnhancer
class SingleAssociatorEnhancer extends AbstractAssociator implements Serializable- serialVersionUID:
- -3665885256363525164L
-
Serialized Fields
-
m_Associator
Associator m_Associator
The base associator to use
-
-
-
Package weka.attributeSelection
-
Class weka.attributeSelection.ASEvaluation
class ASEvaluation extends Object implements Serializable- serialVersionUID:
- 2091705669885950849L
-
Serialized Fields
-
m_DoNotCheckCapabilities
boolean m_DoNotCheckCapabilities
Whether capabilities should not be checked
-
-
Class weka.attributeSelection.ASSearch
class ASSearch extends Object implements Serializable- serialVersionUID:
- 7591673350342236548L
-
Class weka.attributeSelection.AttributeSelection
class AttributeSelection extends Object implements Serializable- serialVersionUID:
- 4170171824147584330L
-
Serialized Fields
-
m_ASEvaluator
ASEvaluation m_ASEvaluator
the attribute/subset evaluator -
m_attributeFilter
Remove m_attributeFilter
the attribute filter for processing instances with respect to the most recent feature selection run -
m_attributeRanking
double[][] m_attributeRanking
the attribute indexes and associated merits if a ranking is produced -
m_doRank
boolean m_doRank
rank features (if allowed by the search method) -
m_doXval
boolean m_doXval
do cross validation -
m_numFolds
int m_numFolds
the number of folds to use for cross validation -
m_numToSelect
int m_numToSelect
number of attributes requested from ranked results -
m_rankResults
double[][] m_rankResults
hold statistics for repeated feature selection, such as under cross validation -
m_searchMethod
ASSearch m_searchMethod
the search method -
m_seed
int m_seed
seed used to randomly shuffle instances for cross validation -
m_selectedAttributeSet
int[] m_selectedAttributeSet
the selected attributes -
m_selectionResults
StringBuffer m_selectionResults
holds a string describing the results of the attribute selection -
m_subsetResults
double[] m_subsetResults
-
m_trainInstances
Instances m_trainInstances
the instances to select attributes from -
m_transformer
AttributeTransformer m_transformer
if a feature selection run involves an attribute transformer
-
-
Class weka.attributeSelection.AttributeSetEvaluator
class AttributeSetEvaluator extends ASEvaluation implements Serializable- serialVersionUID:
- -5744881009422257389L
-
Class weka.attributeSelection.BestFirst
class BestFirst extends ASSearch implements Serializable- serialVersionUID:
- 7841338689536821867L
-
Serialized Fields
-
m_bestMerit
double m_bestMerit
holds the merit of the best subset found -
m_cacheSize
int m_cacheSize
holds the maximum size of the lookup cache for evaluated subsets -
m_classIndex
int m_classIndex
holds the class index -
m_debug
boolean m_debug
for debugging -
m_hasClass
boolean m_hasClass
does the data have a class -
m_maxStale
int m_maxStale
maximum number of stale nodes before terminating search -
m_numAttribs
int m_numAttribs
number of attributes in the data -
m_searchDirection
int m_searchDirection
0 == backward search, 1 == forward search, 2 == bidirectional -
m_starting
int[] m_starting
holds an array of starting attributes -
m_startRange
Range m_startRange
holds the start set for the search as a Range -
m_totalEvals
int m_totalEvals
total number of subsets evaluated during a search
-
-
Class weka.attributeSelection.BestFirst.Link2
class Link2 extends Object implements Serializable- serialVersionUID:
- -8236598311516351420L
-
Serialized Fields
-
m_data
Object[] m_data
-
m_merit
double m_merit
-
-
Class weka.attributeSelection.BestFirst.LinkedList2
- serialVersionUID:
- 3250538292330398929L
-
Serialized Fields
-
m_MaxSize
int m_MaxSize
Max number of elements in the list
-
-
Class weka.attributeSelection.CfsSubsetEval
class CfsSubsetEval extends ASEvaluation implements Serializable- serialVersionUID:
- 747878400813276317L
-
Serialized Fields
-
m_c_Threshold
double m_c_Threshold
Threshold for admitting locally predictive features -
m_classIndex
int m_classIndex
The class index -
m_corr_matrix
float[][] m_corr_matrix
Holds the matrix of attribute correlations -
m_debug
boolean m_debug
Output debugging info -
m_disTransform
Discretize m_disTransform
Discretise attributes when class in nominal -
m_isNumeric
boolean m_isNumeric
Is the class numeric -
m_locallyPredictive
boolean m_locallyPredictive
Include locally predictive attributes -
m_missingSeparate
boolean m_missingSeparate
Treat missing values as separate values -
m_numAttribs
int m_numAttribs
Number of attributes in the training data -
m_numEntries
int m_numEntries
Number of entries in the correlation matrix -
m_numFilled
AtomicInteger m_numFilled
Number of correlations actually computed -
m_numInstances
int m_numInstances
Number of instances in the training data -
m_numThreads
int m_numThreads
The number of threads used to compute the correlation matrix. Used when correlation matrix is precomputed -
m_poolSize
int m_poolSize
The size of the thread pool. Usually set equal to the number of CPUs or CPU cores available -
m_preComputeCorrelationMatrix
boolean m_preComputeCorrelationMatrix
-
m_std_devs
double[] m_std_devs
Standard deviations of attributes (when using pearsons correlation) -
m_trainInstances
Instances m_trainInstances
The training instances
-
-
Class weka.attributeSelection.ClassifierAttributeEval
class ClassifierAttributeEval extends ASEvaluation implements Serializable- serialVersionUID:
- 2442390690522602284L
-
Serialized Fields
-
m_executionSlots
int m_executionSlots
The number of attributes to evaluate in parallel -
m_leaveOneOut
boolean m_leaveOneOut
Whether to leave each attribute out in turn and evaluate rather than just evaluate on each attribute -
m_merit
double[] m_merit
Holds the merit scores for each attribute -
m_trainInstances
Instances m_trainInstances
The training instances. -
m_wrapperSetup
String m_wrapperSetup
Holds toString() info for the wrapper -
m_wrapperTemplate
WrapperSubsetEval m_wrapperTemplate
The configured underlying Wrapper instance to use for evaluation
-
-
Class weka.attributeSelection.ClassifierSubsetEval
class ClassifierSubsetEval extends HoldOutSubsetEvaluator implements Serializable- serialVersionUID:
- 7532217899385278710L
-
Serialized Fields
-
m_Classifier
Classifier m_Classifier
Holds the classifier used when evaluating single hold-out instances - this is used by RaceSearch and the trained classifier may need to persist between calls to that particular method. -
m_ClassifierTemplate
Classifier m_ClassifierTemplate
holds the template classifier to use for error estimates -
m_classIndex
int m_classIndex
class index -
m_evaluationMeasure
Tag m_evaluationMeasure
The evaluation measure to use -
m_holdOutFile
File m_holdOutFile
the file that contains hold out/test instances -
m_holdOutInstances
Instances m_holdOutInstances
the instances to test on -
m_IRClassVal
int m_IRClassVal
If >= 0, and an IR metric is being used, then evaluate with respect to this class value (0-based index) -
m_IRClassValS
String m_IRClassValS
User supplied option for IR class value (either name or 1-based index) -
m_numAttribs
int m_numAttribs
number of attributes in the training data -
m_seed
int m_seed
Seed for randomizing prior to splitting training data -
m_splitPercent
String m_splitPercent
The split to use if doing a percentage split -
m_trainingInstances
Instances m_trainingInstances
training instances -
m_usePercentageSplit
boolean m_usePercentageSplit
Whether to hold out a percentage of the training data -
m_useTraining
boolean m_useTraining
evaluate on training data rather than separate hold out/test set
-
-
Class weka.attributeSelection.CorrelationAttributeEval
class CorrelationAttributeEval extends ASEvaluation implements Serializable- serialVersionUID:
- -4931946995055872438L
-
Serialized Fields
-
m_correlations
double[] m_correlations
The correlation for each attribute -
m_detailedOutput
boolean m_detailedOutput
Whether to output detailed (per value) correlation for nominal attributes -
m_detailedOutputBuff
StringBuffer m_detailedOutputBuff
Holds the detailed output info
-
-
Class weka.attributeSelection.GainRatioAttributeEval
class GainRatioAttributeEval extends ASEvaluation implements Serializable- serialVersionUID:
- -8504656625598579926L
-
Serialized Fields
-
m_classIndex
int m_classIndex
The class index -
m_missing_merge
boolean m_missing_merge
Merge missing values -
m_numClasses
int m_numClasses
The number of classes -
m_numInstances
int m_numInstances
The number of instances -
m_trainInstances
Instances m_trainInstances
The training instances
-
-
Class weka.attributeSelection.GreedyStepwise
class GreedyStepwise extends ASSearch implements Serializable- serialVersionUID:
- -6312951970168325471L
-
Serialized Fields
-
m_ASEval
ASEvaluation m_ASEval
-
m_backward
boolean m_backward
Use a backwards search instead of a forwards one -
m_best_group
BitSet m_best_group
the best subset found -
m_bestMerit
double m_bestMerit
the merit of the best subset found -
m_calculatedNumToSelect
int m_calculatedNumToSelect
-
m_classIndex
int m_classIndex
holds the class index -
m_conservativeSelection
boolean m_conservativeSelection
If set then attributes will continue to be added during a forward search as long as the merit does not degrade -
m_debug
boolean m_debug
Print debugging output -
m_doneRanking
boolean m_doneRanking
used to indicate whether or not ranking has been performed -
m_doRank
boolean m_doRank
go from one side of the search space to the other in order to generate a ranking -
m_hasClass
boolean m_hasClass
does the data have a class -
m_Instances
Instances m_Instances
-
m_numAttribs
int m_numAttribs
number of attributes in the data -
m_numToSelect
int m_numToSelect
The number of attributes to select. -1 indicates that all attributes are to be retained. Has precedence over m_threshold -
m_poolSize
int m_poolSize
-
m_rankedAtts
double[][] m_rankedAtts
a ranked list of attribute indexes -
m_rankedSoFar
int m_rankedSoFar
-
m_rankingRequested
boolean m_rankingRequested
true if the user has requested a ranked list of attributes -
m_starting
int[] m_starting
holds an array of starting attributes -
m_startRange
Range m_startRange
holds the start set for the search as a Range -
m_threshold
double m_threshold
A threshold by which to discard attributes---used by the AttributeSelection module
-
-
Class weka.attributeSelection.HoldOutSubsetEvaluator
class HoldOutSubsetEvaluator extends ASEvaluation implements Serializable- serialVersionUID:
- 8280529785412054174L
-
Class weka.attributeSelection.InfoGainAttributeEval
class InfoGainAttributeEval extends ASEvaluation implements Serializable- serialVersionUID:
- -1949849512589218930L
-
Serialized Fields
-
m_Binarize
boolean m_Binarize
Just binarize numeric attributes -
m_InfoGains
double[] m_InfoGains
The info gain for each attribute -
m_missing_merge
boolean m_missing_merge
Treat missing values as a separate value
-
-
Class weka.attributeSelection.OneRAttributeEval
class OneRAttributeEval extends ASEvaluation implements Serializable- serialVersionUID:
- 4386514823886856980L
-
Serialized Fields
-
m_evalUsingTrainingData
boolean m_evalUsingTrainingData
Use training data to evaluate merit rather than x-val -
m_folds
int m_folds
Number of folds for cross validation -
m_minBucketSize
int m_minBucketSize
Passed on to OneR -
m_randomSeed
int m_randomSeed
Random number seed -
m_trainInstances
Instances m_trainInstances
The training instances
-
-
Class weka.attributeSelection.PrincipalComponents
class PrincipalComponents extends UnsupervisedAttributeEvaluator implements Serializable- serialVersionUID:
- -3675307197777734007L
-
Serialized Fields
-
m_attributeFilter
Remove m_attributeFilter
-
m_center
boolean m_center
If true, center (rather than standardize) the data and compute PCA from covariance (rather than correlation) matrix. -
m_centerFilter
Center m_centerFilter
-
m_classIndex
int m_classIndex
Class index -
m_correlation
no.uib.cipr.matrix.UpperSymmDenseMatrix m_correlation
Correlation/covariance matrix for the original data -
m_coverVariance
double m_coverVariance
the amount of variance to cover in the original data when retaining the best n PC's -
m_eigenvalues
double[] m_eigenvalues
Eigenvalues for the corresponding eigenvectors -
m_eigenvectors
double[][] m_eigenvectors
Will hold the unordered linear transformations of the (normalized) original data -
m_eTranspose
double[][] m_eTranspose
holds the transposed eigenvectors for converting back to the original space -
m_hasClass
boolean m_hasClass
Data has a class set -
m_maxAttrsInName
int m_maxAttrsInName
maximum number of attributes in the transformed attribute name -
m_means
double[] m_means
-
m_nominalToBinFilter
NominalToBinary m_nominalToBinFilter
-
m_numAttribs
int m_numAttribs
Number of attributes -
m_numInstances
int m_numInstances
Number of instances -
m_originalSpaceFormat
Instances m_originalSpaceFormat
The header for data transformed back to the original space -
m_outputNumAtts
int m_outputNumAtts
The number of attributes in the pc transformed data -
m_replaceMissingFilter
ReplaceMissingValues m_replaceMissingFilter
Filters for original data -
m_sortedEigens
int[] m_sortedEigens
Sorted eigenvalues -
m_standardizeFilter
Standardize m_standardizeFilter
-
m_stdDevs
double[] m_stdDevs
-
m_sumOfEigenValues
double m_sumOfEigenValues
sum of the eigenvalues -
m_trainHeader
Instances m_trainHeader
Keep a copy for the class attribute (if set) -
m_trainInstances
Instances m_trainInstances
The data to transform analyse/transform -
m_transBackToOriginal
boolean m_transBackToOriginal
transform the data through the pc space and back to the original space ? -
m_transformedFormat
Instances m_transformedFormat
The header for the transformed data format
-
-
Class weka.attributeSelection.Ranker
class Ranker extends ASSearch implements Serializable- serialVersionUID:
- -9086714848510751934L
-
Serialized Fields
-
m_attributeList
int[] m_attributeList
Holds the ordered list of attributes -
m_attributeMerit
double[] m_attributeMerit
Holds the list of attribute merit scores -
m_calculatedNumToSelect
int m_calculatedNumToSelect
Used to compute the number to select -
m_classIndex
int m_classIndex
Class index of the data if supervised evaluator -
m_hasClass
boolean m_hasClass
Data has class attribute---if unsupervised evaluator then no class -
m_numAttribs
int m_numAttribs
The number of attribtes -
m_numToSelect
int m_numToSelect
The number of attributes to select. -1 indicates that all attributes are to be retained. Has precedence over m_threshold -
m_starting
int[] m_starting
Holds the starting set as an array of attributes -
m_startRange
Range m_startRange
Holds the start set for the search as a range -
m_threshold
double m_threshold
A threshold by which to discard attributes---used by the AttributeSelection module
-
-
Class weka.attributeSelection.ReliefFAttributeEval
class ReliefFAttributeEval extends ASEvaluation implements Serializable- serialVersionUID:
- -8422186665795839379L
-
Serialized Fields
-
m_classIndex
int m_classIndex
The class index -
m_classProbs
double[] m_classProbs
Prior class probabilities (discrete class case) -
m_index
int[] m_index
Index in the m_karray of the farthest instance for each class -
m_karray
double[][][] m_karray
k nearest scores + instance indexes for n classes -
m_Knn
int m_Knn
The number of nearest hits/misses -
m_maxArray
double[] m_maxArray
Upper bound for numeric attributes -
m_minArray
double[] m_minArray
Lower bound for numeric attributes -
m_nda
double[] m_nda
Used to hold the prob of different value of an attribute given nearest instances (numeric class case) -
m_ndc
double m_ndc
Used to hold the probability of a different class val given nearest instances (numeric class) -
m_ndcda
double[] m_ndcda
Used to hold the prob of a different class val and different att val given nearest instances (numeric class case) -
m_numAttribs
int m_numAttribs
The number of attributes -
m_numClasses
int m_numClasses
The number of classes if class is nominal -
m_numericClass
boolean m_numericClass
Numeric class -
m_numInstances
int m_numInstances
The number of instances -
m_sampleM
int m_sampleM
The number of instances to sample when estimating attributes default == -1, use all instances -
m_seed
int m_seed
Random number seed used for sampling instances -
m_sigma
int m_sigma
-
m_stored
int[] m_stored
Number of nearest neighbours stored of each class -
m_trainInstances
Instances m_trainInstances
The training instances -
m_weightByDistance
boolean m_weightByDistance
Weight by distance rather than equal weights -
m_weights
double[] m_weights
Holds the weights that relief assigns to attributes -
m_weightsByRank
double[] m_weightsByRank
used to (optionally) weight nearest neighbours by their distance from the instance in question. Each entry holds exp(-((rank(r_i, i_j)/sigma)^2)) where rank(r_i,i_j) is the rank of instance i_j in a sequence of instances ordered by the distance from r_i. sigma is a user defined parameter, default=20 -
m_worst
double[] m_worst
Keep track of the farthest instance for each class
-
-
Class weka.attributeSelection.SymmetricalUncertAttributeEval
class SymmetricalUncertAttributeEval extends ASEvaluation implements Serializable- serialVersionUID:
- -8096505776132296416L
-
Serialized Fields
-
m_classIndex
int m_classIndex
The class index -
m_missing_merge
boolean m_missing_merge
Treat missing values as a separate value -
m_numClasses
int m_numClasses
The number of classes -
m_numInstances
int m_numInstances
The number of instances -
m_trainInstances
Instances m_trainInstances
The training instances
-
-
Class weka.attributeSelection.UnsupervisedAttributeEvaluator
class UnsupervisedAttributeEvaluator extends ASEvaluation implements Serializable- serialVersionUID:
- -4100897318675336178L
-
Class weka.attributeSelection.UnsupervisedSubsetEvaluator
class UnsupervisedSubsetEvaluator extends ASEvaluation implements Serializable- serialVersionUID:
- 627934376267488763L
-
Class weka.attributeSelection.WrapperSubsetEval
class WrapperSubsetEval extends ASEvaluation implements Serializable- serialVersionUID:
- -4573057658746728675L
-
Serialized Fields
-
m_BaseClassifier
Classifier m_BaseClassifier
holds the base classifier object -
m_classIndex
int m_classIndex
class index -
m_Evaluation
Evaluation m_Evaluation
holds an evaluation object -
m_evaluationMeasure
Tag m_evaluationMeasure
The evaluation measure to use -
m_folds
int m_folds
number of folds to use for cross validation -
m_IRClassVal
int m_IRClassVal
If >= 0, and an IR metric is being used, then evaluate with respect to this class value (0-based index) -
m_IRClassValS
String m_IRClassValS
User supplied option for IR class value (either name or 1-based index) -
m_numAttribs
int m_numAttribs
number of attributes in the training data -
m_seed
int m_seed
random number seed -
m_threshold
double m_threshold
the threshold by which to do further cross validations when estimating the accuracy of a subset -
m_trainInstances
Instances m_trainInstances
training instances
-
-
Class weka.attributeSelection.WrapperSubsetEval.PluginTag
class PluginTag extends Tag implements Serializable- serialVersionUID:
- -6978438858413428382L
-
Serialized Fields
-
m_metric
AbstractEvaluationMetric m_metric
The metric object itself -
m_statisticName
String m_statisticName
The particular statistic from the metric that this tag pertains to
-
-
-
Package weka.classifiers
-
Class weka.classifiers.AbstractClassifier
class AbstractClassifier extends Object implements Serializable- serialVersionUID:
- 6502780192411755341L
-
Serialized Fields
-
m_BatchSize
String m_BatchSize
-
m_Debug
boolean m_Debug
Whether the classifier is run in debug mode. -
m_DoNotCheckCapabilities
boolean m_DoNotCheckCapabilities
Whether capabilities should not be checked before classifier is built. -
m_numDecimalPlaces
int m_numDecimalPlaces
-
-
Class weka.classifiers.AggregateableEvaluation
class AggregateableEvaluation extends Evaluation implements Serializable- serialVersionUID:
- 6850546230173753210L
-
Class weka.classifiers.CostMatrix
class CostMatrix extends Object implements Serializable- serialVersionUID:
- -1973792250544554965L
-
Serialized Fields
-
m_matrix
Object[][] m_matrix
[rows][columns] -
m_size
int m_size
-
-
Class weka.classifiers.Evaluation
class Evaluation extends Object implements Serializable- serialVersionUID:
- -170766452472965668L
-
Serialized Fields
-
m_delegate
Evaluation m_delegate
The actual evaluation object that we delegate to
-
-
Class weka.classifiers.IteratedSingleClassifierEnhancer
class IteratedSingleClassifierEnhancer extends SingleClassifierEnhancer implements Serializable- serialVersionUID:
- -6217979135443319724L
-
Serialized Fields
-
m_Classifiers
Classifier[] m_Classifiers
Array for storing the generated base classifiers. -
m_NumIterations
int m_NumIterations
The number of iterations.
-
-
Class weka.classifiers.MultipleClassifiersCombiner
class MultipleClassifiersCombiner extends AbstractClassifier implements Serializable- serialVersionUID:
- 2776436621129422119L
-
Serialized Fields
-
m_Classifiers
Classifier[] m_Classifiers
Array for storing the generated base classifiers.
-
-
Class weka.classifiers.ParallelIteratedSingleClassifierEnhancer
class ParallelIteratedSingleClassifierEnhancer extends IteratedSingleClassifierEnhancer implements Serializable- serialVersionUID:
- -5026378741833046436L
-
Serialized Fields
-
m_numExecutionSlots
int m_numExecutionSlots
The number of threads to have executing at any one time
-
-
Class weka.classifiers.ParallelMultipleClassifiersCombiner
class ParallelMultipleClassifiersCombiner extends MultipleClassifiersCombiner implements Serializable- serialVersionUID:
- 728109028953726626L
-
Serialized Fields
-
m_completed
int m_completed
The number of classifiers completed so far -
m_failed
int m_failed
The number of classifiers that experienced a failure of some sort during construction -
m_numExecutionSlots
int m_numExecutionSlots
The number of threads to have executing at any one time
-
-
Class weka.classifiers.RandomizableClassifier
class RandomizableClassifier extends AbstractClassifier implements Serializable- serialVersionUID:
- -8816375798262351903L
-
Serialized Fields
-
m_Seed
int m_Seed
The random number seed.
-
-
Class weka.classifiers.RandomizableIteratedSingleClassifierEnhancer
class RandomizableIteratedSingleClassifierEnhancer extends IteratedSingleClassifierEnhancer implements Serializable- serialVersionUID:
- 5063351391524938557L
-
Serialized Fields
-
m_Seed
int m_Seed
The random number seed.
-
-
Class weka.classifiers.RandomizableMultipleClassifiersCombiner
class RandomizableMultipleClassifiersCombiner extends MultipleClassifiersCombiner implements Serializable- serialVersionUID:
- 5057936555724785679L
-
Serialized Fields
-
m_Seed
int m_Seed
The random number seed.
-
-
Class weka.classifiers.RandomizableParallelIteratedSingleClassifierEnhancer
class RandomizableParallelIteratedSingleClassifierEnhancer extends ParallelIteratedSingleClassifierEnhancer implements Serializable- serialVersionUID:
- 1298141000373615374L
-
Serialized Fields
-
m_Seed
int m_Seed
The random number seed.
-
-
Class weka.classifiers.RandomizableParallelMultipleClassifiersCombiner
class RandomizableParallelMultipleClassifiersCombiner extends ParallelMultipleClassifiersCombiner implements Serializable- serialVersionUID:
- 8274061943448676943L
-
Serialized Fields
-
m_Seed
int m_Seed
The random number seed.
-
-
Class weka.classifiers.RandomizableSingleClassifierEnhancer
class RandomizableSingleClassifierEnhancer extends SingleClassifierEnhancer implements Serializable- serialVersionUID:
- 558286687096157160L
-
Serialized Fields
-
m_Seed
int m_Seed
The random number seed.
-
-
Class weka.classifiers.SingleClassifierEnhancer
class SingleClassifierEnhancer extends AbstractClassifier implements Serializable- serialVersionUID:
- -3665885256363525164L
-
Serialized Fields
-
m_Classifier
Classifier m_Classifier
The base classifier to use
-
-
-
Package weka.classifiers.bayes
-
Class weka.classifiers.bayes.BayesNet
class BayesNet extends AbstractClassifier implements Serializable- serialVersionUID:
- 746037443258775954L
-
Serialized Fields
-
m_ADTree
ADNode m_ADTree
Datastructure containing ADTree representation of the database. This may result in more efficient access to the data. -
m_BayesNetEstimator
BayesNetEstimator m_BayesNetEstimator
Search algorithm used for learning the structure of a network. -
m_bUseADTree
boolean m_bUseADTree
Use the experimental ADTree datastructure for calculating contingency tables -
m_DiscretizeFilter
Discretize m_DiscretizeFilter
filter used to quantize continuous variables, if any -
m_Distributions
Estimator[][] m_Distributions
The attribute estimators containing CPTs. -
m_Instances
Instances m_Instances
The dataset header for the purposes of printing out a semi-intelligible model -
m_MissingValuesFilter
ReplaceMissingValues m_MissingValuesFilter
filter used to fill in missing values, if any -
m_nNonDiscreteAttribute
int m_nNonDiscreteAttribute
attribute index of a non-nominal attribute -
m_NumClasses
int m_NumClasses
The number of classes -
m_NumInstances
int m_NumInstances
The number of instances the model was built from -
m_otherBayesNet
BIFReader m_otherBayesNet
Bayes network to compare the structure with. -
m_ParentSets
ParentSet[] m_ParentSets
The parent sets. -
m_SearchAlgorithm
SearchAlgorithm m_SearchAlgorithm
Search algorithm used for learning the structure of a network.
-
-
Class weka.classifiers.bayes.NaiveBayes
class NaiveBayes extends AbstractClassifier implements Serializable- serialVersionUID:
- 5995231201785697655L
-
Serialized Fields
-
m_ClassDistribution
Estimator m_ClassDistribution
The class estimator. -
m_Disc
Discretize m_Disc
The discretization filter. -
m_displayModelInOldFormat
boolean m_displayModelInOldFormat
-
m_Distributions
Estimator[][] m_Distributions
The attribute estimators. -
m_Instances
Instances m_Instances
The dataset header for the purposes of printing out a semi-intelligible model -
m_NumClasses
int m_NumClasses
The number of classes (or 1 for numeric class) -
m_UseDiscretization
boolean m_UseDiscretization
Whether to use discretization than normal distribution for numeric attributes -
m_UseKernelEstimator
boolean m_UseKernelEstimator
Whether to use kernel density estimator rather than normal distribution for numeric attributes
-
-
Class weka.classifiers.bayes.NaiveBayesMultinomial
class NaiveBayesMultinomial extends AbstractClassifier implements Serializable- serialVersionUID:
- 5932177440181257085L
-
Serialized Fields
-
m_headerInfo
Instances m_headerInfo
copy of header information for use in toString method -
m_numAttributes
int m_numAttributes
number of unique words -
m_numClasses
int m_numClasses
number of class values -
m_probOfClass
double[] m_probOfClass
the probability of a class (i.e. Pr[H]). -
m_probOfWordGivenClass
double[][] m_probOfWordGivenClass
probability that a word (w) exists in a class (H) (i.e. Pr[w|H]) The matrix is in the this format: probOfWordGivenClass[class][wordAttribute] NOTE: the values are actually the log of Pr[w|H]
-
-
Class weka.classifiers.bayes.NaiveBayesMultinomialText
class NaiveBayesMultinomialText extends AbstractClassifier implements Serializable- serialVersionUID:
- 2139025532014821394L
-
Serialized Fields
-
m_data
Instances m_data
The header of the training data -
m_leplace
double m_leplace
Leplace-like correction factor for zero frequency -
m_lnorm
double m_lnorm
The L-norm to use -
m_lowercaseTokens
boolean m_lowercaseTokens
Whether or not to convert all tokens to lowercase -
m_minWordP
double m_minWordP
Only consider dictionary words (features) that occur at least this many times -
m_norm
double m_norm
The length that each document vector should have in the end -
m_normalize
boolean m_normalize
normailize document length ? -
m_numModels
int m_numModels
-
m_periodicP
int m_periodicP
The number of training instances at which to periodically prune the dictionary of min frequency words. Empty or null string indicates don't prune -
m_probOfClass
double[] m_probOfClass
-
m_probOfWordGivenClass
Map<Integer,
LinkedHashMap<String, weka.classifiers.bayes.NaiveBayesMultinomialText.Count>> m_probOfWordGivenClass -
m_stemmer
Stemmer m_stemmer
The stemming algorithm. -
m_StopwordsHandler
StopwordsHandler m_StopwordsHandler
Stopword handler to use. -
m_t
double m_t
Holds the current instance number -
m_tokenizer
Tokenizer m_tokenizer
The tokenizer to use -
m_wordFrequencies
boolean m_wordFrequencies
Use word frequencies rather than bag-of-words if true -
m_wordsPerClass
double[] m_wordsPerClass
-
-
Class weka.classifiers.bayes.NaiveBayesMultinomialUpdateable
class NaiveBayesMultinomialUpdateable extends NaiveBayesMultinomial implements Serializable- serialVersionUID:
- -7204398796974263186L
-
Serialized Fields
-
m_wordsPerClass
double[] m_wordsPerClass
the number of words per class.
-
-
Class weka.classifiers.bayes.NaiveBayesUpdateable
class NaiveBayesUpdateable extends NaiveBayes implements Serializable- serialVersionUID:
- -5354015843807192221L
-
-
Package weka.classifiers.bayes.net
-
Class weka.classifiers.bayes.net.ADNode
class ADNode extends Object implements Serializable- serialVersionUID:
- 397409728366910204L
-
Class weka.classifiers.bayes.net.BayesNetGenerator
class BayesNetGenerator extends EditableBayesNet implements Serializable- serialVersionUID:
- -7462571170596157720L
-
Class weka.classifiers.bayes.net.BIFReader
class BIFReader extends BayesNet implements Serializable- serialVersionUID:
- -8358864680379881429L
-
Serialized Fields
-
m_nPositionX
int[] m_nPositionX
-
m_nPositionY
int[] m_nPositionY
-
m_order
int[] m_order
-
m_sFile
String m_sFile
the current filename
-
-
Class weka.classifiers.bayes.net.EditableBayesNet
class EditableBayesNet extends BayesNet implements Serializable- serialVersionUID:
- 746037443258735954L
-
Serialized Fields
-
m_bNeedsUndoAction
boolean m_bNeedsUndoAction
flag to indicate whether an edit action needs to introduce an undo action. This is only false when an undo or redo action is performed. -
m_fMarginP
ArrayList<double[]> m_fMarginP
marginal distributions * -
m_nCurrentEditAction
int m_nCurrentEditAction
current action in undo stack -
m_nEvidence
ArrayList<Integer> m_nEvidence
evidence values, used for evidence propagation * -
m_nPositionX
ArrayList<Integer> m_nPositionX
location of nodes, used for graph drawing * -
m_nPositionY
ArrayList<Integer> m_nPositionY
-
m_nSavedPointer
int m_nSavedPointer
action that the network is saved -
m_undoStack
ArrayList<weka.classifiers.bayes.net.EditableBayesNet.UndoAction> m_undoStack
undo stack for undoin edit actions, or redo edit actions
-
-
Class weka.classifiers.bayes.net.GUI
class GUI extends JPanel implements Serializable- serialVersionUID:
- -2038911085935515624L
-
Serialized Fields
-
a_about
Action a_about
-
a_addarc
Action a_addarc
-
a_addnode
weka.classifiers.bayes.net.GUI.ActionAddNode a_addnode
-
a_alignbottom
Action a_alignbottom
-
a_alignleft
Action a_alignleft
-
a_alignright
Action a_alignright
-
a_aligntop
Action a_aligntop
-
a_centerhorizontal
Action a_centerhorizontal
-
a_centervertical
Action a_centervertical
-
a_copynode
Action a_copynode
-
a_cutnode
Action a_cutnode
-
a_datagenerator
Action a_datagenerator
-
a_datasetter
Action a_datasetter
-
a_delarc
Action a_delarc
-
a_delnode
Action a_delnode
-
a_export
weka.classifiers.bayes.net.GUI.ActionExport a_export
-
a_help
Action a_help
-
a_layout
Action a_layout
-
a_learn
Action a_learn
-
a_learnCPT
Action a_learnCPT
-
a_load
Action a_load
-
a_networkgenerator
Action a_networkgenerator
-
a_new
Action a_new
actions triggered by GUI events -
a_pastenode
Action a_pastenode
-
a_print
weka.classifiers.bayes.net.GUI.ActionPrint a_print
-
a_quit
Action a_quit
-
a_redo
Action a_redo
-
a_save
Action a_save
-
a_saveas
Action a_saveas
-
a_selectall
Action a_selectall
-
a_spacehorizontal
Action a_spacehorizontal
-
a_spacevertical
Action a_spacevertical
-
a_undo
Action a_undo
-
a_viewstatusbar
Action a_viewstatusbar
-
a_viewtoolbar
Action a_viewtoolbar
-
a_zoomin
Action a_zoomin
-
a_zoomout
Action a_zoomout
-
ICONPATH
String ICONPATH
path for icons -
m_BayesNet
EditableBayesNet m_BayesNet
Container of Bayesian network -
m_bViewCliques
boolean m_bViewCliques
-
m_bViewMargins
boolean m_bViewMargins
flag indicating whether marginal distributions of each of the nodes should be shown in display. -
m_clipboard
weka.classifiers.bayes.net.GUI.ClipBoard m_clipboard
-
m_fScale
double m_fScale
current zoom value -
m_GraphPanel
weka.classifiers.bayes.net.GUI.GraphPanel m_GraphPanel
Panel actually displaying the graph -
m_Instances
Instances m_Instances
data selected from file. Used to train a Bayesian network on -
m_jScrollPane
JScrollPane m_jScrollPane
this contains the m_GraphPanel GraphPanel -
m_jStatusBar
JLabel m_jStatusBar
status bar at bottom of window -
m_jTbTools
JToolBar m_jTbTools
toolbar containing buttons at top of window -
m_jTfNodeHeight
JTextField m_jTfNodeHeight
TextField for nodes height -
m_jTfNodeWidth
JTextField m_jTfNodeWidth
TextField for node's width -
m_jTfZoom
JTextField m_jTfZoom
Text field for specifying zoom -
m_layoutEngine
LayoutEngine m_layoutEngine
The current LayoutEngine -
m_marginCalculator
MarginCalculator m_marginCalculator
used for calculating marginals in Bayesian netwowrks -
m_marginCalculatorWithEvidence
MarginCalculator m_marginCalculatorWithEvidence
used for calculating marginals in Bayesian netwowrks when evidence is present -
m_menuBar
JMenuBar m_menuBar
The menu bar -
m_nCurrentNode
int m_nCurrentNode
node currently selected through right clicking -
m_nNodeHeight
int m_nNodeHeight
standard width of node -
m_nNodeWidth
int m_nNodeWidth
-
m_nPaddedNodeWidth
int m_nPaddedNodeWidth
-
m_nSelectedRect
Rectangle m_nSelectedRect
selection rectangle drawn through dragging with left mouse button -
m_nZoomPercents
int[] m_nZoomPercents
used when using zoomIn and zoomOut buttons -
m_Selection
weka.classifiers.bayes.net.GUI.Selection m_Selection
selection of nodes -
m_sFileName
String m_sFileName
String containing file name storing current network
-
-
Class weka.classifiers.bayes.net.MarginCalculator
class MarginCalculator extends Object implements Serializable- serialVersionUID:
- 650278019241175534L
-
Serialized Fields
-
jtNodes
MarginCalculator.JunctionTreeNode[] jtNodes
-
m_debug
boolean m_debug
-
m_Margins
double[][] m_Margins
-
m_root
MarginCalculator.JunctionTreeNode m_root
-
-
Class weka.classifiers.bayes.net.MarginCalculator.JunctionTreeNode
class JunctionTreeNode extends Object implements Serializable- serialVersionUID:
- 650278019241175536L
-
Serialized Fields
-
m_bayesNet
BayesNet m_bayesNet
reference Bayes net for information about variables like name, cardinality, etc. but not for relations between nodes -
m_children
Vector<MarginCalculator.JunctionTreeNode> m_children
-
m_fi
double[] m_fi
potentials for first network -
m_MarginalP
double[][] m_MarginalP
-
m_nCardinality
int m_nCardinality
cardinality of the instances of variables in this junction node -
m_nNodes
int[] m_nNodes
nodes of the Bayes net in this junction node -
m_P
double[] m_P
distribution over this junction node according to first Bayes network -
m_parentSeparator
MarginCalculator.JunctionTreeSeparator m_parentSeparator
-
-
Class weka.classifiers.bayes.net.MarginCalculator.JunctionTreeSeparator
class JunctionTreeSeparator extends Object implements Serializable- serialVersionUID:
- 6502780192411755343L
-
Serialized Fields
-
m_bayesNet
BayesNet m_bayesNet
-
m_childNode
MarginCalculator.JunctionTreeNode m_childNode
-
m_fiChild
double[] m_fiChild
-
m_fiParent
double[] m_fiParent
-
m_nCardinality
int m_nCardinality
-
m_nNodes
int[] m_nNodes
-
m_parentNode
MarginCalculator.JunctionTreeNode m_parentNode
-
-
Class weka.classifiers.bayes.net.ParentSet
class ParentSet extends Object implements Serializable- serialVersionUID:
- 4155021284407181838L
-
Serialized Fields
-
m_nCardinalityOfParents
int m_nCardinalityOfParents
Holds cardinality of parents (= number of instantiations the parents can take) -
m_nNrOfParents
int m_nNrOfParents
Holds number of parents -
m_nParents
int[] m_nParents
Holds indexes of parents
-
-
Class weka.classifiers.bayes.net.VaryNode
class VaryNode extends Object implements Serializable- serialVersionUID:
- -6196294370675872424L
-
Serialized Fields
-
m_ADNodes
ADNode[] m_ADNodes
list of ADNode children -
m_iNode
int m_iNode
index of the node varied -
m_nMCV
int m_nMCV
most common value
-
-
-
Package weka.classifiers.bayes.net.estimate
-
Class weka.classifiers.bayes.net.estimate.BayesNetEstimator
class BayesNetEstimator extends Object implements Serializable- serialVersionUID:
- 2184330197666253884L
-
Serialized Fields
-
m_fAlpha
double m_fAlpha
Holds prior on count
-
-
Class weka.classifiers.bayes.net.estimate.BMAEstimator
class BMAEstimator extends SimpleEstimator implements Serializable- serialVersionUID:
- -1846028304233257309L
-
Serialized Fields
-
m_bUseK2Prior
boolean m_bUseK2Prior
whether to use K2 prior
-
-
Class weka.classifiers.bayes.net.estimate.DiscreteEstimatorBayes
class DiscreteEstimatorBayes extends Estimator implements Serializable- serialVersionUID:
- 4215400230843212684L
-
Serialized Fields
-
m_Counts
double[] m_Counts
Hold the counts -
m_fPrior
double m_fPrior
Holds the prior probability -
m_nSymbols
int m_nSymbols
Holds number of symbols in distribution -
m_SumOfCounts
double m_SumOfCounts
Hold the sum of counts
-
-
Class weka.classifiers.bayes.net.estimate.DiscreteEstimatorFullBayes
class DiscreteEstimatorFullBayes extends DiscreteEstimatorBayes implements Serializable- serialVersionUID:
- 6774941981423312133L
-
Class weka.classifiers.bayes.net.estimate.MultiNomialBMAEstimator
class MultiNomialBMAEstimator extends BayesNetEstimator implements Serializable- serialVersionUID:
- 8330705772601586313L
-
Serialized Fields
-
m_bUseK2Prior
boolean m_bUseK2Prior
whether to use K2 prior
-
-
Class weka.classifiers.bayes.net.estimate.SimpleEstimator
class SimpleEstimator extends BayesNetEstimator implements Serializable- serialVersionUID:
- 5874941612331806172L
-
-
Package weka.classifiers.bayes.net.search
-
Class weka.classifiers.bayes.net.search.SearchAlgorithm
class SearchAlgorithm extends Object implements Serializable- serialVersionUID:
- 6164792240778525312L
-
Serialized Fields
-
m_bInitAsNaiveBayes
boolean m_bInitAsNaiveBayes
determines whether initial structure is an empty graph or a Naive Bayes network -
m_bMarkovBlanketClassifier
boolean m_bMarkovBlanketClassifier
Determines whether after structure is found a MarkovBlanketClassifier correction should be applied If this is true, m_bInitAsNaiveBayes is overridden and interpreted as false. -
m_nMaxNrOfParents
int m_nMaxNrOfParents
Holds upper bound on number of parents -
m_sInitalBIFFile
String m_sInitalBIFFile
File name containing initial network structure. This can be used as starting point for structure search It will be ignored if not speficied. When specified, it overrides the InitAsNaivBayes flag.
-
-
-
Package weka.classifiers.bayes.net.search.ci
-
Class weka.classifiers.bayes.net.search.ci.CISearchAlgorithm
class CISearchAlgorithm extends LocalScoreSearchAlgorithm implements Serializable- serialVersionUID:
- 3165802334119704560L
-
Class weka.classifiers.bayes.net.search.ci.ICSSearchAlgorithm
class ICSSearchAlgorithm extends CISearchAlgorithm implements Serializable- serialVersionUID:
- -2510985917284798576L
-
Serialized Fields
-
m_nMaxCardinality
int m_nMaxCardinality
maximum size of separating set
-
-
-
Package weka.classifiers.bayes.net.search.fixed
-
Class weka.classifiers.bayes.net.search.fixed.FromFile
class FromFile extends SearchAlgorithm implements Serializable- serialVersionUID:
- 7334358169507619525L
-
Serialized Fields
-
m_sBIFFile
String m_sBIFFile
name of file to read structure from
-
-
Class weka.classifiers.bayes.net.search.fixed.NaiveBayes
class NaiveBayes extends SearchAlgorithm implements Serializable- serialVersionUID:
- -4808572519709755811L
-
-
Package weka.classifiers.bayes.net.search.global
-
Class weka.classifiers.bayes.net.search.global.GeneticSearch
class GeneticSearch extends GlobalScoreSearchAlgorithm implements Serializable- serialVersionUID:
- 4236165533882462203L
-
Serialized Fields
-
g_bIsSquare
boolean[] g_bIsSquare
used in BayesNetRepresentation for efficiently determining whether a number is square -
m_bUseCrossOver
boolean m_bUseCrossOver
use cross-over? -
m_bUseMutation
boolean m_bUseMutation
use mutation? -
m_bUseTournamentSelection
boolean m_bUseTournamentSelection
use tournament selection or take best sub-population -
m_nDescendantPopulationSize
int m_nDescendantPopulationSize
size of descendant population -
m_nPopulationSize
int m_nPopulationSize
size of population -
m_nRuns
int m_nRuns
number of runs -
m_nSeed
int m_nSeed
random number seed -
m_random
Random m_random
random number generator
-
-
Class weka.classifiers.bayes.net.search.global.GlobalScoreSearchAlgorithm
class GlobalScoreSearchAlgorithm extends SearchAlgorithm implements Serializable- serialVersionUID:
- 7341389867906199781L
-
Serialized Fields
-
m_BayesNet
BayesNet m_BayesNet
points to Bayes network for which a structure is searched for -
m_bUseProb
boolean m_bUseProb
toggle between scoring using accuracy = 0-1 loss (when false) or class probabilities (when true) -
m_nCVType
int m_nCVType
Holds the cross validation strategy used to measure quality of network -
m_nNrOfFolds
int m_nNrOfFolds
number of folds for k-fold cross validation
-
-
Class weka.classifiers.bayes.net.search.global.HillClimber
class HillClimber extends GlobalScoreSearchAlgorithm implements Serializable- serialVersionUID:
- -3885042888195820149L
-
Serialized Fields
-
m_bUseArcReversal
boolean m_bUseArcReversal
use the arc reversal operator
-
-
Class weka.classifiers.bayes.net.search.global.K2
class K2 extends GlobalScoreSearchAlgorithm implements Serializable- serialVersionUID:
- -6626871067466338256L
-
Serialized Fields
-
m_bRandomOrder
boolean m_bRandomOrder
Holds flag to indicate ordering should be random
-
-
Class weka.classifiers.bayes.net.search.global.RepeatedHillClimber
class RepeatedHillClimber extends HillClimber implements Serializable- serialVersionUID:
- -7359197180460703069L
-
Serialized Fields
-
m_nRuns
int m_nRuns
number of runs -
m_nSeed
int m_nSeed
random number seed -
m_random
Random m_random
random number generator
-
-
Class weka.classifiers.bayes.net.search.global.SimulatedAnnealing
class SimulatedAnnealing extends GlobalScoreSearchAlgorithm implements Serializable- serialVersionUID:
- -5482721887881010916L
-
Serialized Fields
-
m_bUseArcReversal
boolean m_bUseArcReversal
use the arc reversal operator -
m_fDelta
double m_fDelta
change in temperature at every run -
m_fTStart
double m_fTStart
start temperature -
m_nRuns
int m_nRuns
number of runs -
m_nSeed
int m_nSeed
random number seed -
m_random
Random m_random
random number generator
-
-
Class weka.classifiers.bayes.net.search.global.TabuSearch
class TabuSearch extends HillClimber implements Serializable- serialVersionUID:
- 1176705618756672292L
-
Serialized Fields
-
m_nRuns
int m_nRuns
number of runs -
m_nTabuList
int m_nTabuList
size of tabu list -
m_oTabuList
weka.classifiers.bayes.net.search.global.HillClimber.Operation[] m_oTabuList
the actual tabu list
-
-
Class weka.classifiers.bayes.net.search.global.TAN
class TAN extends GlobalScoreSearchAlgorithm implements Serializable- serialVersionUID:
- 1715277053980895298L
-
-
Package weka.classifiers.bayes.net.search.local
-
Class weka.classifiers.bayes.net.search.local.GeneticSearch
class GeneticSearch extends LocalScoreSearchAlgorithm implements Serializable- serialVersionUID:
- -7037070678911459757L
-
Serialized Fields
-
g_bIsSquare
boolean[] g_bIsSquare
used in BayesNetRepresentation for efficiently determining whether a number is square -
m_bUseCrossOver
boolean m_bUseCrossOver
use cross-over? -
m_bUseMutation
boolean m_bUseMutation
use mutation? -
m_bUseTournamentSelection
boolean m_bUseTournamentSelection
use tournament selection or take best sub-population -
m_nDescendantPopulationSize
int m_nDescendantPopulationSize
size of descendant population -
m_nPopulationSize
int m_nPopulationSize
size of population -
m_nRuns
int m_nRuns
number of runs -
m_nSeed
int m_nSeed
random number seed -
m_random
Random m_random
random number generator
-
-
Class weka.classifiers.bayes.net.search.local.HillClimber
class HillClimber extends LocalScoreSearchAlgorithm implements Serializable- serialVersionUID:
- 4322783593818122403L
-
Serialized Fields
-
m_bUseArcReversal
boolean m_bUseArcReversal
use the arc reversal operator -
m_Cache
weka.classifiers.bayes.net.search.local.HillClimber.Cache m_Cache
cache for storing score differences
-
-
Class weka.classifiers.bayes.net.search.local.K2
class K2 extends LocalScoreSearchAlgorithm implements Serializable- serialVersionUID:
- 6176545934752116631L
-
Serialized Fields
-
m_bRandomOrder
boolean m_bRandomOrder
Holds flag to indicate ordering should be random
-
-
Class weka.classifiers.bayes.net.search.local.LAGDHillClimber
class LAGDHillClimber extends HillClimber implements Serializable- serialVersionUID:
- 7217437499439184344L
-
Serialized Fields
-
m_nNrOfGoodOperations
int m_nNrOfGoodOperations
Number of Good Operations per Step -
m_nNrOfLookAheadSteps
int m_nNrOfLookAheadSteps
Number of Look Ahead Steps
-
-
Class weka.classifiers.bayes.net.search.local.LocalScoreSearchAlgorithm
class LocalScoreSearchAlgorithm extends SearchAlgorithm implements Serializable- serialVersionUID:
- 3325995552474190374L
-
Serialized Fields
-
m_BayesNet
BayesNet m_BayesNet
points to Bayes network for which a structure is searched for -
m_fAlpha
double m_fAlpha
Holds prior on count -
m_nScoreType
int m_nScoreType
Holds the score type used to measure quality of network
-
-
Class weka.classifiers.bayes.net.search.local.RepeatedHillClimber
class RepeatedHillClimber extends HillClimber implements Serializable- serialVersionUID:
- -6574084564213041174L
-
Serialized Fields
-
m_nRuns
int m_nRuns
number of runs -
m_nSeed
int m_nSeed
random number seed -
m_random
Random m_random
random number generator
-
-
Class weka.classifiers.bayes.net.search.local.SimulatedAnnealing
class SimulatedAnnealing extends LocalScoreSearchAlgorithm implements Serializable- serialVersionUID:
- 6951955606060513191L
-
Serialized Fields
-
m_bUseArcReversal
boolean m_bUseArcReversal
use the arc reversal operator -
m_fDelta
double m_fDelta
change in temperature at every run -
m_fTStart
double m_fTStart
start temperature -
m_nRuns
int m_nRuns
number of runs -
m_nSeed
int m_nSeed
random number seed -
m_random
Random m_random
random number generator
-
-
Class weka.classifiers.bayes.net.search.local.TabuSearch
class TabuSearch extends HillClimber implements Serializable- serialVersionUID:
- 1457344073228786447L
-
Serialized Fields
-
m_nRuns
int m_nRuns
number of runs -
m_nTabuList
int m_nTabuList
size of tabu list -
m_oTabuList
weka.classifiers.bayes.net.search.local.HillClimber.Operation[] m_oTabuList
the actual tabu list
-
-
Class weka.classifiers.bayes.net.search.local.TAN
class TAN extends LocalScoreSearchAlgorithm implements Serializable- serialVersionUID:
- 965182127977228690L
-
-
Package weka.classifiers.evaluation
-
Class weka.classifiers.evaluation.AbstractEvaluationMetric
class AbstractEvaluationMetric extends Object implements Serializable- serialVersionUID:
- -924507718482386887L
-
Serialized Fields
-
m_baseEvaluation
Evaluation m_baseEvaluation
Base evaluation object for subclasses to access for statistics. IMPORTANT: subclasses should treat this object as read-only
-
-
Exception weka.classifiers.evaluation.AbstractEvaluationMetric.UnknownStatisticException
class UnknownStatisticException extends IllegalArgumentException implements Serializable- serialVersionUID:
- -8787045492227999839L
-
Class weka.classifiers.evaluation.AggregateableEvaluation
class AggregateableEvaluation extends Evaluation implements Serializable- serialVersionUID:
- 8734675926526110924L
-
Class weka.classifiers.evaluation.ConfusionMatrix
class ConfusionMatrix extends Matrix implements Serializable- serialVersionUID:
- -181789981401504090L
-
Serialized Fields
-
m_ClassNames
String[] m_ClassNames
Stores the names of the classes
-
-
Class weka.classifiers.evaluation.Evaluation
class Evaluation extends Object implements Serializable- serialVersionUID:
- -7010314486866816271L
-
Serialized Fields
-
m_ClassIsNominal
boolean m_ClassIsNominal
Is the class nominal or numeric? -
m_ClassNames
String[] m_ClassNames
The names of the classes. -
m_ClassPriors
double[] m_ClassPriors
The prior probabilities of the classes. -
m_ClassPriorsSum
double m_ClassPriorsSum
The sum of counts for priors. -
m_ComplexityStatisticsAvailable
boolean m_ComplexityStatisticsAvailable
Whether complexity statistics are available. -
m_ConfLevel
double m_ConfLevel
The confidence level used for coverage statistics. -
m_ConfusionMatrix
double[][] m_ConfusionMatrix
Array for storing the confusion matrix. -
m_Correct
double m_Correct
The weight of all correctly classified instances. -
m_CostMatrix
CostMatrix m_CostMatrix
The cost matrix (if given). -
m_CoverageStatisticsAvailable
boolean m_CoverageStatisticsAvailable
Whether coverage statistics are available. -
m_DiscardPredictions
boolean m_DiscardPredictions
whether to discard predictions (and save memory). -
m_Header
Instances m_Header
The header of the training set. -
m_Incorrect
double m_Incorrect
The weight of all incorrectly classified instances. -
m_MarginCounts
double[] m_MarginCounts
Cumulative margin distribution. -
m_MaxTarget
double m_MaxTarget
Maximum target value. -
m_metricsToDisplay
List<String> m_metricsToDisplay
The list of metrics to display in the output -
m_MinTarget
double m_MinTarget
Minimum target value. -
m_MissingClass
double m_MissingClass
The weight of all instances that had no class assigned to them. -
m_NoPriors
boolean m_NoPriors
enables/disables the use of priors, e.g., if no training set is present in case of de-serialized schemes. -
m_NumClasses
int m_NumClasses
The number of classes. -
m_NumFolds
int m_NumFolds
The number of folds for a cross-validation. -
m_NumTrainClassVals
int m_NumTrainClassVals
Number of non-missing class training instances seen. -
m_pluginMetrics
List<AbstractEvaluationMetric> m_pluginMetrics
Holds plugin evaluation metrics -
m_Predictions
ArrayList<Prediction> m_Predictions
The list of predictions that have been generated (for computing AUC). -
m_PriorEstimator
UnivariateKernelEstimator m_PriorEstimator
Numeric class estimator for prior. -
m_SumAbsErr
double m_SumAbsErr
Sum of absolute errors. -
m_SumClass
double m_SumClass
Sum of class values. -
m_SumClassPredicted
double m_SumClassPredicted
Sum of predicted * class values. -
m_SumErr
double m_SumErr
Sum of errors. -
m_SumKBInfo
double m_SumKBInfo
Total Kononenko & Bratko Information. -
m_SumPredicted
double m_SumPredicted
Sum of predicted values. -
m_SumPriorAbsErr
double m_SumPriorAbsErr
Sum of absolute errors of the prior. -
m_SumPriorEntropy
double m_SumPriorEntropy
Total entropy of prior predictions. -
m_SumPriorSqrErr
double m_SumPriorSqrErr
Sum of absolute errors of the prior. -
m_SumSchemeEntropy
double m_SumSchemeEntropy
Total entropy of scheme predictions. -
m_SumSqrClass
double m_SumSqrClass
Sum of squared class values. -
m_SumSqrErr
double m_SumSqrErr
Sum of squared errors. -
m_SumSqrPredicted
double m_SumSqrPredicted
Sum of squared predicted values. -
m_TotalCost
double m_TotalCost
The total cost of predictions (includes instance weights). -
m_TotalCoverage
double m_TotalCoverage
Total coverage of test cases at the given confidence level. -
m_TotalSizeOfRegions
double m_TotalSizeOfRegions
Total size of predicted regions at the given confidence level. -
m_TrainClassVals
double[] m_TrainClassVals
Array containing all numeric training class values seen. -
m_TrainClassWeights
double[] m_TrainClassWeights
Array containing all numeric training class weights. -
m_Unclassified
double m_Unclassified
The weight of all unclassified instances. -
m_WithClass
double m_WithClass
The weight of all instances that had a class assigned to them.
-
-
Class weka.classifiers.evaluation.NominalPrediction
class NominalPrediction extends Object implements Serializable- serialVersionUID:
- -8871333992740492788L
-
Serialized Fields
-
m_Actual
double m_Actual
The actual class value -
m_Distribution
double[] m_Distribution
The predicted probabilities -
m_Predicted
double m_Predicted
The predicted class value -
m_Weight
double m_Weight
The weight assigned to this prediction
-
-
Class weka.classifiers.evaluation.NumericPrediction
class NumericPrediction extends Object implements Serializable- serialVersionUID:
- -4880216423674233887L
-
Serialized Fields
-
m_Actual
double m_Actual
The actual class value. -
m_Predicted
double m_Predicted
The predicted class value. -
m_PredictionIntervals
double[][] m_PredictionIntervals
the prediction intervals. -
m_Weight
double m_Weight
The weight assigned to this prediction.
-
-
-
Package weka.classifiers.evaluation.output.prediction
-
Class weka.classifiers.evaluation.output.prediction.AbstractOutput
class AbstractOutput extends Object implements Serializable- serialVersionUID:
- 752696986017306241L
-
Serialized Fields
-
m_Attributes
Range m_Attributes
the range of attributes to output. -
m_Buffer
StringBuffer m_Buffer
the buffer to write to. -
m_FileBuffer
StringBuffer m_FileBuffer
the file buffer to write to. -
m_Header
Instances m_Header
the header of the dataset. -
m_NumDecimals
int m_NumDecimals
the number of decimals after the decimal point. -
m_OutputDistribution
boolean m_OutputDistribution
whether to output the class distribution. -
m_OutputFile
File m_OutputFile
the file to store the output in. -
m_SuppressOutput
boolean m_SuppressOutput
whether to suppress the regular output and only store in file.
-
-
Class weka.classifiers.evaluation.output.prediction.CSV
class CSV extends AbstractOutput implements Serializable- serialVersionUID:
- 3401604538169573720L
-
Serialized Fields
-
m_Delimiter
String m_Delimiter
the delimiter.
-
-
Class weka.classifiers.evaluation.output.prediction.HTML
class HTML extends AbstractOutput implements Serializable- serialVersionUID:
- 7241252244954353300L
-
Class weka.classifiers.evaluation.output.prediction.InMemory
class InMemory extends AbstractOutput implements Serializable- serialVersionUID:
- 3401604538169573720L
-
Serialized Fields
-
m_Predictions
List<InMemory.PredictionContainer> m_Predictions
for storing the predictions.
-
-
Class weka.classifiers.evaluation.output.prediction.Null
class Null extends AbstractOutput implements Serializable- serialVersionUID:
- 4988413155999044966L
-
Class weka.classifiers.evaluation.output.prediction.PlainText
class PlainText extends AbstractOutput implements Serializable- serialVersionUID:
- 2033389864898242735L
-
Class weka.classifiers.evaluation.output.prediction.XML
class XML extends AbstractOutput implements Serializable- serialVersionUID:
- -3165514277316824801L
-
-
Package weka.classifiers.functions
-
Class weka.classifiers.functions.GaussianProcesses
class GaussianProcesses extends RandomizableClassifier implements Serializable- serialVersionUID:
- -8620066949967678545L
-
Serialized Fields
-
m_actualKernel
Kernel m_actualKernel
Actual kernel object to use -
m_Alin
double m_Alin
The parameters of the linear transformation realized by the filter on the class attribute -
m_avg_target
double m_avg_target
The training data. -
m_Blin
double m_Blin
-
m_checksTurnedOff
boolean m_checksTurnedOff
Turn off all checks and conversions? Turning them off assumes that data is purely numeric, doesn't contain any missing values, and has a numeric class. -
m_delta
double m_delta
Gaussian Noise Value. -
m_deltaSquared
double m_deltaSquared
The squared noise value. -
m_Filter
Filter m_Filter
The filter used to standardize/normalize all values. -
m_filterType
int m_filterType
Whether to normalize/standardize/neither -
m_kernel
Kernel m_kernel
Template of kernel to use -
m_L
no.uib.cipr.matrix.Matrix m_L
(negative) covariance matrix in symmetric matrix representation -
m_Missing
ReplaceMissingValues m_Missing
The filter used to get rid of missing values. -
m_NominalToBinary
NominalToBinary m_NominalToBinary
The filter used to make attributes numeric. -
m_NumTrain
int m_NumTrain
The number of training instances -
m_t
no.uib.cipr.matrix.Vector m_t
The vector of target values. -
m_weights
double[] m_weights
The weight of the training instances.
-
-
Class weka.classifiers.functions.LinearRegression
class LinearRegression extends AbstractClassifier implements Serializable- serialVersionUID:
- -3364580862046573747L
-
Serialized Fields
-
m_AttributeSelection
int m_AttributeSelection
The current attribute selection method -
m_checksTurnedOff
boolean m_checksTurnedOff
Turn off all checks and conversions? -
m_ClassIndex
int m_ClassIndex
The index of the class attribute -
m_ClassMean
double m_ClassMean
The mean of the class attribute -
m_ClassStdDev
double m_ClassStdDev
The standard deviations of the class attribute -
m_Coefficients
double[] m_Coefficients
Array for storing coefficients of linear regression. -
m_df
int m_df
The degrees of freedom of the regression model -
m_EliminateColinearAttributes
boolean m_EliminateColinearAttributes
Try to eliminate correlated attributes? -
m_FStat
double m_FStat
The F-statistic of the regression model -
m_isZeroR
boolean m_isZeroR
True if the model is a zero R one -
m_Means
double[] m_Means
The attributes means -
m_Minimal
boolean m_Minimal
Conserve memory? -
m_MissingFilter
ReplaceMissingValues m_MissingFilter
The filter for removing missing values. -
m_ModelBuilt
boolean m_ModelBuilt
Model already built? -
m_outputAdditionalStats
boolean m_outputAdditionalStats
Whether to output additional statistics such as std. dev. of coefficients and t-stats -
m_Ridge
double m_Ridge
The ridge parameter -
m_RSquared
double m_RSquared
The R-squared value of the regression model -
m_RSquaredAdj
double m_RSquaredAdj
The adjusted R-squared value of the regression model -
m_SelectedAttributes
boolean[] m_SelectedAttributes
Which attributes are relevant? -
m_StdDevs
double[] m_StdDevs
The attribute standard deviations -
m_StdErrorOfCoef
double[] m_StdErrorOfCoef
Array for storing the standard error of each coefficient -
m_TransformedData
Instances m_TransformedData
Variable for storing transformed training data. -
m_TransformFilter
NominalToBinary m_TransformFilter
The filter storing the transformation from nominal to binary attributes. -
m_TStats
double[] m_TStats
Array for storing the t-statistic of each coefficient -
m_useQRDecomposition
boolean m_useQRDecomposition
Use QR decomposition
-
-
Class weka.classifiers.functions.Logistic
class Logistic extends AbstractClassifier implements Serializable- serialVersionUID:
- 3932117032546553727L
-
Serialized Fields
-
m_AttFilter
RemoveUseless m_AttFilter
An attribute filter -
m_ClassIndex
int m_ClassIndex
The index of the class attribute -
m_Data
double[][] m_Data
The data saved as a matrix -
m_doNotStandardizeAttributes
boolean m_doNotStandardizeAttributes
Whether to turn of standardization of attributes. -
m_LL
double m_LL
Log-likelihood of the searched model -
m_MaxIts
int m_MaxIts
The maximum number of iterations. -
m_NominalToBinary
NominalToBinary m_NominalToBinary
The filter used to make attributes numeric. -
m_NumClasses
int m_NumClasses
The number of the class labels -
m_numModels
int m_numModels
-
m_NumPredictors
int m_NumPredictors
The number of attributes in the model -
m_Par
double[][] m_Par
The coefficients (optimized parameters) of the model -
m_ReplaceMissingValues
ReplaceMissingValues m_ReplaceMissingValues
The filter used to get rid of missing values. -
m_Ridge
double m_Ridge
The ridge parameter. -
m_structure
Instances m_structure
The header information in the training data. -
m_useConjugateGradientDescent
boolean m_useConjugateGradientDescent
Whether to use conjugate gradient descent rather than BFGS updates.
-
-
Class weka.classifiers.functions.MultilayerPerceptron
class MultilayerPerceptron extends AbstractClassifier implements Serializable- serialVersionUID:
- -5990607817048210779L
-
Serialized Fields
-
bestError
double bestError
-
driftOff
double driftOff
Drift off counter -
lastRight
double lastRight
To keep track of error -
m_accepted
boolean m_accepted
a flag to state that the network should be accepted the way it is. -
m_attributeBases
double[] m_attributeBases
The base values for all the attributes. -
m_attributeRanges
double[] m_attributeRanges
The ranges for all the attributes. -
m_autoBuild
boolean m_autoBuild
A flag to tell the build classifier to automatically build a neural net. -
m_currentInstance
Instance m_currentInstance
The current instance running through the network. -
m_decay
boolean m_decay
This flag states that the user wants the learning rate to decay. -
m_driftThreshold
int m_driftThreshold
The number to to use to quit on validation testing. -
m_epoch
int m_epoch
Shows the number of the epoch that the network just finished. -
m_error
double m_error
Shows the error of the epoch that the network just finished. -
m_gui
boolean m_gui
A flag to state that the gui for the network should be brought up. To allow interaction while training. -
m_hiddenLayers
String m_hiddenLayers
The string that defines the hidden layers -
m_inputs
weka.classifiers.functions.MultilayerPerceptron.NeuralEnd[] m_inputs
The input units.(only feeds the inputs does no calcs) -
m_instances
Instances m_instances
The training instances. -
m_learningRate
double m_learningRate
This is the learning rate for the network. -
m_linearUnit
LinearUnit m_linearUnit
This is a linear unit. -
m_momentum
double m_momentum
This is the momentum for the network. -
m_neuralNodes
NeuralConnection[] m_neuralNodes
All the nodes that actually comprise the logical neural net. -
m_nextId
int m_nextId
The next id number available for default naming. -
m_nominalToBinaryFilter
NominalToBinary m_nominalToBinaryFilter
The actual filter. -
m_normalizeAttributes
boolean m_normalizeAttributes
This flag states that the user wants the input values normalized. -
m_normalizeClass
boolean m_normalizeClass
This flag states that the user wants the class to be normalized while processing in the network is done. (the final answer will be in the original range regardless). This option will only be used when the class is numeric. -
m_numAttributes
int m_numAttributes
The number of attributes. -
m_numClasses
int m_numClasses
The number of classes. -
m_numEpochs
int m_numEpochs
The number of epochs to train through. -
m_numeric
boolean m_numeric
A flag to say that it's a numeric class. -
m_numItsPerformed
int m_numItsPerformed
Number of iterations (epochs) performed in this session of iterating -
m_outputs
weka.classifiers.functions.MultilayerPerceptron.NeuralEnd[] m_outputs
The output units.(only feeds the errors, does no calcs) -
m_random
Random m_random
The actual random number generator. -
m_randomSeed
int m_randomSeed
The number used to seed the random number generator. -
m_reset
boolean m_reset
This flag states that the user wants the network to restart if it is found to be generating infinity or NaN for the error value. This would restart the network with the current options except that the learning rate would be smaller than before, (perhaps half of its current value). This option will not be available if the gui is chosen (if the gui is open the user can fix the network themselves, it is an architectural minefield for the network to be reset with the gui open). -
m_resume
boolean m_resume
Whether to allow training to continue at a later point after the initial model is built. -
m_selected
ArrayList<NeuralConnection> m_selected
A Vector list of the units currently selected. -
m_sigmoidUnit
SigmoidUnit m_sigmoidUnit
this is a sigmoid unit. -
m_stopIt
boolean m_stopIt
a flag to state if the network should be running, or stopped. -
m_stopped
boolean m_stopped
a flag to state that the network has in fact stopped. -
m_useDefaultModel
boolean m_useDefaultModel
Whether to use the default ZeroR model -
m_useNomToBin
boolean m_useNomToBin
A flag to state that a nominal to binary filter should be used. -
m_valSize
int m_valSize
An int to say how big the validation set should be. -
m_ZeroR
Classifier m_ZeroR
a ZeroR model in case no model can be built from the data or the network predicts all zeros for the classes -
numInVal
int numInVal
The number of instances in the validation set (if any) -
originalFormatData
Instances originalFormatData
Data in original format (in case learning rate gets reset -
totalValWeight
double totalValWeight
Total weight of the instances in the validation set (if any) -
totalWeight
double totalWeight
Total weight of the instances in the training set -
valSet
Instances valSet
The instances in the validation set (if any)
-
-
Class weka.classifiers.functions.MultilayerPerceptron.NeuralEnd
class NeuralEnd extends NeuralConnection implements Serializable- serialVersionUID:
- 7305185603191183338L
-
Serialized Fields
-
m_input
boolean m_input
True if node is an input, False if it's an output. -
m_link
int m_link
the value that represents the instance value this node represents. For an input it is the attribute number, for an output, if nominal it is the class value.
-
-
Class weka.classifiers.functions.SGD
class SGD extends RandomizableClassifier implements Serializable- serialVersionUID:
- -3732968666673530290L
-
Serialized Fields
-
m_data
Instances m_data
Holds the header of the training data -
m_dontNormalize
boolean m_dontNormalize
Turn off normalization of the input data. This option gets forced for incremental training. -
m_dontReplaceMissing
boolean m_dontReplaceMissing
Turn off global replacement of missing values. Missing values will be ignored instead. This option gets forced for incremental training. -
m_epochs
int m_epochs
The number of epochs to perform (batch learning). Total iterations is m_epochs * num instances -
m_epsilon
double m_epsilon
The epsilon parameter for epsilon insensitive and Huber loss -
m_lambda
double m_lambda
The regularization parameter -
m_learningRate
double m_learningRate
The learning rate -
m_loss
int m_loss
The current loss function to minimize -
m_nominalToBinary
Filter m_nominalToBinary
Convert nominal attributes to numerically coded binary ones. Uses supervised NominalToBinary in the batch learning case -
m_normalize
Normalize m_normalize
Normalize the training data -
m_numInstances
double m_numInstances
The number of training instances -
m_numModels
int m_numModels
-
m_replaceMissing
ReplaceMissingValues m_replaceMissing
Replace missing values -
m_t
double m_t
Holds the current iteration number -
m_weights
double[] m_weights
Stores the weights (+ bias in the last element)
-
-
Class weka.classifiers.functions.SGDText
class SGDText extends RandomizableClassifier implements Serializable- serialVersionUID:
- 7200171484002029584L
-
Serialized Fields
-
m_bias
double m_bias
Holds the bias term -
m_data
Instances m_data
The header of the training data -
m_dictionary
LinkedHashMap<String,
SGDText.Count> m_dictionary The dictionary (and term weights) -
m_epochs
int m_epochs
The number of epochs to perform (batch learning). Total iterations is m_epochs * num instances -
m_fitLogistic
boolean m_fitLogistic
True if a logistic regression is to be fit to the output of the SVM for producing probability estimates -
m_fitLogisticStructure
Instances m_fitLogisticStructure
-
m_lambda
double m_lambda
The regularization parameter -
m_learningRate
double m_learningRate
The learning rate -
m_lnorm
double m_lnorm
The L-norm to use -
m_loss
int m_loss
The current loss function to minimize -
m_lowercaseTokens
boolean m_lowercaseTokens
Whether or not to convert all tokens to lowercase -
m_minAbsCoefficient
double m_minAbsCoefficient
Prune terms from the model that have a coefficient smaller than this. -
m_minWordP
double m_minWordP
Only consider dictionary words (features) that occur at least this many times. -
m_norm
double m_norm
The length that each document vector should have in the end -
m_normalize
boolean m_normalize
Whether to normalized document length or not -
m_numInstances
double m_numInstances
The number of training instances -
m_numModels
int m_numModels
-
m_periodicP
int m_periodicP
The number of training instances at which to periodically prune the dictionary of min frequency words. Empty or null string indicates don't prune -
m_stemmer
Stemmer m_stemmer
The stemming algorithm. -
m_StopwordsHandler
StopwordsHandler m_StopwordsHandler
Stopword handler to use. -
m_svmProbs
SGD m_svmProbs
Used for producing probabilities for SVM via SGD logistic regression -
m_t
double m_t
Holds the current iteration number -
m_tokenizer
Tokenizer m_tokenizer
The tokenizer to use -
m_wordFrequencies
boolean m_wordFrequencies
Use word frequencies rather than bag-of-words if true
-
-
Class weka.classifiers.functions.SGDText.Count
class Count extends Object implements Serializable- serialVersionUID:
- 2104201532017340967L
-
Serialized Fields
-
m_count
double m_count
-
m_weight
double m_weight
-
-
Class weka.classifiers.functions.SimpleLinearRegression
class SimpleLinearRegression extends AbstractClassifier implements Serializable- serialVersionUID:
- 1679336022895414137L
-
Serialized Fields
-
m_attribute
Attribute m_attribute
The chosen attribute -
m_attributeIndex
int m_attributeIndex
The index of the chosen attribute -
m_classMeanForMissing
double m_classMeanForMissing
The class mean for missing values -
m_df
int m_df
Degrees of freedom, used in statistical calculations -
m_fstat
double m_fstat
F-statistic for the regression -
m_intercept
double m_intercept
The intercept -
m_outputAdditionalStats
boolean m_outputAdditionalStats
Whether to output additional statistics such as std. dev. of coefficients and t-stats -
m_rsquared
double m_rsquared
R^2 value for the regression -
m_rsquaredAdj
double m_rsquaredAdj
Adjusted R^2 value for the regression -
m_seIntercept
double m_seIntercept
standard error of the intercept -
m_seSlope
double m_seSlope
standard error of the slope -
m_slope
double m_slope
The slope -
m_suppressErrorMessage
boolean m_suppressErrorMessage
If true, suppress error message if no useful attribute was found -
m_tstatIntercept
double m_tstatIntercept
t-statistic of the intercept -
m_tstatSlope
double m_tstatSlope
t-statistic of the slope
-
-
Class weka.classifiers.functions.SimpleLogistic
class SimpleLogistic extends AbstractClassifier implements Serializable- serialVersionUID:
- 7397710626304705059L
-
Serialized Fields
-
m_boostedModel
LogisticBase m_boostedModel
The actual logistic regression model -
m_errorOnProbabilities
boolean m_errorOnProbabilities
If true, use minimize error on probabilities instead of misclassification error -
m_heuristicStop
int m_heuristicStop
Parameter for the heuristic for early stopping of LogitBoost -
m_maxBoostingIterations
int m_maxBoostingIterations
Maximum number of iterations for LogitBoost -
m_NominalToBinary
NominalToBinary m_NominalToBinary
Filter for converting nominal attributes to binary ones -
m_numBoostingIterations
int m_numBoostingIterations
If non-negative, use this as fixed number of LogitBoost iterations -
m_ReplaceMissingValues
ReplaceMissingValues m_ReplaceMissingValues
Filter for replacing missing values -
m_useAIC
boolean m_useAIC
If true, the AIC is used to choose the best iteration -
m_useCrossValidation
boolean m_useCrossValidation
If true, cross-validate number of LogitBoost iterations -
m_weightTrimBeta
double m_weightTrimBeta
Threshold for trimming weights. Instances with a weight lower than this (as a percentage of total weights) are not included in the regression fit.
-
-
Class weka.classifiers.functions.SMO
class SMO extends AbstractClassifier implements Serializable- serialVersionUID:
- -6585883636378691736L
-
Serialized Fields
-
m_C
double m_C
The complexity parameter. -
m_calibrator
Classifier m_calibrator
Determines the calibrator model to use for probability estimate -
m_checksTurnedOff
boolean m_checksTurnedOff
Turn off all checks and conversions? Turning them off assumes that data is purely numeric, doesn't contain any missing values, and has a nominal class. Turning them off also means that no header information will be stored if the machine is linear. Finally, it also assumes that no instance has a weight equal to 0. -
m_classAttribute
Attribute m_classAttribute
The class attribute -
m_classifiers
SMO.BinarySMO[][] m_classifiers
The binary classifier(s) -
m_classIndex
int m_classIndex
The class index from the training data -
m_eps
double m_eps
Epsilon for rounding. -
m_Filter
Filter m_Filter
The filter used to standardize/normalize all values. -
m_filterType
int m_filterType
Whether to normalize/standardize/neither -
m_fitCalibratorModels
boolean m_fitCalibratorModels
Whether calibrator models are to be fit -
m_kernel
Kernel m_kernel
the kernel to use -
m_KernelIsLinear
boolean m_KernelIsLinear
whether the kernel is a linear one -
m_Missing
ReplaceMissingValues m_Missing
The filter used to get rid of missing values. -
m_NominalToBinary
NominalToBinary m_NominalToBinary
The filter used to make attributes numeric. -
m_numFolds
int m_numFolds
The number of folds for the internal cross-validation -
m_randomSeed
int m_randomSeed
The random number seed -
m_tol
double m_tol
Tolerance for accuracy of result.
-
-
Class weka.classifiers.functions.SMO.BinarySMO
class BinarySMO extends Object implements Serializable- serialVersionUID:
- -8246163625699362456L
-
Serialized Fields
-
m_alpha
double[] m_alpha
The Lagrange multipliers. -
m_b
double m_b
The thresholds. -
m_bLow
double m_bLow
The thresholds. -
m_bUp
double m_bUp
The thresholds. -
m_calibrationDataHeader
Instances m_calibrationDataHeader
Reference to the header information for the calibration data -
m_calibrator
Classifier m_calibrator
Stores calibrator model for probability estimate -
m_class
double[] m_class
The transformed class values. -
m_data
Instances m_data
The training data. -
m_errors
double[] m_errors
The current set of errors for all non-bound examples. -
m_I0
SMOset m_I0
{i: 0 < m_alpha[i] < C} -
m_I1
SMOset m_I1
{i: m_class[i] = 1, m_alpha[i] = 0} -
m_I2
SMOset m_I2
{i: m_class[i] = -1, m_alpha[i] =C} -
m_I3
SMOset m_I3
{i: m_class[i] = 1, m_alpha[i] = C} -
m_I4
SMOset m_I4
{i: m_class[i] = -1, m_alpha[i] = 0} -
m_iLow
int m_iLow
The indices for m_bLow and m_bUp -
m_iUp
int m_iUp
The indices for m_bLow and m_bUp -
m_kernel
Kernel m_kernel
Kernel to use -
m_nCacheHits
int m_nCacheHits
number of kernel cache hits, used for printing statistics only -
m_nEvals
long m_nEvals
number of kernel evaluations, used for printing statistics only -
m_sparseIndices
int[] m_sparseIndices
-
m_sparseWeights
double[] m_sparseWeights
Variables to hold weight vector in sparse form. (To reduce storage requirements.) -
m_sumOfWeights
double m_sumOfWeights
Stores the weight of the training instances -
m_supportVectors
SMOset m_supportVectors
The set of support vectors -
m_weights
double[] m_weights
Weight vector for linear machine.
-
-
Class weka.classifiers.functions.SMOreg
class SMOreg extends AbstractClassifier implements Serializable- serialVersionUID:
- -7149606251113102827L
-
Serialized Fields
-
m_C
double m_C
capacity parameter -
m_Filter
Filter m_Filter
The filter used to standardize/normalize all values. -
m_filterType
int m_filterType
Whether to normalize/standardize/neither -
m_kernel
Kernel m_kernel
the configured kernel -
m_Missing
ReplaceMissingValues m_Missing
The filter used to get rid of missing values. -
m_NominalToBinary
NominalToBinary m_NominalToBinary
The filter used to make attributes numeric. -
m_onlyNumeric
boolean m_onlyNumeric
Only numeric attributes in the dataset? If so, less need to filter -
m_optimizer
RegOptimizer m_optimizer
contains the algorithm used for learning -
m_x0
double m_x0
-
m_x1
double m_x1
coefficients used by normalization filter for doing its linear transformation so that result = svmoutput * m_x1 + m_x0
-
-
Class weka.classifiers.functions.VotedPerceptron
class VotedPerceptron extends AbstractClassifier implements Serializable- serialVersionUID:
- -1072429260104568698L
-
Serialized Fields
-
m_Additions
int[] m_Additions
The training instances added to the perceptron -
m_Exponent
double m_Exponent
The exponent -
m_IsAddition
boolean[] m_IsAddition
Addition or subtraction? -
m_K
int m_K
The actual number of alterations -
m_MaxK
int m_MaxK
The maximum number of alterations to the perceptron -
m_NominalToBinary
NominalToBinary m_NominalToBinary
The filter used to make attributes numeric. -
m_NumIterations
int m_NumIterations
The number of iterations -
m_ReplaceMissingValues
ReplaceMissingValues m_ReplaceMissingValues
The filter used to get rid of missing values. -
m_Seed
int m_Seed
Seed used for shuffling the dataset -
m_Train
Instances m_Train
The training instances -
m_Weights
int[] m_Weights
The weights for each perceptron
-
-
-
Package weka.classifiers.functions.neural
-
Class weka.classifiers.functions.neural.LinearUnit
class LinearUnit extends Object implements Serializable- serialVersionUID:
- 8572152807755673630L
-
Class weka.classifiers.functions.neural.NeuralConnection
class NeuralConnection extends Object implements Serializable- serialVersionUID:
- -286208828571059163L
-
Serialized Fields
-
m_id
String m_id
The string that uniquely (provided naming is done properly) identifies this unit. -
m_inputList
NeuralConnection[] m_inputList
The list of inputs to this unit. -
m_inputNums
int[] m_inputNums
The numbering for the connections at the other end of the input lines. -
m_numInputs
int m_numInputs
The number of inputs. -
m_numOutputs
int m_numOutputs
The number of outputs. -
m_outputList
NeuralConnection[] m_outputList
The list of outputs from this unit. -
m_outputNums
int[] m_outputNums
The numbering for the connections at the other end of the out lines. -
m_type
int m_type
The type of unit this is. -
m_unitError
double m_unitError
The error value for this unit, NaN if not calculated. -
m_unitValue
double m_unitValue
The output value for this unit, NaN if not calculated. -
m_weightsUpdated
boolean m_weightsUpdated
True if the weights have already been updated. -
m_x
double m_x
The x coord of this unit purely for displaying purposes. -
m_y
double m_y
The y coord of this unit purely for displaying purposes.
-
-
Class weka.classifiers.functions.neural.NeuralNode
class NeuralNode extends NeuralConnection implements Serializable- serialVersionUID:
- -1085750607680839163L
-
Serialized Fields
-
m_bestWeights
double[] m_bestWeights
The best (lowest error) weights. Only used when validation set is used -
m_changeInWeights
double[] m_changeInWeights
The change in the weights. -
m_methods
NeuralMethod m_methods
Performs the operations for this node. Currently this defines that the node is either a sigmoid or a linear unit. -
m_random
Random m_random
-
m_weights
double[] m_weights
The weights for each of the input connections, and the threshold.
-
-
Class weka.classifiers.functions.neural.SigmoidUnit
class SigmoidUnit extends Object implements Serializable- serialVersionUID:
- -5162958458177475652L
-
-
Package weka.classifiers.functions.supportVector
-
Class weka.classifiers.functions.supportVector.CachedKernel
class CachedKernel extends Kernel implements Serializable- serialVersionUID:
- 702810182699015136L
-
Serialized Fields
-
m_cacheHits
int m_cacheHits
Counts the number of kernel cache hits. -
m_cacheSize
int m_cacheSize
The size of the cache (a prime number) -
m_cacheSlots
int m_cacheSlots
number of cache slots in an entry -
m_kernelEvals
int m_kernelEvals
Counts the number of kernel evaluations. -
m_kernelMatrix
double[][] m_kernelMatrix
The kernel matrix if full cache is used (i.e. size is set to 0) -
m_keys
long[] m_keys
-
m_numInsts
int m_numInsts
The number of instance in the dataset -
m_storage
double[] m_storage
Kernel cache
-
-
Class weka.classifiers.functions.supportVector.Kernel
class Kernel extends Object implements Serializable- serialVersionUID:
- -6102771099905817064L
-
Serialized Fields
-
m_ChecksTurnedOff
boolean m_ChecksTurnedOff
This value is now ignored. Checks are always turned off as they are the responsibility of the class using the kernel. We are keeping this to allow deserialization. -
m_data
Instances m_data
The dataset -
m_Debug
boolean m_Debug
enables debugging output -
m_DoNotCheckCapabilities
boolean m_DoNotCheckCapabilities
This value is now ignored. Checks are always turned off as they are the responsibility of the class using the kernel. We are keeping this to allow deserialization.
-
-
Class weka.classifiers.functions.supportVector.NormalizedPolyKernel
class NormalizedPolyKernel extends PolyKernel implements Serializable- serialVersionUID:
- 1248574185532130851L
-
Serialized Fields
-
m_diagDotproducts
double[] m_diagDotproducts
A cache for the diagonal of the dot product kernel
-
-
Class weka.classifiers.functions.supportVector.PolyKernel
class PolyKernel extends CachedKernel implements Serializable- serialVersionUID:
- -321831645846363201L
-
Serialized Fields
-
m_exponent
double m_exponent
The exponent for the polynomial kernel. -
m_lowerOrder
boolean m_lowerOrder
Use lower-order terms?
-
-
Class weka.classifiers.functions.supportVector.PrecomputedKernelMatrixKernel
class PrecomputedKernelMatrixKernel extends Kernel implements Serializable- serialVersionUID:
- -321831645846363333L
-
Class weka.classifiers.functions.supportVector.Puk
class Puk extends CachedKernel implements Serializable- serialVersionUID:
- 1682161522559978851L
-
Serialized Fields
-
m_factor
double m_factor
Cached factor for the Puk kernel. -
m_kernelPrecalc
double[] m_kernelPrecalc
The precalculated dotproducts of <inst_i,inst_i> -
m_omega
double m_omega
Omega for the Puk kernel. -
m_sigma
double m_sigma
Sigma for the Puk kernel.
-
-
Class weka.classifiers.functions.supportVector.RBFKernel
class RBFKernel extends CachedKernel implements Serializable- serialVersionUID:
- 5247117544316387852L
-
Serialized Fields
-
m_gamma
double m_gamma
The gamma parameter for the RBF kernel. -
m_kernelPrecalc
double[] m_kernelPrecalc
The diagonal values of the dot product matrix (name needs to be consistent with J. Lindgren's implementation).
-
-
Class weka.classifiers.functions.supportVector.RegOptimizer
class RegOptimizer extends Object implements Serializable- serialVersionUID:
- -2198266997254461814L
-
Serialized Fields
-
m_alpha
double[] m_alpha
alpha and alpha* arrays containing weights for solving dual problem -
m_alphaStar
double[] m_alphaStar
-
m_b
double m_b
offset -
m_bModelBuilt
boolean m_bModelBuilt
flag to indicate whether the model is built yet -
m_C
double m_C
capacity parameter, copied from SMOreg -
m_classIndex
int m_classIndex
index of class variable in data set -
m_data
Instances m_data
points to data set -
m_epsilon
double m_epsilon
epsilon of epsilon-insensitive cost function -
m_kernel
Kernel m_kernel
the kernel -
m_nCacheHits
int m_nCacheHits
number of kernel cache hits, used for printing statistics only -
m_nEvals
long m_nEvals
number of kernel evaluations, used for printing statistics only -
m_nInstances
int m_nInstances
number of instances in data set -
m_nSeed
int m_nSeed
seed for initializing random number generator -
m_random
Random m_random
random number generator -
m_sparseIndices
int[] m_sparseIndices
-
m_sparseWeights
double[] m_sparseWeights
Variables to hold weight vector in sparse form. (To reduce storage requirements.) -
m_supportVectors
SMOset m_supportVectors
set of support vectors, that is, vectors with alpha(*)!=0 -
m_SVM
SMOreg m_SVM
parent SMOreg class -
m_target
double[] m_target
class values/desired output vector -
m_weights
double[] m_weights
weights for linear kernel
-
-
Class weka.classifiers.functions.supportVector.RegSMO
class RegSMO extends RegOptimizer implements Serializable- serialVersionUID:
- -7504070793279598638L
-
Serialized Fields
-
m_alpha1
double m_alpha1
alpha value for first candidate -
m_alpha1Star
double m_alpha1Star
alpha* value for first candidate -
m_alpha2
double m_alpha2
alpha value for second candidate -
m_alpha2Star
double m_alpha2Star
alpha* value for second candidate -
m_eps
double m_eps
tolerance parameter, smaller changes on alpha in inner loop will be ignored -
m_error
double[] m_error
error cache containing m_error[i] = SVMOutput(i) - m_target[i] - m_b
note, we don't need m_b in the cache, since if we do, we need to maintain it when m_b is updated
-
-
Class weka.classifiers.functions.supportVector.RegSMOImproved
class RegSMOImproved extends RegSMO implements Serializable- serialVersionUID:
- 471692841446029784L
-
Serialized Fields
-
m_bLow
double m_bLow
b.up and b.low boundaries used to determine stopping criterion -
m_bUp
double m_bUp
b.up and b.low boundaries used to determine stopping criterion -
m_bUseVariant1
boolean m_bUseVariant1
set true to use variant 1 of the paper, otherwise use variant 2 -
m_fTolerance
double m_fTolerance
tolerance parameter used for checking stopping criterion b.up < b.low + 2 tol -
m_I0
SMOset m_I0
The different sets used by the algorithm. -
m_iLow
int m_iLow
index of the instance that gave us b.up and b.low -
m_iSet
int[] m_iSet
Index set {i: 0 < m_alpha[i] < C || 0 < m_alphaStar[i] < C}} -
m_iUp
int m_iUp
index of the instance that gave us b.up and b.low
-
-
Class weka.classifiers.functions.supportVector.SMOset
class SMOset extends Object implements Serializable- serialVersionUID:
- -8364829283188675777L
-
Serialized Fields
-
m_first
int m_first
The first element in the set -
m_indicators
boolean[] m_indicators
Indicators -
m_next
int[] m_next
The next element for each element -
m_number
int m_number
The current number of elements in the set -
m_previous
int[] m_previous
The previous element for each element
-
-
Class weka.classifiers.functions.supportVector.StringKernel
class StringKernel extends Kernel implements Serializable- serialVersionUID:
- -4902954211202690123L
-
Serialized Fields
-
cachekh
double[] cachekh
-
cachekh2
double[] cachekh2
-
cachekh2K
int[] cachekh2K
-
cachekhK
int[] cachekhK
-
m_cacheSize
int m_cacheSize
The size of the cache (a prime number) -
m_internalCacheSize
int m_internalCacheSize
The size of the internal cache for intermediate results (a prime number) -
m_kernelEvals
int m_kernelEvals
Counts the number of kernel evaluations. -
m_keys
long[] m_keys
-
m_lambda
double m_lambda
the decay factor that penalizes non-continuous substring matches. See [1] for details. -
m_maxSubsequenceLength
int m_maxSubsequenceLength
The maximum substring length for lambda pruning -
m_multX
int m_multX
cached indexes for private cache -
m_multY
int m_multY
-
m_multZ
int m_multZ
-
m_multZZ
int m_multZZ
-
m_normalize
boolean m_normalize
flag for switching normalization on or off. This defaults to false and can be turned on by the switch for feature space normalization in SMO -
m_numInsts
int m_numInsts
The number of instance in the dataset -
m_powersOflambda
double[] m_powersOflambda
the precalculated powers of lambda -
m_PruningMethod
int m_PruningMethod
the pruning method -
m_storage
double[] m_storage
Kernel cache (i.e., cache for kernel evaluations) -
m_strAttr
int m_strAttr
The attribute number of the string attribute -
m_subsequenceLength
int m_subsequenceLength
The substring length -
m_useRecursionCache
boolean m_useRecursionCache
-
maxCache
int maxCache
private cache for intermediate results
-
-
-
Package weka.classifiers.lazy
-
Class weka.classifiers.lazy.IBk
class IBk extends AbstractClassifier implements Serializable- serialVersionUID:
- -3080186098777067172L
-
Serialized Fields
-
m_ClassType
int m_ClassType
The class attribute type. -
m_CrossValidate
boolean m_CrossValidate
Whether to select k by cross validation. -
m_defaultModel
ZeroR m_defaultModel
Default ZeroR model to use when there are no training instances -
m_DistanceWeighting
int m_DistanceWeighting
Whether the neighbours should be distance-weighted. -
m_kNN
int m_kNN
The number of neighbours to use for classification (currently). -
m_kNNUpper
int m_kNNUpper
The value of kNN provided by the user. This may differ from m_kNN if cross-validation is being used. -
m_kNNValid
boolean m_kNNValid
Whether the value of k selected by cross validation has been invalidated by a change in the training instances. -
m_MeanSquared
boolean m_MeanSquared
Whether to minimise mean squared error rather than mean absolute error when cross-validating on numeric prediction tasks. -
m_NNSearch
NearestNeighbourSearch m_NNSearch
for nearest-neighbor search. -
m_NumAttributesUsed
double m_NumAttributesUsed
The number of attributes the contribute to a prediction. -
m_NumClasses
int m_NumClasses
The number of class values (or 1 if predicting numeric). -
m_Train
Instances m_Train
The training instances used for classification. -
m_WindowSize
int m_WindowSize
The maximum number of training instances allowed. When this limit is reached, old training instances are removed, so the training data is "windowed". Set to 0 for unlimited numbers of instances.
-
-
Class weka.classifiers.lazy.KStar
class KStar extends AbstractClassifier implements Serializable- serialVersionUID:
- 332458330800479083L
-
Serialized Fields
-
m_BlendMethod
int m_BlendMethod
0 = use specified blend, 1 = entropic blend setting -
m_Cache
KStarCache[] m_Cache
A custom data structure for caching distinct attribute values and their scale factor or stop parameter. -
m_ClassType
int m_ClassType
The class attribute type -
m_ComputeRandomCols
int m_ComputeRandomCols
Flag turning on and off the computation of random class colomns -
m_GlobalBlend
int m_GlobalBlend
default sphere of influence blend setting -
m_InitFlag
int m_InitFlag
Flag turning on and off the initialisation of config variables -
m_MissingMode
int m_MissingMode
missing value treatment -
m_NumAttributes
int m_NumAttributes
The number of attributes -
m_NumClasses
int m_NumClasses
The number of class values -
m_NumInstances
int m_NumInstances
The number of instances in the dataset -
m_RandClassCols
int[][] m_RandClassCols
Table of random class value colomns -
m_Train
Instances m_Train
The training instances used for classification.
-
-
Class weka.classifiers.lazy.LWL
class LWL extends SingleClassifierEnhancer implements Serializable- serialVersionUID:
- 1979797405383665815L
-
Serialized Fields
-
m_kNN
int m_kNN
The number of neighbours used to select the kernel bandwidth. -
m_NNSearch
NearestNeighbourSearch m_NNSearch
The nearest neighbour search algorithm to use. (Default: weka.core.neighboursearch.LinearNNSearch) -
m_Train
Instances m_Train
The training instances used for classification. -
m_UseAllK
boolean m_UseAllK
True if m_kNN should be set to all instances. -
m_WeightKernel
int m_WeightKernel
The weighting kernel method currently selected. -
m_ZeroR
Classifier m_ZeroR
a ZeroR model in case no model can be built from the data.
-
-
-
Package weka.classifiers.lazy.kstar
-
Class weka.classifiers.lazy.kstar.KStarCache
class KStarCache extends Object implements Serializable- serialVersionUID:
- -7693632394267140678L
-
Serialized Fields
-
m_Cache
KStarCache.CacheTable m_Cache
cache table
-
-
Class weka.classifiers.lazy.kstar.KStarCache.CacheTable
class CacheTable extends Object implements Serializable- serialVersionUID:
- -8086106452588253423L
-
Serialized Fields
-
EPSILON
double EPSILON
Accuracy value for equality -
m_Count
int m_Count
The total number of entries in the hash table. -
m_LoadFactor
float m_LoadFactor
The load factor for the hashtable. -
m_Table
KStarCache.TableEntry[] m_Table
The hash table data. -
m_Threshold
int m_Threshold
Rehashes the table when count exceeds this threshold.
-
-
Class weka.classifiers.lazy.kstar.KStarCache.TableEntry
class TableEntry extends Object implements Serializable- serialVersionUID:
- 4057602386766259138L
-
Serialized Fields
-
hash
int hash
attribute value hash code -
key
double key
attribute value -
next
KStarCache.TableEntry next
next table entry (separate chaining) -
pmiss
double pmiss
transformation probability to missing value -
value
double value
scale factor or stop parameter
-
-
-
Package weka.classifiers.meta
-
Class weka.classifiers.meta.AdaBoostM1
class AdaBoostM1 extends RandomizableIteratedSingleClassifierEnhancer implements Serializable- serialVersionUID:
- -1178107808933117974L
-
Serialized Fields
-
m_Betas
double[] m_Betas
Array for storing the weights for the votes. -
m_NumClasses
int m_NumClasses
The number of classes -
m_NumIterationsPerformed
int m_NumIterationsPerformed
The number of successfully generated base classifiers. -
m_NumItsThisSession
int m_NumItsThisSession
Number of iterations performed in this session of iterating -
m_RandomInstance
Random m_RandomInstance
Random number generator to be used for resampling -
m_resume
boolean m_resume
Whether to allow training to continue at a later point after the initial model is built. -
m_TrainingData
Instances m_TrainingData
The (weighted) training data -
m_UseResampling
boolean m_UseResampling
Use boosting with reweighting? -
m_WeightThreshold
int m_WeightThreshold
Weight Threshold. The percentage of weight mass used in training -
m_ZeroR
Classifier m_ZeroR
a ZeroR model in case no model can be built from the data
-
-
Class weka.classifiers.meta.AdditiveRegression
class AdditiveRegression extends IteratedSingleClassifierEnhancer implements Serializable- serialVersionUID:
- -2368937577670527151L
-
Serialized Fields
-
m_Classifiers
ArrayList<Classifier> m_Classifiers
ArrayList for storing the generated base classifiers. Note: we are hiding the variable from IteratedSingleClassifierEnhancer -
m_Data
Instances m_Data
The working data -
m_Diff
double m_Diff
The improvement in the sum of (absolute or squared) residuals. -
m_Error
double m_Error
The sum of (absolute or squared) residuals. -
m_InitialPrediction
double m_InitialPrediction
The mean or median -
m_MinimizeAbsoluteError
boolean m_MinimizeAbsoluteError
Whether to minimise absolute error instead of squared error. -
m_numItsPerformed
int m_numItsPerformed
Number of iterations performed in this session of iterating -
m_resume
boolean m_resume
Whether to allow training to continue at a later point after the initial model is built. -
m_shrinkage
double m_shrinkage
Shrinkage (Learning rate). Default = no shrinkage. -
m_SuitableData
boolean m_SuitableData
whether we have suitable data or nor (if only mean/mode is used)
-
-
Class weka.classifiers.meta.AttributeSelectedClassifier
class AttributeSelectedClassifier extends SingleClassifierEnhancer implements Serializable- serialVersionUID:
- -1151805453487947577L
-
Serialized Fields
-
m_AttributeSelection
AttributeSelection m_AttributeSelection
The attribute selection object -
m_Evaluator
ASEvaluation m_Evaluator
The attribute evaluator to use -
m_numAttributesSelected
double m_numAttributesSelected
The number of attributes selected by the attribute selection phase -
m_numClasses
int m_numClasses
The number of class vals in the training data (1 if class is numeric) -
m_ReducedHeader
Instances m_ReducedHeader
The header of the dimensionally reduced data -
m_Search
ASSearch m_Search
The search method to use -
m_selectionTime
double m_selectionTime
The time taken to select attributes in milliseconds -
m_totalTime
double m_totalTime
The time taken to select attributes AND build the classifier
-
-
Class weka.classifiers.meta.Bagging
class Bagging extends RandomizableParallelIteratedSingleClassifierEnhancer implements Serializable- serialVersionUID:
- -115879962237199703L
-
Serialized Fields
-
m_BagSizePercent
int m_BagSizePercent
The size of each bag sample, as a percentage of the training size -
m_CalcOutOfBag
boolean m_CalcOutOfBag
Whether to calculate the out of bag error -
m_classifiersCache
List<Classifier> m_classifiersCache
-
m_data
Instances m_data
Reference to the training data -
m_inBag
boolean[][] m_inBag
Used to indicate whether an instance is in a bag or not -
m_Numeric
boolean m_Numeric
Whether class is numeric. -
m_OutOfBagEvaluationObject
Evaluation m_OutOfBagEvaluationObject
The evaluation object holding the out of bag error, etc. -
m_OutputOutOfBagComplexityStatistics
boolean m_OutputOutOfBagComplexityStatistics
Whether to output complexity-based statistics when OOB-evaluation is performed. -
m_printClassifiers
boolean m_printClassifiers
Whether to print individual ensemble members in output. -
m_random
Random m_random
Random number generator -
m_RepresentUsingWeights
boolean m_RepresentUsingWeights
Whether to represent copies of instances using weights rather than explicitly -
m_StoreOutOfBagPredictions
boolean m_StoreOutOfBagPredictions
Whether to store the out of bag predictions in the evaluation object.
-
-
Class weka.classifiers.meta.ClassificationViaRegression
class ClassificationViaRegression extends SingleClassifierEnhancer implements Serializable- serialVersionUID:
- 4500023123618669859L
-
Serialized Fields
-
m_ClassFilters
MakeIndicator[] m_ClassFilters
The filters used to transform the class. -
m_Classifiers
Classifier[] m_Classifiers
The classifiers. (One for each class.)
-
-
Class weka.classifiers.meta.CostSensitiveClassifier
class CostSensitiveClassifier extends RandomizableSingleClassifierEnhancer implements Serializable- serialVersionUID:
- -110658209263002404L
-
Serialized Fields
-
m_CostFile
String m_CostFile
The name of the cost file, for command line options -
m_CostMatrix
CostMatrix m_CostMatrix
The cost matrix -
m_MatrixSource
int m_MatrixSource
Indicates the current cost matrix source -
m_MinimizeExpectedCost
boolean m_MinimizeExpectedCost
True if the costs should be used by selecting the minimum expected cost (false means weight training data by the costs) -
m_OnDemandDirectory
File m_OnDemandDirectory
The directory used when loading cost files on demand, null indicates current directory
-
-
Class weka.classifiers.meta.CVParameterSelection
class CVParameterSelection extends RandomizableSingleClassifierEnhancer implements Serializable- serialVersionUID:
- -6529603380876641265L
-
Serialized Fields
-
m_BestClassifierOptions
String[] m_BestClassifierOptions
The set of all classifier options as determined by cross-validation -
m_BestPerformance
double m_BestPerformance
The cross-validated performance of the best options -
m_ClassifierOptions
String[] m_ClassifierOptions
The base classifier options (not including those being set by cross-validation) -
m_CVParams
Vector<weka.classifiers.meta.CVParameterSelection.CVParameter> m_CVParams
The set of parameters to cross-validate over -
m_InitOptions
String[] m_InitOptions
The set of all options at initialization time. So that getOptions can return this. -
m_NumAttributes
int m_NumAttributes
The number of attributes in the data -
m_NumFolds
int m_NumFolds
The number of folds used in cross-validation -
m_TrainFoldSize
int m_TrainFoldSize
The number of instances in a training fold
-
-
Class weka.classifiers.meta.CVParameterSelection.CVParameter
class CVParameter extends Object implements Serializable- serialVersionUID:
- -4668812017709421953L
-
Serialized Fields
-
m_AddAtEnd
boolean m_AddAtEnd
True if the parameter should be added at the end of the argument list -
m_Lower
double m_Lower
Lower bound for the CV search -
m_ParamChar
String m_ParamChar
Char used to identify the option of interest -
m_ParamValue
double m_ParamValue
The parameter value with the best performance -
m_RoundParam
boolean m_RoundParam
True if the parameter should be rounded to an integer -
m_Steps
double m_Steps
Number of steps during the search -
m_Upper
double m_Upper
Upper bound for the CV search
-
-
Class weka.classifiers.meta.FilteredClassifier
class FilteredClassifier extends RandomizableSingleClassifierEnhancer implements Serializable- serialVersionUID:
- -4523450618538717400L
-
Serialized Fields
-
m_DoNotCheckForModifiedClassAttribute
boolean m_DoNotCheckForModifiedClassAttribute
Flag that can be set to true if class attribute is not to be checked for modifications by the filer. -
m_Filter
Filter m_Filter
The filter -
m_FilteredInstances
Instances m_FilteredInstances
The instance structure of the filtered instances -
m_ReorderFiltered
Reorder m_ReorderFiltered
-
m_ReorderOriginal
Reorder m_ReorderOriginal
If the attributes are resampled, we store the filter for this
-
-
Class weka.classifiers.meta.IterativeClassifierOptimizer
class IterativeClassifierOptimizer extends RandomizableClassifier implements Serializable- serialVersionUID:
- -3665485256313525864L
-
Serialized Fields
-
m_bestNumIts
int m_bestNumIts
The best number of iterations identified. -
m_bestResult
double m_bestResult
The best value found for the criterion to be optimized. -
m_classValueIndex
int m_classValueIndex
The class value index to use with information retrieval type metrics. < 0 indicates to use the class weighted average version of the metric". -
m_evalMetric
String m_evalMetric
The evaluation metric to use -
m_IterativeClassifier
IterativeClassifier m_IterativeClassifier
The base classifier to use -
m_lookAheadIterations
int m_lookAheadIterations
The number of iterations to look ahead for to find a better optimum. -
m_NumFolds
int m_NumFolds
The number of folds for the cross-validation. -
m_NumRuns
int m_NumRuns
The number of runs for the cross-validation. -
m_numThreads
int m_numThreads
The number of threads to use for parallel building of classifiers. -
m_poolSize
int m_poolSize
The size of the thread pool. -
m_preserveOrderInPercentageSplitEvaluation
boolean m_preserveOrderInPercentageSplitEvaluation
Whether to preserve order when a percentage split evaluation is performed. -
m_splitPercentage
double m_splitPercentage
The percentage of data to be used for training (if 0, k-fold cross-validation is used). -
m_StepSize
int m_StepSize
The steps size determining when evaluations happen. -
m_thresholds
double[] m_thresholds
The thresholds to be used for classification, if the metric implements ThresholdProducingMetric. -
m_UseAverage
boolean m_UseAverage
Whether to use average.
-
-
Class weka.classifiers.meta.LogitBoost
class LogitBoost extends RandomizableIteratedSingleClassifierEnhancer implements Serializable- serialVersionUID:
- -1105660358715833753L
-
Serialized Fields
-
m_ClassAttribute
Attribute m_ClassAttribute
The actual class attribute (for getting class names) -
m_Classifiers
ArrayList<Classifier[]> m_Classifiers
ArrayList for storing the generated base classifiers. Note: we are hiding the variable from IteratedSingleClassifierEnhancer -
m_data
Instances m_data
The training data. -
m_InitialFs
double[] m_InitialFs
The initial F scores (0 by default) -
m_logLikelihood
double m_logLikelihood
The current loglikelihood. -
m_NumClasses
int m_NumClasses
The number of classes -
m_NumericClassData
Instances m_NumericClassData
Dummy dataset with a numeric class -
m_NumGenerated
int m_NumGenerated
The number of successfully generated base classifiers. -
m_NumItsPerformed
int m_NumItsPerformed
Number of iterations performed in this session of iterating -
m_numThreads
int m_numThreads
The number of threads to use at prediction time in batch prediction. -
m_Offset
double m_Offset
The value by which the actual target value for the true class is offset. -
m_poolSize
int m_poolSize
The size of the thread pool. -
m_Precision
double m_Precision
The threshold on the improvement of the likelihood -
m_probs
double[][] m_probs
The probabilities used during the training process. -
m_RandomInstance
Random m_RandomInstance
The random number generator used -
m_resume
boolean m_resume
Whether to allow training to continue at a later point after the initial model is built. -
m_Shrinkage
double m_Shrinkage
The value of the shrinkage parameter -
m_sumOfWeights
double m_sumOfWeights
The total weight of the data. -
m_trainFs
double[][] m_trainFs
The F scores used during the training process. -
m_trainYs
double[][] m_trainYs
The y values used during the training process. -
m_UseEstimatedPriors
boolean m_UseEstimatedPriors
Whether to start with class priors estimated from the training data -
m_UseResampling
boolean m_UseResampling
Use boosting with reweighting? -
m_WeightThreshold
int m_WeightThreshold
Weight thresholding. The percentage of weight mass used in training -
m_ZeroR
Classifier m_ZeroR
A ZeroR model in case no model can be built from the data -
m_zMax
double m_zMax
The Z max value to use
-
-
Class weka.classifiers.meta.MultiClassClassifier
class MultiClassClassifier extends RandomizableSingleClassifierEnhancer implements Serializable- serialVersionUID:
- -3879602011542849141L
-
Serialized Fields
-
m_ClassAttribute
Attribute m_ClassAttribute
Internal copy of the class attribute for output purposes -
m_ClassFilters
Filter[] m_ClassFilters
The filters used to transform the class. -
m_Classifiers
Classifier[] m_Classifiers
The classifiers. -
m_logLossDecoding
boolean m_logLossDecoding
True if log loss decoding is to be used for random and exhaustive codes. -
m_Method
int m_Method
The multiclass method to use -
m_pairwiseCoupling
boolean m_pairwiseCoupling
Use pairwise coupling with 1-vs-1 -
m_RandomWidthFactor
double m_RandomWidthFactor
The multiplier when generating random codes. Will generate numClasses * m_RandomWidthFactor codes -
m_SumOfWeights
double[] m_SumOfWeights
Needed for pairwise coupling -
m_TwoClassDataset
Instances m_TwoClassDataset
A transformed dataset header used by the 1-against-1 method -
m_ZeroR
ZeroR m_ZeroR
ZeroR classifier for when all base classifier return zero probability.
-
-
Class weka.classifiers.meta.MultiClassClassifierUpdateable
class MultiClassClassifierUpdateable extends MultiClassClassifier implements Serializable- serialVersionUID:
- -1619685269774366430L
-
Class weka.classifiers.meta.MultiScheme
class MultiScheme extends RandomizableMultipleClassifiersCombiner implements Serializable- serialVersionUID:
- 5710744346128957520L
-
Serialized Fields
-
m_Classifier
Classifier m_Classifier
The classifier that had the best performance on training data. -
m_ClassifierIndex
int m_ClassifierIndex
The index into the vector for the selected scheme -
m_NumXValFolds
int m_NumXValFolds
Number of folds to use for cross validation (0 means use training error for selection)
-
-
Class weka.classifiers.meta.RandomCommittee
class RandomCommittee extends RandomizableParallelIteratedSingleClassifierEnhancer implements Serializable- serialVersionUID:
- -9204394360557300093L
-
Serialized Fields
-
m_data
Instances m_data
training data
-
-
Class weka.classifiers.meta.RandomizableFilteredClassifier
class RandomizableFilteredClassifier extends FilteredClassifier implements Serializable- serialVersionUID:
- -4523466618555717333L
-
Class weka.classifiers.meta.RandomSubSpace
class RandomSubSpace extends RandomizableParallelIteratedSingleClassifierEnhancer implements Serializable- serialVersionUID:
- 1278172513912424947L
-
Serialized Fields
-
m_data
Instances m_data
Training data -
m_SubSpaceSize
double m_SubSpaceSize
The size of each bag sample, as a percentage of the training size -
m_ZeroR
Classifier m_ZeroR
a ZeroR model in case no model can be built from the data
-
-
Class weka.classifiers.meta.RegressionByDiscretization
class RegressionByDiscretization extends SingleClassifierEnhancer implements Serializable- serialVersionUID:
- 5066426153134050378L
-
Serialized Fields
-
m_ClassCounts
int[] m_ClassCounts
The class counts for each Discretized class interval. -
m_ClassMeans
double[] m_ClassMeans
The mean values for each Discretized class interval. -
m_DeleteEmptyBins
boolean m_DeleteEmptyBins
Whether to delete empty intervals. -
m_DiscretizedHeader
Instances m_DiscretizedHeader
Header of discretized data. -
m_Discretizer
Discretize m_Discretizer
The discretization filter. -
m_Estimator
UnivariateDensityEstimator m_Estimator
Which estimator to use (default: histogram) -
m_MinimizeAbsoluteError
boolean m_MinimizeAbsoluteError
Whether to minimize absolute error, rather than squared error. -
m_NewTargetValues
int[] m_NewTargetValues
The converted target values in the training data -
m_NumBins
int m_NumBins
The number of discretization intervals. -
m_OldIndexToNewIndex
int[] m_OldIndexToNewIndex
Mapping to convert indices in case empty bins are deleted. -
m_OriginalTargetValues
double[] m_OriginalTargetValues
The original target values in the training data -
m_UseEqualFrequency
boolean m_UseEqualFrequency
Use equal-frequency binning
-
-
Class weka.classifiers.meta.Stacking
class Stacking extends RandomizableParallelMultipleClassifiersCombiner implements Serializable- serialVersionUID:
- 5134738557155845452L
-
Serialized Fields
-
m_BaseFormat
Instances m_BaseFormat
Format for base data -
m_MetaClassifier
Classifier m_MetaClassifier
The meta classifier -
m_MetaFormat
Instances m_MetaFormat
Format for meta data -
m_NumFolds
int m_NumFolds
Set the number of folds for the cross-validation
-
-
Class weka.classifiers.meta.Vote
class Vote extends RandomizableMultipleClassifiersCombiner implements Serializable- serialVersionUID:
- -637891196294399624L
-
Serialized Fields
-
m_classifiersToLoad
List<String> m_classifiersToLoad
List of file paths to serialized models to load -
m_CombinationRule
int m_CombinationRule
Combination Rule variable -
m_dontPrintModels
boolean m_dontPrintModels
Print the individual models in the output -
m_preBuiltClassifiers
List<Classifier> m_preBuiltClassifiers
List of de-serialized pre-built classifiers to include in the ensemble -
m_structure
Instances m_structure
Structure of the training data
-
-
Class weka.classifiers.meta.WeightedInstancesHandlerWrapper
class WeightedInstancesHandlerWrapper extends RandomizableSingleClassifierEnhancer implements Serializable- serialVersionUID:
- 2980789213434466135L
-
Serialized Fields
-
m_ForceResampleWithWeights
boolean m_ForceResampleWithWeights
whether to force resampling with weights.
-
-
-
Package weka.classifiers.misc
-
Class weka.classifiers.misc.InputMappedClassifier
class InputMappedClassifier extends SingleClassifierEnhancer implements Serializable- serialVersionUID:
- 4901630631723287761L
-
Serialized Fields
-
m_ignoreCase
boolean m_ignoreCase
Ignore case when matching attribute names and nominal values? -
m_initialTestStructureKnown
boolean m_initialTestStructureKnown
If true, then a call to buildClassifier() will not overwrite any test structure that has been recorded with the current training structure. This is useful for getting a correct mapping report output in toString() after buildClassifier has been called and before any test instance has been seen. Test structure and mapping will get reset if a test instance is received whose structure does not match the recorded test structure. -
m_modelHeader
Instances m_modelHeader
The instances structure used to train the classifier with -
m_modelPath
String m_modelPath
The path to the serialized model to use (if any) -
m_suppressMappingReport
boolean m_suppressMappingReport
Dont output mapping report if set to true -
m_trim
boolean m_trim
Trim white space from both ends of attribute names and nominal values? -
m_vals
double[] m_vals
Holds values for instances constructed for prediction
-
-
Class weka.classifiers.misc.SerializedClassifier
class SerializedClassifier extends AbstractClassifier implements Serializable- serialVersionUID:
- 4599593909947628642L
-
Serialized Fields
-
m_ModelFile
File m_ModelFile
the file where the serialized model is stored
-
-
-
Package weka.classifiers.pmml.consumer
-
Class weka.classifiers.pmml.consumer.GeneralRegression
class GeneralRegression extends PMMLClassifier implements Serializable- serialVersionUID:
- 2583880411828388959L
-
Serialized Fields
-
m_algorithmName
String m_algorithmName
-
m_covariateList
ArrayList<weka.classifiers.pmml.consumer.GeneralRegression.Predictor> m_covariateList
-
m_cumulativeLinkFunction
weka.classifiers.pmml.consumer.GeneralRegression.CumulativeLinkFunction m_cumulativeLinkFunction
-
m_distParameter
double m_distParameter
-
m_distribution
weka.classifiers.pmml.consumer.GeneralRegression.Distribution m_distribution
-
m_factorList
ArrayList<weka.classifiers.pmml.consumer.GeneralRegression.Predictor> m_factorList
-
m_functionType
int m_functionType
-
m_linkFunction
weka.classifiers.pmml.consumer.GeneralRegression.LinkFunction m_linkFunction
-
m_linkParameter
double m_linkParameter
-
m_modelName
String m_modelName
-
m_modelType
weka.classifiers.pmml.consumer.GeneralRegression.ModelType m_modelType
-
m_offsetValue
double m_offsetValue
-
m_offsetVariable
String m_offsetVariable
-
m_parameterList
ArrayList<weka.classifiers.pmml.consumer.GeneralRegression.Parameter> m_parameterList
-
m_paramMatrix
weka.classifiers.pmml.consumer.GeneralRegression.PCell[][] m_paramMatrix
-
m_ppMatrix
weka.classifiers.pmml.consumer.GeneralRegression.PPCell[][] m_ppMatrix
-
m_trialsValue
double m_trialsValue
-
m_trialsVariable
String m_trialsVariable
-
-
Class weka.classifiers.pmml.consumer.NeuralNetwork
class NeuralNetwork extends PMMLClassifier implements Serializable- serialVersionUID:
- -4545904813133921249L
-
Serialized Fields
-
m_activationFunction
weka.classifiers.pmml.consumer.NeuralNetwork.ActivationFunction m_activationFunction
The activation function to use -
m_altitude
double m_altitude
Altitude for radial basis -
m_functionType
weka.classifiers.pmml.consumer.NeuralNetwork.MiningFunction m_functionType
The mining function -
m_inputMap
HashMap<String,
Double> m_inputMap A map for storing network input values (computed from an incoming instance) -
m_inputs
weka.classifiers.pmml.consumer.NeuralNetwork.NeuralInput[] m_inputs
The inputs to the network -
m_layers
weka.classifiers.pmml.consumer.NeuralNetwork.NeuralLayer[] m_layers
The hidden layers in the network -
m_normalizationMethod
weka.classifiers.pmml.consumer.NeuralNetwork.Normalization m_normalizationMethod
The normalization method -
m_numberOfInputs
int m_numberOfInputs
The number of inputs to the network -
m_numberOfLayers
int m_numberOfLayers
Number of hidden layers in the network -
m_outputs
weka.classifiers.pmml.consumer.NeuralNetwork.NeuralOutputs m_outputs
The outputs of the network -
m_threshold
double m_threshold
Threshold activation -
m_width
double m_width
Width for radial basis
-
-
Class weka.classifiers.pmml.consumer.PMMLClassifier
class PMMLClassifier extends AbstractClassifier implements Serializable- serialVersionUID:
- -5371600590320702971L
-
Serialized Fields
-
m_creatorApplication
String m_creatorApplication
Creator application -
m_dataDictionary
Instances m_dataDictionary
The data dictionary -
m_log
Logger m_log
Logger -
m_miningSchema
MiningSchema m_miningSchema
The fields and meta data used by the model -
m_pmmlVersion
String m_pmmlVersion
PMML version
-
-
Class weka.classifiers.pmml.consumer.Regression
class Regression extends PMMLClassifier implements Serializable- serialVersionUID:
- -5551125528409488634L
-
Serialized Fields
-
m_algorithmName
String m_algorithmName
Description of the algorithm -
m_normalizationMethod
weka.classifiers.pmml.consumer.Regression.Normalization m_normalizationMethod
The normalization to use -
m_regressionTables
weka.classifiers.pmml.consumer.Regression.RegressionTable[] m_regressionTables
The regression tables for this regression
-
-
Class weka.classifiers.pmml.consumer.Regression.RegressionTable.CategoricalPredictor
class CategoricalPredictor extends weka.classifiers.pmml.consumer.Regression.RegressionTable.Predictor implements Serializable- serialVersionUID:
- 3077920125549906819L
-
Serialized Fields
-
m_valueIndex
int m_valueIndex
The index of the attribute value for this predictor -
m_valueName
String m_valueName
The attribute value for this predictor
-
-
Class weka.classifiers.pmml.consumer.Regression.RegressionTable.NumericPredictor
class NumericPredictor extends weka.classifiers.pmml.consumer.Regression.RegressionTable.Predictor implements Serializable- serialVersionUID:
- -4335075205696648273L
-
Serialized Fields
-
m_exponent
double m_exponent
The exponent
-
-
Class weka.classifiers.pmml.consumer.Regression.RegressionTable.PredictorTerm
class PredictorTerm extends Object implements Serializable- serialVersionUID:
- 5493100145890252757L
-
Serialized Fields
-
m_coefficient
double m_coefficient
The coefficient for this predictor term -
m_fieldNames
String[] m_fieldNames
The names of the terms (attributes) to be multiplied -
m_indexes
int[] m_indexes
the indexes of the terms to be multiplied
-
-
Class weka.classifiers.pmml.consumer.RuleSetModel
class RuleSetModel extends PMMLClassifier implements Serializable- serialVersionUID:
- 1993161168811020547L
-
Serialized Fields
-
m_algorithmName
String m_algorithmName
The algorithm name (if defined) -
m_functionType
weka.classifiers.pmml.consumer.TreeModel.MiningFunction m_functionType
The mining function -
m_modelName
String m_modelName
The model name (if defined) -
m_ruleSet
weka.classifiers.pmml.consumer.RuleSetModel.RuleSet m_ruleSet
The set of rules
-
-
Class weka.classifiers.pmml.consumer.SupportVectorMachineModel
class SupportVectorMachineModel extends PMMLClassifier implements Serializable- serialVersionUID:
- 6225095165118374296L
-
Serialized Fields
-
m_algorithmName
String m_algorithmName
The algorithm name (if defined) -
m_alternateBinaryTargetCategory
int m_alternateBinaryTargetCategory
The other class index (in the case of a single binary SVM - PMML 3.2). -
m_classificationMethod
weka.classifiers.pmml.consumer.SupportVectorMachineModel.classificationMethod m_classificationMethod
The classification method (PMML 4.0) -
m_functionType
weka.classifiers.pmml.consumer.NeuralNetwork.MiningFunction m_functionType
The mining function -
m_kernel
weka.classifiers.pmml.consumer.SupportVectorMachineModel.Kernel m_kernel
The kernel function to use -
m_machines
List<weka.classifiers.pmml.consumer.SupportVectorMachineModel.SupportVectorMachine> m_machines
The individual binary SVMs -
m_modelName
String m_modelName
The model name (if defined) -
m_svmRepresentation
weka.classifiers.pmml.consumer.SupportVectorMachineModel.SVM_representation m_svmRepresentation
Do we have support vectors, or just attribute coefficients for a linear machine? -
m_threshold
double m_threshold
PMML 4.0 threshold value -
m_vectorDictionary
VectorDictionary m_vectorDictionary
The dictionary of support vectors
-
-
Class weka.classifiers.pmml.consumer.TreeModel
class TreeModel extends PMMLClassifier implements Serializable- serialVersionUID:
- -2065158088298753129L
-
Serialized Fields
-
m_functionType
weka.classifiers.pmml.consumer.TreeModel.MiningFunction m_functionType
The mining function -
m_missingValuePenalty
double m_missingValuePenalty
The missing value penalty (if defined). We don't actually make use of this since we always return full probability distributions. -
m_missingValueStrategy
weka.classifiers.pmml.consumer.TreeModel.MissingValueStrategy m_missingValueStrategy
The missing value strategy -
m_noTrueChildStrategy
weka.classifiers.pmml.consumer.TreeModel.NoTrueChildStrategy m_noTrueChildStrategy
The no true child strategy to use -
m_root
weka.classifiers.pmml.consumer.TreeModel.TreeNode m_root
The root of the tree -
m_splitCharacteristic
weka.classifiers.pmml.consumer.TreeModel.SplitCharacteristic m_splitCharacteristic
The splitting type
-
-
-
Package weka.classifiers.rules
-
Class weka.classifiers.rules.DecisionTable
class DecisionTable extends AbstractClassifier implements Serializable- serialVersionUID:
- 2888557078165701326L
-
Serialized Fields
-
m_classIsNominal
boolean m_classIsNominal
Class is nominal -
m_classPriorCounts
double[] m_classPriorCounts
The class priors to use when there is no match in the table -
m_classPriors
double[] m_classPriors
-
m_CVFolds
int m_CVFolds
Number of folds for cross validating feature sets -
m_decisionFeatures
int[] m_decisionFeatures
Holds the final feature set -
m_delTransform
Remove m_delTransform
Filter used to remove columns discarded by feature selection -
m_displayRules
boolean m_displayRules
Display Rules -
m_disTransform
Filter m_disTransform
Discretization filter -
m_dtInstances
Instances m_dtInstances
Holds the final feature selected set of instances -
m_entries
Hashtable<DecisionTableHashKey,
double[]> m_entries The hashtable used to hold training instances -
m_evaluation
Evaluation m_evaluation
The evaluation object used to evaluate subsets -
m_evaluationMeasure
int m_evaluationMeasure
-
m_evaluator
ASEvaluation m_evaluator
Our own internal evaluator -
m_ibk
IBk m_ibk
IB1 used to classify non matching instances rather than majority class -
m_majority
double m_majority
Holds the majority class -
m_numAttributes
int m_numAttributes
The number of attributes in the dataset -
m_numInstances
int m_numInstances
The number of instances in the dataset -
m_rr
Random m_rr
Random numbers for use in cross validation -
m_saveMemory
boolean m_saveMemory
-
m_search
ASSearch m_search
The search method to use -
m_theInstances
Instances m_theInstances
Holds the original training instances -
m_useIBk
boolean m_useIBk
Use the IBk classifier rather than majority class
-
-
Class weka.classifiers.rules.DecisionTableHashKey
class DecisionTableHashKey extends Object implements Serializable- serialVersionUID:
- 5674163500154964602L
-
Serialized Fields
-
attributes
double[] attributes
Array of attribute values for an instance -
key
int key
The key -
missing
boolean[] missing
True for an index if the corresponding attribute value is missing.
-
-
Class weka.classifiers.rules.JRip
class JRip extends AbstractClassifier implements Serializable- serialVersionUID:
- -6589312996832147161L
-
Serialized Fields
-
m_CheckErr
boolean m_CheckErr
Whether check the error rate >= 0.5 in stopping criteria -
m_Class
Attribute m_Class
The class attribute of the data -
m_Debug
boolean m_Debug
Whether in a debug mode -
m_Distributions
ArrayList<double[]> m_Distributions
The predicted class distribution -
m_Filter
Filter m_Filter
The filter used to randomize the class order -
m_Folds
int m_Folds
The number of folds to split data into Grow and Prune for IREP -
m_MinNo
double m_MinNo
The minimal number of instance weights within a split -
m_Optimizations
int m_Optimizations
Runs of optimizations -
m_Random
Random m_Random
Random object used in this class -
m_Ruleset
ArrayList<Rule> m_Ruleset
The ruleset -
m_RulesetStats
ArrayList<RuleStats> m_RulesetStats
The RuleStats for the ruleset of each class value -
m_Seed
long m_Seed
The seed to perform randomization -
m_Total
double m_Total
# of all the possible conditions in a rule -
m_UsePruning
boolean m_UsePruning
Whether use pruning, i.e. the data is clean or not
-
-
Class weka.classifiers.rules.JRip.Antd
class Antd extends Object implements Serializable- serialVersionUID:
- -8929754772994154334L
-
Serialized Fields
-
accu
double accu
The accurate data for this antecedent in the growing data -
accuRate
double accuRate
The accurate rate of this antecedent test on the growing data -
att
Attribute att
The attribute of the antecedent -
cover
double cover
The coverage of this antecedent in the growing data -
maxInfoGain
double maxInfoGain
The maximum infoGain achieved by this antecedent test in the growing data -
value
double value
The attribute value of the antecedent. For numeric attribute, value is either 0(1st bag) or 1(2nd bag)
-
-
Class weka.classifiers.rules.JRip.NominalAntd
class NominalAntd extends JRip.Antd implements Serializable- serialVersionUID:
- -9102297038837585135L
-
Serialized Fields
-
accurate
double[] accurate
-
coverage
double[] coverage
-
-
Class weka.classifiers.rules.JRip.NumericAntd
class NumericAntd extends JRip.Antd implements Serializable- serialVersionUID:
- 5699457269983735442L
-
Serialized Fields
-
splitPoint
double splitPoint
The split point for this numeric antecedent
-
-
Class weka.classifiers.rules.JRip.RipperRule
class RipperRule extends Rule implements Serializable- serialVersionUID:
- -2410020717305262952L
-
Class weka.classifiers.rules.M5Rules
class M5Rules extends M5Base implements Serializable- serialVersionUID:
- -1746114858746563180L
-
Class weka.classifiers.rules.OneR
class OneR extends AbstractClassifier implements Serializable- serialVersionUID:
- -3459427003147861443L
-
Serialized Fields
-
m_minBucketSize
int m_minBucketSize
The minimum bucket size -
m_rule
weka.classifiers.rules.OneR.OneRRule m_rule
A 1-R rule -
m_ZeroR
Classifier m_ZeroR
a ZeroR model in case no model can be built from the data
-
-
Class weka.classifiers.rules.PART
class PART extends AbstractClassifier implements Serializable- serialVersionUID:
- 8121455039782598361L
-
Serialized Fields
-
m_binarySplits
boolean m_binarySplits
Binary splits on nominal attributes? -
m_CF
float m_CF
Confidence level -
m_doNotMakeSplitPointActualValue
boolean m_doNotMakeSplitPointActualValue
Do not relocate split point to actual data value -
m_minNumObj
int m_minNumObj
Minimum number of objects -
m_numFolds
int m_numFolds
Number of folds for reduced error pruning. -
m_reducedErrorPruning
boolean m_reducedErrorPruning
Use reduced error pruning? -
m_root
MakeDecList m_root
The decision list -
m_Seed
int m_Seed
The seed for random number generation. -
m_unpruned
boolean m_unpruned
Generate unpruned list? -
m_useMDLcorrection
boolean m_useMDLcorrection
Use MDL correction?
-
-
Class weka.classifiers.rules.Rule
class Rule extends Object implements Serializable- serialVersionUID:
- 8815687740470471229L
-
Class weka.classifiers.rules.RuleStats
class RuleStats extends Object implements Serializable- serialVersionUID:
- -5708153367675298624L
-
Serialized Fields
-
m_Data
Instances m_Data
The data on which the stats calculation is based -
m_Distributions
ArrayList<double[]> m_Distributions
The class distributions predicted by each rule -
m_Filtered
ArrayList<Instances[]> m_Filtered
The set of instances filtered by the ruleset -
m_Ruleset
ArrayList<Rule> m_Ruleset
The specific ruleset in question -
m_SimpleStats
ArrayList<double[]> m_SimpleStats
The simple stats of each rule -
m_Total
double m_Total
The total number of possible conditions that could appear in a rule -
MDL_THEORY_WEIGHT
double MDL_THEORY_WEIGHT
The theory weight in the MDL calculation
-
-
Class weka.classifiers.rules.ZeroR
class ZeroR extends AbstractClassifier implements Serializable- serialVersionUID:
- 48055541465867954L
-
Serialized Fields
-
m_Class
Attribute m_Class
The class attribute. -
m_ClassValue
double m_ClassValue
The class value 0R predicts. -
m_Counts
double[] m_Counts
The number of instances in each class (null if class numeric).
-
-
-
Package weka.classifiers.rules.part
-
Class weka.classifiers.rules.part.C45PruneableDecList
class C45PruneableDecList extends ClassifierDecList implements Serializable- serialVersionUID:
- -2757684345218324559L
-
Serialized Fields
-
CF
double CF
CF
-
-
Class weka.classifiers.rules.part.ClassifierDecList
class ClassifierDecList extends Object implements Serializable- serialVersionUID:
- 7284358349711992497L
-
Serialized Fields
-
indeX
int indeX
Which son to expand? -
m_isEmpty
boolean m_isEmpty
True if node is empty. -
m_isLeaf
boolean m_isLeaf
True if node is leaf. -
m_localModel
ClassifierSplitModel m_localModel
Local model at node. -
m_minNumObj
int m_minNumObj
Minimum number of objects -
m_sons
ClassifierDecList[] m_sons
References to sons. -
m_test
Distribution m_test
The pruning instances. -
m_toSelectModel
ModelSelection m_toSelectModel
The model selection method. -
m_train
Instances m_train
The training instances.
-
-
Class weka.classifiers.rules.part.MakeDecList
class MakeDecList extends Object implements Serializable- serialVersionUID:
- -1427481323245079123L
-
Serialized Fields
-
CF
double CF
The confidence for C45-type pruning. -
m_seed
int m_seed
The seed for random number generation. -
minNumObj
int minNumObj
Minimum number of objects -
numSetS
int numSetS
How many subsets of equal size? One used for pruning, the rest for training. -
reducedErrorPruning
boolean reducedErrorPruning
Use reduced error pruning? -
theRules
Vector<ClassifierDecList> theRules
Vector storing the rules. -
toSelectModeL
ModelSelection toSelectModeL
The model selection method. -
unpruned
boolean unpruned
Generated unpruned list?
-
-
Class weka.classifiers.rules.part.PruneableDecList
class PruneableDecList extends ClassifierDecList implements Serializable- serialVersionUID:
- -7228103346297172921L
-
-
Package weka.classifiers.trees
-
Class weka.classifiers.trees.DecisionStump
class DecisionStump extends AbstractClassifier implements Serializable- serialVersionUID:
- 1618384535950391L
-
Serialized Fields
-
m_AttIndex
int m_AttIndex
The attribute used for classification. -
m_Distribution
double[][] m_Distribution
The distribution of class values or the means in each subset. -
m_Instances
Instances m_Instances
The instances used for training. -
m_SplitPoint
double m_SplitPoint
The split point (index respectively). -
m_ZeroR
Classifier m_ZeroR
a ZeroR model in case no model can be built from the data
-
-
Class weka.classifiers.trees.HoeffdingTree
class HoeffdingTree extends AbstractClassifier implements Serializable- serialVersionUID:
- 7117521775722396251L
-
Serialized Fields
-
m_activeLeafCount
int m_activeLeafCount
-
m_decisionNodeCount
int m_decisionNodeCount
-
m_gracePeriod
double m_gracePeriod
The number of instances a leaf should observe between split attempts -
m_header
Instances m_header
-
m_hoeffdingTieThreshold
double m_hoeffdingTieThreshold
Threshold below which a split will be forced to break ties -
m_inactiveLeafCount
int m_inactiveLeafCount
-
m_leafStrategy
int m_leafStrategy
The leaf prediction strategy to use -
m_minFracWeightForTwoBranchesGain
double m_minFracWeightForTwoBranchesGain
The minimum fraction of weight required down at least two branches for info gain splitting -
m_nbThreshold
double m_nbThreshold
The number of instances (total weight) a leaf should observe before allowing naive Bayes to make predictions -
m_printLeafModels
boolean m_printLeafModels
Print out leaf models in the case of naive Bayes or naive Bayes adaptive leaves -
m_root
HNode m_root
-
m_selectedSplitMetric
int m_selectedSplitMetric
The splitting metric to use -
m_splitConfidence
double m_splitConfidence
The allowable error in a split decision. Values closer to zero will take longer to decide -
m_splitMetric
SplitMetric m_splitMetric
-
-
Class weka.classifiers.trees.J48
class J48 extends AbstractClassifier implements Serializable- serialVersionUID:
- -217733168393644444L
-
Serialized Fields
-
m_binarySplits
boolean m_binarySplits
Binary splits on nominal attributes? -
m_CF
float m_CF
Confidence level -
m_collapseTree
boolean m_collapseTree
Collapse tree? -
m_doNotMakeSplitPointActualValue
boolean m_doNotMakeSplitPointActualValue
Do not relocate split point to actual data value -
m_minNumObj
int m_minNumObj
Minimum number of instances -
m_noCleanup
boolean m_noCleanup
Cleanup after the tree has been built. -
m_numFolds
int m_numFolds
Number of folds for reduced error pruning. -
m_reducedErrorPruning
boolean m_reducedErrorPruning
Use reduced error pruning? -
m_root
ClassifierTree m_root
The decision tree -
m_Seed
int m_Seed
Random number seed for reduced-error pruning. -
m_subtreeRaising
boolean m_subtreeRaising
Subtree raising to be performed? -
m_unpruned
boolean m_unpruned
Unpruned tree? -
m_useLaplace
boolean m_useLaplace
Determines whether probabilities are smoothed using Laplace correction when predictions are generated -
m_useMDLcorrection
boolean m_useMDLcorrection
Use MDL correction?
-
-
Class weka.classifiers.trees.LMT
class LMT extends AbstractClassifier implements Serializable- serialVersionUID:
- -1113212459618104943L
-
Serialized Fields
-
m_convertNominal
boolean m_convertNominal
convert nominal attributes to binary ? -
m_doNotMakeSplitPointActualValue
boolean m_doNotMakeSplitPointActualValue
Do not relocate split point to actual data value -
m_errorOnProbabilities
boolean m_errorOnProbabilities
use error on probabilties instead of misclassification for stopping criterion of LogitBoost? -
m_fastRegression
boolean m_fastRegression
use heuristic that determines the number of LogitBoost iterations only once in the beginning? -
m_minNumInstances
int m_minNumInstances
minimum number of instances at which a node is considered for splitting -
m_nominalToBinary
NominalToBinary m_nominalToBinary
Filter to replace nominal attributes -
m_numBoostingIterations
int m_numBoostingIterations
if non-zero, use fixed number of iterations for LogitBoost -
m_replaceMissing
ReplaceMissingValues m_replaceMissing
Filter to replace missing values -
m_splitOnResiduals
boolean m_splitOnResiduals
split on residuals? -
m_tree
LMTNode m_tree
root of the logistic model tree -
m_useAIC
boolean m_useAIC
If true, the AIC is used to choose the best LogitBoost iteration -
m_weightTrimBeta
double m_weightTrimBeta
Threshold for trimming weights. Instances with a weight lower than this (as a percentage of total weights) are not included in the regression fit.
-
-
Class weka.classifiers.trees.M5P
class M5P extends M5Base implements Serializable- serialVersionUID:
- -6118439039768244417L
-
Class weka.classifiers.trees.RandomForest
class RandomForest extends Bagging implements Serializable- serialVersionUID:
- 1116839470751428698L
-
Serialized Fields
-
m_computeAttributeImportance
boolean m_computeAttributeImportance
True to compute attribute importance
-
-
Class weka.classifiers.trees.RandomTree
class RandomTree extends AbstractClassifier implements Serializable- serialVersionUID:
- -9051119597407396024L
-
Serialized Fields
-
m_AllowUnclassifiedInstances
boolean m_AllowUnclassifiedInstances
Whether unclassified instances are allowed -
m_BreakTiesRandomly
boolean m_BreakTiesRandomly
Whether to break ties randomly. -
m_computeImpurityDecreases
boolean m_computeImpurityDecreases
Whether to store the impurity decrease/gain sum -
m_impurityDecreasees
double[][] m_impurityDecreasees
Indexed by attribute, each two element array contains impurity decrease/gain sum in first element and count in the second -
m_Info
Instances m_Info
The header information. -
m_KValue
int m_KValue
The number of attributes considered for a split. -
m_MaxDepth
int m_MaxDepth
The maximum depth of the tree (0 = unlimited) -
m_MinNum
double m_MinNum
Minimum number of instances for leaf. -
m_MinVarianceProp
double m_MinVarianceProp
The minimum proportion of the total variance (over all the data) required for split. -
m_NumFolds
int m_NumFolds
Determines how much data is used for backfitting -
m_randomSeed
int m_randomSeed
The random seed to use. -
m_Tree
weka.classifiers.trees.RandomTree.Tree m_Tree
The Tree object -
m_zeroR
Classifier m_zeroR
a ZeroR model in case no model can be built from the data
-
-
Class weka.classifiers.trees.RandomTree.Tree
class Tree extends Object implements Serializable- serialVersionUID:
- 3549573538656522569L
-
Serialized Fields
-
m_Attribute
int m_Attribute
The attribute to split on. -
m_ClassDistribution
double[] m_ClassDistribution
Class probabilities from the training data in the nominal case. Holds the mean in the numeric case. -
m_Distribution
double[] m_Distribution
Holds the sum of squared errors and the weight in the numeric case. -
m_Prop
double[] m_Prop
The proportions of training instances going down each branch. -
m_SplitPoint
double m_SplitPoint
The split point. -
m_Successors
weka.classifiers.trees.RandomTree.Tree[] m_Successors
The subtrees appended to this tree.
-
-
Class weka.classifiers.trees.REPTree
class REPTree extends AbstractClassifier implements Serializable- serialVersionUID:
- -9216785998198681299L
-
Serialized Fields
-
m_InitialCount
double m_InitialCount
The initial class count -
m_MaxDepth
int m_MaxDepth
Upper bound on the tree depth -
m_MinNum
double m_MinNum
The minimum number of instances per leaf. -
m_MinVarianceProp
double m_MinVarianceProp
The minimum proportion of the total variance (over all the data) required for split. -
m_NoPruning
boolean m_NoPruning
Don't prune -
m_NumFolds
int m_NumFolds
Number of folds for reduced error pruning. -
m_Seed
int m_Seed
Seed for random data shuffling. -
m_SpreadInitialCount
boolean m_SpreadInitialCount
Whether to spread initial count across all values -
m_Tree
weka.classifiers.trees.REPTree.Tree m_Tree
The Tree object -
m_zeroR
ZeroR m_zeroR
ZeroR model that is used if no attributes are present.
-
-
Class weka.classifiers.trees.REPTree.Tree
class Tree extends Object implements Serializable- serialVersionUID:
- -1635481717888437935L
-
Serialized Fields
-
m_Attribute
int m_Attribute
The attribute to split on. -
m_ClassProbs
double[] m_ClassProbs
Class probabilities from the training data in the nominal case. Holds the mean in the numeric case. -
m_Distribution
double[] m_Distribution
The (unnormalized) class distribution in the nominal case. Holds the sum of squared errors and the weight in the numeric case. -
m_HoldOutDist
double[] m_HoldOutDist
Class distribution of hold-out set at node in the nominal case. Straight sum of weights plus sum of weighted targets in the numeric case (i.e. array has only two elements). -
m_HoldOutError
double m_HoldOutError
The hold-out error of the node. The number of miss-classified instances in the nominal case, the sum of squared errors in the numeric case. -
m_Info
Instances m_Info
The header information (for printing the tree). -
m_Prop
double[] m_Prop
The proportions of training instances going down each branch. -
m_SplitPoint
double m_SplitPoint
The split point. -
m_Successors
weka.classifiers.trees.REPTree.Tree[] m_Successors
The subtrees of this tree.
-
-
-
Package weka.classifiers.trees.ht
-
Class weka.classifiers.trees.ht.ActiveHNode
class ActiveHNode extends LeafNode implements Serializable- serialVersionUID:
- 3284585939739561683L
-
Serialized Fields
-
m_nodeStats
Map<String,
ConditionalSufficientStats> m_nodeStats Statistics for nominal or numeric attributes conditioned on the class -
m_weightSeenAtLastSplitEval
double m_weightSeenAtLastSplitEval
The weight of instances seen at the last split evaluation
-
-
Class weka.classifiers.trees.ht.ConditionalSufficientStats
class ConditionalSufficientStats extends Object implements Serializable- serialVersionUID:
- 8724787722646808376L
-
Class weka.classifiers.trees.ht.GaussianConditionalSufficientStats
class GaussianConditionalSufficientStats extends ConditionalSufficientStats implements Serializable- serialVersionUID:
- -1527915607201784762L
-
Class weka.classifiers.trees.ht.GaussianConditionalSufficientStats.GaussianEstimator
class GaussianEstimator extends UnivariateNormalEstimator implements Serializable- serialVersionUID:
- 4756032800685001315L
-
Class weka.classifiers.trees.ht.GiniSplitMetric
class GiniSplitMetric extends SplitMetric implements Serializable- serialVersionUID:
- -2037586582742660298L
-
Class weka.classifiers.trees.ht.HNode
class HNode extends Object implements Serializable- serialVersionUID:
- 197233928177240264L
-
Serialized Fields
-
m_classDistribution
Map<String,
WeightMass> m_classDistribution Class distribution at this node -
m_leafNum
int m_leafNum
Holds the leaf number (if this is a leaf) -
m_nodeNum
int m_nodeNum
Holds the node number (for graphing purposes)
-
-
Class weka.classifiers.trees.ht.InactiveHNode
class InactiveHNode extends LeafNode implements Serializable- serialVersionUID:
- -8747567733141700911L
-
Class weka.classifiers.trees.ht.InfoGainSplitMetric
class InfoGainSplitMetric extends SplitMetric implements Serializable- serialVersionUID:
- 2173840581308675428L
-
Serialized Fields
-
m_minFracWeightForTwoBranches
double m_minFracWeightForTwoBranches
-
-
Class weka.classifiers.trees.ht.LeafNode
class LeafNode extends HNode implements Serializable- serialVersionUID:
- -3359429731894384404L
-
Class weka.classifiers.trees.ht.NBNode
class NBNode extends ActiveHNode implements Serializable- serialVersionUID:
- -1872415764817690961L
-
Serialized Fields
-
m_bayes
NaiveBayesUpdateable m_bayes
The naive Bayes model at the node -
m_nbWeightThreshold
double m_nbWeightThreshold
The weight of instances that need to be seen by this node before allowing naive Bayes to make predictions
-
-
Class weka.classifiers.trees.ht.NBNodeAdaptive
class NBNodeAdaptive extends NBNode implements Serializable- serialVersionUID:
- -4509802312019989686L
-
Serialized Fields
-
m_majClassCorrectWeight
double m_majClassCorrectWeight
The number of correct predictions made by the majority class -
m_nbCorrectWeight
double m_nbCorrectWeight
The number of correct predictions made by naive Bayes
-
-
Class weka.classifiers.trees.ht.NominalConditionalSufficientStats
class NominalConditionalSufficientStats extends ConditionalSufficientStats implements Serializable- serialVersionUID:
- -669902060601313488L
-
Serialized Fields
-
m_missingWeight
double m_missingWeight
-
m_totalWeight
double m_totalWeight
-
-
Class weka.classifiers.trees.ht.NominalConditionalSufficientStats.ValueDistribution
class ValueDistribution extends Object implements Serializable- serialVersionUID:
- -61711544350888154L
-
Serialized Fields
-
m_dist
Map<Integer,
WeightMass> m_dist -
m_sum
double m_sum
-
-
Class weka.classifiers.trees.ht.Split
class Split extends Object implements Serializable- serialVersionUID:
- 5390368487675958092L
-
Class weka.classifiers.trees.ht.SplitMetric
class SplitMetric extends Object implements Serializable- serialVersionUID:
- 2891555018707080818L
-
Class weka.classifiers.trees.ht.SplitNode
class SplitNode extends HNode implements Serializable- serialVersionUID:
- 1558033628618451073L
-
Class weka.classifiers.trees.ht.UnivariateNominalMultiwaySplit
class UnivariateNominalMultiwaySplit extends Split implements Serializable- serialVersionUID:
- -9094590488097956665L
-
Class weka.classifiers.trees.ht.UnivariateNumericBinarySplit
class UnivariateNumericBinarySplit extends Split implements Serializable- serialVersionUID:
- -7392204582942741097L
-
Serialized Fields
-
m_splitPoint
double m_splitPoint
The split point
-
-
Class weka.classifiers.trees.ht.WeightMass
class WeightMass extends Object implements Serializable- serialVersionUID:
- 6794839107050779425L
-
Serialized Fields
-
m_weight
double m_weight
-
-
-
Package weka.classifiers.trees.j48
-
Class weka.classifiers.trees.j48.BinC45ModelSelection
class BinC45ModelSelection extends ModelSelection implements Serializable- serialVersionUID:
- 179170923545122001L
-
Serialized Fields
-
m_allData
Instances m_allData
The FULL training dataset. -
m_doNotMakeSplitPointActualValue
boolean m_doNotMakeSplitPointActualValue
Do not relocate split point to actual data value -
m_minNoObj
int m_minNoObj
Minimum number of instances in interval. -
m_useMDLcorrection
boolean m_useMDLcorrection
Use MDL correction?
-
-
Class weka.classifiers.trees.j48.BinC45Split
class BinC45Split extends ClassifierSplitModel implements Serializable- serialVersionUID:
- -1278776919563022474L
-
Serialized Fields
-
m_attIndex
int m_attIndex
Attribute to split on. -
m_gainRatio
double m_gainRatio
GainRatio of split. -
m_infoGain
double m_infoGain
InfoGain of split. -
m_minNoObj
int m_minNoObj
Minimum number of objects in a split. -
m_splitPoint
double m_splitPoint
Value of split point. -
m_sumOfWeights
double m_sumOfWeights
The sum of the weights of the instances. -
m_useMDLcorrection
boolean m_useMDLcorrection
Use MDL correction?
-
-
Class weka.classifiers.trees.j48.C45ModelSelection
class C45ModelSelection extends ModelSelection implements Serializable- serialVersionUID:
- 3372204862440821989L
-
Serialized Fields
-
m_allData
Instances m_allData
All the training data -
m_doNotMakeSplitPointActualValue
boolean m_doNotMakeSplitPointActualValue
Do not relocate split point to actual data value -
m_minNoObj
int m_minNoObj
Minimum number of objects in interval. -
m_useMDLcorrection
boolean m_useMDLcorrection
Use MDL correction?
-
-
Class weka.classifiers.trees.j48.C45PruneableClassifierTree
class C45PruneableClassifierTree extends ClassifierTree implements Serializable- serialVersionUID:
- -4813820170260388194L
-
Serialized Fields
-
m_CF
float m_CF
The confidence factor for pruning. -
m_cleanup
boolean m_cleanup
Cleanup after the tree has been built. -
m_collapseTheTree
boolean m_collapseTheTree
True if the tree is to be collapsed. -
m_pruneTheTree
boolean m_pruneTheTree
True if the tree is to be pruned. -
m_subtreeRaising
boolean m_subtreeRaising
Is subtree raising to be performed?
-
-
Class weka.classifiers.trees.j48.C45Split
class C45Split extends ClassifierSplitModel implements Serializable- serialVersionUID:
- 3064079330067903161L
-
Serialized Fields
-
m_attIndex
int m_attIndex
Attribute to split on. -
m_complexityIndex
int m_complexityIndex
Desired number of branches. -
m_gainRatio
double m_gainRatio
GainRatio of split. -
m_index
int m_index
Number of split points. -
m_infoGain
double m_infoGain
InfoGain of split. -
m_minNoObj
int m_minNoObj
Minimum number of objects in a split. -
m_splitPoint
double m_splitPoint
Value of split point. -
m_sumOfWeights
double m_sumOfWeights
The sum of the weights of the instances. -
m_useMDLcorrection
boolean m_useMDLcorrection
Use MDL correction?
-
-
Class weka.classifiers.trees.j48.ClassifierSplitModel
class ClassifierSplitModel extends Object implements Serializable- serialVersionUID:
- 4280730118393457457L
-
Serialized Fields
-
m_distribution
Distribution m_distribution
Distribution of class values. -
m_numSubsets
int m_numSubsets
Number of created subsets.
-
-
Class weka.classifiers.trees.j48.ClassifierTree
class ClassifierTree extends Object implements Serializable- serialVersionUID:
- -8722249377542734193L
-
Serialized Fields
-
m_id
int m_id
The id for the node. -
m_isEmpty
boolean m_isEmpty
True if node is empty. -
m_isLeaf
boolean m_isLeaf
True if node is leaf. -
m_localModel
ClassifierSplitModel m_localModel
Local model at node. -
m_sons
ClassifierTree[] m_sons
References to sons. -
m_test
Distribution m_test
The pruning instances. -
m_toSelectModel
ModelSelection m_toSelectModel
The model selection method. -
m_train
Instances m_train
The training instances.
-
-
Class weka.classifiers.trees.j48.Distribution
class Distribution extends Object implements Serializable- serialVersionUID:
- 8526859638230806576L
-
Serialized Fields
-
m_perBag
double[] m_perBag
Weight of instances per bag. -
m_perClass
double[] m_perClass
Weight of instances per class. -
m_perClassPerBag
double[][] m_perClassPerBag
Weight of instances per class per bag. -
totaL
double totaL
Total weight of instances.
-
-
Class weka.classifiers.trees.j48.EntropyBasedSplitCrit
class EntropyBasedSplitCrit extends SplitCriterion implements Serializable- serialVersionUID:
- -2618691439791653056L
-
Class weka.classifiers.trees.j48.EntropySplitCrit
class EntropySplitCrit extends EntropyBasedSplitCrit implements Serializable- serialVersionUID:
- 5986252682266803935L
-
Class weka.classifiers.trees.j48.GainRatioSplitCrit
class GainRatioSplitCrit extends EntropyBasedSplitCrit implements Serializable- serialVersionUID:
- -433336694718670930L
-
Class weka.classifiers.trees.j48.InfoGainSplitCrit
class InfoGainSplitCrit extends EntropyBasedSplitCrit implements Serializable- serialVersionUID:
- 4892105020180728499L
-
Class weka.classifiers.trees.j48.ModelSelection
class ModelSelection extends Object implements Serializable- serialVersionUID:
- -4850147125096133642L
-
Class weka.classifiers.trees.j48.NBTreeClassifierTree
class NBTreeClassifierTree extends ClassifierTree implements Serializable- serialVersionUID:
- -4472639447877404786L
-
Class weka.classifiers.trees.j48.NBTreeModelSelection
class NBTreeModelSelection extends ModelSelection implements Serializable- serialVersionUID:
- 990097748931976704L
-
Serialized Fields
-
m_allData
Instances m_allData
All the training data -
m_minNoObj
int m_minNoObj
Minimum number of objects in interval.
-
-
Class weka.classifiers.trees.j48.NBTreeNoSplit
class NBTreeNoSplit extends ClassifierSplitModel implements Serializable- serialVersionUID:
- 7824804381545259618L
-
Serialized Fields
-
m_disc
Discretize m_disc
the discretizer used -
m_errors
double m_errors
errors on the training data at this node -
m_nb
NaiveBayesUpdateable m_nb
the naive bayes classifier
-
-
Class weka.classifiers.trees.j48.NBTreeSplit
class NBTreeSplit extends ClassifierSplitModel implements Serializable- serialVersionUID:
- 8922627123884975070L
-
Serialized Fields
-
m_attIndex
int m_attIndex
Attribute to split on. -
m_c45S
C45Split m_c45S
-
m_complexityIndex
int m_complexityIndex
Desired number of branches. -
m_errors
double m_errors
The weight of the instances incorrectly classified by the naive bayes models arising from this split -
m_globalNB
NBTreeNoSplit m_globalNB
The global naive bayes model for this node -
m_sumOfWeights
double m_sumOfWeights
The sum of the weights of the instances.
-
-
Class weka.classifiers.trees.j48.NoSplit
class NoSplit extends ClassifierSplitModel implements Serializable- serialVersionUID:
- -1292620749331337546L
-
Class weka.classifiers.trees.j48.PruneableClassifierTree
class PruneableClassifierTree extends ClassifierTree implements Serializable- serialVersionUID:
- -555775736857600201L
-
Serialized Fields
-
m_cleanup
boolean m_cleanup
Cleanup after the tree has been built. -
m_seed
int m_seed
The random number seed. -
numSets
int numSets
How many subsets of equal size? One used for pruning, the rest for training. -
pruneTheTree
boolean pruneTheTree
True if the tree is to be pruned.
-
-
Class weka.classifiers.trees.j48.SplitCriterion
class SplitCriterion extends Object implements Serializable- serialVersionUID:
- 5490996638027101259L
-
-
Package weka.classifiers.trees.lmt
-
Class weka.classifiers.trees.lmt.LMTNode
class LMTNode extends LogisticBase implements Serializable- serialVersionUID:
- 1862737145870398755L
-
Serialized Fields
-
m_alpha
double m_alpha
Alpha-value (for pruning) at the node -
m_fastRegression
boolean m_fastRegression
Use heuristic that determines the number of LogitBoost iterations only once in the beginning? -
m_id
int m_id
Node id -
m_isLeaf
boolean m_isLeaf
True if node is leaf -
m_leafModelNum
int m_leafModelNum
ID of logistic model at leaf -
m_localModel
ClassifierSplitModel m_localModel
The ClassifierSplitModel (for splitting) -
m_minNumInstances
int m_minNumInstances
minimum number of instances at which a node is considered for splitting -
m_modelSelection
ModelSelection m_modelSelection
ModelSelection object (for splitting) -
m_nominalToBinary
NominalToBinary m_nominalToBinary
Filter to convert nominal attributes to binary -
m_numIncorrectModel
double m_numIncorrectModel
Weighted number of training examples currently misclassified by the logistic model at the node -
m_numIncorrectTree
double m_numIncorrectTree
Weighted number of training examples currently misclassified by the subtree rooted at the node -
m_numInstances
int m_numInstances
Number of instances at the node -
m_sons
LMTNode[] m_sons
Array of children of the node -
m_totalInstanceWeight
double m_totalInstanceWeight
Total number of training instances.
-
-
Class weka.classifiers.trees.lmt.LogisticBase
class LogisticBase extends AbstractClassifier implements Serializable- serialVersionUID:
- 168765678097825064L
-
Serialized Fields
-
m_errorOnProbabilities
boolean m_errorOnProbabilities
Use error on probabilities for stopping criterion of LogitBoost? -
m_fixedNumIterations
int m_fixedNumIterations
Use fixed number of iterations for LogitBoost? (if negative, cross-validate number of iterations) -
m_heuristicStop
int m_heuristicStop
Use heuristic to stop performing LogitBoost iterations earlier? If enabled, LogitBoost is stopped if the current (local) minimum of the error on a test set as a function of the number of iterations has not changed for m_heuristicStop iterations. -
m_maxIterations
int m_maxIterations
The maximum number of LogitBoost iterations -
m_numClasses
int m_numClasses
The number of different classes -
m_numericData
Instances m_numericData
Numeric version of the training data. Original class is replaced by a numeric pseudo-class. -
m_numericDataHeader
Instances m_numericDataHeader
Header-only version of the numeric version of the training data -
m_numParameters
double m_numParameters
Effective number of parameters used for AIC / BIC automatic stopping -
m_numRegressions
int m_numRegressions
The number of LogitBoost iterations performed. -
m_regressions
SimpleLinearRegression[][] m_regressions
Array holding the simple regression functions fit by LogitBoost -
m_train
Instances m_train
Training data -
m_useAIC
boolean m_useAIC
If true, the AIC is used to choose the best iteration -
m_useCrossValidation
boolean m_useCrossValidation
Use cross-validation to determine best number of LogitBoost iterations ? -
m_weightTrimBeta
double m_weightTrimBeta
Threshold for trimming weights. Instances with a weight lower than this (as a percentage of total weights) are not included in the regression fit.
-
-
Class weka.classifiers.trees.lmt.ResidualModelSelection
class ResidualModelSelection extends ModelSelection implements Serializable- serialVersionUID:
- -293098783159385148L
-
Serialized Fields
-
m_minInfoGain
double m_minInfoGain
Minimum information gain for split -
m_minNumInstances
int m_minNumInstances
Minimum number of instances for leaves
-
-
Class weka.classifiers.trees.lmt.ResidualSplit
class ResidualSplit extends ClassifierSplitModel implements Serializable- serialVersionUID:
- -5055883734183713525L
-
Serialized Fields
-
m_attIndex
int m_attIndex
The index of the attribute selected for the split -
m_attribute
Attribute m_attribute
The attribute selected for the split -
m_data
Instances m_data
The set of instances -
m_dataWs
double[][] m_dataWs
The LogitBoost-weights for the set of instances -
m_dataZs
double[][] m_dataZs
The Z-values (LogitBoost response) for the set of instances -
m_numClasses
int m_numClasses
Number of classed -
m_numInstances
int m_numInstances
Number of instances in the set -
m_splitPoint
double m_splitPoint
The split point (for numeric attributes)
-
-
Class weka.classifiers.trees.lmt.SimpleLinearRegression
class SimpleLinearRegression extends Object implements Serializable- serialVersionUID:
- 1779336022895414137L
-
Serialized Fields
-
m_attributeIndex
int m_attributeIndex
The index of the chosen attribute -
m_intercept
double m_intercept
The intercept -
m_slope
double m_slope
The slope
-
-
-
Package weka.classifiers.trees.m5
-
Class weka.classifiers.trees.m5.CorrelationSplitInfo
class CorrelationSplitInfo extends Object implements Serializable- serialVersionUID:
- 4212734895125452770L
-
Serialized Fields
-
m_maxImpurity
double m_maxImpurity
the maximum impurity reduction -
m_number
int m_number
the number of instances -
m_position
int m_position
-
m_splitAttr
int m_splitAttr
the attribute being tested -
m_splitValue
double m_splitValue
the best value on which to split
-
-
Class weka.classifiers.trees.m5.M5Base
class M5Base extends AbstractClassifier implements Serializable- serialVersionUID:
- -4022221950191647679L
-
Serialized Fields
-
m_generateRules
boolean m_generateRules
generate a decision list instead of a single tree. -
m_instances
Instances m_instances
the instances covered by the tree/rules -
m_minNumInstances
double m_minNumInstances
The minimum number of instances to allow at a leaf node -
m_nominalToBinary
NominalToBinary m_nominalToBinary
filter to convert nominal attributes to binary -
m_regressionTree
boolean m_regressionTree
Make a regression tree/rule instead of a model tree/rule -
m_removeUseless
RemoveUseless m_removeUseless
for removing useless attributes -
m_replaceMissing
ReplaceMissingValues m_replaceMissing
filter to fill in missing values -
m_ruleSet
ArrayList<Rule> m_ruleSet
the rule set -
m_saveInstances
boolean m_saveInstances
Save instances at each node in an M5 tree for visualization purposes. -
m_unsmoothedPredictions
boolean m_unsmoothedPredictions
use unsmoothed predictions -
m_useUnpruned
boolean m_useUnpruned
Do not prune tree/rules
-
-
Class weka.classifiers.trees.m5.PreConstructedLinearModel
class PreConstructedLinearModel extends AbstractClassifier implements Serializable- serialVersionUID:
- 2030974097051713247L
-
Serialized Fields
-
m_coefficients
double[] m_coefficients
The coefficients -
m_instancesHeader
Instances m_instancesHeader
Holds the instances header for printing the model -
m_intercept
double m_intercept
The intercept -
m_numParameters
int m_numParameters
number of coefficients in the model
-
-
Class weka.classifiers.trees.m5.Rule
class Rule extends Object implements Serializable- serialVersionUID:
- -4458627451682483204L
-
Serialized Fields
-
m_classIndex
int m_classIndex
the class index -
m_covered
Instances m_covered
the instances covered by this rule -
m_globalAbsDev
double m_globalAbsDev
the absolute deviation of the class for all the instances -
m_globalStdDev
double m_globalStdDev
the standard deviation of the class for all the instances -
m_instances
Instances m_instances
the instances covered by this rule -
m_internalNodes
RuleNode[] m_internalNodes
the corresponding internal nodes. Used for smoothing rules. -
m_minNumInstances
double m_minNumInstances
The minimum number of instances to allow at a leaf node -
m_notCovered
Instances m_notCovered
the instances not covered by this rule -
m_numCovered
int m_numCovered
the number of instances covered by this rule -
m_numDecimalPlaces
int m_numDecimalPlaces
The number of decimal places used for printing this rule. -
m_numInstances
int m_numInstances
the number of instances in the dataset -
m_regressionTree
boolean m_regressionTree
Make a regression tree instead of a model tree -
m_relOps
int[] m_relOps
the corresponding relational operators (0 = "<=", 1 = ">") -
m_ruleModel
RuleNode m_ruleModel
the leaf encapsulating the linear model for this rule -
m_saveInstances
boolean m_saveInstances
Save instances at each node in an M5 tree for visualization purposes. -
m_smoothPredictions
boolean m_smoothPredictions
use the original m5 smoothing procedure -
m_splitAtts
int[] m_splitAtts
the indexes of the attributes used to split on for this rule -
m_splitVals
double[] m_splitVals
the corresponding values of the split points -
m_topOfTree
RuleNode m_topOfTree
the top of the m5 tree for this rule -
m_useTree
boolean m_useTree
use a pruned m5 tree rather than make a rule -
m_useUnpruned
boolean m_useUnpruned
Build unpruned tree/rule
-
-
Class weka.classifiers.trees.m5.RuleNode
class RuleNode extends AbstractClassifier implements Serializable- serialVersionUID:
- 1979807611124337144L
-
Serialized Fields
-
m_classIndex
int m_classIndex
the class index -
m_devFraction
double m_devFraction
a node will not be split if its class standard deviation is less than 5% of the class standard deviation of all the instances -
m_globalAbsDeviation
double m_globalAbsDeviation
the absolute deviation of the global class -
m_globalDeviation
double m_globalDeviation
a node will not be split if the class deviation of its instances is less than m_devFraction of the deviation of the global class -
m_id
int m_id
Node id. -
m_indices
int[] m_indices
Indices of the attributes to be used in generating a linear model at this node -
m_instances
Instances m_instances
instances reaching this node -
m_isLeaf
boolean m_isLeaf
Node is a leaf -
m_leafModelNum
int m_leafModelNum
the number assigned to the linear model if this node is a leaf. = 0 if this node is not a leaf -
m_left
RuleNode m_left
left child node -
m_nodeModel
PreConstructedLinearModel m_nodeModel
the linear model at this node -
m_numAttributes
int m_numAttributes
the number of attributes -
m_numInstances
int m_numInstances
the number of instances reaching this node -
m_numParameters
int m_numParameters
the number of paramters in the chosen model for this node---either the subtree model or the linear model. The constant term is counted as a paramter---this is for pruning purposes -
m_parent
RuleNode m_parent
the parent of this node -
m_pruningMultiplier
double m_pruningMultiplier
-
m_regressionTree
boolean m_regressionTree
Make a regression tree instead of a model tree -
m_right
RuleNode m_right
right child node -
m_rootMeanSquaredError
double m_rootMeanSquaredError
the mean squared error of the model at this node (either linear or subtree) -
m_saveInstances
boolean m_saveInstances
Save the instances at each node (for visualizing in the Explorer's treevisualizer. -
m_splitAtt
int m_splitAtt
attribute this node splits on -
m_splitNum
double m_splitNum
a node will not be split if it contains less then m_splitNum instances -
m_splitValue
double m_splitValue
the value of the split attribute
-
-
Class weka.classifiers.trees.m5.YongSplitInfo
class YongSplitInfo extends Object implements Serializable- serialVersionUID:
- 1864267581079767881L
-
Serialized Fields
-
first
int first
-
last
int last
-
leftAve
double leftAve
-
maxImpurity
double maxImpurity
-
number
int number
-
position
int position
-
rightAve
double rightAve
-
splitAttr
int splitAttr
-
splitValue
double splitValue
-
-
-
Package weka.clusterers
-
Class weka.clusterers.AbstractClusterer
class AbstractClusterer extends Object implements Serializable- serialVersionUID:
- -6099962589663877632L
-
Serialized Fields
-
m_Debug
boolean m_Debug
Whether the clusterer is run in debug mode. -
m_DoNotCheckCapabilities
boolean m_DoNotCheckCapabilities
Whether capabilities should not be checked before clusterer is built.
-
-
Class weka.clusterers.AbstractDensityBasedClusterer
class AbstractDensityBasedClusterer extends AbstractClusterer implements Serializable- serialVersionUID:
- -5950728041704213845L
-
Class weka.clusterers.Canopy
class Canopy extends RandomizableClusterer implements Serializable- serialVersionUID:
- 2067574593448223334L
-
Serialized Fields
-
m_canopies
Instances m_canopies
The canopy centers -
m_canopyCenters
List<double[][]> m_canopyCenters
-
m_canopyNumMissingForNumerics
List<double[]> m_canopyNumMissingForNumerics
-
m_canopyT2Density
List<double[]> m_canopyT2Density
The T2 density of each canopy -
m_clusterCanopies
List<long[]> m_clusterCanopies
The list of canopies that each canopy is a member of (according to the T1 radius, which can overlap). Each bit position in the long values corresponds to one canopy. Outer list order corresponds to the order of the instances that store the actual canopy centers -
m_didPruneLastTime
boolean m_didPruneLastTime
True if the pruning operation did remove at least one low density canopy the last time it was invoked -
m_distanceFunction
NormalizableDistance m_distanceFunction
The distance function to use -
m_dontReplaceMissing
boolean m_dontReplaceMissing
Replace missing values globally when running in batch mode? -
m_instanceCount
int m_instanceCount
Number of training instances seen so far -
m_maxCanopyCandidates
int m_maxCanopyCandidates
The maximum number of candidate canopies to hold in memory at any one time -
m_minClusterDensity
double m_minClusterDensity
The minimum cluster density (according to T2 distance) allowed. Used when periodically pruning candidate canopies -
m_missingValuesReplacer
Filter m_missingValuesReplacer
If not null, then this is expected to be a filter that can replace missing values immediately (at training and testing time) -
m_numClustersRequested
int m_numClustersRequested
Default is to let the t2 radius determine how many canopies/clusters are formed -
m_periodicPruningRate
int m_periodicPruningRate
Prune low-density candidate canopies after every x instances have been seen -
m_t1
double m_t1
Outer radius -
m_t2
double m_t2
Inner radius -
m_trainingData
Instances m_trainingData
Used to pad out number of cluster centers if fewer canopies are generated than the number of requested clusters and we are running in batch mode. -
m_userT1
double m_userT1
< 0 indicates the multiplier to use for T2 when setting T1, otherwise the value is take as is -
m_userT2
double m_userT2
< 0 means use the heuristic based on std. dev. to set the t2 radius
-
-
Class weka.clusterers.ClusterEvaluation
class ClusterEvaluation extends Object implements Serializable- serialVersionUID:
- -830188327319128005L
-
Serialized Fields
-
m_classToCluster
int[] m_classToCluster
will hold the mapping of classes to clusters (for class based evaluation) -
m_clusterAssignments
double[] m_clusterAssignments
holds the assigments of instances to clusters for a particular testing dataset -
m_Clusterer
Clusterer m_Clusterer
the clusterer -
m_clusteringResults
StringBuffer m_clusteringResults
holds a string describing the results of clustering the training data -
m_logL
double m_logL
holds the average log likelihood for a particular testing dataset if the clusterer is a DensityBasedClusterer -
m_numClusters
int m_numClusters
holds the number of clusters found by the clusterer
-
-
Class weka.clusterers.Cobweb
class Cobweb extends RandomizableClusterer implements Serializable- serialVersionUID:
- 928406656495092318L
-
Serialized Fields
-
m_acuity
double m_acuity
Acuity (minimum standard deviation). -
m_cobwebTree
Cobweb.CNode m_cobwebTree
Holds the root of the Cobweb tree. -
m_cutoff
double m_cutoff
Cutoff (minimum category utility). -
m_numberMerges
int m_numberMerges
the number of merges that happened -
m_numberOfClusters
int m_numberOfClusters
Number of clusters (nodes in the tree). Must never be queried directly, only via the method numberOfClusters(). Otherwise it's not guaranteed that it contains the correct value.- See Also:
-
Cobweb.numberOfClusters()
Cobweb.m_numberOfClustersDetermined
-
m_numberOfClustersDetermined
boolean m_numberOfClustersDetermined
whether the number of clusters was already determined -
m_numberSplits
int m_numberSplits
the number of splits that happened -
m_saveInstances
boolean m_saveInstances
Output instances in graph representation of Cobweb tree (Allows instances at nodes in the tree to be visualized in the Explorer).
-
-
Class weka.clusterers.Cobweb.CNode
class CNode extends Object implements Serializable- serialVersionUID:
- 3452097436933325631L
-
Serialized Fields
-
m_attStats
AttributeStats[] m_attStats
Within cluster attribute statistics -
m_children
ArrayList<Cobweb.CNode> m_children
Children of this node -
m_clusterInstances
Instances m_clusterInstances
Instances at this node -
m_clusterNum
int m_clusterNum
Cluster number of this node -
m_numAttributes
int m_numAttributes
Number of attributes -
m_totalInstances
double m_totalInstances
Total instances at this node
-
-
Class weka.clusterers.EM
class EM extends RandomizableDensityBasedClusterer implements Serializable- serialVersionUID:
- 8348181483812829475L
-
Serialized Fields
-
m_cvFolds
int m_cvFolds
The number of folds to use for cross-validation -
m_displayModelInOldFormat
boolean m_displayModelInOldFormat
display model output in old-style format -
m_executionSlots
int m_executionSlots
Number of threads to use for E and M steps -
m_initialNumClusters
int m_initialNumClusters
the initial number of clusters requested by the user--- -1 if xval is to be used to find the number of clusters -
m_iterationsPerformed
int m_iterationsPerformed
The actual number of iterations performed -
m_max_iterations
int m_max_iterations
maximum iterations to perform -
m_maxValues
double[] m_maxValues
attribute max values -
m_minLogLikelihoodImprovementCV
double m_minLogLikelihoodImprovementCV
Minimum improvement to increase number of clusters when cross-validating -
m_minLogLikelihoodImprovementIterating
double m_minLogLikelihoodImprovementIterating
Minimum improvement in log likelihood when iterating -
m_minStdDev
double m_minStdDev
default minimum standard deviation -
m_minStdDevPerAtt
double[] m_minStdDevPerAtt
-
m_minValues
double[] m_minValues
attribute min values -
m_model
Estimator[][] m_model
hold the discrete estimators for each cluster -
m_modelNormal
double[][][] m_modelNormal
hold the normal estimators for each cluster -
m_modelNormalPrev
double[][][] m_modelNormalPrev
-
m_modelPrev
Estimator[][] m_modelPrev
-
m_num_attribs
int m_num_attribs
number of attributes -
m_num_clusters
int m_num_clusters
number of clusters selected by the user or cross validation -
m_num_instances
int m_num_instances
number of training instances -
m_NumKMeansRuns
int m_NumKMeansRuns
The number of runs of k-means to perform -
m_priors
double[] m_priors
the prior probabilities for clusters -
m_priorsPrev
double[] m_priorsPrev
-
m_replaceMissing
ReplaceMissingValues m_replaceMissing
globally replace missing values -
m_rr
Random m_rr
random number generator -
m_theInstances
Instances m_theInstances
full training instances -
m_training
boolean m_training
False once training has completed -
m_upperBoundNumClustersCV
int m_upperBoundNumClustersCV
Don't consider more clusters than this under CV (-1 means no upper bound) -
m_verbose
boolean m_verbose
Verbose? -
m_weights
double[][] m_weights
hold the weights of each instance for each cluster
-
-
Class weka.clusterers.FarthestFirst
class FarthestFirst extends RandomizableClusterer implements Serializable- serialVersionUID:
- 7499838100631329509L
-
Serialized Fields
-
m_ClusterCentroids
Instances m_ClusterCentroids
holds the cluster centroids -
m_instances
Instances m_instances
training instances, not necessary to keep, could be replaced by m_ClusterCentroids where needed for header info -
m_Max
double[] m_Max
attribute max values -
m_Min
double[] m_Min
attribute min values -
m_NumClusters
int m_NumClusters
number of clusters to generate -
m_ReplaceMissingFilter
ReplaceMissingValues m_ReplaceMissingFilter
replace missing values in training instances
-
-
Class weka.clusterers.FilteredClusterer
class FilteredClusterer extends SingleClustererEnhancer implements Serializable- serialVersionUID:
- 1420005943163412943L
-
Class weka.clusterers.HierarchicalClusterer
class HierarchicalClusterer extends AbstractClusterer implements Serializable- serialVersionUID:
- 1L
-
Serialized Fields
-
m_bDistanceIsBranchLength
boolean m_bDistanceIsBranchLength
Whether the distance represent node height (if false) or branch length (if true). -
m_bPrintNewick
boolean m_bPrintNewick
-
m_clusters
weka.clusterers.HierarchicalClusterer.Node[] m_clusters
-
m_DistanceFunction
DistanceFunction m_DistanceFunction
distance function used for comparing members of a cluster -
m_instances
Instances m_instances
training data -
m_nClusterNr
int[] m_nClusterNr
-
m_nLinkType
int m_nLinkType
Holds the Link type used calculate distance between clusters -
m_nNumClusters
int m_nNumClusters
number of clusters desired in clustering
-
-
Class weka.clusterers.MakeDensityBasedClusterer
class MakeDensityBasedClusterer extends AbstractDensityBasedClusterer implements Serializable- serialVersionUID:
- -5643302427972186631L
-
Serialized Fields
-
m_minStdDev
double m_minStdDev
default minimum standard deviation -
m_model
DiscreteEstimator[][] m_model
discrete distributions fitted to each discrete attribute in each cluster -
m_modelNormal
double[][][] m_modelNormal
normal distributions fitted to each numeric attribute in each cluster -
m_priors
double[] m_priors
prior probabilities for the fitted clusters -
m_replaceMissing
ReplaceMissingValues m_replaceMissing
globally replace missing values -
m_theInstances
Instances m_theInstances
holds training instances header information -
m_wrappedClusterer
Clusterer m_wrappedClusterer
The clusterer being wrapped
-
-
Class weka.clusterers.RandomizableClusterer
class RandomizableClusterer extends AbstractClusterer implements Serializable- serialVersionUID:
- -4819590778152242745L
-
Serialized Fields
-
m_Seed
int m_Seed
The random number seed. -
m_SeedDefault
int m_SeedDefault
the default seed value
-
-
Class weka.clusterers.RandomizableDensityBasedClusterer
class RandomizableDensityBasedClusterer extends AbstractDensityBasedClusterer implements Serializable- serialVersionUID:
- -5325270357918932849L
-
Serialized Fields
-
m_Seed
int m_Seed
The random number seed. -
m_SeedDefault
int m_SeedDefault
the default seed value
-
-
Class weka.clusterers.RandomizableSingleClustererEnhancer
class RandomizableSingleClustererEnhancer extends AbstractClusterer implements Serializable- serialVersionUID:
- -644847037106316249L
-
Serialized Fields
-
m_Seed
int m_Seed
The random number seed. -
m_SeedDefault
int m_SeedDefault
the default seed value
-
-
Class weka.clusterers.SimpleKMeans
class SimpleKMeans extends RandomizableClusterer implements Serializable- serialVersionUID:
- -3235809600124455376L
-
Serialized Fields
-
m_Assignments
int[] m_Assignments
Assignments obtained. -
m_canopyClusters
Canopy m_canopyClusters
The canopy clusterer (if being used) -
m_centroidCanopyAssignments
List<long[]> m_centroidCanopyAssignments
Canopies that each centroid falls into (determined by T1 radius) -
m_ClusterCentroids
Instances m_ClusterCentroids
holds the cluster centroids. -
m_ClusterMissingCounts
double[][] m_ClusterMissingCounts
-
m_ClusterNominalCounts
double[][][] m_ClusterNominalCounts
For each cluster, holds the frequency counts for the values of each nominal attribute. -
m_ClusterSizes
double[] m_ClusterSizes
The number of instances in each cluster. -
m_ClusterStdDevs
Instances m_ClusterStdDevs
Holds the standard deviations of the numeric attributes in each cluster. -
m_completed
int m_completed
-
m_dataPointCanopyAssignments
List<long[]> m_dataPointCanopyAssignments
Canopies that each training instance falls into (determined by T1 radius) -
m_displayStdDevs
boolean m_displayStdDevs
Display standard deviations for numeric atts. -
m_DistanceFunction
DistanceFunction m_DistanceFunction
the distance function used. -
m_dontReplaceMissing
boolean m_dontReplaceMissing
Replace missing values globally? -
m_executionSlots
int m_executionSlots
Number of threads to run -
m_failed
int m_failed
-
m_FastDistanceCalc
boolean m_FastDistanceCalc
whether to use fast calculation of distances (using a cut-off). -
m_FullMeansOrMediansOrModes
double[] m_FullMeansOrMediansOrModes
Stats on the full data set for comparison purposes. In case the attribute is numeric the value is the mean if is being used the Euclidian distance or the median if Manhattan distance and if the attribute is nominal then it's mode is saved. -
m_FullMissingCounts
double[] m_FullMissingCounts
-
m_FullNominalCounts
double[][] m_FullNominalCounts
-
m_FullStdDevs
double[] m_FullStdDevs
-
m_initializationMethod
int m_initializationMethod
The initialization method to use -
m_initialStartPoints
Instances m_initialStartPoints
Holds the initial start points, as supplied by the initialization method used -
m_Iterations
int m_Iterations
Keep track of the number of iterations completed before convergence. -
m_maxCanopyCandidates
int m_maxCanopyCandidates
The maximum number of candidate canopies to hold in memory at any one time (if using canopy clustering) -
m_MaxIterations
int m_MaxIterations
Maximum number of iterations to be executed. -
m_minClusterDensity
double m_minClusterDensity
The minimum cluster density (according to T2 distance) allowed. Used when periodically pruning candidate canopies (if using canopy clustering) -
m_NumClusters
int m_NumClusters
number of clusters to generate. -
m_periodicPruningRate
int m_periodicPruningRate
Prune low-density candidate canopies after every x instances have been seen (if using canopy clustering) -
m_PreserveOrder
boolean m_PreserveOrder
Preserve order of instances. -
m_ReplaceMissingFilter
ReplaceMissingValues m_ReplaceMissingFilter
replace missing values in training instances. -
m_speedUpDistanceCompWithCanopies
boolean m_speedUpDistanceCompWithCanopies
Whether to reducet the number of distance calcs done by k-means with canopies -
m_squaredErrors
double[] m_squaredErrors
Holds the squared errors for all clusters. -
m_t1
double m_t1
The t1 radius to pass through to Canopy -
m_t2
double m_t2
The t2 radius to pass through to Canopy
-
-
Class weka.clusterers.SingleClustererEnhancer
class SingleClustererEnhancer extends AbstractClusterer implements Serializable- serialVersionUID:
- 4893928362926428671L
-
Serialized Fields
-
m_Clusterer
Clusterer m_Clusterer
the clusterer
-
-
-
Package weka.core
-
Class weka.core.AbstractInstance
class AbstractInstance extends Object implements Serializable- serialVersionUID:
- 1482635194499365155L
-
Serialized Fields
-
m_AttValues
double[] m_AttValues
The instance's attribute values. -
m_Dataset
Instances m_Dataset
The dataset the instance has access to. Null if the instance doesn't have access to any dataset. Only if an instance has access to a dataset, it knows about the actual attribute types. -
m_Weight
double m_Weight
The instance's weight.
-
-
Class weka.core.AlgVector
class AlgVector extends Object implements Serializable- serialVersionUID:
- -4023736016850256591L
-
Serialized Fields
-
m_Elements
double[] m_Elements
The values of the matrix
-
-
Class weka.core.Attribute
class Attribute extends Object implements Serializable- serialVersionUID:
- -742180568732916383L
-
Serialized Fields
-
m_AttributeInfo
weka.core.AttributeInfo m_AttributeInfo
The attribute info (null for numeric attributes) -
m_AttributeMetaInfo
AttributeMetaInfo m_AttributeMetaInfo
The meta data for the attribute. -
m_Index
int m_Index
The attribute's index. -
m_Name
String m_Name
The attribute's name. -
m_Type
int m_Type
The attribute's type. -
m_Weight
double m_Weight
The attribute's weight.
-
-
Class weka.core.AttributeLocator
class AttributeLocator extends Object implements Serializable- serialVersionUID:
- -2932848827681070345L
-
Serialized Fields
-
m_AllowedIndices
int[] m_AllowedIndices
the attribute indices that may be inspected -
m_Attributes
BitSet m_Attributes
contains the attribute locations, either true or false Boolean objects -
m_Data
Instances m_Data
the referenced data -
m_Indices
int[] m_Indices
the indices -
m_LocatorIndices
int[] m_LocatorIndices
the indices of locator objects -
m_Locators
ArrayList<AttributeLocator> m_Locators
contains the locator locations, either null or a AttributeLocator reference -
m_Type
int m_Type
the type of the attribute
-
-
Class weka.core.AttributeMetaInfo
class AttributeMetaInfo extends Object implements Serializable-
Serialized Fields
-
m_HasZeropoint
boolean m_HasZeropoint
Whether the attribute has a zeropoint. -
m_IsAveragable
boolean m_IsAveragable
Whether the attribute is averagable. -
m_IsRegular
boolean m_IsRegular
Whether the attribute is regular. -
m_LowerBound
double m_LowerBound
The attribute's lower numeric bound. -
m_LowerBoundIsOpen
boolean m_LowerBoundIsOpen
Whether the lower bound is open. -
m_Metadata
ProtectedProperties m_Metadata
The attribute's metadata. -
m_Ordering
int m_Ordering
The attribute's ordering. -
m_UpperBound
double m_UpperBound
The attribute's upper numeric bound. -
m_UpperBoundIsOpen
boolean m_UpperBoundIsOpen
Whether the upper bound is open
-
-
-
Class weka.core.AttributeStats
class AttributeStats extends Object implements Serializable- serialVersionUID:
- 4434688832743939380L
-
Serialized Fields
-
distinctCount
int distinctCount
The number of distinct values -
intCount
int intCount
The number of int-like values -
missingCount
int missingCount
The number of missing values -
nominalCounts
int[] nominalCounts
Counts of each nominal value -
nominalWeights
double[] nominalWeights
Weight mass for each nominal value -
numericStats
Stats numericStats
Stats on numeric value distributions -
realCount
int realCount
The number of real-like values (i.e. have a fractional part) -
totalCount
int totalCount
The total number of values (i.e. number of instances) -
uniqueCount
int uniqueCount
The number of values that only appear once
-
-
Class weka.core.BinarySparseInstance
class BinarySparseInstance extends SparseInstance implements Serializable- serialVersionUID:
- -5297388762342528737L
-
Class weka.core.Capabilities
class Capabilities extends Object implements Serializable- serialVersionUID:
- -5478590032325567849L
-
Serialized Fields
-
m_AttributeTest
boolean m_AttributeTest
whether to perform attribute based tests -
m_Capabilities
HashSet<Capabilities.Capability> m_Capabilities
the hashset for storing the active capabilities -
m_Dependencies
HashSet<Capabilities.Capability> m_Dependencies
the hashset for storing dependent capabilities, eg for meta-classifiers -
m_FailReason
Exception m_FailReason
the reason why the test failed, used to throw an exception -
m_InstancesTest
boolean m_InstancesTest
whether to perform data based tests -
m_InterfaceDefinedCapabilities
HashSet<Class> m_InterfaceDefinedCapabilities
the interface-defined capabilities -
m_MinimumNumberInstances
int m_MinimumNumberInstances
the minimum number of instances in a dataset -
m_MinimumNumberInstancesTest
boolean m_MinimumNumberInstancesTest
whether to test for minimum number of instances -
m_MissingClassValuesTest
boolean m_MissingClassValuesTest
whether to test for missing class values -
m_MissingValuesTest
boolean m_MissingValuesTest
whether to test for missing values -
m_Owner
CapabilitiesHandler m_Owner
the object that owns this capabilities instance -
m_Test
boolean m_Test
whether to perform any tests at all
-
-
Class weka.core.ChebyshevDistance
class ChebyshevDistance extends NormalizableDistance implements Serializable- serialVersionUID:
- -7739904999895461429L
-
Class weka.core.DateAttributeInfo
class DateAttributeInfo extends Object implements Serializable-
Serialized Fields
-
m_DateFormat
SimpleDateFormat m_DateFormat
Date format specification for date attributes
-
-
-
Class weka.core.Debug
class Debug extends Object implements Serializable- serialVersionUID:
- 66171861743328020L
-
Serialized Fields
-
m_Clock
Debug.Clock m_Clock
for clocking -
m_Enabled
boolean m_Enabled
whether logging is enabled -
m_Log
Debug.Log m_Log
for logging
-
-
Class weka.core.Debug.Clock
class Clock extends Object implements Serializable- serialVersionUID:
- 4622161807307942201L
-
Serialized Fields
-
m_CanMeasureCpuTime
boolean m_CanMeasureCpuTime
whether the system can measure the CPU time -
m_OutputFormat
int m_OutputFormat
the format of the output -
m_Running
boolean m_Running
whether the time is still clocked -
m_Start
long m_Start
the start time -
m_Stop
long m_Stop
the end time -
m_ThreadID
long m_ThreadID
the thread ID -
m_UseCpuTime
boolean m_UseCpuTime
whether to use the CPU time (by default TRUE)
-
-
Class weka.core.Debug.DBO
class DBO extends Object implements Serializable- serialVersionUID:
- -5245628124742606784L
-
Serialized Fields
-
m_outputTypes
Range m_outputTypes
range of outputtyp -
m_verboseOn
boolean m_verboseOn
enables/disables output of debug information
-
-
Class weka.core.Debug.Log
class Log extends Object implements Serializable- serialVersionUID:
- 1458435732111675823L
-
Serialized Fields
-
m_Filename
String m_Filename
the filename, if any -
m_LoggerInitFailed
boolean m_LoggerInitFailed
whether the initialization of the logger failed -
m_NumFiles
int m_NumFiles
the number of files for rotating the logs -
m_Size
int m_Size
the size of the file (in bytes)
-
-
Class weka.core.Debug.Random
class Random extends Random implements Serializable- serialVersionUID:
- 1256846887618333956L
-
Serialized Fields
-
m_Debug
boolean m_Debug
whether to output debug information -
m_ID
long m_ID
the unique ID for this number generator -
m_Log
Debug.Log m_Log
the log to use for outputting the data, otherwise just stdout
-
-
Class weka.core.Debug.SimpleLog
class SimpleLog extends Object implements Serializable- serialVersionUID:
- -2671928223819510830L
-
Serialized Fields
-
m_Filename
String m_Filename
the file to write to (if null then only stdout is used)
-
-
Class weka.core.Debug.Timestamp
class Timestamp extends Object implements Serializable- serialVersionUID:
- -6099868388466922753L
-
Serialized Fields
-
m_Format
String m_Format
the format of the timestamp -
m_Formatter
SimpleDateFormat m_Formatter
handles the format of the output -
m_Stamp
Date m_Stamp
the actual date
-
-
Class weka.core.Defaults
class Defaults extends Object implements Serializable- serialVersionUID:
- 1061521489520308096L
-
Serialized Fields
-
m_defaults
Map<Settings.SettingKey,
Object> m_defaults Maintains the list of default settings -
m_defaultsID
String m_defaultsID
Identifier for this set of defaults
-
-
Class weka.core.DenseInstance
class DenseInstance extends AbstractInstance implements Serializable- serialVersionUID:
- 1482635194499365122L
-
Class weka.core.DictionaryBuilder
class DictionaryBuilder extends Object implements Serializable- serialVersionUID:
- 5579506627960356012L
-
Serialized Fields
-
m_avgDocLength
double m_avgDocLength
The average document length -
m_classIndex
int m_classIndex
Holds the class index -
m_consolidatedDict
Map<String,
int[]> m_consolidatedDict Holds the final dictionary that is consolidated across classes and pruned according to m_wordsToKeep. First element of array contains the index of the word. The second (optional) element contains the document count for the word (i.e. number of training docs the word occurs in). -
m_count
int m_count
Count of input vectors seen -
m_dictsPerClass
Map<String,
int[]>[] m_dictsPerClass Holds the dictionaries (one per class) that are compiled while processing -
m_docLengthSum
double m_docLengthSum
The sum of document lengths -
m_doNotOperateOnPerClassBasis
boolean m_doNotOperateOnPerClassBasis
True if the final number of words to keep should not be applied on a per class basis -
m_IDFTransform
boolean m_IDFTransform
True if the IDF transform is to be applied -
m_inputContainsStringAttributes
boolean m_inputContainsStringAttributes
True if the input data contains string attributes to convert -
m_inputFormat
Instances m_inputFormat
Input structure -
m_lowerCaseTokens
boolean m_lowerCaseTokens
True if all tokens should be downcased. -
m_minFrequency
int m_minFrequency
Minimum frequency to retain dictionary entries -
m_normalize
boolean m_normalize
Whether to normalize to average length of training docs -
m_numClasses
int m_numClasses
Number of classes -
m_outputCounts
boolean m_outputCounts
Whether to output frequency counts instead of presence indicators -
m_outputFormat
Instances m_outputFormat
Output structure -
m_periodicPruneRate
long m_periodicPruneRate
Prune dictionary (per class) of low freq terms after every x documents. 0 = no periodic pruning -
m_Prefix
String m_Prefix
A String prefix for the attribute names. -
m_selectedRange
Range m_selectedRange
Range of columns to convert to word vectors. -
m_sortDictionary
boolean m_sortDictionary
Whether to keep the dictionary(s) sorted alphabetically -
m_stemmer
Stemmer m_stemmer
the stemming algorithm. -
m_stopwordsHandler
StopwordsHandler m_stopwordsHandler
Stopword handler to use. -
m_TFTransform
boolean m_TFTransform
True if the TF transform is to be applied -
m_tokenizer
Tokenizer m_tokenizer
the tokenizer algorithm to use. -
m_wordsToKeep
int m_wordsToKeep
The default number of words (per class if there is a class attribute assigned) to attempt to keep.
-
-
Class weka.core.EnvironmentProperties
class EnvironmentProperties extends Properties implements Serializable -
Class weka.core.EuclideanDistance
class EuclideanDistance extends NormalizableDistance implements Serializable- serialVersionUID:
- 1068606253458807903L
-
Class weka.core.FastVector
- serialVersionUID:
- -2173635135622930169L
-
Class weka.core.FilteredDistance
class FilteredDistance extends Object implements Serializable-
Serialized Fields
-
m_Distance
DistanceFunction m_Distance
The distance function to use. -
m_Filter
Filter m_Filter
The filter to use. -
m_Remove
Remove m_Remove
Remove filter to remove attributes if required.
-
-
-
Class weka.core.InstanceComparator
class InstanceComparator extends Object implements Serializable- serialVersionUID:
- -6589278678230949683L
-
Serialized Fields
-
m_IncludeClass
boolean m_IncludeClass
whether to include the class in the comparison -
m_Range
Range m_Range
the range of attributes to use for comparison.
-
-
Class weka.core.Instances
- serialVersionUID:
- -19412345060742748L
-
Serialized Fields
-
m_Attributes
ArrayList<Attribute> m_Attributes
The attribute information. -
m_ClassIndex
int m_ClassIndex
The class attribute's index -
m_Instances
ArrayList<Instance> m_Instances
The instances. -
m_Lines
int m_Lines
The lines read so far in case of incremental loading. Since the StreamTokenizer will be re-initialized with every instance that is read, we have to keep track of the number of lines read so far.- See Also:
-
m_NamesToAttributeIndices
HashMap<String,
Integer> m_NamesToAttributeIndices A map to quickly find attribute indices based on their names. -
m_RelationName
String m_RelationName
The dataset's name.
-
-
Class weka.core.ManhattanDistance
class ManhattanDistance extends NormalizableDistance implements Serializable- serialVersionUID:
- 6783782554224000243L
-
Class weka.core.Matrix
class Matrix extends Object implements Serializable- serialVersionUID:
- -3604757095849145838L
-
Serialized Fields
-
m_Matrix
Matrix m_Matrix
Deprecated.The actual matrix
-
-
Class weka.core.MinkowskiDistance
class MinkowskiDistance extends NormalizableDistance implements Serializable- serialVersionUID:
- -7446019339455453893L
-
Serialized Fields
-
m_Order
double m_Order
the order of the minkowski distance.
-
-
Class weka.core.NominalAttributeInfo
class NominalAttributeInfo extends Object implements Serializable -
Class weka.core.NormalizableDistance
class NormalizableDistance extends Object implements Serializable- serialVersionUID:
- -2806520224161351708L
-
Serialized Fields
-
m_ActiveIndices
boolean[] m_ActiveIndices
The boolean flags, whether an attribute will be used or not. -
m_AttributeIndices
Range m_AttributeIndices
The range of attributes to use for calculating the distance. -
m_Data
Instances m_Data
the instances used internally. -
m_DontNormalize
boolean m_DontNormalize
True if normalization is turned off (default false). -
m_Ranges
double[][] m_Ranges
The range of the attributes. -
m_Validated
boolean m_Validated
Whether all the necessary preparations have been done.
-
-
Exception weka.core.NoSupportForMissingValuesException
class NoSupportForMissingValuesException extends WekaException implements Serializable- serialVersionUID:
- 5161175307725893973L
-
Class weka.core.ProtectedProperties
class ProtectedProperties extends Properties implements Serializable- serialVersionUID:
- 3876658672657323985L
-
Serialized Fields
-
closed
boolean closed
the properties need to be open during construction of the object
-
-
Class weka.core.Queue
class Queue extends Object implements Serializable- serialVersionUID:
- -1141282001146389780L
-
Serialized Fields
-
m_Head
weka.core.Queue.QueueNode m_Head
Store a reference to the head of the queue -
m_Size
int m_Size
Store the c m_Tail.m_Nexturrent number of elements in the queue -
m_Tail
weka.core.Queue.QueueNode m_Tail
Store a reference to the tail of the queue
-
-
Class weka.core.Queue.QueueNode
class QueueNode extends Object implements Serializable- serialVersionUID:
- -5119358279412097455L
-
Serialized Fields
-
m_Contents
Object m_Contents
The nodes contents -
m_Next
weka.core.Queue.QueueNode m_Next
The next node in the queue
-
-
Class weka.core.RandomVariates
class RandomVariates extends Random implements Serializable- serialVersionUID:
- -4763742718209460354L
-
Class weka.core.Range
class Range extends Object implements Serializable- serialVersionUID:
- 3667337062176835900L
-
Serialized Fields
-
m_Invert
boolean m_Invert
Whether matching should be inverted. -
m_RangeStrings
ArrayList<String> m_RangeStrings
Record the string representations of the columns to delete. -
m_SelectFlags
boolean[] m_SelectFlags
The array of flags for whether an column is selected. -
m_Upper
int m_Upper
Store the maximum value permitted in the range. -1 indicates that no upper value has been set
-
-
Class weka.core.RelationalAttributeInfo
class RelationalAttributeInfo extends NominalAttributeInfo implements Serializable-
Serialized Fields
-
m_Header
Instances m_Header
The header information for a relation-valued attribute.
-
-
-
Class weka.core.RelationalLocator
class RelationalLocator extends AttributeLocator implements Serializable- serialVersionUID:
- 4646872277151854732L
-
Class weka.core.SelectedTag
class SelectedTag extends Object implements Serializable- serialVersionUID:
- 6947341624626504975L
-
Serialized Fields
-
m_Selected
int m_Selected
The index of the selected tag -
m_Tags
Tag[] m_Tags
The set of tags to choose from
-
-
Class weka.core.SerializedObject
class SerializedObject extends Object implements Serializable- serialVersionUID:
- 6635502953928860434L
-
Serialized Fields
-
m_isCompressed
boolean m_isCompressed
Whether or not the object is compressed. -
m_isJython
boolean m_isJython
Whether it is a Jython object or not -
m_storedObjectArray
byte[] m_storedObjectArray
The array storing the object.
-
-
Class weka.core.Settings
class Settings extends Object implements Serializable- serialVersionUID:
- -4005372566372478008L
-
Serialized Fields
-
m_ID
String m_ID
The name of the entry within the store to save to -
m_settings
Map<String,
Map<Settings.SettingKey, Object>> m_settings outer map keyed by perspective ID. Inner map - settings for a perspective. -
m_storeName
String m_storeName
The name of the store that these settings should be saved/loaded to/from
-
-
Class weka.core.Settings.SettingKey
class SettingKey extends Object implements Serializable-
Serialized Fields
-
m_description
String m_description
Description/display name of the seting -
m_key
String m_key
Key for this setting -
m_meta
Map<String,
String> m_meta Metadata for this setting - e.g. file property could specify whether it is files only, directories only or both -
m_pickList
List<String> m_pickList
Pick list (can be null if not applicable) for a string-based setting -
m_toolTip
String m_toolTip
Tool tip for the setting
-
-
-
Class weka.core.SingleIndex
class SingleIndex extends Object implements Serializable- serialVersionUID:
- 5285169134430839303L
-
Serialized Fields
-
m_IndexString
String m_IndexString
Record the string representation of the number. -
m_SelectedIndex
int m_SelectedIndex
The selected index. -
m_Upper
int m_Upper
Store the maximum value permitted. -1 indicates that no upper value has been set
-
-
Class weka.core.SparseInstance
class SparseInstance extends AbstractInstance implements Serializable- serialVersionUID:
- -3579051291332630149L
-
Serialized Fields
-
m_Indices
int[] m_Indices
The index of the attribute associated with each stored value. -
m_NumAttributes
int m_NumAttributes
The maximum number of values that can be stored.
-
-
Class weka.core.StringLocator
class StringLocator extends AttributeLocator implements Serializable- serialVersionUID:
- 7805522230268783972L
-
Class weka.core.Tag
class Tag extends Object implements Serializable- serialVersionUID:
- 3326379903447135320L
-
Class weka.core.TestInstances
class TestInstances extends Object implements Serializable- serialVersionUID:
- -6263968936330390469L
-
Serialized Fields
-
m_ClassIndex
int m_ClassIndex
the class index (-1 is LAST, -2 means no class) -
m_ClassType
int m_ClassType
the class type -
m_Data
Instances m_Data
the generated data -
m_Handler
CapabilitiesHandler m_Handler
the CapabilitiesHandler to get the Capabilities from -
m_MultiInstance
boolean m_MultiInstance
whether to generate Multi-Instance data or not -
m_NumClasses
int m_NumClasses
the number of classes (in case of NOMINAL class) -
m_NumDate
int m_NumDate
the number of date attributes -
m_NumInstances
int m_NumInstances
the number of instances -
m_NumInstancesRelational
int m_NumInstancesRelational
the number of instances in relational attributes (applies also for bags in multi-instance) -
m_NumNominal
int m_NumNominal
the number of nominal attributes -
m_NumNominalValues
int m_NumNominalValues
the number of values for nominal attributes -
m_NumNumeric
int m_NumNumeric
the number of numeric attributes -
m_NumRelational
int m_NumRelational
the number of relational attributes -
m_NumRelationalDate
int m_NumRelationalDate
the number of date attributes in a relational attribute -
m_NumRelationalNominal
int m_NumRelationalNominal
the number of nominal attributes in a relational attribute -
m_NumRelationalNominalValues
int m_NumRelationalNominalValues
the number of values for nominal attributes in relational attributes -
m_NumRelationalNumeric
int m_NumRelationalNumeric
the number of numeric attributes in a relational attribute -
m_NumRelationalString
int m_NumRelationalString
the number of string attributes in a relational attribute -
m_NumString
int m_NumString
the number of string attributes -
m_Random
Random m_Random
the random number generator -
m_Relation
String m_Relation
the name of the relation -
m_RelationalClassFormat
Instances m_RelationalClassFormat
the format of the multi-instance data of the class -
m_RelationalFormat
Instances[] m_RelationalFormat
the format of the multi-instance data -
m_Seed
int m_Seed
the seed value -
m_Words
String[] m_Words
for generating String attributes/classes -
m_WordSeparators
String m_WordSeparators
for generating String attributes/classes
-
-
Class weka.core.Trie
class Trie extends Object implements Serializable- serialVersionUID:
- -5897980928817779048L
-
Serialized Fields
-
m_HashCode
int m_HashCode
the hash code -
m_RecalcHashCode
boolean m_RecalcHashCode
whether the structure got modified and the hash code needs to be re-calculated -
m_Root
Trie.TrieNode m_Root
the root node
-
-
Class weka.core.Trie.TrieNode
class TrieNode extends DefaultMutableTreeNode implements Serializable- serialVersionUID:
- -2252907099391881148L
-
Serialized Fields
-
m_Children
Hashtable<Character,
Trie.TrieNode> m_Children for fast access to the children
-
-
Exception weka.core.UnassignedClassException
class UnassignedClassException extends RuntimeException implements Serializable- serialVersionUID:
- 6268278694768818235L
-
Exception weka.core.UnassignedDatasetException
class UnassignedDatasetException extends RuntimeException implements Serializable- serialVersionUID:
- -9000116786626328854L
-
Exception weka.core.UnsupportedAttributeTypeException
class UnsupportedAttributeTypeException extends WekaException implements Serializable- serialVersionUID:
- 2658987325328414838L
-
Exception weka.core.UnsupportedClassTypeException
class UnsupportedClassTypeException extends WekaException implements Serializable- serialVersionUID:
- 5175741076972192151L
-
Exception weka.core.WekaException
class WekaException extends Exception implements Serializable- serialVersionUID:
- 6428269989006208585L
-
-
Package weka.core.converters
-
Class weka.core.converters.AbstractFileLoader
class AbstractFileLoader extends AbstractLoader implements Serializable- serialVersionUID:
- 5535537461920594758L
-
Class weka.core.converters.AbstractFileSaver
class AbstractFileSaver extends AbstractSaver implements Serializable- serialVersionUID:
- 2399441762235754491L
-
Serialized Fields
-
FILE_EXTENSION
String FILE_EXTENSION
The file extension of the destination file. -
FILE_EXTENSION_COMPRESSED
String FILE_EXTENSION_COMPRESSED
the extension for compressed files -
m_dir
String m_dir
The directory of the file (chosen in the GUI). -
m_incrementalCounter
int m_incrementalCounter
Counter. In incremental mode after reading 100 instances they will be written to a file. -
m_outputFile
File m_outputFile
The destination file. -
m_prefix
String m_prefix
The prefix for the filename (chosen in the GUI). -
m_useRelativePath
boolean m_useRelativePath
use relative file paths
-
-
Class weka.core.converters.AbstractLoader
class AbstractLoader extends Object implements Serializable- serialVersionUID:
- 2425432084900694551L
-
Serialized Fields
-
m_retrieval
int m_retrieval
The current retrieval mode
-
-
Class weka.core.converters.AbstractSaver
class AbstractSaver extends Object implements Serializable- serialVersionUID:
- -27467499727819258L
-
Serialized Fields
-
m_DoNotCheckCapabilities
boolean m_DoNotCheckCapabilities
Whether capabilities should not be checked -
m_instances
Instances m_instances
The instances that should be stored -
m_retrieval
int m_retrieval
The current retrieval mode -
m_writeMode
int m_writeMode
The current write mode
-
-
Class weka.core.converters.ArffLoader
class ArffLoader extends AbstractFileLoader implements Serializable- serialVersionUID:
- 2726929550544048587L
-
Serialized Fields
-
m_retainStringVals
boolean m_retainStringVals
Whether the values of string attributes should be retained in memory when reading incrementally -
m_URL
String m_URL
the url
-
-
Class weka.core.converters.ArffSaver
class ArffSaver extends AbstractFileSaver implements Serializable- serialVersionUID:
- 2223634248900042228L
-
Serialized Fields
-
m_CompressOutput
boolean m_CompressOutput
whether to compress the output -
m_MaxDecimalPlaces
int m_MaxDecimalPlaces
Max number of decimal places for numeric values
-
-
Class weka.core.converters.C45Loader
class C45Loader extends AbstractFileLoader implements Serializable- serialVersionUID:
- 5454329403218219L
-
Serialized Fields
-
m_fileStem
String m_fileStem
Holds the filestem. -
m_ignore
boolean[] m_ignore
Which attributes are ignore or label. These are *not* included in the arff representation. -
m_numAttribs
int m_numAttribs
Number of attributes in the data (including ignore and label attributes). -
m_sourceFileData
File m_sourceFileData
Describe variablem_sourceFileData
here.
-
-
Class weka.core.converters.C45Saver
class C45Saver extends AbstractFileSaver implements Serializable- serialVersionUID:
- -821428878384253377L
-
Class weka.core.converters.ConverterUtils
class ConverterUtils extends Object implements Serializable- serialVersionUID:
- -2460855349276148760L
-
Class weka.core.converters.ConverterUtils.DataSink
class DataSink extends Object implements Serializable- serialVersionUID:
- -1504966891136411204L
-
Serialized Fields
-
m_Saver
Saver m_Saver
the saver to use for storing the data. -
m_Stream
OutputStream m_Stream
the stream to store the data in (always in ARFF format).
-
-
Class weka.core.converters.ConverterUtils.DataSource
class DataSource extends Object implements Serializable- serialVersionUID:
- -613122395928757332L
-
Serialized Fields
-
m_BatchBuffer
Instances m_BatchBuffer
the batch buffer. -
m_BatchCounter
int m_BatchCounter
the instance counter for the batch case. -
m_File
File m_File
the file to load. -
m_Incremental
boolean m_Incremental
whether the loader is incremental. -
m_IncrementalBuffer
Instance m_IncrementalBuffer
the last internally read instance. -
m_Loader
Loader m_Loader
the loader. -
m_URL
URL m_URL
the URL to load.
-
-
Class weka.core.converters.CSVLoader
class CSVLoader extends AbstractFileLoader implements Serializable- serialVersionUID:
- -1300595850715808438L
-
Serialized Fields
-
m_bufferSize
int m_bufferSize
The maximum number of rows to hold in memory at any one time -
m_current
ArrayList<Object> m_current
-
m_dateAttributes
Range m_dateAttributes
The range of attributes to force to type date -
m_dateFormat
String m_dateFormat
The formatting string to use to parse dates -
m_Enclosures
String m_Enclosures
enclosure character(s) to use for strings -
m_FieldSeparator
String m_FieldSeparator
the field separator. -
m_fieldSeparatorAndEnclosures
String[] m_fieldSeparatorAndEnclosures
Array holding field separator and enclosures to pass through to the underlying ArffReader -
m_formatter
SimpleDateFormat m_formatter
The formatter to use on dates -
m_incrementalReader
ArffLoader.ArffReader m_incrementalReader
Reader used to process and output data incrementally -
m_MissingValue
String m_MissingValue
The placeholder for missing values. -
m_noHeaderRow
boolean m_noHeaderRow
whether the csv file contains a header row with att names -
m_NominalAttributes
Range m_NominalAttributes
The range of attributes to force to type nominal. -
m_nominalLabelSpecs
List<String> m_nominalLabelSpecs
The user-supplied legal nominal values - each entry in the list is a spec -
m_nominalVals
Map<Integer,
LinkedHashSet<String>> m_nominalVals Lookup for nominal values -
m_numBufferedRows
int m_numBufferedRows
-
m_numericAttributes
Range m_numericAttributes
The range of attributes to force to type numeric -
m_rowBuffer
List<String> m_rowBuffer
The in memory row buffer -
m_StringAttributes
Range m_StringAttributes
The range of attributes to force to type string. -
m_types
weka.core.converters.CSVLoader.TYPE[] m_types
-
-
Class weka.core.converters.CSVSaver
class CSVSaver extends AbstractFileSaver implements Serializable- serialVersionUID:
- 476636654410701807L
-
Serialized Fields
-
m_FieldSeparator
String m_FieldSeparator
the field separator. -
m_MaxDecimalPlaces
int m_MaxDecimalPlaces
Max number of decimal places for numeric values -
m_MissingValue
String m_MissingValue
The placeholder for missing values. -
m_noHeaderRow
boolean m_noHeaderRow
Set to true to not write the header row
-
-
Class weka.core.converters.DatabaseConnection
class DatabaseConnection extends DatabaseUtils implements Serializable- serialVersionUID:
- 1673169848863178695L
-
Class weka.core.converters.DatabaseLoader
class DatabaseLoader extends AbstractLoader implements Serializable- serialVersionUID:
- -7936159015338318659L
-
Serialized Fields
-
m_checkForTable
boolean m_checkForTable
If true it checks whether or not the table exists in the database before loading depending on jdbc metadata information. Set flag to false if no check is required or if jdbc metadata is not complete. -
m_choice
int m_choice
Decides which SQL statement to limit the number of rows should be used. DBMS dependent. Algorithm just tries several possibilities. -
m_counter
int m_counter
Indicates how many rows has already been loaded incrementally -
m_CreateSparseData
boolean m_CreateSparseData
Determines whether sparse data is created -
m_CustomPropsFile
File m_CustomPropsFile
the custom props file to use instead of default one. -
m_DataBaseConnection
DatabaseConnection m_DataBaseConnection
The database connection -
m_datasetPseudoInc
Instances m_datasetPseudoInc
Used in pseudoincremental mode. The whole dataset from which instances will be read incrementally. -
m_firstTime
boolean m_firstTime
Flag indicating that incremental process wants to read first instance -
m_idColumn
String m_idColumn
Name of the primary key column that will allow unique ordering necessary for incremental loading. The name is specified in the DatabaseUtils file. -
m_inc
boolean m_inc
Flag indicating that incremental mode is chosen (for command line use only) -
m_Keys
String m_Keys
the keys for unique ordering -
m_nominalIndexes
Hashtable<String,
Double>[] m_nominalIndexes Stores the index of a nominal value -
m_nominalStrings
ArrayList<String>[] m_nominalStrings
Stores the nominal value -
m_nominalToStringLimit
int m_nominalToStringLimit
Limit when an attribute is treated as string attribute and not as a nominal one because it has to many values. -
m_oldStructure
Instances m_oldStructure
Set of instances that equals m_structure except that the auto_generated_id column is not included as an attribute -
m_orderBy
ArrayList<String> m_orderBy
Contains the name of the columns that uniquely define a row in the ResultSet. Ensures a unique ordering of instances for indremental loading. -
m_Password
String m_Password
the database password to use -
m_pseudoIncremental
boolean m_pseudoIncremental
Flag indicating that pseudo incremental mode is used (all instances load at once into main memeory and then incrementally from main memory instead of the database) -
m_query
String m_query
The user defined query to load instances. (form: SELECT *|<column-list> FROM <table> [WHERE <condition>]) -
m_rowCount
int m_rowCount
The number of rows obtained by m_query, eg the size of the ResultSet to load -
m_structure
Instances m_structure
The header information that is retrieved in the beginning of incremental loading -
m_URL
String m_URL
the JDBC URL to use -
m_User
String m_User
the database user to use
-
-
Class weka.core.converters.DatabaseSaver
class DatabaseSaver extends AbstractSaver implements Serializable- serialVersionUID:
- 863971733782624956L
-
Serialized Fields
-
m_count
int m_count
counts the rows and used as a primary key value. -
m_createDate
String m_createDate
The database specific type for a date (read in from the properties file). -
m_createDouble
String m_createDouble
The database specific type for a double (read in from the properties file). -
m_createInt
String m_createInt
The database specific type for an int (read in from the properties file). -
m_createText
String m_createText
The database specific type for a string (read in from the properties file). -
m_CustomPropsFile
File m_CustomPropsFile
the custom props file to use instead of default one. -
m_DataBaseConnection
DatabaseConnection m_DataBaseConnection
The database connection. -
m_DateFormat
SimpleDateFormat m_DateFormat
For converting the date value into a database string. -
m_id
boolean m_id
Flag indicating if a primary key column should be added. -
m_idColumn
String m_idColumn
The name of the primary key column that will be automatically generated (if enabled). The name is read from DatabaseUtils. -
m_inputFile
String m_inputFile
An input arff file (for command line use). -
m_Password
String m_Password
the password for the database. -
m_resolvedTableName
String m_resolvedTableName
Table name with any environment variables resolved -
m_tableName
String m_tableName
The name of the table in which the instances should be stored. -
m_tabName
boolean m_tabName
Flag indicating whether the default name of the table is the relaion name or not. -
m_truncate
boolean m_truncate
Whether to truncate (i.e. drop and then recreate) the table if it already exists -
m_URL
String m_URL
the database URL. -
m_Username
String m_Username
the user name for the database.
-
-
Class weka.core.converters.DictionarySaver
class DictionarySaver extends AbstractFileSaver implements Serializable- serialVersionUID:
- -19891905988830722L
-
Serialized Fields
-
m_dictionaryBuilder
DictionaryBuilder m_dictionaryBuilder
The dictionary builder to use -
m_dictionaryIsBinary
boolean m_dictionaryIsBinary
Whether the dictionary file contains a binary serialized dictionary, rather than plain text -
m_periodicPruningRate
long m_periodicPruningRate
Prune the dictionary every x instances. <=0 means no periodic pruning
-
-
Class weka.core.converters.JSONLoader
class JSONLoader extends AbstractFileLoader implements Serializable- serialVersionUID:
- 3764533621135196582L
-
Class weka.core.converters.JSONSaver
class JSONSaver extends AbstractFileSaver implements Serializable- serialVersionUID:
- -1047134047244534557L
-
Serialized Fields
-
m_ClassIndex
SingleIndex m_ClassIndex
the class index. -
m_CompressOutput
boolean m_CompressOutput
whether to compress the output.
-
-
Class weka.core.converters.LibSVMLoader
class LibSVMLoader extends AbstractFileLoader implements Serializable- serialVersionUID:
- 4988360125354664417L
-
Class weka.core.converters.LibSVMSaver
class LibSVMSaver extends AbstractFileSaver implements Serializable- serialVersionUID:
- 2792295817125694786L
-
Serialized Fields
-
m_ClassIndex
SingleIndex m_ClassIndex
the class index
-
-
Exception weka.core.converters.Loader.StructureNotReadyException
class StructureNotReadyException extends IOException implements Serializable- serialVersionUID:
- 1938493033987645828L
-
Class weka.core.converters.MatlabLoader
class MatlabLoader extends AbstractFileLoader implements Serializable- serialVersionUID:
- -8861142318612875251L
-
Class weka.core.converters.MatlabSaver
class MatlabSaver extends AbstractFileSaver implements Serializable- serialVersionUID:
- 4118356803697172614L
-
Serialized Fields
-
m_Format
DecimalFormat m_Format
for formatting the numbers. -
m_HeaderWritten
boolean m_HeaderWritten
whether the header was written already. -
m_UseDouble
boolean m_UseDouble
whether to save in double instead of single precision format. -
m_UseTabs
boolean m_UseTabs
whether to use tabs instead of blanks.
-
-
Class weka.core.converters.SerializedInstancesLoader
class SerializedInstancesLoader extends AbstractFileLoader implements Serializable- serialVersionUID:
- 2391085836269030715L
-
Serialized Fields
-
m_Dataset
Instances m_Dataset
Holds the structure (header) of the data set. -
m_IncrementalIndex
int m_IncrementalIndex
The current index position for incremental reading
-
-
Class weka.core.converters.SerializedInstancesSaver
class SerializedInstancesSaver extends AbstractFileSaver implements Serializable- serialVersionUID:
- -7717010648500658872L
-
Serialized Fields
-
m_objectstream
ObjectOutputStream m_objectstream
the output stream.
-
-
Class weka.core.converters.StreamTokenizerUtils
class StreamTokenizerUtils extends Object implements Serializable- serialVersionUID:
- -5786996944597404253L
-
Class weka.core.converters.SVMLightLoader
class SVMLightLoader extends AbstractFileLoader implements Serializable- serialVersionUID:
- 4988360125354664417L
-
Class weka.core.converters.SVMLightSaver
class SVMLightSaver extends AbstractFileSaver implements Serializable- serialVersionUID:
- 2605714599263995835L
-
Serialized Fields
-
m_ClassIndex
SingleIndex m_ClassIndex
the class index.
-
-
Class weka.core.converters.TextDirectoryLoader
class TextDirectoryLoader extends AbstractLoader implements Serializable- serialVersionUID:
- 2592118773712247647L
-
Serialized Fields
-
m_charSet
String m_charSet
The charset to use when loading text files (default is to just use the default charset). -
m_Debug
boolean m_Debug
whether to print some debug information -
m_filesByClass
List<LinkedList<String>> m_filesByClass
-
m_lastClassDir
int m_lastClassDir
-
m_OutputFilename
boolean m_OutputFilename
whether to include the filename as an extra attribute -
m_sourceFile
File m_sourceFile
Holds the source of the data set. -
m_structure
Instances m_structure
Holds the determined structure (header) of the data set.
-
-
Class weka.core.converters.XRFFLoader
class XRFFLoader extends AbstractFileLoader implements Serializable- serialVersionUID:
- 3764533621135196582L
-
Serialized Fields
-
m_URL
String m_URL
the url -
m_XMLInstances
XMLInstances m_XMLInstances
the loaded XML document
-
-
Class weka.core.converters.XRFFSaver
class XRFFSaver extends AbstractFileSaver implements Serializable- serialVersionUID:
- -7226404765213522043L
-
Serialized Fields
-
m_ClassIndex
SingleIndex m_ClassIndex
the class index -
m_CompressOutput
boolean m_CompressOutput
whether to compress the output -
m_XMLInstances
XMLInstances m_XMLInstances
the generated XML document
-
-
-
Package weka.core.expressionlanguage.common
-
Class weka.core.expressionlanguage.common.NoVariables
class NoVariables extends Object implements Serializable -
Class weka.core.expressionlanguage.common.Primitives
class Primitives extends Object implements Serializable- serialVersionUID:
- -6356635298310530223L
-
Class weka.core.expressionlanguage.common.Primitives.BooleanConstant
class BooleanConstant extends Object implements Serializable- serialVersionUID:
- -7104666336890622673L
-
Serialized Fields
-
value
boolean value
-
-
Class weka.core.expressionlanguage.common.Primitives.BooleanVariable
class BooleanVariable extends Object implements Serializable- serialVersionUID:
- 6041670101306161521L
-
Serialized Fields
-
name
String name
-
value
boolean value
-
-
Class weka.core.expressionlanguage.common.Primitives.DoubleConstant
class DoubleConstant extends Object implements Serializable- serialVersionUID:
- 6876724986473710563L
-
Serialized Fields
-
value
double value
-
-
Class weka.core.expressionlanguage.common.Primitives.DoubleVariable
class DoubleVariable extends Object implements Serializable- serialVersionUID:
- -6059066803856814750L
-
Serialized Fields
-
name
String name
-
value
double value
-
-
Class weka.core.expressionlanguage.common.Primitives.StringConstant
class StringConstant extends Object implements Serializable- serialVersionUID:
- 491766938196527684L
-
Serialized Fields
-
value
String value
-
-
Class weka.core.expressionlanguage.common.Primitives.StringVariable
class StringVariable extends Object implements Serializable- serialVersionUID:
- -7332982581964981085L
-
Class weka.core.expressionlanguage.common.SimpleVariableDeclarations
class SimpleVariableDeclarations extends Object implements Serializable-
Serialized Fields
-
initializer
SimpleVariableDeclarations.VariableInitializer initializer
the initializer to initialize the variables with values -
variables
Map<String,
Node> variables the variable declarations
-
-
-
Class weka.core.expressionlanguage.common.SimpleVariableDeclarations.VariableInitializer
class VariableInitializer extends Object implements Serializable -
Class weka.core.expressionlanguage.common.VariableDeclarationsCompositor
class VariableDeclarationsCompositor extends Object implements Serializable-
Serialized Fields
-
declarations
VariableDeclarations[] declarations
the declarations being combined
-
-
-
-
Package weka.core.expressionlanguage.core
-
Exception weka.core.expressionlanguage.core.SemanticException
class SemanticException extends Exception implements Serializable- serialVersionUID:
- -1212116135142845573L
-
Exception weka.core.expressionlanguage.core.SyntaxException
class SyntaxException extends Exception implements Serializable- serialVersionUID:
- 390076835893846782L
-
-
Package weka.core.expressionlanguage.weka
-
Class weka.core.expressionlanguage.weka.InstancesHelper
class InstancesHelper extends Object implements Serializable- serialVersionUID:
- -4398876812339967703L
-
Serialized Fields
-
dataRetained
boolean dataRetained
True if this instance retains the full dataset rather than just the attribute information -
dataset
Instances dataset
the dataset whose instance values should be exposed -
instance
Instance instance
the current instance whose values should be exposed -
missingAccessed
boolean missingAccessed
whether a missing value has been evaluated during computation
-
-
Class weka.core.expressionlanguage.weka.StatsHelper
class StatsHelper extends Object implements Serializable
-
-
Package weka.core.json
-
Class weka.core.json.JSONNode
class JSONNode extends DefaultMutableTreeNode implements Serializable- serialVersionUID:
- -3047440914507883491L
-
Serialized Fields
-
m_Name
String m_Name
the name of the node. -
m_NodeType
JSONNode.NodeType m_NodeType
the type of the node. -
m_Value
Object m_Value
the value of the node.
-
-
-
Package weka.core.matrix
-
Class weka.core.matrix.CholeskyDecomposition
class CholeskyDecomposition extends Object implements Serializable- serialVersionUID:
- -8739775942782694701L
-
Serialized Fields
-
isspd
boolean isspd
Symmetric and positive definite flag.is symmetric and positive definite flag. -
L
double[][] L
Array for internal storage of decomposition.internal array storage. -
n
int n
Row and column dimension (square matrix).matrix dimension.
-
-
Class weka.core.matrix.EigenvalueDecomposition
class EigenvalueDecomposition extends Object implements Serializable- serialVersionUID:
- 4011654467211422319L
-
Serialized Fields
-
d
double[] d
Arrays for internal storage of eigenvalues.internal storage of eigenvalues. -
e
double[] e
Arrays for internal storage of eigenvalues.internal storage of eigenvalues. -
H
double[][] H
Array for internal storage of nonsymmetric Hessenberg form.internal storage of nonsymmetric Hessenberg form. -
issymmetric
boolean issymmetric
Symmetry flag.internal symmetry flag. -
n
int n
Row and column dimension (square matrix).matrix dimension. -
ort
double[] ort
Working storage for nonsymmetric algorithm.working storage for nonsymmetric algorithm. -
V
double[][] V
Array for internal storage of eigenvectors.internal storage of eigenvectors.
-
-
Class weka.core.matrix.ExponentialFormat
class ExponentialFormat extends DecimalFormat implements Serializable- serialVersionUID:
- -5298981701073897741L
-
Serialized Fields
-
digits
int digits
-
exp
int exp
-
nf
DecimalFormat nf
-
sign
boolean sign
-
trailing
boolean trailing
-
-
Class weka.core.matrix.FlexibleDecimalFormat
class FlexibleDecimalFormat extends DecimalFormat implements Serializable- serialVersionUID:
- 110912192794064140L
-
Serialized Fields
-
decimalDigits
int decimalDigits
-
digits
int digits
-
exp
boolean exp
-
expDecimalDigits
int expDecimalDigits
-
grouping
boolean grouping
-
intDigits
int intDigits
-
nf
DecimalFormat nf
-
power
int power
-
sign
boolean sign
-
trailing
boolean trailing
-
-
Class weka.core.matrix.FloatingPointFormat
class FloatingPointFormat extends DecimalFormat implements Serializable- serialVersionUID:
- 4500373755333429499L
-
Serialized Fields
-
decimal
int decimal
-
nf
DecimalFormat nf
-
trailing
boolean trailing
-
width
int width
-
-
Class weka.core.matrix.LUDecomposition
class LUDecomposition extends Object implements Serializable- serialVersionUID:
- -2731022568037808629L
-
Serialized Fields
-
LU
double[][] LU
Array for internal storage of decomposition.internal array storage. -
m
int m
Row and column dimensions, and pivot sign.column dimension. -
n
int n
Row and column dimensions, and pivot sign.column dimension. -
piv
int[] piv
Internal storage of pivot vector.pivot vector. -
pivsign
int pivsign
Row and column dimensions, and pivot sign.column dimension.
-
-
Class weka.core.matrix.Matrix
class Matrix extends Object implements Serializable- serialVersionUID:
- 7856794138418366180L
-
Serialized Fields
-
A
double[][] A
Array for internal storage of elements.internal array storage. -
m
int m
Row and column dimensions.row dimension. -
n
int n
Row and column dimensions.row dimension.
-
-
Class weka.core.matrix.QRDecomposition
class QRDecomposition extends Object implements Serializable- serialVersionUID:
- -5013090736132211418L
-
Serialized Fields
-
m
int m
Row and column dimensions.column dimension. -
n
int n
Row and column dimensions.column dimension. -
QR
double[][] QR
Array for internal storage of decomposition.internal array storage. -
Rdiag
double[] Rdiag
Array for internal storage of diagonal of R.diagonal of R.
-
-
Class weka.core.matrix.SingularValueDecomposition
class SingularValueDecomposition extends Object implements Serializable- serialVersionUID:
- -8738089610999867951L
-
Serialized Fields
-
m
int m
Row and column dimensions.row dimension. -
n
int n
Row and column dimensions.row dimension. -
s
double[] s
Array for internal storage of singular values.internal storage of singular values. -
U
double[][] U
Arrays for internal storage of U and V.internal storage of U. -
V
double[][] V
Arrays for internal storage of U and V.internal storage of U.
-
-
-
Package weka.core.neighboursearch
-
Class weka.core.neighboursearch.BallTree
class BallTree extends NearestNeighbourSearch implements Serializable- serialVersionUID:
- 728763855952698328L
-
Serialized Fields
-
m_Distances
double[] m_Distances
Array holding the distances of the nearest neighbours. It is filled up both by nearestNeighbour() and kNearestNeighbours(). -
m_InstList
int[] m_InstList
The instances indices sorted inorder of appearence in the tree from left most leaf node to the right most leaf node. -
m_MaxInstancesInLeaf
int m_MaxInstancesInLeaf
The maximum number of instances in a leaf. A node is made into a leaf if the number of instances in it become less than or equal to this value. -
m_Root
BallNode m_Root
The root node of the BallTree. -
m_TreeConstructor
BallTreeConstructor m_TreeConstructor
The constructor method to use to build the tree. -
m_TreeStats
TreePerformanceStats m_TreeStats
Tree Stats variables.
-
-
Class weka.core.neighboursearch.CoverTree
class CoverTree extends NearestNeighbourSearch implements Serializable- serialVersionUID:
- 7617412821497807586L
-
Serialized Fields
-
il2
double il2
if we have base 2 then this can be viewed as 1/ln(2), which can be used later on to do il2*ln(d) instead of ln(d)/ln(2), to get log2(d), in get_scale method. -
m_Base
double m_Base
The base of our expansion constant. In other words the 2 in 2^i used in covering tree and separation invariants of a cover tree. P.S.: In paper it's suggested the separation invariant is relaxed in batch construction. -
m_DistanceList
double[] m_DistanceList
Array holding the distances of the nearest neighbours. It is filled up both by nearestNeighbour() and kNearestNeighbours(). -
m_EuclideanDistance
EuclideanDistance m_EuclideanDistance
The euclidean distance function to use. -
m_MaxDepth
int m_MaxDepth
Number of nodes in the tree. -
m_NumLeaves
int m_NumLeaves
Number of nodes in the tree. -
m_NumNodes
int m_NumNodes
Number of nodes in the tree. -
m_Root
CoverTree.CoverTreeNode m_Root
The root node. -
m_TreeStats
TreePerformanceStats m_TreeStats
Tree Stats variables.
-
-
Class weka.core.neighboursearch.CoverTree.CoverTreeNode
class CoverTreeNode extends Object implements Serializable- serialVersionUID:
- 1808760031169036512L
-
Serialized Fields
-
children
Stack<CoverTree.CoverTreeNode> children
The children of the node. -
idx
Integer idx
Index of the instance represented by this node in the index array. -
max_dist
double max_dist
The distance of the furthest descendant of the node. -
num_children
int num_children
The number of children node has. -
parent_dist
double parent_dist
The distance to the nodes parent. -
scale
int scale
The min i that makes base^i <= max_dist.
-
-
Class weka.core.neighboursearch.FilteredNeighbourSearch
class FilteredNeighbourSearch extends NearestNeighbourSearch implements Serializable- serialVersionUID:
- 1369174644087067375L
-
Serialized Fields
-
m_AddID
AddID m_AddID
Need to use ID filter to add ID so that we can identify instances -
m_Filter
Filter m_Filter
The filter object to use. -
m_IndexOfID
int m_IndexOfID
The index of the ID attribute -
m_ModifiedSearchMethod
NearestNeighbourSearch m_ModifiedSearchMethod
The modified search method, where ID is skipped -
m_SearchMethod
NearestNeighbourSearch m_SearchMethod
The neighborhood search method to use.
-
-
Class weka.core.neighboursearch.KDTree
class KDTree extends NearestNeighbourSearch implements Serializable- serialVersionUID:
- 1505717283763272533L
-
Serialized Fields
-
m_DistanceList
double[] m_DistanceList
Array holding the distances of the nearest neighbours. It is filled up both by nearestNeighbour() and kNearestNeighbours(). -
m_EuclideanDistance
EuclideanDistance m_EuclideanDistance
The euclidean distance function to use. -
m_InstList
int[] m_InstList
Indexlist of the instances of this kdtree. Instances get sorted according to the splits. the nodes of the KDTree just hold their start and end indices -
m_MaxDepth
int m_MaxDepth
Tree stats. -
m_MaxInstInLeaf
int m_MaxInstInLeaf
maximal number of instances in a leaf. -
m_MinBoxRelWidth
double m_MinBoxRelWidth
minimal relative width of a KDTree rectangle. -
m_NormalizeNodeWidth
boolean m_NormalizeNodeWidth
flag for normalizing. -
m_NumLeaves
int m_NumLeaves
Tree stats. -
m_NumNodes
int m_NumNodes
Tree stats. -
m_Root
KDTreeNode m_Root
The root node of the tree. -
m_Splitter
KDTreeNodeSplitter m_Splitter
The node splitter. -
m_TreeStats
TreePerformanceStats m_TreeStats
Tree Stats variables.
-
-
Class weka.core.neighboursearch.LinearNNSearch
class LinearNNSearch extends NearestNeighbourSearch implements Serializable- serialVersionUID:
- 1915484723703917241L
-
Serialized Fields
-
m_Distances
double[] m_Distances
Array holding the distances of the nearest neighbours. It is filled up both by nearestNeighbour() and kNearestNeighbours(). -
m_SkipIdentical
boolean m_SkipIdentical
Whether to skip instances from the neighbours that are identical to the query instance.
-
-
Class weka.core.neighboursearch.NearestNeighbourSearch
class NearestNeighbourSearch extends Object implements Serializable- serialVersionUID:
- 7516898393890379876L
-
Serialized Fields
-
m_DistanceFunction
DistanceFunction m_DistanceFunction
the distance function used. -
m_Instances
Instances m_Instances
The neighbourhood of instances to find neighbours in. -
m_kNN
int m_kNN
The number of neighbours to find. -
m_MeasurePerformance
boolean m_MeasurePerformance
Should we measure Performance. -
m_Stats
PerformanceStats m_Stats
Performance statistics.
-
-
Class weka.core.neighboursearch.PerformanceStats
class PerformanceStats extends Object implements Serializable- serialVersionUID:
- -7215110351388368092L
-
Serialized Fields
-
m_CoordCount
double m_CoordCount
The number of coordinates looked at for the current/last query. -
m_MaxC
double m_MaxC
The min and max coordinates(attributes) looked at per query. -
m_MaxP
double m_MaxP
The min and max data points looked for a query by the NNS algorithm. -
m_MinC
double m_MinC
The min and max coordinates(attributes) looked at per query. -
m_MinP
double m_MinP
The min and max data points looked for a query by the NNS algorithm. -
m_NumQueries
int m_NumQueries
The total number of queries looked at. -
m_PointCount
double m_PointCount
The number of data points looked at for the current/last query. -
m_SumC
double m_SumC
The sum of coordinates/attributes looked at for all the queries. -
m_SumP
double m_SumP
The sum of data points looked at for all the queries. -
m_SumSqC
double m_SumSqC
The squared sum of coordinates/attributes looked at for all the queries. -
m_SumSqP
double m_SumSqP
The squared sum of data points looked at for all the queries.
-
-
Class weka.core.neighboursearch.TreePerformanceStats
class TreePerformanceStats extends PerformanceStats implements Serializable- serialVersionUID:
- -6637636693340810373L
-
Serialized Fields
-
m_IntNodeCount
int m_IntNodeCount
The number of internal nodes looked at for the current/last query. -
m_LeafCount
int m_LeafCount
The number of leaf nodes looked at for the current/last query. -
m_MaxIntNodes
int m_MaxIntNodes
The min and max number internal nodes looked for a query by the tree based NNS algorithm. -
m_MaxLeaves
int m_MaxLeaves
The min and max number leaf nodes looked for a query by the tree based NNS algorithm. -
m_MinIntNodes
int m_MinIntNodes
The min and max number internal nodes looked for a query by the tree based NNS algorithm. -
m_MinLeaves
int m_MinLeaves
The min and max number leaf nodes looked for a query by the tree based NNS algorithm. -
m_SumIntNodes
int m_SumIntNodes
The sum of internal nodes looked at for all the queries. -
m_SumLeaves
int m_SumLeaves
The sum of leaf nodes looked at for all the queries. -
m_SumSqIntNodes
int m_SumSqIntNodes
The squared sum of internal nodes looked at for all the queries. -
m_SumSqLeaves
int m_SumSqLeaves
The squared sum of leaf nodes looked at for all the queries.
-
-
-
Package weka.core.neighboursearch.balltrees
-
Class weka.core.neighboursearch.balltrees.BallNode
class BallNode extends Object implements Serializable- serialVersionUID:
- -8289151861759883510L
-
Serialized Fields
-
m_End
int m_End
The end index of the portion of the master index array, which stores indices of the instances/points the node contains. -
m_Left
BallNode m_Left
The left child of the node. -
m_NodeNumber
int m_NodeNumber
The node number/id. -
m_NumInstances
int m_NumInstances
The number of instances/points in the node. -
m_Pivot
Instance m_Pivot
The pivot/centre of the ball. -
m_Radius
double m_Radius
The radius of this ball (hyper sphere). -
m_Right
BallNode m_Right
The right child of the node. -
m_SplitAttrib
int m_SplitAttrib
The attribute that splits this node (not always used). -
m_SplitVal
double m_SplitVal
The value of m_SpiltAttrib that splits this node (not always used). -
m_Start
int m_Start
The start index of the portion of the master index array, which stores the indices of the instances/points the node contains.
-
-
Class weka.core.neighboursearch.balltrees.BallSplitter
class BallSplitter extends Object implements Serializable- serialVersionUID:
- -2233739562654159948L
-
Serialized Fields
-
m_DistanceFunction
EuclideanDistance m_DistanceFunction
The distance function (metric) from which the tree is (OR is to be) built. -
m_Instances
Instances m_Instances
The instance on which the tree is built. -
m_Instlist
int[] m_Instlist
The master index array that'll be reshuffled as nodes are split (and the tree is constructed).
-
-
Class weka.core.neighboursearch.balltrees.BallTreeConstructor
class BallTreeConstructor extends Object implements Serializable- serialVersionUID:
- 982315539809240771L
-
Serialized Fields
-
m_DistanceFunction
DistanceFunction m_DistanceFunction
The distance function to use to build the tree. -
m_FullyContainChildBalls
boolean m_FullyContainChildBalls
Should a parent ball completely enclose the balls of its two children, or only the points inside its children. -
m_Instances
Instances m_Instances
The instances on which to build the tree. -
m_InstList
int[] m_InstList
The master index array. -
m_MaxDepth
int m_MaxDepth
The depth of the built tree. -
m_MaxInstancesInLeaf
int m_MaxInstancesInLeaf
The maximum number of instances allowed in a leaf. -
m_MaxRelLeafRadius
double m_MaxRelLeafRadius
The maximum relative radius of a leaf node (relative to the smallest ball enclosing all the data (training) points). -
m_NumLeaves
int m_NumLeaves
The number of leaf nodes in the built tree. -
m_NumNodes
int m_NumNodes
The number of internal and leaf nodes in the built tree.
-
-
Class weka.core.neighboursearch.balltrees.BottomUpConstructor
class BottomUpConstructor extends BallTreeConstructor implements Serializable- serialVersionUID:
- 5864250777657707687L
-
Class weka.core.neighboursearch.balltrees.MedianDistanceFromArbitraryPoint
class MedianDistanceFromArbitraryPoint extends BallSplitter implements Serializable- serialVersionUID:
- 5617378551363700558L
-
Serialized Fields
-
m_Rand
Random m_Rand
Random number generator for selecting an abitrary (random) point. -
m_RandSeed
int m_RandSeed
Seed for random number generator.
-
-
Class weka.core.neighboursearch.balltrees.MedianOfWidestDimension
class MedianOfWidestDimension extends BallSplitter implements Serializable- serialVersionUID:
- 3054842574468790421L
-
Serialized Fields
-
m_NormalizeDimWidths
boolean m_NormalizeDimWidths
Should we normalize the widths(ranges) of the dimensions (attributes) before selecting the widest one.
-
-
Class weka.core.neighboursearch.balltrees.MiddleOutConstructor
class MiddleOutConstructor extends BallTreeConstructor implements Serializable- serialVersionUID:
- -8523314263062524462L
-
Serialized Fields
-
m_RandomInitialAnchor
boolean m_RandomInitialAnchor
True if the initial anchor is chosen randomly. False if it is the furthest point from the mean/centroid. -
m_RSeed
int m_RSeed
Seed form random number generator. -
rand
Random rand
The random number generator for selecting the first anchor point randomly (if selecting randomly). -
rootRadius
double rootRadius
The radius of the smallest ball enclosing all the data points.
-
-
Class weka.core.neighboursearch.balltrees.MiddleOutConstructor.ListNode
class ListNode extends Object implements Serializable-
Serialized Fields
-
distance
double distance
The distance of the point to the anchor. -
idx
int idx
The index of the point.
-
-
-
Class weka.core.neighboursearch.balltrees.MiddleOutConstructor.MyIdxList
class MyIdxList extends Object implements Serializable- serialVersionUID:
- -2283869109722934927L
-
Serialized Fields
-
m_List
ArrayList<weka.core.neighboursearch.balltrees.MiddleOutConstructor.ListNode> m_List
The array list backing this list
-
-
Class weka.core.neighboursearch.balltrees.PointsClosestToFurthestChildren
class PointsClosestToFurthestChildren extends BallSplitter implements Serializable- serialVersionUID:
- -2947177543565818260L
-
Class weka.core.neighboursearch.balltrees.TopDownConstructor
class TopDownConstructor extends BallTreeConstructor implements Serializable- serialVersionUID:
- -5150140645091889979L
-
Serialized Fields
-
m_Splitter
BallSplitter m_Splitter
The BallSplitter algorithm used by the TopDown BallTree constructor, if it is selected.
-
-
-
Package weka.core.neighboursearch.covertrees
-
Class weka.core.neighboursearch.covertrees.Stack
class Stack extends Object implements Serializable- serialVersionUID:
- 5604056321825539264L
-
-
Package weka.core.neighboursearch.kdtrees
-
Class weka.core.neighboursearch.kdtrees.KDTreeNode
class KDTreeNode extends Object implements Serializable- serialVersionUID:
- -3660396067582792648L
-
Serialized Fields
-
m_End
int m_End
The end index of the portion of the master index array, which stores indices of the instances/points the node contains. -
m_Left
KDTreeNode m_Left
left subtree; contains instances with smaller or equal to split value. -
m_NodeNumber
int m_NodeNumber
node number (only for debug). -
m_NodeRanges
double[][] m_NodeRanges
lowest and highest value and width (= high - low) for each dimension. -
m_NodesRectBounds
double[][] m_NodesRectBounds
The lo and high bounds of the hyper rectangle described by the node. -
m_Right
KDTreeNode m_Right
right subtree; contains instances with larger than split value. -
m_SplitDim
int m_SplitDim
attribute to split on. -
m_SplitValue
double m_SplitValue
value to split on. -
m_Start
int m_Start
The start index of the portion of the master index array, which stores the indices of the instances/points the node contains.
-
-
Class weka.core.neighboursearch.kdtrees.KDTreeNodeSplitter
class KDTreeNodeSplitter extends Object implements Serializable- serialVersionUID:
- 7222420817095067166L
-
Serialized Fields
-
m_EuclideanDistance
EuclideanDistance m_EuclideanDistance
The distance function used for building the tree. -
m_Instances
Instances m_Instances
The instances that'll be used for tree construction. -
m_InstList
int[] m_InstList
The master index array that'll be reshuffled as nodes are split and the tree is constructed. -
m_NormalizeNodeWidth
boolean m_NormalizeNodeWidth
Stores whether if the width of a KDTree node is normalized or not.
-
-
Class weka.core.neighboursearch.kdtrees.KMeansInpiredMethod
class KMeansInpiredMethod extends KDTreeNodeSplitter implements Serializable- serialVersionUID:
- -866783749124714304L
-
Class weka.core.neighboursearch.kdtrees.MedianOfWidestDimension
class MedianOfWidestDimension extends KDTreeNodeSplitter implements Serializable- serialVersionUID:
- 1383443320160540663L
-
Class weka.core.neighboursearch.kdtrees.MidPointOfWidestDimension
class MidPointOfWidestDimension extends KDTreeNodeSplitter implements Serializable- serialVersionUID:
- -7617277960046591906L
-
Class weka.core.neighboursearch.kdtrees.SlidingMidPointOfWidestSide
class SlidingMidPointOfWidestSide extends KDTreeNodeSplitter implements Serializable- serialVersionUID:
- 852857628205680562L
-
-
Package weka.core.packageManagement
-
Class weka.core.packageManagement.DefaultPackage
class DefaultPackage extends Package implements Serializable- serialVersionUID:
- 3643121886457892125L
-
Serialized Fields
-
m_packageHome
File m_packageHome
Holds the home directory for installed packages
-
-
Class weka.core.packageManagement.DefaultPackageManager.DefaultPMDefaults
class DefaultPMDefaults extends Defaults implements Serializable- serialVersionUID:
- -1428588514991146709L
-
Class weka.core.packageManagement.Package
class Package extends Object implements Serializable- serialVersionUID:
- -8193697646938632764L
-
Serialized Fields
-
m_packageMetaData
Map<?,
?> m_packageMetaData The meta data for the package
-
-
-
Package weka.core.pmml
-
Class weka.core.pmml.Array
class Array extends Object implements Serializable- serialVersionUID:
- 4286234448957826177L
-
Serialized Fields
-
m_type
Array.ArrayType m_type
The type of the array -
m_values
ArrayList<String> m_values
The values of the array
-
-
Class weka.core.pmml.BuiltInArithmetic
class BuiltInArithmetic extends Function implements Serializable- serialVersionUID:
- 2275009453597279459L
-
Serialized Fields
-
m_operator
weka.core.pmml.BuiltInArithmetic.Operator m_operator
The operator for this function
-
-
Class weka.core.pmml.BuiltInMath
class BuiltInMath extends Function implements Serializable- serialVersionUID:
- -8092338695602573652L
-
Serialized Fields
-
m_func
weka.core.pmml.BuiltInMath.MathFunc m_func
The function to apply
-
-
Class weka.core.pmml.BuiltInString
class BuiltInString extends Function implements Serializable- serialVersionUID:
- -7391516909331728653L
-
Serialized Fields
-
m_func
weka.core.pmml.BuiltInString.StringFunc m_func
The function to apply -
m_outputDef
Attribute m_outputDef
The output structure produced by this function
-
-
Class weka.core.pmml.Constant
class Constant extends Expression implements Serializable- serialVersionUID:
- -304829687822452424L
-
Serialized Fields
-
m_categoricalConst
String m_categoricalConst
-
m_continuousConst
double m_continuousConst
-
-
Class weka.core.pmml.DefineFunction
class DefineFunction extends Function implements Serializable- serialVersionUID:
- -1976646917527243888L
-
Serialized Fields
-
m_expression
Expression m_expression
The Expression for this function to use -
m_optype
FieldMetaInfo.Optype m_optype
The optype for this function -
m_parameters
ArrayList<weka.core.pmml.DefineFunction.ParameterField> m_parameters
The list of parameters expected by this function. We can use this to do some error/type checking when users call setParameterDefs() on us
-
-
Class weka.core.pmml.DefineFunction.ParameterField
class ParameterField extends FieldMetaInfo implements Serializable- serialVersionUID:
- 3918895902507585558L
-
Class weka.core.pmml.DerivedFieldMetaInfo
class DerivedFieldMetaInfo extends FieldMetaInfo implements Serializable- serialVersionUID:
- 875736989396755241L
-
Serialized Fields
-
m_displayName
String m_displayName
display name -
m_expression
Expression m_expression
the single expression that defines the value of this field -
m_values
ArrayList<FieldMetaInfo.Value> m_values
the list of values (if the field is ordinal) - may be of size zero if none are specified. If none are specified, we may be able to construct this by querying the Expression in this derived field
-
-
Class weka.core.pmml.Discretize
class Discretize extends Expression implements Serializable- serialVersionUID:
- -5809107997906180082L
-
Serialized Fields
-
m_bins
ArrayList<weka.core.pmml.Discretize.DiscretizeBin> m_bins
The bins for this discretization -
m_defaultValue
String m_defaultValue
The default value (if defined) -
m_defaultValueDefined
boolean m_defaultValueDefined
True if a default value has been specified -
m_fieldIndex
int m_fieldIndex
The index of the field -
m_fieldName
String m_fieldName
The name of the field to be discretized -
m_mapMissingDefined
boolean m_mapMissingDefined
True if a replacement for missing values has been specified -
m_mapMissingTo
String m_mapMissingTo
The value of the missing value replacement (if defined) -
m_outputDef
Attribute m_outputDef
The output structure of this discretization
-
-
Class weka.core.pmml.Discretize.DiscretizeBin
class DiscretizeBin extends Object implements Serializable- serialVersionUID:
- 5810063243316808400L
-
Serialized Fields
-
m_binValue
String m_binValue
The bin value for this DiscretizeBin -
m_intervals
ArrayList<FieldMetaInfo.Interval> m_intervals
The intervals for this DiscretizeBin -
m_numericBinValue
double m_numericBinValue
If the optype is continuous or ordinal, we will attempt to parse the bin value as a number and store it here.
-
-
Class weka.core.pmml.Expression
class Expression extends Object implements Serializable- serialVersionUID:
- 4448840549804800321L
-
Serialized Fields
-
m_fieldDefs
ArrayList<Attribute> m_fieldDefs
The field defs -
m_opType
FieldMetaInfo.Optype m_opType
The optype of this Expression
-
-
Class weka.core.pmml.FieldMetaInfo
class FieldMetaInfo extends Object implements Serializable- serialVersionUID:
- -6116715567129830143L
-
Serialized Fields
-
m_fieldName
String m_fieldName
the name of the field -
m_optype
FieldMetaInfo.Optype m_optype
The optype for the target
-
-
Class weka.core.pmml.FieldMetaInfo.Interval
class Interval extends Object implements Serializable- serialVersionUID:
- -7339790632684638012L
-
Serialized Fields
-
m_closure
FieldMetaInfo.Interval.Closure m_closure
-
m_leftMargin
double m_leftMargin
The left boundary value -
m_rightMargin
double m_rightMargin
The right boundary value
-
-
Class weka.core.pmml.FieldMetaInfo.Value
class Value extends Object implements Serializable- serialVersionUID:
- -3981030320273649739L
-
Serialized Fields
-
m_displayValue
String m_displayValue
The display value (might hold a human readable value - e.g. product name instead of cryptic code). -
m_property
FieldMetaInfo.Value.Property m_property
-
m_value
String m_value
The value
-
-
Class weka.core.pmml.FieldRef
class FieldRef extends Expression implements Serializable- serialVersionUID:
- -8009605897876168409L
-
Serialized Fields
-
m_fieldName
String m_fieldName
The name of the field to reference
-
-
Class weka.core.pmml.Function
class Function extends Object implements Serializable- serialVersionUID:
- -6997738288201933171L
-
Class weka.core.pmml.MappingInfo
class MappingInfo extends Object implements Serializable- serialVersionUID:
- -475467721189397466L
-
Serialized Fields
-
m_fieldsMap
int[] m_fieldsMap
Map the incoming attributes to the mining schema attributes. Each entry holds the index of the incoming attribute that corresponds to this mining schema attribute. -
m_fieldsMappingText
String m_fieldsMappingText
Holds a textual description of the fields mapping -
m_log
Logger m_log
For logging -
m_nominalValueMaps
int[][] m_nominalValueMaps
Map indexes for nominal values in incoming structure to those in the mining schema. There will be as many entries as there are attributes in this array. Non-nominal attributes will have null entries. Each non-null entry is an array of integer indexes. Each entry in a given array (for a given attribute) holds the index of the mining schema value that corresponds to this incoming value. UNKNOWN_NOMINAL_VALUE is used as the index for those incoming values that are not defined in the mining schema.
-
-
Class weka.core.pmml.MiningFieldMetaInfo
class MiningFieldMetaInfo extends FieldMetaInfo implements Serializable- serialVersionUID:
- -1256774332779563185L
-
Serialized Fields
-
m_highValue
double m_highValue
outlier high value -
m_importance
double m_importance
importance (if defined) -
m_index
int m_index
the index of the field in the mining schema Instances -
m_lowValue
double m_lowValue
outlier low value -
m_miningSchemaI
Instances m_miningSchemaI
mining schema (needed for toString method) -
m_missingValueReplacementNominal
String m_missingValueReplacementNominal
actual missing value replacements (if specified) -
m_missingValueReplacementNumeric
double m_missingValueReplacementNumeric
-
m_missingValueTreatmentMethod
weka.core.pmml.MiningFieldMetaInfo.Missing m_missingValueTreatmentMethod
missing values treatment method -
m_optypeOverride
FieldMetaInfo.Optype m_optypeOverride
optype overrides (override data dictionary type - NOT SUPPORTED AT PRESENT) -
m_outlierTreatmentMethod
weka.core.pmml.MiningFieldMetaInfo.Outlier m_outlierTreatmentMethod
outlier treatmemnt method -
m_usageType
weka.core.pmml.MiningFieldMetaInfo.Usage m_usageType
usage type
-
-
Class weka.core.pmml.MiningSchema
class MiningSchema extends Object implements Serializable- serialVersionUID:
- 7144380586726330455L
-
Serialized Fields
-
m_derivedMeta
ArrayList<DerivedFieldMetaInfo> m_derivedMeta
Meta information about derived fields (those defined in the TransformationDictionary followed by those defined in LocalTransformations) -
m_fieldInstancesStructure
Instances m_fieldInstancesStructure
The structure of all the fields (both mining schema and derived) as Instances -
m_miningMeta
ArrayList<MiningFieldMetaInfo> m_miningMeta
Meta information about the mining schema fields -
m_miningSchemaInstancesStructure
Instances m_miningSchemaInstancesStructure
Just the mining schema fields as Instances -
m_targetMetaInfo
TargetMetaInfo m_targetMetaInfo
target meta info (may be null if not defined) -
m_transformationDictionary
weka.core.pmml.TransformationDictionary m_transformationDictionary
The transformation dictionary (if defined)
-
-
Class weka.core.pmml.NormContinuous
class NormContinuous extends Expression implements Serializable- serialVersionUID:
- 4714332374909851542L
-
Serialized Fields
-
m_fieldIndex
int m_fieldIndex
The index of the field -
m_fieldName
String m_fieldName
The name of the field to use -
m_linearNormNorm
double[] m_linearNormNorm
norm values for the LinearNorm entries -
m_linearNormOrig
double[] m_linearNormOrig
original values for the LinearNorm entries -
m_mapMissingDefined
boolean m_mapMissingDefined
True if a replacement for missing values has been specified -
m_mapMissingTo
double m_mapMissingTo
The value of the missing value replacement (if defined) -
m_outlierTreatmentMethod
weka.core.pmml.MiningFieldMetaInfo.Outlier m_outlierTreatmentMethod
Outlier treatment method (default = asIs)
-
-
Class weka.core.pmml.NormDiscrete
class NormDiscrete extends Expression implements Serializable- serialVersionUID:
- -8854409417983908220L
-
Serialized Fields
-
m_field
Attribute m_field
The actual attribute itself -
m_fieldIndex
int m_fieldIndex
The index of the attribute -
m_fieldName
String m_fieldName
The name of the field to lookup our value in -
m_fieldValue
String m_fieldValue
The actual value (as a String) that will correspond to an output of 1 -
m_fieldValueIndex
int m_fieldValueIndex
If we are referring to a nominal (rather than String) attribute then this holds the index of the value in question. Will be faster than searching for the value each time. -
m_mapMissingDefined
boolean m_mapMissingDefined
True if a replacement for missing values has been specified -
m_mapMissingTo
double m_mapMissingTo
The value of the missing value replacement (if defined)
-
-
Class weka.core.pmml.SparseArray
class SparseArray extends Array implements Serializable- serialVersionUID:
- 8129550573612673674L
-
Class weka.core.pmml.TargetMetaInfo
class TargetMetaInfo extends FieldMetaInfo implements Serializable- serialVersionUID:
- 863500462237904927L
-
Serialized Fields
-
m_castInteger
String m_castInteger
cast integers (default no casting) -
m_defaultValueOrPriorProbs
double[] m_defaultValueOrPriorProbs
default value (numeric) or prior distribution (categorical) -
m_displayValues
ArrayList<String> m_displayValues
corresponding display values -
m_max
double m_max
-
m_min
double m_min
min and max -
m_rescaleConstant
double m_rescaleConstant
re-scaling of target value (if defined) -
m_rescaleFactor
double m_rescaleFactor
-
m_values
ArrayList<String> m_values
for categorical values. Actual values
-
-
Class weka.core.pmml.VectorDictionary
class VectorDictionary extends Object implements Serializable- serialVersionUID:
- -5538024467333813123L
-
Serialized Fields
-
m_numberOfVectors
int m_numberOfVectors
The number of support vectors in the dictionary -
m_vectorFields
List<FieldRef> m_vectorFields
The fields accessed by the support vectors -
m_vectorInstances
Map<String,
VectorInstance> m_vectorInstances The vectors in the dictionary
-
-
Class weka.core.pmml.VectorInstance
class VectorInstance extends Object implements Serializable- serialVersionUID:
- -7543200367512646290L
-
-
Package weka.core.scripting
-
Class weka.core.scripting.Groovy
class Groovy extends Object implements Serializable- serialVersionUID:
- -2628766602043134673L
-
Serialized Fields
-
m_ClassLoader
Object m_ClassLoader
the classloader.
-
-
Class weka.core.scripting.Jython
class Jython extends Object implements Serializable- serialVersionUID:
- -6972298704460209252L
-
Serialized Fields
-
m_Interpreter
Object m_Interpreter
the interpreter
-
-
-
Package weka.core.stemmers
-
Class weka.core.stemmers.IteratedLovinsStemmer
class IteratedLovinsStemmer extends LovinsStemmer implements Serializable- serialVersionUID:
- 960689687163788264L
-
Class weka.core.stemmers.LovinsStemmer
class LovinsStemmer extends Object implements Serializable- serialVersionUID:
- -6113024782588197L
-
Class weka.core.stemmers.NullStemmer
class NullStemmer extends Object implements Serializable- serialVersionUID:
- -3671261636532625496L
-
Class weka.core.stemmers.SnowballStemmer
class SnowballStemmer extends Object implements Serializable- serialVersionUID:
- -6111170431963015178L
-
Serialized Fields
-
m_Stemmer
Object m_Stemmer
the current stemmer.
-
-
-
Package weka.core.stopwords
-
Class weka.core.stopwords.AbstractFileBasedStopwords
class AbstractFileBasedStopwords extends AbstractStopwords implements Serializable- serialVersionUID:
- -8568762652879773063L
-
Serialized Fields
-
m_Stopwords
File m_Stopwords
a file containing stopwords.
-
-
Class weka.core.stopwords.AbstractStopwords
class AbstractStopwords extends Object implements Serializable- serialVersionUID:
- -1975256329586388142L
-
Serialized Fields
-
m_Debug
boolean m_Debug
debugging flag. -
m_Initialized
boolean m_Initialized
whether the scheme has been initialized.
-
-
Class weka.core.stopwords.MultiStopwords
class MultiStopwords extends AbstractStopwords implements Serializable- serialVersionUID:
- -8568762652879773063L
-
Serialized Fields
-
m_Stopwords
StopwordsHandler[] m_Stopwords
the stopwords algorithms to use.
-
-
Class weka.core.stopwords.Null
class Null extends AbstractStopwords implements Serializable- serialVersionUID:
- -3319681866579617385L
-
Class weka.core.stopwords.Rainbow
class Rainbow extends AbstractStopwords implements Serializable- serialVersionUID:
- -722795295494945193L
-
Class weka.core.stopwords.RegExpFromFile
class RegExpFromFile extends AbstractFileBasedStopwords implements Serializable- serialVersionUID:
- -722795295494945193L
-
Class weka.core.stopwords.WordsFromFile
class WordsFromFile extends AbstractFileBasedStopwords implements Serializable- serialVersionUID:
- -722795295494945193L
-
-
Package weka.core.tokenizers
-
Class weka.core.tokenizers.AlphabeticTokenizer
class AlphabeticTokenizer extends Tokenizer implements Serializable- serialVersionUID:
- 6705199562609861697L
-
Serialized Fields
-
m_CurrentPos
int m_CurrentPos
the current position -
m_Str
char[] m_Str
the characters of the string
-
-
Class weka.core.tokenizers.CharacterDelimitedTokenizer
class CharacterDelimitedTokenizer extends Tokenizer implements Serializable- serialVersionUID:
- -3091468793633408477L
-
Serialized Fields
-
m_Delimiters
String m_Delimiters
Delimiters used in tokenization
-
-
Class weka.core.tokenizers.CharacterNGramTokenizer
class CharacterNGramTokenizer extends Tokenizer implements Serializable- serialVersionUID:
- -1181896253171647218L
-
Serialized Fields
-
m_CurrentPosition
int m_CurrentPosition
the current position for returning elements -
m_N
int m_N
the current length of the N-grams -
m_NMax
int m_NMax
the maximum number of N -
m_NMin
int m_NMin
the minimum number of N -
m_String
String m_String
the string to tokenize
-
-
Class weka.core.tokenizers.NGramTokenizer
class NGramTokenizer extends CharacterDelimitedTokenizer implements Serializable- serialVersionUID:
- -2181896254171647219L
-
Serialized Fields
-
m_CurrentPosition
int m_CurrentPosition
the current position for returning elements -
m_MaxPosition
int m_MaxPosition
the number of strings available -
m_N
int m_N
the current length of the N-grams -
m_NMax
int m_NMax
the maximum number of N -
m_NMin
int m_NMin
the minimum number of N -
m_SplitString
String[] m_SplitString
all the available grams
-
-
Class weka.core.tokenizers.Tokenizer
class Tokenizer extends Object implements Serializable- serialVersionUID:
- 7781271062738973996L
-
Class weka.core.tokenizers.WordTokenizer
class WordTokenizer extends CharacterDelimitedTokenizer implements Serializable- serialVersionUID:
- -930893034037880773L
-
-
Package weka.core.xml
-
Class weka.core.xml.XMLInstances
class XMLInstances extends XMLDocument implements Serializable- serialVersionUID:
- 3626821327547416099L
-
Serialized Fields
-
m_Instances
Instances m_Instances
the underlying Instances -
m_Precision
int m_Precision
the precision for numbers
-
-
-
Package weka.datagenerators
-
Class weka.datagenerators.ClassificationGenerator
class ClassificationGenerator extends DataGenerator implements Serializable- serialVersionUID:
- -5261662546673517844L
-
Serialized Fields
-
m_NumExamples
int m_NumExamples
Number of instances
-
-
Class weka.datagenerators.ClusterDefinition
class ClusterDefinition extends Object implements Serializable- serialVersionUID:
- -5950001207047429961L
-
Serialized Fields
-
m_Parent
ClusterGenerator m_Parent
the parent of the cluster
-
-
Class weka.datagenerators.ClusterGenerator
class ClusterGenerator extends DataGenerator implements Serializable- serialVersionUID:
- 6131722618472046365L
-
Serialized Fields
-
m_ClassFlag
boolean m_ClassFlag
class flag -
m_NumAttributes
int m_NumAttributes
Number of attribute the dataset should have
-
-
Class weka.datagenerators.DataGenerator
class DataGenerator extends Object implements Serializable- serialVersionUID:
- -3698585946221802578L
-
Serialized Fields
-
m_CreatingRelationName
boolean m_CreatingRelationName
This flag is no longer used (left here to maintain compatibility for serialization) -
m_DatasetFormat
Instances m_DatasetFormat
The format for the generated dataset -
m_Debug
boolean m_Debug
Debugging mode -
m_NumExamplesAct
int m_NumExamplesAct
Number of instances that should be produced into the dataset this number is by default m_NumExamples, but can be reset by the generator -
m_Random
Random m_Random
random number generator -
m_RelationName
String m_RelationName
Relation name specified by the user (relation name will be auto-generated if empty) -
m_Seed
int m_Seed
random number generator seed
-
-
Class weka.datagenerators.RegressionGenerator
class RegressionGenerator extends DataGenerator implements Serializable- serialVersionUID:
- 3073254041275658221L
-
Serialized Fields
-
m_NumExamples
int m_NumExamples
Number of instances
-
-
Class weka.datagenerators.Test
class Test extends Object implements Serializable- serialVersionUID:
- -8890645875887157782L
-
Serialized Fields
-
m_AttIndex
int m_AttIndex
the attribute index -
m_Dataset
Instances m_Dataset
the dataset -
m_Not
boolean m_Not
whether to negate the test -
m_Split
double m_Split
the split
-
-
-
Package weka.datagenerators.classifiers.classification
-
Class weka.datagenerators.classifiers.classification.Agrawal
class Agrawal extends ClassificationGenerator implements Serializable- serialVersionUID:
- 2254651939636143025L
-
Serialized Fields
-
m_BalanceClass
boolean m_BalanceClass
whether to balance the class -
m_Function
int m_Function
the function to use for generating the data -
m_lastLabel
double m_lastLabel
the last class label that was generated -
m_nextClassShouldBeZero
boolean m_nextClassShouldBeZero
used for balancing the class -
m_PerturbationFraction
double m_PerturbationFraction
the perturabation fraction
-
-
Class weka.datagenerators.classifiers.classification.BayesNet
class BayesNet extends ClassificationGenerator implements Serializable- serialVersionUID:
- -796118162379901512L
-
Serialized Fields
-
m_Generator
BayesNetGenerator m_Generator
the bayesian net generator, that produces the actual data
-
-
Class weka.datagenerators.classifiers.classification.LED24
class LED24 extends ClassificationGenerator implements Serializable- serialVersionUID:
- -7880209100415868737L
-
Serialized Fields
-
m_NoisePercent
double m_NoisePercent
the noise rate -
m_numIrrelevantAttributes
int m_numIrrelevantAttributes
used for generating the output, i.e., the additional noise attributes
-
-
Class weka.datagenerators.classifiers.classification.RandomRBF
class RandomRBF extends ClassificationGenerator implements Serializable- serialVersionUID:
- 6069033710635728720L
-
Serialized Fields
-
m_centroidClasses
int[] m_centroidClasses
the classes of the centroids -
m_centroids
double[][] m_centroids
the centroids -
m_centroidStdDevs
double[] m_centroidStdDevs
the stddevs of the centroids -
m_centroidWeights
double[] m_centroidWeights
the weights of the centroids -
m_NumAttributes
int m_NumAttributes
Number of attribute the dataset should have -
m_NumCentroids
int m_NumCentroids
the number of centroids to use for generation -
m_NumClasses
int m_NumClasses
Number of Classes the dataset should have
-
-
Class weka.datagenerators.classifiers.classification.RDG1
class RDG1 extends ClassificationGenerator implements Serializable- serialVersionUID:
- 7751005204635320414L
-
Serialized Fields
-
m_AttList_Irr
boolean[] m_AttList_Irr
array defines which attributes are irrelevant, with: true = attribute is irrelevant; false = attribute is not irrelevant -
m_DecisionList
ArrayList<weka.datagenerators.classifiers.classification.RDG1.RuleList> m_DecisionList
decision list -
m_MaxRuleSize
int m_MaxRuleSize
maximum rule size -
m_MinRuleSize
int m_MinRuleSize
minimum rule size -
m_NumAttributes
int m_NumAttributes
Number of attribute the dataset should have -
m_NumClasses
int m_NumClasses
Number of Classes the dataset should have -
m_NumIrrelevant
int m_NumIrrelevant
number of irrelevant attributes. -
m_NumNumeric
int m_NumNumeric
number of numeric attribute -
m_VoteFlag
boolean m_VoteFlag
flag that stores if voting is wished
-
-
-
Package weka.datagenerators.classifiers.regression
-
Class weka.datagenerators.classifiers.regression.Expression
class Expression extends MexicanHat implements Serializable- serialVersionUID:
- -4237047357682277211L
-
Serialized Fields
-
m_Expression
String m_Expression
the expression for computing y -
m_Filter
AddExpression m_Filter
the filter for generating y out of x -
m_RawData
Instances m_RawData
the input data structure for the filter
-
-
Class weka.datagenerators.classifiers.regression.MexicanHat
class MexicanHat extends RegressionGenerator implements Serializable- serialVersionUID:
- 4577016375261512975L
-
Serialized Fields
-
m_Amplitude
double m_Amplitude
the amplitude of y -
m_MaxRange
double m_MaxRange
the upper boundary of the range, x is drawn from -
m_MinRange
double m_MinRange
the lower boundary of the range, x is drawn from -
m_NoiseRandom
Random m_NoiseRandom
the random number generator for the noise -
m_NoiseRate
double m_NoiseRate
the rate of the gaussian noise -
m_NoiseVariance
double m_NoiseVariance
the variance of the gaussian noise
-
-
-
Package weka.datagenerators.clusterers
-
Class weka.datagenerators.clusterers.BIRCHCluster
class BIRCHCluster extends ClusterGenerator implements Serializable- serialVersionUID:
- -334820527230755027L
-
Serialized Fields
-
m_ClusterList
ArrayList<weka.datagenerators.clusterers.BIRCHCluster.Cluster> m_ClusterList
cluster list -
m_DistMult
double m_DistMult
distance multiplier (option M) -
m_GridSize
int m_GridSize
grid size -
m_GridWidth
double m_GridWidth
grid width -
m_InputOrder
int m_InputOrder
input order (changed with option O) -
m_MaxInstNum
int m_MaxInstNum
maximal number of instances per cluster (option N) -
m_MaxRadius
double m_MaxRadius
maximum radius (option R) -
m_MinInstNum
int m_MinInstNum
minimal number of instances per cluster (option N) -
m_MinRadius
double m_MinRadius
minimum radius (option R) -
m_NumClusters
int m_NumClusters
Number of Clusters the dataset should have -
m_NumCycles
int m_NumCycles
number of cycles (option C) -
m_Pattern
int m_Pattern
pattern (changed with options G or S)
-
-
Class weka.datagenerators.clusterers.SubspaceCluster
class SubspaceCluster extends ClusterGenerator implements Serializable- serialVersionUID:
- -3454999858505621128L
-
Serialized Fields
-
m_booleanCols
Range m_booleanCols
Stores which columns are boolean (default numeric) -
m_Clusters
ClusterDefinition[] m_Clusters
cluster list -
m_nominalCols
Range m_nominalCols
Stores which columns are nominal (default numeric) -
m_numValues
int[] m_numValues
if nominal, store number of values
-
-
Class weka.datagenerators.clusterers.SubspaceClusterDefinition
class SubspaceClusterDefinition extends ClusterDefinition implements Serializable- serialVersionUID:
- 3135678125044007231L
-
Serialized Fields
-
m_attributes
boolean[] m_attributes
attributes of this cluster -
m_AttrIndexRange
Range m_AttrIndexRange
range of atttributes -
m_attrIndices
int[] m_attrIndices
global indices of the attributes of the cluster -
m_clustersubtype
int m_clustersubtype
cluster subtypes -
m_clustertype
int m_clustertype
cluster type -
m_MaxInstNum
int m_MaxInstNum
maximal number of instances for this cluster -
m_MinInstNum
int m_MinInstNum
minimal number of instances for this cluster -
m_numClusterAttributes
int m_numClusterAttributes
number of attributes the cluster is defined for -
m_numInstances
int m_numInstances
number of instances for this cluster -
m_valueA
double[] m_valueA
min or mean -
m_valueB
double[] m_valueB
max or stddev -
m_valuesList
String m_valuesList
the specification of the list of values as a string
-
-
-
Package weka.estimators
-
Class weka.estimators.DiscreteEstimator
class DiscreteEstimator extends Estimator implements Serializable- serialVersionUID:
- -5526486742612434779L
-
Serialized Fields
-
m_Counts
double[] m_Counts
Hold the counts -
m_FPrior
double m_FPrior
Initialization for counts -
m_SumOfCounts
double m_SumOfCounts
Hold the sum of counts
-
-
Class weka.estimators.Estimator
class Estimator extends Object implements Serializable- serialVersionUID:
- -5902411487362274342L
-
Serialized Fields
-
m_classValueIndex
double m_classValueIndex
The class value index is > -1 if subset is taken with specific class value only -
m_Debug
boolean m_Debug
Debugging mode -
m_DoNotCheckCapabilities
boolean m_DoNotCheckCapabilities
Whether capabilities should not be checked -
m_noClass
boolean m_noClass
set if class is not important
-
-
Class weka.estimators.KernelEstimator
class KernelEstimator extends Estimator implements Serializable- serialVersionUID:
- 3646923563367683925L
-
Serialized Fields
-
m_AllWeightsOne
boolean m_AllWeightsOne
Whether we can optimise the kernel summation -
m_NumValues
int m_NumValues
Number of values stored in m_Weights and m_Values so far -
m_Precision
double m_Precision
The precision of data values -
m_StandardDev
double m_StandardDev
The standard deviation -
m_SumOfWeights
double m_SumOfWeights
The sum of the weights so far -
m_Values
double[] m_Values
Vector containing all of the values seen -
m_Weights
double[] m_Weights
Vector containing the associated weights
-
-
Class weka.estimators.MahalanobisEstimator
class MahalanobisEstimator extends Estimator implements Serializable- serialVersionUID:
- 8950225468990043868L
-
Serialized Fields
-
m_ConstDelta
double m_ConstDelta
The difference between the conditioning value and the conditioning mean -
m_CovarianceInverse
Matrix m_CovarianceInverse
The inverse of the covariance matrix -
m_Determinant
double m_Determinant
The determinant of the covariance matrix -
m_ValueMean
double m_ValueMean
The mean of the values
-
-
Class weka.estimators.MultivariateGaussianEstimator
class MultivariateGaussianEstimator extends Object implements Serializable-
Serialized Fields
-
covarianceInverse
no.uib.cipr.matrix.UpperSPDDenseMatrix covarianceInverse
Inverse of covariance matrix -
lnconstant
double lnconstant
Factor to make density integrate to one (log of this factor) -
m_Ridge
double m_Ridge
Ridge parameter to add to diagonal of covariance matrix -
mean
no.uib.cipr.matrix.DenseVector mean
Mean vector
-
-
-
Class weka.estimators.NormalEstimator
class NormalEstimator extends Estimator implements Serializable- serialVersionUID:
- 93584379632315841L
-
Serialized Fields
-
m_Mean
double m_Mean
The current mean -
m_Precision
double m_Precision
The precision of numeric values ( = minimum std dev permitted) -
m_StandardDev
double m_StandardDev
The current standard deviation -
m_SumOfValues
double m_SumOfValues
The sum of the values seen -
m_SumOfValuesSq
double m_SumOfValuesSq
The sum of the values squared -
m_SumOfWeights
double m_SumOfWeights
The sum of the weights
-
-
Class weka.estimators.PoissonEstimator
class PoissonEstimator extends Estimator implements Serializable- serialVersionUID:
- 7669362595289236662L
-
Serialized Fields
-
m_Lambda
double m_Lambda
The average number of times an event occurs in an interval. -
m_NumValues
double m_NumValues
The number of values seen -
m_SumOfValues
double m_SumOfValues
The sum of the values seen
-
-
Class weka.estimators.UnivariateEqualFrequencyHistogramEstimator
class UnivariateEqualFrequencyHistogramEstimator extends Object implements Serializable- serialVersionUID:
- -3180287591539683137L
-
Serialized Fields
-
m_Boundaries
double[] m_Boundaries
The interval boundaries. -
m_Exponent
double m_Exponent
The exponent to use in computation of bandwidth (default: -0.25) -
m_MinWidth
double m_MinWidth
The minimum allowed value of the kernel width (default: 1.0E-6) -
m_NumBins
int m_NumBins
The number of bins to use. -
m_NumIntervals
int m_NumIntervals
The number of intervals used to approximate prediction interval. -
m_SumOfWeights
double m_SumOfWeights
The total sum of weights. -
m_TM
TreeMap<Double,
Double> m_TM The collection used to store the weighted values. -
m_UpdateWeightsOnly
boolean m_UpdateWeightsOnly
Whether boundaries are updated or only weights. -
m_WeightedSum
double m_WeightedSum
The weighted sum of values -
m_WeightedSumSquared
double m_WeightedSumSquared
The weighted sum of squared values -
m_Weights
double[] m_Weights
The weight of each interval. -
m_Width
double m_Width
The current bandwidth (only computed when needed)
-
-
Class weka.estimators.UnivariateKernelEstimator
class UnivariateKernelEstimator extends Object implements Serializable- serialVersionUID:
- -1163983347810498880L
-
Serialized Fields
-
m_Exponent
double m_Exponent
The exponent to use in computation of bandwidth (default: -0.25) -
m_MinWidth
double m_MinWidth
The minimum allowed value of the kernel width (default: 1.0E-6) -
m_NumIntervals
int m_NumIntervals
The number of intervals used to approximate prediction interval. -
m_SumOfWeights
double m_SumOfWeights
The weight of the values collected so far -
m_Threshold
double m_Threshold
Threshold at which further kernels are no longer added to sum. -
m_TM
TreeMap<Double,
Double> m_TM The collection used to store the weighted values. -
m_WeightedSum
double m_WeightedSum
The weighted sum of values -
m_WeightedSumSquared
double m_WeightedSumSquared
The weighted sum of squared values -
m_Width
double m_Width
The current bandwidth (only computed when needed)
-
-
Class weka.estimators.UnivariateMixtureEstimator
class UnivariateMixtureEstimator extends Object implements Serializable- serialVersionUID:
- -2035274930137353656L
-
Serialized Fields
-
m_Debug
boolean m_Debug
Whether to output debug info. -
m_MaxNumComponents
int m_MaxNumComponents
The maximum number of components to use (default is 5) -
m_MixtureModel
UnivariateMixtureEstimator.MM m_MixtureModel
The current mixture model -
m_NumBootstrapRuns
int m_NumBootstrapRuns
The number of Bootstrap runs to use to select the number of components (default is 10) -
m_NumComponents
int m_NumComponents
The number of components to use (default is -1) -
m_NumIntervals
int m_NumIntervals
The number of intervals used to approximate prediction interval. -
m_NumValues
int m_NumValues
The number of values that have been seen -
m_Random
Random m_Random
The random number generator. -
m_Seed
int m_Seed
The random number seed to use (default is 1 -
m_UseNormalizedEntropy
boolean m_UseNormalizedEntropy
Whether to use normalized entropy instance of bootstrap. -
m_Values
double[] m_Values
The values used for this estimator -
m_Weights
double[] m_Weights
The weights used for this estimator
-
-
Class weka.estimators.UnivariateNormalEstimator
class UnivariateNormalEstimator extends Object implements Serializable- serialVersionUID:
- -1669009817825826548L
-
Serialized Fields
-
m_Mean
double m_Mean
The mean value (only updated when needed) -
m_MinVar
double m_MinVar
The minimum allowed value of the variance (default: 1.0E-6 * 1.0E-6) -
m_SumOfWeights
double m_SumOfWeights
The weight of the values collected so far -
m_Variance
double m_Variance
The variance (only updated when needed) -
m_WeightedSum
double m_WeightedSum
The weighted sum of values -
m_WeightedSumSquared
double m_WeightedSumSquared
The weighted sum of squared values
-
-
-
Package weka.experiment
-
Class weka.experiment.AveragingResultProducer
class AveragingResultProducer extends Object implements Serializable- serialVersionUID:
- 2551284958501991352L
-
Serialized Fields
-
m_AdditionalMeasures
String[] m_AdditionalMeasures
The names of any additional measures to look for in SplitEvaluators -
m_CalculateStdDevs
boolean m_CalculateStdDevs
True if standard deviation fields should be produced -
m_CountFieldName
String m_CountFieldName
The name of the field that will contain the number of results averaged over. -
m_ExpectedResultsPerAverage
int m_ExpectedResultsPerAverage
The number of results expected to average over for each run -
m_Instances
Instances m_Instances
The dataset of interest -
m_KeyFieldName
String m_KeyFieldName
The name of the key field to average over -
m_KeyIndex
int m_KeyIndex
The index of the field to average over in the resultproducers key -
m_Keys
ArrayList<Object[]> m_Keys
Collects the keys from a single run -
m_ResultListener
ResultListener m_ResultListener
The ResultListener to send results to -
m_ResultProducer
ResultProducer m_ResultProducer
The ResultProducer used to generate results -
m_Results
ArrayList<Object[]> m_Results
Collects the results from a single run
-
-
Class weka.experiment.ClassifierSplitEvaluator
class ClassifierSplitEvaluator extends Object implements Serializable- serialVersionUID:
- -8511241602760467265L
-
Serialized Fields
-
m_AdditionalMeasures
String[] m_AdditionalMeasures
The names of any additional measures to look for in SplitEvaluators -
m_attID
int m_attID
Attribute index of instance identifier (default -1) -
m_Classifier
Classifier m_Classifier
The classifier used for evaluation -
m_ClassifierOptions
String m_ClassifierOptions
The classifier options (if any) -
m_ClassifierVersion
String m_ClassifierVersion
The classifier version -
m_doesProduce
boolean[] m_doesProduce
Array of booleans corresponding to the measures in m_AdditionalMeasures indicating which of the AdditionalMeasures the current classifier can produce -
m_Evaluation
Evaluation m_Evaluation
Holds the most recently used Evaluation object -
m_IRclass
int m_IRclass
Class index for information retrieval statistics (default 0) -
m_NoSizeDetermination
boolean m_NoSizeDetermination
whether to skip determination of sizes (train/test/classifier). -
m_numberAdditionalMeasures
int m_numberAdditionalMeasures
The number of additional measures that need to be filled in after taking into account column constraints imposed by the final destination for results -
m_numPluginStatistics
int m_numPluginStatistics
-
m_pluginMetrics
List<AbstractEvaluationMetric> m_pluginMetrics
-
m_predTargetColumn
boolean m_predTargetColumn
Flag for prediction and target columns output. -
m_result
String m_result
Holds the statistics for the most recent application of the classifier -
m_Template
Classifier m_Template
The template classifier
-
-
Class weka.experiment.CostSensitiveClassifierSplitEvaluator
class CostSensitiveClassifierSplitEvaluator extends ClassifierSplitEvaluator implements Serializable- serialVersionUID:
- -8069566663019501276L
-
Serialized Fields
-
m_OnDemandDirectory
File m_OnDemandDirectory
The directory used when loading cost files on demand, null indicates current directory
-
-
Class weka.experiment.CrossValidationResultProducer
class CrossValidationResultProducer extends Object implements Serializable- serialVersionUID:
- -1580053925080091917L
-
Serialized Fields
-
m_AdditionalMeasures
String[] m_AdditionalMeasures
The names of any additional measures to look for in SplitEvaluators -
m_debugOutput
boolean m_debugOutput
Save raw output of split evaluators --- for debugging purposes -
m_Instances
Instances m_Instances
The dataset of interest -
m_NumFolds
int m_NumFolds
The number of folds in the cross-validation -
m_OutputFile
File m_OutputFile
The destination output file/directory for raw output -
m_ResultListener
ResultListener m_ResultListener
The ResultListener to send results to -
m_SplitEvaluator
SplitEvaluator m_SplitEvaluator
The SplitEvaluator used to generate results -
m_ZipDest
OutputZipper m_ZipDest
The output zipper to use for saving raw splitEvaluator output
-
-
Class weka.experiment.CrossValidationSplitResultProducer
class CrossValidationSplitResultProducer extends CrossValidationResultProducer implements Serializable- serialVersionUID:
- 1403798164046795073L
-
Class weka.experiment.CSVResultListener
class CSVResultListener extends Object implements Serializable- serialVersionUID:
- -623185072785174658L
-
Serialized Fields
-
m_OutputFile
File m_OutputFile
The destination output file, null sends to System.out -
m_OutputFileName
String m_OutputFileName
The name of the output file. Empty for temporary file. -
m_RP
ResultProducer m_RP
The ResultProducer sending us results
-
-
Class weka.experiment.DatabaseResultListener
class DatabaseResultListener extends DatabaseUtils implements Serializable- serialVersionUID:
- 7388014746954652818L
-
Serialized Fields
-
m_Cache
ArrayList<String> m_Cache
Stores the cached values -
m_CacheKey
Object[] m_CacheKey
Stores the key for which the cache is valid -
m_CacheKeyIndex
int m_CacheKeyIndex
Stores the index of the key column holding the cache key data -
m_CacheKeyName
String m_CacheKeyName
Holds the name of the key field to cache upon, or null if no caching -
m_ResultProducer
ResultProducer m_ResultProducer
The ResultProducer to listen to -
m_ResultsTableName
String m_ResultsTableName
The name of the current results table
-
-
Class weka.experiment.DatabaseResultProducer
class DatabaseResultProducer extends DatabaseResultListener implements Serializable- serialVersionUID:
- -5620660780203158666L
-
Serialized Fields
-
m_AdditionalMeasures
String[] m_AdditionalMeasures
The names of any additional measures to look for in SplitEvaluators -
m_Instances
Instances m_Instances
The dataset of interest -
m_ResultListener
ResultListener m_ResultListener
The ResultListener to send results to
-
-
Class weka.experiment.DatabaseUtils
class DatabaseUtils extends Object implements Serializable- serialVersionUID:
- -8252351994547116729L
-
Serialized Fields
-
DRIVERS
Vector<String> DRIVERS
Holds the jdbc drivers to be used (only to stop them being gc'ed). -
m_checkForLowerCaseNames
boolean m_checkForLowerCaseNames
For databases where Tables and Columns are created in lower case. -
m_checkForUpperCaseNames
boolean m_checkForUpperCaseNames
For databases where Tables and Columns are created in upper case. -
m_createIndex
boolean m_createIndex
create index on the database? -
m_DatabaseURL
String m_DatabaseURL
Database URL. -
m_Debug
boolean m_Debug
True if debugging output should be printed. -
m_doubleType
String m_doubleType
double type for the create table statement. -
m_intType
String m_intType
integer type for the create table statement. -
m_Keywords
HashSet<String> m_Keywords
the keywords for the current database type. -
m_KeywordsMaskChar
String m_KeywordsMaskChar
the character to mask SQL keywords (by appending this character). -
m_password
String m_password
Database Password. -
m_setAutoCommit
boolean m_setAutoCommit
setAutoCommit on the database? -
m_stringType
String m_stringType
string type for the create table statement. -
m_userName
String m_userName
Database username. -
PROPERTIES
Properties PROPERTIES
Properties associated with the database connection.
-
-
Class weka.experiment.DensityBasedClustererSplitEvaluator
class DensityBasedClustererSplitEvaluator extends Object implements Serializable- serialVersionUID:
- 5124501059135692160L
-
Serialized Fields
-
m_additionalMeasures
String[] m_additionalMeasures
The names of any additional measures to look for in SplitEvaluators -
m_clusterer
DensityBasedClusterer m_clusterer
The clusterer used for evaluation -
m_clustererOptions
String m_clustererOptions
The clusterer options (if any) -
m_clustererVersion
String m_clustererVersion
The clusterer version -
m_doesProduce
boolean[] m_doesProduce
Array of booleans corresponding to the measures in m_AdditionalMeasures indicating which of the AdditionalMeasures the current clusterer can produce -
m_Evaluation
ClusterEvaluation m_Evaluation
Holds the most recently used ClusterEvaluation object -
m_NoSizeDetermination
boolean m_NoSizeDetermination
whether to skip determination of sizes (train/test/classifier). -
m_numberAdditionalMeasures
int m_numberAdditionalMeasures
The number of additional measures that need to be filled in after taking into account column constraints imposed by the final destination for results -
m_removeClassColumn
boolean m_removeClassColumn
Remove the class column (if set) from the data -
m_result
String m_result
Holds the statistics for the most recent application of the clusterer
-
-
Class weka.experiment.Experiment
class Experiment extends Object implements Serializable- serialVersionUID:
- 44945596742646663L
-
Serialized Fields
-
m_AdditionalMeasures
String[] m_AdditionalMeasures
Method names of additional measures of objects contained in the custom property iterator. Only methods names beginning with "measure" and returning doubles are recognised -
m_AdvanceDataSetFirst
boolean m_AdvanceDataSetFirst
If true an experiment will advance the current data set befor any custom itererator -
m_ClassFirst
boolean m_ClassFirst
True if the class attribute is the first attribute for all datasets involved in this experiment. -
m_Datasets
DefaultListModel m_Datasets
An array of dataset files -
m_Notes
String m_Notes
User notes about the experiment -
m_PropertyArray
Object m_PropertyArray
The array of values to set the property to -
m_PropertyPath
PropertyNode[] m_PropertyPath
The path to the iterator property -
m_ResultListener
ResultListener m_ResultListener
Where results will be sent -
m_ResultProducer
ResultProducer m_ResultProducer
The result producer -
m_RunLower
int m_RunLower
Lower run number -
m_RunUpper
int m_RunUpper
Upper run number -
m_UsePropertyIterator
boolean m_UsePropertyIterator
True if the exp should also iterate over a property of the RP
-
-
Class weka.experiment.ExplicitTestsetResultProducer
class ExplicitTestsetResultProducer extends Object implements Serializable- serialVersionUID:
- 2613585409333652530L
-
Serialized Fields
-
m_AdditionalMeasures
String[] m_AdditionalMeasures
The names of any additional measures to look for in SplitEvaluators. -
m_debugOutput
boolean m_debugOutput
Save raw output of split evaluators --- for debugging purposes. -
m_Instances
Instances m_Instances
The dataset of interest. -
m_OutputFile
File m_OutputFile
The destination output file/directory for raw output. -
m_randomize
boolean m_randomize
Whether dataset is to be randomized. -
m_RelationFind
String m_RelationFind
The regular expression to search for in the relation name. -
m_RelationReplace
String m_RelationReplace
The string to use to replace the matches of the regular expression. -
m_ResultListener
ResultListener m_ResultListener
The ResultListener to send results to. -
m_SplitEvaluator
SplitEvaluator m_SplitEvaluator
The SplitEvaluator used to generate results. -
m_TestsetDir
File m_TestsetDir
The directory containing all the test sets. -
m_TestsetPrefix
String m_TestsetPrefix
The prefix for all the test sets. -
m_TestsetSuffix
String m_TestsetSuffix
The suffix for all the test sets. -
m_ZipDest
OutputZipper m_ZipDest
The output zipper to use for saving raw splitEvaluator output.
-
-
Class weka.experiment.InstanceQuery
class InstanceQuery extends DatabaseUtils implements Serializable- serialVersionUID:
- 718158370917782584L
-
Class weka.experiment.InstancesResultListener
class InstancesResultListener extends CSVResultListener implements Serializable- serialVersionUID:
- -2203808461809311178L
-
Class weka.experiment.LearningRateResultProducer
class LearningRateResultProducer extends Object implements Serializable- serialVersionUID:
- -3841159673490861331L
-
Serialized Fields
-
m_AdditionalMeasures
String[] m_AdditionalMeasures
The names of any additional measures to look for in SplitEvaluators -
m_CurrentSize
int m_CurrentSize
The current dataset size during stepping -
m_Instances
Instances m_Instances
The dataset of interest -
m_LowerSize
int m_LowerSize
The minimum number of instances to use. If this is zero, the first step will contain m_StepSize instances -
m_ResultListener
ResultListener m_ResultListener
The ResultListener to send results to -
m_ResultProducer
ResultProducer m_ResultProducer
The ResultProducer used to generate results -
m_StepSize
int m_StepSize
The number of instances to add at each step -
m_UpperSize
int m_UpperSize
The maximum number of instances to use. -1 indicates no maximum (other than the total number of instances)
-
-
Class weka.experiment.PairedCorrectedTTester
class PairedCorrectedTTester extends PairedTTester implements Serializable- serialVersionUID:
- -3105268939845653323L
-
Class weka.experiment.PairedTTester
class PairedTTester extends Object implements Serializable- serialVersionUID:
- 8370014624008728610L
-
Serialized Fields
-
m_ColOrder
int[] m_ColOrder
The sorting of the columns (test base is always first) -
m_DatasetKeyColumns
int[] m_DatasetKeyColumns
An array containing the indexes of just the selected columns -
m_DatasetKeyColumnsRange
Range m_DatasetKeyColumnsRange
The range of columns that specify a unique "dataset" (eg: scheme plus configuration) -
m_DatasetSpecifiers
weka.experiment.PairedTTester.DatasetSpecifiers m_DatasetSpecifiers
The list of dataset specifiers -
m_DisplayedResultsets
int[] m_DisplayedResultsets
An array containing the indexes of the datasets to display -
m_FoldColumn
int m_FoldColumn
The option setting for the fold number column (-1 means none) -
m_Instances
Instances m_Instances
The set of instances we will analyse -
m_ResultMatrix
ResultMatrix m_ResultMatrix
the instance of the class to produce the output. -
m_ResultsetKeyColumns
int[] m_ResultsetKeyColumns
An array containing the indexes of just the selected columns -
m_ResultsetKeyColumnsRange
Range m_ResultsetKeyColumnsRange
The range of columns that specify a unique result set (eg: scheme plus configuration) -
m_Resultsets
ArrayList<weka.experiment.PairedTTester.Resultset> m_Resultsets
Stores a vector for each resultset holding all instances in each set -
m_ResultsetsValid
boolean m_ResultsetsValid
Indicates whether the instances have been partitioned -
m_RunColumn
int m_RunColumn
The index of the column containing the run number -
m_RunColumnSet
int m_RunColumnSet
The option setting for the run number column (-1 means last) -
m_ShowStdDevs
boolean m_ShowStdDevs
Indicates whether standard deviations should be displayed -
m_SignificanceLevel
double m_SignificanceLevel
The significance level for comparisons -
m_SortColumn
int m_SortColumn
The column to sort on (-1 means default sorting) -
m_SortOrder
int[] m_SortOrder
The sorting of the datasets (according to the sort column)
-
-
Class weka.experiment.PairedTTester.Dataset
class Dataset extends Object implements Serializable- serialVersionUID:
- -2801397601839433282L
-
Class weka.experiment.PairedTTester.DatasetSpecifiers
class DatasetSpecifiers extends Object implements Serializable- serialVersionUID:
- -9020938059902723401L
-
Class weka.experiment.PairedTTester.Resultset
class Resultset extends Object implements Serializable- serialVersionUID:
- 1543786683821339978L
-
Class weka.experiment.PropertyNode
class PropertyNode extends Object implements Serializable- serialVersionUID:
- -8718165742572631384L
-
Serialization Methods
-
readObject
- Throws:
IOException
ClassNotFoundException
-
writeObject
- Throws:
IOException
-
-
Serialized Fields
-
parentClass
Class<?> parentClass
The class of the object with this property -
property
PropertyDescriptor property
Other info about the property -
value
Object value
The current property value
-
-
Class weka.experiment.RandomSplitResultProducer
class RandomSplitResultProducer extends Object implements Serializable- serialVersionUID:
- 1403798165056795073L
-
Serialized Fields
-
m_AdditionalMeasures
String[] m_AdditionalMeasures
The names of any additional measures to look for in SplitEvaluators -
m_debugOutput
boolean m_debugOutput
Save raw output of split evaluators --- for debugging purposes -
m_Instances
Instances m_Instances
The dataset of interest -
m_OutputFile
File m_OutputFile
The destination output file/directory for raw output -
m_randomize
boolean m_randomize
Whether dataset is to be randomized -
m_ResultListener
ResultListener m_ResultListener
The ResultListener to send results to -
m_SplitEvaluator
SplitEvaluator m_SplitEvaluator
The SplitEvaluator used to generate results -
m_TrainPercent
double m_TrainPercent
The percentage of instances to use for training -
m_ZipDest
OutputZipper m_ZipDest
The output zipper to use for saving raw splitEvaluator output
-
-
Class weka.experiment.RegressionSplitEvaluator
class RegressionSplitEvaluator extends Object implements Serializable- serialVersionUID:
- -328181640503349202L
-
Serialized Fields
-
m_AdditionalMeasures
String[] m_AdditionalMeasures
The names of any additional measures to look for in SplitEvaluators -
m_Classifier
Classifier m_Classifier
The classifier used for evaluation -
m_ClassifierOptions
String m_ClassifierOptions
The classifier options (if any) -
m_ClassifierVersion
String m_ClassifierVersion
The classifier version -
m_doesProduce
boolean[] m_doesProduce
Array of booleans corresponding to the measures in m_AdditionalMeasures indicating which of the AdditionalMeasures the current classifier can produce -
m_Evaluation
Evaluation m_Evaluation
Holds the most recently used Evaluation object -
m_NoSizeDetermination
boolean m_NoSizeDetermination
whether to skip determination of sizes (train/test/classifier). -
m_numPluginStatistics
int m_numPluginStatistics
-
m_pluginMetrics
List<AbstractEvaluationMetric> m_pluginMetrics
-
m_result
String m_result
Holds the statistics for the most recent application of the classifier -
m_Template
Classifier m_Template
The template classifier
-
-
Class weka.experiment.RemoteEngine
class RemoteEngine extends UnicastRemoteObject implements Serializable- serialVersionUID:
- -1021538162895448259L
-
Serialized Fields
-
m_HostName
String m_HostName
The name of the host that this engine is started on -
m_TaskIdQueue
Queue m_TaskIdQueue
A queue of corresponding ID's for tasks -
m_TaskQueue
Queue m_TaskQueue
A queue of waiting tasks -
m_TaskRunning
boolean m_TaskRunning
Is there a task running -
m_TaskStatus
Hashtable<String,
TaskStatusInfo> m_TaskStatus A hashtable of experiment status
-
-
Class weka.experiment.RemoteExperiment
class RemoteExperiment extends Experiment implements Serializable- serialVersionUID:
- -7357668825635314937L
-
Serialized Fields
-
m_baseExperiment
Experiment m_baseExperiment
The base experiment to split up into sub experiments for remote execution -
m_experimentAborted
boolean m_experimentAborted
Set to true if MAX_FAILURES exceeded on all hosts or connections fail on all hosts or user aborts experiment (via gui) -
m_failedCount
int m_failedCount
The count of failed sub-experiments -
m_finishedCount
int m_finishedCount
The count of successfully completed sub-experiments -
m_listeners
ArrayList<RemoteExperimentListener> m_listeners
The list of objects listening for remote experiment events -
m_remoteHostFailureCounts
int[] m_remoteHostFailureCounts
The number of times tasks have failed on each remote host -
m_remoteHosts
DefaultListModel m_remoteHosts
Holds the names of machines with remoteEngine servers running -
m_remoteHostsQueue
Queue m_remoteHostsQueue
The queue of available hosts -
m_remoteHostsStatus
int[] m_remoteHostsStatus
The status of each of the remote hosts -
m_removedHosts
int m_removedHosts
The number of hosts removed due to exceeding max failures -
m_splitByDataSet
boolean m_splitByDataSet
If true, then sub experiments are created on the basis of data sets. -
m_splitByProperty
boolean m_splitByProperty
If true, then sub experiments are created on the basis of properties -
m_subExpComplete
int[] m_subExpComplete
The status of each of the sub-experiments -
m_subExperiments
Experiment[] m_subExperiments
The sub experiments -
m_subExpQueue
Queue m_subExpQueue
The queue of sub experiments waiting to be processed
-
-
Class weka.experiment.RemoteExperimentEvent
class RemoteExperimentEvent extends Object implements Serializable- serialVersionUID:
- 7000867987391866451L
-
Serialized Fields
-
m_experimentFinished
boolean m_experimentFinished
True if a remote experiment has finished -
m_logMessage
boolean m_logMessage
A log type message -
m_messageString
String m_messageString
The message -
m_statusMessage
boolean m_statusMessage
A status type message
-
-
Class weka.experiment.RemoteExperimentSubTask
class RemoteExperimentSubTask extends Object implements Serializable- serialVersionUID:
- -1674092706571603720L
-
Serialized Fields
-
m_experiment
Experiment m_experiment
-
m_result
TaskStatusInfo m_result
-
m_serializedExp
SerializedObject m_serializedExp
-
-
Class weka.experiment.ResultMatrix
class ResultMatrix extends Object implements Serializable- serialVersionUID:
- 4487179306428209739L
-
Serialized Fields
-
LEFT_PARENTHESES
String LEFT_PARENTHESES
the left parentheses for enumerating cols/rows. -
LOSS_STRING
String LOSS_STRING
loss string. -
m_ColHidden
boolean[] m_ColHidden
whether a column is hidden. -
m_ColNames
String[] m_ColNames
the column names. -
m_ColNameWidth
int m_ColNameWidth
the size of the names of the columns. -
m_ColOrder
int[] m_ColOrder
the ordering of the columns. -
m_Counts
double[] m_Counts
the counts for the different datasets. -
m_CountWidth
int m_CountWidth
the size of the counts. -
m_EnumerateColNames
boolean m_EnumerateColNames
whether a "(x)" is printed before each column name with "x" as the index. -
m_EnumerateRowNames
boolean m_EnumerateRowNames
whether a "(x)" is printed before each row name with "x" as the index. -
m_HeaderKeys
Vector<String> m_HeaderKeys
contains the keys for the header. -
m_HeaderValues
Vector<String> m_HeaderValues
contains the values for the header. -
m_Mean
double[][] m_Mean
the values. -
m_MeanPrec
int m_MeanPrec
the standard mean precision. -
m_MeanWidth
int m_MeanWidth
the size of the mean columns. -
m_NonSigWins
int[][] m_NonSigWins
the non-significant wins. -
m_PrintColNames
boolean m_PrintColNames
whether the names or numbers are output as column declarations. -
m_PrintRowNames
boolean m_PrintRowNames
whether the names or numbers are output as row declarations. -
m_RankingDiff
int[] m_RankingDiff
the difference between wins and losses. -
m_RankingLosses
int[] m_RankingLosses
the losses in ranking. -
m_RankingWins
int[] m_RankingWins
the wins in ranking. -
m_RemoveFilterName
boolean m_RemoveFilterName
whether to remove the filter name from the dataaset name. -
m_RowHidden
boolean[] m_RowHidden
whether a row is hidden. -
m_RowNames
String[] m_RowNames
the row names. -
m_RowNameWidth
int m_RowNameWidth
the size of the names of the rows. -
m_RowOrder
int[] m_RowOrder
the ordering of the rows. -
m_ShowAverage
boolean m_ShowAverage
whether the average for each column should be printed. -
m_ShowStdDev
boolean m_ShowStdDev
whether std. deviations are printed as well. -
m_Significance
int[][] m_Significance
the significance. -
m_SignificanceWidth
int m_SignificanceWidth
the size of the significance columns. -
m_StdDev
double[][] m_StdDev
the standard deviation. -
m_StdDevPrec
int m_StdDevPrec
the standard std. deviation preicision. -
m_StdDevWidth
int m_StdDevWidth
the size of the std dev columns. -
m_Wins
int[][] m_Wins
the significant wins. -
RIGHT_PARENTHESES
String RIGHT_PARENTHESES
the right parentheses for enumerating cols/rows. -
TIE_STRING
String TIE_STRING
tie string. -
WIN_STRING
String WIN_STRING
win string.
-
-
Class weka.experiment.ResultMatrixCSV
class ResultMatrixCSV extends ResultMatrix implements Serializable- serialVersionUID:
- -171838863135042743L
-
Class weka.experiment.ResultMatrixGnuPlot
class ResultMatrixGnuPlot extends ResultMatrix implements Serializable- serialVersionUID:
- -234648254944790097L
-
Class weka.experiment.ResultMatrixHTML
class ResultMatrixHTML extends ResultMatrix implements Serializable- serialVersionUID:
- 6672380422544799990L
-
Class weka.experiment.ResultMatrixLatex
class ResultMatrixLatex extends ResultMatrix implements Serializable- serialVersionUID:
- 777690788447600978L
-
Class weka.experiment.ResultMatrixPlainText
class ResultMatrixPlainText extends ResultMatrix implements Serializable- serialVersionUID:
- 1502934525382357937L
-
Class weka.experiment.ResultMatrixSignificance
class ResultMatrixSignificance extends ResultMatrix implements Serializable- serialVersionUID:
- -1280545644109764206L
-
Class weka.experiment.Stats
class Stats extends Object implements Serializable- serialVersionUID:
- -8610544539090024102L
-
Serialized Fields
-
count
double count
The number of values seen -
max
double max
The maximum value seen, or Double.NaN if no values seen -
mean
double mean
The mean of values, or Double.NaN if no values seen -
min
double min
The minimum value seen, or Double.NaN if no values seen -
stdDev
double stdDev
The std deviation of values at the last calculateDerived() call -
stdDevFactor
double stdDevFactor
an important factor to calculate the standard deviation incrementally -
sum
double sum
The sum of values seen -
sumSq
double sumSq
The sum of values squared seen
-
-
Class weka.experiment.TaskStatusInfo
class TaskStatusInfo extends Object implements Serializable- serialVersionUID:
- -6129343303703560015L
-
-
Package weka.filters
-
Class weka.filters.AllFilter
class AllFilter extends Filter implements Serializable- serialVersionUID:
- 5022109283147503266L
-
Class weka.filters.Filter
class Filter extends Object implements Serializable- serialVersionUID:
- -8835063755891851218L
-
Serialized Fields
-
m_Debug
boolean m_Debug
Whether the classifier is run in debug mode. -
m_DoNotCheckCapabilities
boolean m_DoNotCheckCapabilities
Whether capabilities should not be checked before classifier is built. -
m_FirstBatchDone
boolean m_FirstBatchDone
True if the first batch has been done -
m_InputFormat
Instances m_InputFormat
The input format for instances -
m_InputRelAtts
RelationalLocator m_InputRelAtts
Indices of relational attributes in the input format -
m_InputStringAtts
StringLocator m_InputStringAtts
Indices of string attributes in the input format -
m_NewBatch
boolean m_NewBatch
Record whether the filter is at the start of a batch -
m_OutputFormat
Instances m_OutputFormat
The output format for instances -
m_OutputQueue
Queue m_OutputQueue
The output instance queue -
m_OutputRelAtts
RelationalLocator m_OutputRelAtts
Indices of relational attributes in the output format -
m_OutputStringAtts
StringLocator m_OutputStringAtts
Indices of string attributes in the output format
-
-
Class weka.filters.MultiFilter
class MultiFilter extends SimpleStreamFilter implements Serializable- serialVersionUID:
- -6293720886005713120L
-
Serialized Fields
-
m_Filters
Filter[] m_Filters
The filters -
m_Seed
int m_Seed
The random number seed that will be passed through to all filters that are randomizable. -
m_Streamable
boolean m_Streamable
caches the streamable state -
m_StreamableChecked
boolean m_StreamableChecked
whether we already checked the streamable state
-
-
Class weka.filters.RenameRelation
class RenameRelation extends Filter implements Serializable- serialVersionUID:
- 8082179220141937043L
-
Serialized Fields
-
m_modType
weka.filters.RenameRelation.ModType m_modType
The type of modification to make -
m_regexMatch
String m_regexMatch
Regex string to match -
m_regexPattern
Pattern m_regexPattern
Pattern for regex replacement -
m_relationNameModText
String m_relationNameModText
Text to modify the relation name with -
m_replaceAll
boolean m_replaceAll
Whether to replace all rexex matches, or just the first
-
-
Class weka.filters.SimpleBatchFilter
class SimpleBatchFilter extends SimpleFilter implements Serializable- serialVersionUID:
- 8102908673378055114L
-
Class weka.filters.SimpleFilter
class SimpleFilter extends Filter implements Serializable- serialVersionUID:
- 5702974949137433141L
-
Class weka.filters.SimpleStreamFilter
class SimpleStreamFilter extends SimpleFilter implements Serializable- serialVersionUID:
- 2754882676192747091L
-
-
Package weka.filters.supervised.attribute
-
Class weka.filters.supervised.attribute.AddClassification
class AddClassification extends SimpleBatchFilter implements Serializable- serialVersionUID:
- -1931467132568441909L
-
Serialized Fields
-
m_ActualClassifier
Classifier m_ActualClassifier
The actual classifier used to do the classification. -
m_Classifier
Classifier m_Classifier
The classifier template used to do the classification. -
m_OutputClassification
boolean m_OutputClassification
whether to output the classification. -
m_OutputDistribution
boolean m_OutputDistribution
whether to output the class distribution. -
m_OutputErrorFlag
boolean m_OutputErrorFlag
whether to output the error flag. -
m_RemoveOldClass
boolean m_RemoveOldClass
whether to remove the old class attribute. -
m_SerializedClassifierFile
File m_SerializedClassifierFile
The file from which to load a serialized classifier. -
m_SerializedHeader
Instances m_SerializedHeader
the header of the file the serialized classifier was trained with.
-
-
Class weka.filters.supervised.attribute.AttributeSelection
class AttributeSelection extends Filter implements Serializable- serialVersionUID:
- -296211247688169716L
-
Serialized Fields
-
m_ASEvaluator
ASEvaluation m_ASEvaluator
the attribute evaluator to use -
m_ASSearch
ASSearch m_ASSearch
the search method if any -
m_hasClass
boolean m_hasClass
True if a class attribute is set in the data -
m_SelectedAttributes
int[] m_SelectedAttributes
holds the selected attributes -
m_trainSelector
AttributeSelection m_trainSelector
the attribute selection evaluation object
-
-
Class weka.filters.supervised.attribute.ClassConditionalProbabilities
class ClassConditionalProbabilities extends SimpleBatchFilter implements Serializable- serialVersionUID:
- 1684310720200284263L
-
Serialized Fields
-
m_estimator
NaiveBayes m_estimator
The Naive Bayes classifier to use for class conditional estimation -
m_estimatorLookup
Map<String,
Estimator[]> m_estimatorLookup A lookup of estimators from Naive Bayes -
m_excludeNominalAttributes
boolean m_excludeNominalAttributes
True if nominal attributes are to be excluded from the transformation -
m_excludeNumericAttributes
boolean m_excludeNumericAttributes
True if numeric attributes are to be excluded from the transformation -
m_nominalConversionThreshold
int m_nominalConversionThreshold
Don't convert nominal attributes with fewer than this number of values. -1 means always convert -
m_remove
Remove m_remove
Remove filter to use for creating a set of untouched attributes -
m_SpreadAttributeWeight
boolean m_SpreadAttributeWeight
Whether to spread attribute weight when creating binary attributes -
m_unchanged
Instances m_unchanged
The attributes from the original data that are untouched by this transformation
-
-
Class weka.filters.supervised.attribute.ClassOrder
class ClassOrder extends Filter implements Serializable- serialVersionUID:
- -2116226838887628411L
-
Serialized Fields
-
m_ClassAttribute
Attribute m_ClassAttribute
Class attribute of the data -
m_ClassCounts
double[] m_ClassCounts
This class can provide the class distribution in the sorted order as side effect -
m_ClassOrder
int m_ClassOrder
The class order to be sorted -
m_Converter
int[] m_Converter
The 1-1 converting table from the original class values to the new values -
m_Random
Random m_Random
The random object -
m_Seed
long m_Seed
The seed of randomization
-
-
Class weka.filters.supervised.attribute.Discretize
class Discretize extends Filter implements Serializable- serialVersionUID:
- -3141006402280129097L
-
Serialized Fields
-
m_BinRangePrecision
int m_BinRangePrecision
Precision for bin range labels -
m_CutPoints
double[][] m_CutPoints
Store the current cutpoints -
m_DiscretizeCols
Range m_DiscretizeCols
Stores which columns to Discretize -
m_MakeBinary
boolean m_MakeBinary
Output binary attributes for discretized attributes. -
m_SpreadAttributeWeight
boolean m_SpreadAttributeWeight
Whether to spread attribute weight when creating binary attributes -
m_UseBetterEncoding
boolean m_UseBetterEncoding
Use better encoding of split point for MDL. -
m_UseBinNumbers
boolean m_UseBinNumbers
Use bin numbers rather than ranges for discretized attributes. -
m_UseKononenko
boolean m_UseKononenko
Use Kononenko's MDL criterion instead of Fayyad et al.'s
-
-
Class weka.filters.supervised.attribute.MergeNominalValues
class MergeNominalValues extends SimpleBatchFilter implements Serializable- serialVersionUID:
- 7447337831221353842L
-
Serialized Fields
-
m_AttToBeModified
boolean[] m_AttToBeModified
Indicators for which attributes need to be changed. -
m_Indicators
int[][] m_Indicators
The indicators used to map the old values. -
m_SelectCols
Range m_SelectCols
Stores which atributes to operate on (or nto) -
m_SelectedAttributes
int[] m_SelectedAttributes
Stores the indexes of the selected attributes in order. -
m_SigLevel
double m_SigLevel
Set the significance level -
m_UseShortIdentifiers
boolean m_UseShortIdentifiers
Use short values
-
-
Class weka.filters.supervised.attribute.NominalToBinary
class NominalToBinary extends Filter implements Serializable- serialVersionUID:
- -5004607029857673950L
-
Serialized Fields
-
m_Indices
int[][] m_Indices
The sorted indices of the attribute values. -
m_needToTransform
boolean m_needToTransform
Whether we need to transform at all -
m_Numeric
boolean m_Numeric
Are the new attributes going to be nominal or numeric ones? -
m_SpreadAttributeWeight
boolean m_SpreadAttributeWeight
Whether to spread attribute weight when creating binary attributes -
m_TransformAll
boolean m_TransformAll
Are all values transformed into new attributes?
-
-
Class weka.filters.supervised.attribute.PartitionMembership
class PartitionMembership extends Filter implements Serializable- serialVersionUID:
- 333532554667754026L
-
Serialized Fields
-
m_partitionGenerator
PartitionGenerator m_partitionGenerator
The partition generator
-
-
-
Package weka.filters.supervised.instance
-
Class weka.filters.supervised.instance.ClassBalancer
class ClassBalancer extends SimpleBatchFilter implements Serializable- serialVersionUID:
- 6237337831221353842L
-
Serialized Fields
-
m_NumIntervals
int m_NumIntervals
number of discretization intervals to use if the class is numeric
-
-
Class weka.filters.supervised.instance.Resample
class Resample extends Filter implements Serializable- serialVersionUID:
- 7079064953548300681L
-
Serialized Fields
-
m_BiasToUniformClass
double m_BiasToUniformClass
The degree of bias towards uniform (nominal) class distribution. -
m_InvertSelection
boolean m_InvertSelection
Whether to invert the selection (only if instances are drawn WITHOUT replacement).- See Also:
-
Resample.m_NoReplacement
-
m_NoReplacement
boolean m_NoReplacement
Whether to perform sampling with replacement or without. -
m_RandomSeed
int m_RandomSeed
The random number generator seed. -
m_SampleSizePercent
double m_SampleSizePercent
The subsample size, percent of original set, default 100%.
-
-
Class weka.filters.supervised.instance.SpreadSubsample
class SpreadSubsample extends Filter implements Serializable- serialVersionUID:
- -3947033795243930016L
-
Serialized Fields
-
m_AdjustWeights
boolean m_AdjustWeights
True if instance weights will be adjusted to maintain total weight per class. -
m_DistributionSpread
double m_DistributionSpread
True if the first batch has been done -
m_MaxCount
int m_MaxCount
The maximum count of any class -
m_RandomSeed
int m_RandomSeed
The random number generator seed
-
-
Class weka.filters.supervised.instance.StratifiedRemoveFolds
class StratifiedRemoveFolds extends Filter implements Serializable- serialVersionUID:
- -7069148179905814324L
-
Serialized Fields
-
m_Fold
int m_Fold
Fold to output -
m_Inverse
boolean m_Inverse
Indicates if inverse of selection is to be output. -
m_NumFolds
int m_NumFolds
Number of folds to split dataset into -
m_Seed
long m_Seed
Random number seed.
-
-
-
Package weka.filters.unsupervised.attribute
-
Class weka.filters.unsupervised.attribute.AbstractTimeSeries
class AbstractTimeSeries extends Filter implements Serializable- serialVersionUID:
- -3795656792078022357L
-
Serialized Fields
-
m_FillWithMissing
boolean m_FillWithMissing
True if missing values should be used rather than removing instances where the translated value is not known (due to border effects). -
m_History
Queue m_History
Stores the historical instances to copy values between -
m_InstanceRange
int m_InstanceRange
The number of instances forward to translate values between. A negative number indicates taking values from a past instance. -
m_SelectedCols
Range m_SelectedCols
Stores which columns to copy
-
-
Class weka.filters.unsupervised.attribute.Add
class Add extends Filter implements Serializable- serialVersionUID:
- 761386447332932389L
-
Serialized Fields
-
m_AttributeType
int m_AttributeType
Record the type of attribute to insert. -
m_DateFormat
String m_DateFormat
The date format. -
m_Insert
SingleIndex m_Insert
The location to insert the new attribute. -
m_Labels
ArrayList<String> m_Labels
The list of labels for nominal attribute. -
m_Name
String m_Name
The name for the new attribute. -
m_Weight
double m_Weight
The weight for the new attribute.
-
-
Class weka.filters.unsupervised.attribute.AddCluster
class AddCluster extends Filter implements Serializable- serialVersionUID:
- 7414280611943807337L
-
Serialized Fields
-
m_ActualClusterer
Clusterer m_ActualClusterer
The actual clusterer used to do the clustering. -
m_Clusterer
Clusterer m_Clusterer
The clusterer used to do the cleansing. -
m_IgnoreAttributesRange
Range m_IgnoreAttributesRange
Range of attributes to ignore. -
m_removeAttributes
Filter m_removeAttributes
Filter for removing attributes. -
m_SerializedClustererFile
File m_SerializedClustererFile
The file from which to load a serialized clusterer.
-
-
Class weka.filters.unsupervised.attribute.AddExpression
class AddExpression extends Filter implements Serializable- serialVersionUID:
- 402130384261736245L
-
Serialized Fields
-
m_attributeName
String m_attributeName
Name of the new attribute. "expression" length string will use the provided expression as the new attribute name -
m_Debug
boolean m_Debug
If true, makes the attribute name equal to the postfix parse of the expression -
m_Expression
Primitives.DoubleExpression m_Expression
-
m_infixExpression
String m_infixExpression
The infix expression -
m_InstancesHelper
InstancesHelper m_InstancesHelper
-
-
Class weka.filters.unsupervised.attribute.AddID
class AddID extends Filter implements Serializable- serialVersionUID:
- 4734383199819293390L
-
Serialized Fields
-
m_Counter
int m_Counter
the counter for the ID -
m_Index
SingleIndex m_Index
the index of the attribute -
m_Name
String m_Name
the name of the attribute
-
-
Class weka.filters.unsupervised.attribute.AddNoise
class AddNoise extends Filter implements Serializable- serialVersionUID:
- -8499673222857299082L
-
Serialized Fields
-
m_AttIndex
SingleIndex m_AttIndex
The attribute's index setting. -
m_Percent
int m_Percent
The subsample size, percent of original set, default 10% -
m_RandomSeed
int m_RandomSeed
The random number generator seed -
m_UseMissing
boolean m_UseMissing
Flag if missing values are taken as value.
-
-
Class weka.filters.unsupervised.attribute.AddUserFields
class AddUserFields extends Filter implements Serializable- serialVersionUID:
- -2761427344847891585L
-
Serialized Fields
-
m_attributeSpecs
List<AddUserFields.AttributeSpec> m_attributeSpecs
The new attributes to create
-
-
Class weka.filters.unsupervised.attribute.AddUserFields.AttributeSpec
class AttributeSpec extends Object implements Serializable- serialVersionUID:
- -617328946241474608L
-
Serialized Fields
-
m_dateFormat
SimpleDateFormat m_dateFormat
The date format to use (if the new attribute is a date) -
m_name
String m_name
The name of the new attribute -
m_nameS
String m_nameS
The name after resolving any environment variables -
m_parsedDate
Date m_parsedDate
Holds the parsed date value -
m_type
String m_type
The type of the new attribute -
m_typeS
String m_typeS
The type after resolving any environment variables -
m_value
String m_value
The constant value it should assume -
m_valueS
String m_valueS
The value after resolving any environment variables
-
-
Class weka.filters.unsupervised.attribute.AddValues
class AddValues extends Filter implements Serializable- serialVersionUID:
- -8100622241742393656L
-
Serialized Fields
-
m_AttIndex
SingleIndex m_AttIndex
The attribute's index setting. -
m_Labels
ArrayList<String> m_Labels
The values to add. -
m_Sort
boolean m_Sort
Whether to sort the values. -
m_SortedIndices
int[] m_SortedIndices
the array with the sorted label indices
-
-
Class weka.filters.unsupervised.attribute.CartesianProduct
class CartesianProduct extends SimpleBatchFilter implements Serializable- serialVersionUID:
- -227979753639722020L
-
Serialized Fields
-
m_Attributes
Range m_Attributes
the attribute range to work on
-
-
Class weka.filters.unsupervised.attribute.Center
class Center extends PotentialClassIgnorer implements Serializable- serialVersionUID:
- -9101338448900581023L
-
Serialized Fields
-
m_Means
double[] m_Means
The means
-
-
Class weka.filters.unsupervised.attribute.ChangeDateFormat
class ChangeDateFormat extends Filter implements Serializable- serialVersionUID:
- -1609344074013448737L
-
Serialized Fields
-
m_AttIndex
SingleIndex m_AttIndex
The attribute's index setting. -
m_DateFormat
SimpleDateFormat m_DateFormat
The output date format. -
m_OutputAttribute
Attribute m_OutputAttribute
The output attribute.
-
-
Class weka.filters.unsupervised.attribute.ClassAssigner
class ClassAssigner extends SimpleStreamFilter implements Serializable- serialVersionUID:
- 1775780193887394115L
-
Serialized Fields
-
m_ClassIndex
int m_ClassIndex
the class index.
-
-
Class weka.filters.unsupervised.attribute.ClusterMembership
class ClusterMembership extends Filter implements Serializable- serialVersionUID:
- 6675702504667714026L
-
Serialized Fields
-
m_clusterer
DensityBasedClusterer m_clusterer
The clusterer -
m_clusterers
DensityBasedClusterer[] m_clusterers
Array for storing the clusterers -
m_ignoreAttributesRange
Range m_ignoreAttributesRange
Range of attributes to ignore -
m_priors
double[] m_priors
The prior probability for each class -
m_removeAttributes
Filter m_removeAttributes
Filter for removing attributes
-
-
Class weka.filters.unsupervised.attribute.Copy
class Copy extends Filter implements Serializable- serialVersionUID:
- -8543707493627441566L
-
Serialized Fields
-
m_CopyCols
Range m_CopyCols
Stores which columns to copy -
m_SelectedAttributes
int[] m_SelectedAttributes
Stores the indexes of the selected attributes in order, once the dataset is seen
-
-
Class weka.filters.unsupervised.attribute.DateToNumeric
class DateToNumeric extends SimpleBatchFilter implements Serializable- serialVersionUID:
- -6614650822291796239L
-
Class weka.filters.unsupervised.attribute.Discretize
class Discretize extends PotentialClassIgnorer implements Serializable- serialVersionUID:
- -1358531742174527279L
-
Serialized Fields
-
m_BinRangePrecision
int m_BinRangePrecision
Precision for bin range labels -
m_CutPoints
double[][] m_CutPoints
Store the current cutpoints -
m_DefaultCols
String m_DefaultCols
The default columns to discretize -
m_DesiredWeightOfInstancesPerInterval
double m_DesiredWeightOfInstancesPerInterval
The desired weight of instances per bin -
m_DiscretizeCols
Range m_DiscretizeCols
Stores which columns to Discretize -
m_FindNumBins
boolean m_FindNumBins
Find the number of bins using cross-validated entropy. -
m_MakeBinary
boolean m_MakeBinary
Output binary attributes for discretized attributes. -
m_NumBins
int m_NumBins
The number of bins to divide the attribute into -
m_SpreadAttributeWeight
boolean m_SpreadAttributeWeight
Whether to spread attribute weight when creating binary attributes -
m_UseBinNumbers
boolean m_UseBinNumbers
Use bin numbers rather than ranges for discretized attributes. -
m_UseEqualFrequency
boolean m_UseEqualFrequency
Use equal-frequency binning if unsupervised discretization turned on
-
-
Class weka.filters.unsupervised.attribute.FirstOrder
class FirstOrder extends Filter implements Serializable- serialVersionUID:
- -7500464545400454179L
-
Serialized Fields
-
m_DeltaCols
Range m_DeltaCols
Stores which columns to take differences between
-
-
Class weka.filters.unsupervised.attribute.FixedDictionaryStringToWordVector
class FixedDictionaryStringToWordVector extends SimpleStreamFilter implements Serializable- serialVersionUID:
- 7990892846966916757L
-
Serialized Fields
-
m_dictionaryFile
File m_dictionaryFile
-
m_dictionaryIsBinary
boolean m_dictionaryIsBinary
Whether the dictionary file contains a binary serialized dictionary, rather than plain text - used when loading from a file in order to differentiate -
m_vectorizer
DictionaryBuilder m_vectorizer
-
-
Class weka.filters.unsupervised.attribute.InterquartileRange
class InterquartileRange extends SimpleBatchFilter implements Serializable- serialVersionUID:
- -227879653639723030L
-
Serialized Fields
-
m_AttributeIndices
int[] m_AttributeIndices
the generated indices (only for performance reasons) -
m_Attributes
Range m_Attributes
the attribute range to work on -
m_DetectionPerAttribute
boolean m_DetectionPerAttribute
whether to generate Outlier/ExtremeValue attributes for each attribute instead of a general one -
m_ExtremeValuesAsOutliers
boolean m_ExtremeValuesAsOutliers
whether extreme values are also tagged as outliers -
m_ExtremeValuesFactor
double m_ExtremeValuesFactor
the factor for detecting extreme values, by default 2*m_OutlierFactor -
m_IQR
double[] m_IQR
the interquartile range -
m_LowerExtremeValue
double[] m_LowerExtremeValue
the lower extreme value threshold (= Q1 - EVF*IQR) -
m_LowerOutlier
double[] m_LowerOutlier
the lower outlier threshold (= Q1 - OF*IQR) -
m_Median
double[] m_Median
the median -
m_OutlierAttributePosition
int[] m_OutlierAttributePosition
the position of the outlier attribute -
m_OutlierFactor
double m_OutlierFactor
the factor for detecting outliers -
m_OutputOffsetMultiplier
boolean m_OutputOffsetMultiplier
whether to add another attribute called "Offset", that lists the 'multiplier' by which the outlier/extreme value is away from the median, i.e., value = median + 'multiplier' * IQR
automatically enables m_DetectionPerAttribute! -
m_UpperExtremeValue
double[] m_UpperExtremeValue
the upper extreme value threshold (= Q3 + EVF*IQR) -
m_UpperOutlier
double[] m_UpperOutlier
the upper outlier threshold (= Q3 + OF*IQR)
-
-
Class weka.filters.unsupervised.attribute.KernelFilter
class KernelFilter extends SimpleBatchFilter implements Serializable- serialVersionUID:
- 213800899640387499L
-
Serialized Fields
-
m_ActualFilter
Filter m_ActualFilter
for centering/standardizing the data (the actual filter to use) -
m_ActualKernel
Kernel m_ActualKernel
the Kernel which is actually used for computation -
m_checksTurnedOff
boolean m_checksTurnedOff
Turn off all checks and conversions? Turning them off assumes that data is purely numeric, doesn't contain any missing values, and has a nominal class. Turning them off also means that no header information will be stored if the machine is linear. Finally, it also assumes that no instance has a weight equal to 0. -
m_Filter
Filter m_Filter
for centering/standardizing the data -
m_InitFile
File m_InitFile
The dataset to initialize the filter with -
m_InitFileClassIndex
SingleIndex m_InitFileClassIndex
the class index for the file to initialized with- See Also:
-
KernelFilter.m_InitFile
-
m_Initialized
boolean m_Initialized
whether the filter was initialized -
m_Kernel
Kernel m_Kernel
Kernel to use -
m_KernelFactor
double m_KernelFactor
the calculated kernel factor- See Also:
-
KernelFilter.m_KernelFactorExpression
-
m_KernelFactorExpression
String m_KernelFactorExpression
optimizes the kernel with this formula (A = # of attributes, N = # of instances) -
m_Missing
ReplaceMissingValues m_Missing
The filter used to get rid of missing values. -
m_NominalToBinary
NominalToBinary m_NominalToBinary
The filter used to make attributes numeric. -
m_NumTrainInstances
int m_NumTrainInstances
The number of instances in the training data.
-
-
Class weka.filters.unsupervised.attribute.MakeIndicator
class MakeIndicator extends Filter implements Serializable- serialVersionUID:
- 766001176862773163L
-
Serialized Fields
-
m_AttIndex
SingleIndex m_AttIndex
The attribute's index setting. -
m_Numeric
boolean m_Numeric
Make Boolean attribute numeric. -
m_ValIndex
Range m_ValIndex
The value's index
-
-
Class weka.filters.unsupervised.attribute.MathExpression
class MathExpression extends PotentialClassIgnorer implements Serializable- serialVersionUID:
- -3713222714671997901L
-
Serialized Fields
-
m_attStats
Stats[] m_attStats
Attributes statistics -
m_CompiledExpression
Primitives.DoubleExpression m_CompiledExpression
The compiled modification expression -
m_CurrentValue
SimpleVariableDeclarations.VariableInitializer m_CurrentValue
VariableInitializer for the current value 'A' in an expression -
m_expression
String m_expression
The modification expression -
m_InstancesHelper
InstancesHelper m_InstancesHelper
InstancesHelpers for different indices -
m_SelectCols
Range m_SelectCols
Stores which columns to select as a funky range -
m_StatsHelper
StatsHelper m_StatsHelper
StatsHelpers for different indices
-
-
Class weka.filters.unsupervised.attribute.MergeInfrequentNominalValues
class MergeInfrequentNominalValues extends SimpleBatchFilter implements Serializable- serialVersionUID:
- 4444337331921333847L
-
Serialized Fields
-
m_AttToBeModified
boolean[] m_AttToBeModified
Indicators for which attributes need to be changed. -
m_MinimumFrequency
int m_MinimumFrequency
Set the minimum frequency for a value not to be merged. -
m_NewValues
int[][] m_NewValues
The new values. -
m_SelectCols
Range m_SelectCols
Stores which atributes to operate on (or nto) -
m_SelectedAttributes
int[] m_SelectedAttributes
Stores the indexes of the selected attributes in order. -
m_UseShortIDs
boolean m_UseShortIDs
Whether to use short identifiers for merge values.
-
-
Class weka.filters.unsupervised.attribute.MergeManyValues
class MergeManyValues extends PotentialClassIgnorer implements Serializable- serialVersionUID:
- 4649332102154713625L
-
Serialized Fields
-
m_AttIndex
SingleIndex m_AttIndex
The attribute's index setting. -
m_Label
String m_Label
The first value's index setting. -
m_MergeRange
Range m_MergeRange
The merge value's index setting.
-
-
Class weka.filters.unsupervised.attribute.MergeTwoValues
class MergeTwoValues extends Filter implements Serializable- serialVersionUID:
- 2925048980504034018L
-
Serialized Fields
-
m_AttIndex
SingleIndex m_AttIndex
The attribute's index setting. -
m_FirstIndex
SingleIndex m_FirstIndex
The first value's index setting. -
m_SecondIndex
SingleIndex m_SecondIndex
The second value's index setting.
-
-
Class weka.filters.unsupervised.attribute.NominalToBinary
class NominalToBinary extends Filter implements Serializable- serialVersionUID:
- -1130642825710549138L
-
Serialized Fields
-
m_Columns
Range m_Columns
Stores which columns to act on -
m_needToTransform
boolean m_needToTransform
Whether we need to transform at all -
m_Numeric
boolean m_Numeric
Are the new attributes going to be nominal or numeric ones? -
m_SpreadAttributeWeight
boolean m_SpreadAttributeWeight
Whether to spread attribute weight when creating binary attributes -
m_TransformAll
boolean m_TransformAll
Are all values transformed into new attributes?
-
-
Class weka.filters.unsupervised.attribute.NominalToString
class NominalToString extends Filter implements Serializable- serialVersionUID:
- 8655492378380068939L
-
Serialized Fields
-
m_AttIndex
Range m_AttIndex
The attribute's index setting.
-
-
Class weka.filters.unsupervised.attribute.Normalize
class Normalize extends PotentialClassIgnorer implements Serializable- serialVersionUID:
- -8158531150984362898L
-
Serialized Fields
-
m_MaxArray
double[] m_MaxArray
The maximum values for numeric attributes. -
m_MinArray
double[] m_MinArray
The minimum values for numeric attributes. -
m_Scale
double m_Scale
The scaling factor of the output range. -
m_Translation
double m_Translation
The translation of the output range.
-
-
Class weka.filters.unsupervised.attribute.NumericCleaner
class NumericCleaner extends SimpleStreamFilter implements Serializable- serialVersionUID:
- -352890679895066592L
-
Serialized Fields
-
m_CloseTo
double m_CloseTo
the number the values are checked for closeness to -
m_CloseToDefault
double m_CloseToDefault
the default replacement value for numbers "close-to" -
m_CloseToTolerance
double m_CloseToTolerance
the tolerance distance, below which numbers are considered being "close-to" -
m_Cols
Range m_Cols
Stores which columns to cleanse -
m_Decimals
int m_Decimals
the number of decimals to round to (-1 means no rounding) -
m_IncludeClass
boolean m_IncludeClass
whether to include the class attribute -
m_MaxDefault
double m_MaxDefault
the maximum default replacement value -
m_MaxThreshold
double m_MaxThreshold
the maximum threshold -
m_MinDefault
double m_MinDefault
the minimum default replacement value -
m_MinThreshold
double m_MinThreshold
the minimum threshold
-
-
Class weka.filters.unsupervised.attribute.NumericToBinary
class NumericToBinary extends PotentialClassIgnorer implements Serializable- serialVersionUID:
- 2616879323359470802L
-
Class weka.filters.unsupervised.attribute.NumericToDate
class NumericToDate extends SimpleBatchFilter implements Serializable- serialVersionUID:
- -6514657821295776239L
-
Serialized Fields
-
m_Cols
Range m_Cols
Stores which columns to turn into date attributes -
m_DateFormat
SimpleDateFormat m_DateFormat
The output date format. -
m_DefaultCols
String m_DefaultCols
The default columns to turn into date attributes
-
-
Class weka.filters.unsupervised.attribute.NumericToNominal
class NumericToNominal extends SimpleBatchFilter implements Serializable- serialVersionUID:
- -6614630932899796239L
-
Class weka.filters.unsupervised.attribute.NumericTransform
class NumericTransform extends Filter implements Serializable- serialVersionUID:
- -8561413333351366934L
-
Class weka.filters.unsupervised.attribute.Obfuscate
class Obfuscate extends Filter implements Serializable- serialVersionUID:
- -343922772462971561L
-
Class weka.filters.unsupervised.attribute.OrdinalToNumeric
class OrdinalToNumeric extends PotentialClassIgnorer implements Serializable- serialVersionUID:
- -5199516576940135696L
-
Class weka.filters.unsupervised.attribute.PartitionedMultiFilter
class PartitionedMultiFilter extends SimpleBatchFilter implements Serializable- serialVersionUID:
- -6293720886005713120L
-
Class weka.filters.unsupervised.attribute.PKIDiscretize
class PKIDiscretize extends Discretize implements Serializable- serialVersionUID:
- 6153101248977702675L
-
Class weka.filters.unsupervised.attribute.PotentialClassIgnorer
class PotentialClassIgnorer extends Filter implements Serializable- serialVersionUID:
- 8625371119276845454L
-
Serialized Fields
-
m_ClassIndex
int m_ClassIndex
Storing the class index -
m_IgnoreClass
boolean m_IgnoreClass
True if the class is to be unset
-
-
Class weka.filters.unsupervised.attribute.PrincipalComponents
class PrincipalComponents extends Filter implements Serializable- serialVersionUID:
- -5649876869480249303L
-
Serialized Fields
-
m_AttributeFilter
Remove m_AttributeFilter
Filter for removing class attribute, nominal attributes with 0 or 1 value. -
m_center
boolean m_center
If true, center (rather than standardize) the data and compute PCA from covariance (rather than correlation) matrix. -
m_centerFilter
Center m_centerFilter
Filter for centering the data -
m_ClassIndex
int m_ClassIndex
Class index. -
m_Correlation
no.uib.cipr.matrix.UpperSymmDenseMatrix m_Correlation
Correlation matrix for the original data. -
m_CoverVariance
double m_CoverVariance
the amount of varaince to cover in the original data when retaining the best n PC's. -
m_Eigenvalues
double[] m_Eigenvalues
Eigenvalues for the corresponding eigenvectors. -
m_Eigenvectors
double[][] m_Eigenvectors
Will hold the unordered linear transformations of the (normalized) original data. -
m_HasClass
boolean m_HasClass
Data has a class set. -
m_MaxAttributes
int m_MaxAttributes
maximum number of attributes in the transformed data (-1 for all). -
m_MaxAttrsInName
int m_MaxAttrsInName
maximum number of attributes in the transformed attribute name. -
m_NominalToBinaryFilter
NominalToBinary m_NominalToBinaryFilter
Filter for turning nominal values into numeric ones. -
m_NumAttribs
int m_NumAttribs
Number of attributes. -
m_NumInstances
int m_NumInstances
Number of instances. -
m_OutputNumAtts
int m_OutputNumAtts
The number of attributes in the pc transformed data. -
m_ReplaceMissingFilter
ReplaceMissingValues m_ReplaceMissingFilter
Filters for replacing missing values. -
m_SortedEigens
int[] m_SortedEigens
Sorted eigenvalues. -
m_standardizeFilter
Standardize m_standardizeFilter
Filter for standardizing the data -
m_SumOfEigenValues
double m_SumOfEigenValues
sum of the eigenvalues. -
m_TrainCopy
Instances m_TrainCopy
Keep a copy for the class attribute (if set). -
m_TrainInstances
Instances m_TrainInstances
The data to transform analyse/transform. -
m_TransformedFormat
Instances m_TransformedFormat
The header for the transformed data format.
-
-
Class weka.filters.unsupervised.attribute.RandomProjection
class RandomProjection extends Filter implements Serializable- serialVersionUID:
- 4428905532728645880L
-
Serialized Fields
-
m_distribution
int m_distribution
Stores the distribution to use for calculating the random matrix -
m_k
int m_k
Stores the number of dimensions to reduce the data to -
m_ntob
Filter m_ntob
The NominalToBinary filter applied to the data before this filter -
m_OutputFormatDefined
boolean m_OutputFormatDefined
Keeps track of output format if it is defined or not -
m_percent
double m_percent
Stores the dimensionality the data should be reduced to as percentage of the original dimension -
m_random
Random m_random
The random number generator used for generating the random matrix -
m_replaceMissing
Filter m_replaceMissing
The ReplaceMissingValues filter -
m_rmatrix
double[][] m_rmatrix
The random matrix -
m_rndmSeed
int m_rndmSeed
Stores the random seed used to generate the random matrix -
m_useReplaceMissing
boolean m_useReplaceMissing
Should the missing values be replaced using unsupervised.ReplaceMissingValues filter
-
-
Class weka.filters.unsupervised.attribute.RandomSubset
class RandomSubset extends SimpleBatchFilter implements Serializable- serialVersionUID:
- 2911221724251628050L
-
Serialized Fields
-
m_Indices
int[] m_Indices
The indices of the attributes that got selected. -
m_invertSelection
boolean m_invertSelection
Whether to randomly remove rather than select -
m_NumAttributes
double m_NumAttributes
The number of attributes to randomly choose (>= 1 absolute number of attributes, < 1 percentage). -
m_Seed
int m_Seed
The seed value.
-
-
Class weka.filters.unsupervised.attribute.Remove
class Remove extends Filter implements Serializable- serialVersionUID:
- 5011337331921522847L
-
Serialized Fields
-
m_SelectCols
Range m_SelectCols
Stores which columns to select as a funky range -
m_SelectedAttributes
int[] m_SelectedAttributes
Stores the indexes of the selected attributes in order, once the dataset is seen
-
-
Class weka.filters.unsupervised.attribute.RemoveByName
class RemoveByName extends SimpleStreamFilter implements Serializable- serialVersionUID:
- -3335106965521265631L
-
Class weka.filters.unsupervised.attribute.RemoveType
class RemoveType extends Filter implements Serializable- serialVersionUID:
- -3563999462782486279L
-
Serialized Fields
-
m_attributeFilter
Remove m_attributeFilter
The attribute filter used to do the filtering -
m_attTypeToDelete
int m_attTypeToDelete
The type of attribute to delete -
m_invert
boolean m_invert
Whether to invert selection
-
-
Class weka.filters.unsupervised.attribute.RemoveUseless
class RemoveUseless extends Filter implements Serializable- serialVersionUID:
- -8659417851407640038L
-
Serialized Fields
-
m_maxVariancePercentage
double m_maxVariancePercentage
The type of attribute to delete -
m_removeFilter
Remove m_removeFilter
The filter used to remove attributes
-
-
Class weka.filters.unsupervised.attribute.RenameAttribute
class RenameAttribute extends SimpleStreamFilter implements Serializable- serialVersionUID:
- 4216491776378279596L
-
Serialized Fields
-
m_AttributeIndices
Range m_AttributeIndices
the attribute range to work on. -
m_Find
String m_Find
the regular expression that the attribute names have to match. -
m_Replace
String m_Replace
the regular expression to replace the attribute name with. -
m_ReplaceAll
boolean m_ReplaceAll
whether to replace all occurrences or just the first.
-
-
Class weka.filters.unsupervised.attribute.RenameNominalValues
class RenameNominalValues extends Filter implements Serializable- serialVersionUID:
- -2121767582746512209L
-
Serialized Fields
-
m_ignoreCase
boolean m_ignoreCase
True if case is to be ignored when matching nominal values -
m_invert
boolean m_invert
True if the matching sense (for attributes) is to be inverted -
m_renameMap
Map<String,
String> m_renameMap The map of nominal values and their replacements -
m_renameVals
String m_renameVals
The comma-separated list of nominal values and their replacements -
m_selectedAttributes
int[] m_selectedAttributes
Stores the indexes of the selected attributes in order, once the dataset is seen -
m_selectedCols
Range m_selectedCols
The range object to use if a range has been supplied -
m_selectedColsString
String m_selectedColsString
Range specification or comma-separated list of attribute names
-
-
Class weka.filters.unsupervised.attribute.Reorder
class Reorder extends Filter implements Serializable- serialVersionUID:
- -1135571321097202292L
-
Serialized Fields
-
m_InputStringIndex
int[] m_InputStringIndex
Contains an index of string attributes in the input format that survive the filtering process -- some entries may be duplicated -
m_NewOrderCols
String m_NewOrderCols
Stores which columns to reorder -
m_SelectedAttributes
int[] m_SelectedAttributes
Stores the indexes of the selected attributes in order, once the dataset is seen -
m_setAllAttributeWeightsToOne
boolean m_setAllAttributeWeightsToOne
Whether to set all attribute weights to 1.0 in the reordered data.
-
-
Class weka.filters.unsupervised.attribute.ReplaceMissingValues
class ReplaceMissingValues extends PotentialClassIgnorer implements Serializable- serialVersionUID:
- 8349568310991609867L
-
Serialized Fields
-
m_ModesAndMeans
double[] m_ModesAndMeans
The modes and means
-
-
Class weka.filters.unsupervised.attribute.ReplaceMissingWithUserConstant
class ReplaceMissingWithUserConstant extends PotentialClassIgnorer implements Serializable- serialVersionUID:
- -7334039452189350356L
-
Serialized Fields
-
m_dateConstant
String m_dateConstant
Constant for replacing missing values in date attributes with -
m_dateConstVal
double m_dateConstVal
Parsed date value as a double -
m_defaultDateFormat
String m_defaultDateFormat
Formatting string to use for parsing the date constant -
m_nominalStringConstant
String m_nominalStringConstant
Constant for replacing missing values in nominal/string atts with -
m_numericConstant
String m_numericConstant
Constant for replacing missing values in numeric attributes with -
m_numericConstVal
double m_numericConstVal
Parsed numeric constant value -
m_range
String m_range
-
m_resolvedDateConstant
String m_resolvedDateConstant
Replacement value for date atts after resolving environment vars -
m_resolvedDateFormat
String m_resolvedDateFormat
Formatting string after resolving environment vars -
m_resolvedNominalStringConstant
String m_resolvedNominalStringConstant
Replacement value for nominal/string atts after resolving environment vars -
m_resolvedNumericConstant
String m_resolvedNumericConstant
Replacement value for numeric atts after resolving environment vars -
m_resolvedRange
String m_resolvedRange
-
m_selectedRange
Range m_selectedRange
Range of columns to consider
-
-
Class weka.filters.unsupervised.attribute.ReplaceWithMissingValue
class ReplaceWithMissingValue extends SimpleBatchFilter implements Serializable- serialVersionUID:
- -2356630932899796239L
-
Serialized Fields
-
m_Cols
Range m_Cols
Stores which columns to turn into nominals -
m_DefaultCols
String m_DefaultCols
The default columns to turn into nominals -
m_IgnoreClass
boolean m_IgnoreClass
True if the class is to be unset -
m_Probability
double m_Probability
The probability -
m_Seed
int m_Seed
The seed for the random number generator
-
-
Class weka.filters.unsupervised.attribute.SortLabels
class SortLabels extends SimpleStreamFilter implements Serializable- serialVersionUID:
- 7815204879694105691L
-
Serialized Fields
-
m_AttributeIndices
Range m_AttributeIndices
the range of attributes to process (only relational ones will be processed). -
m_Comparator
Comparator<String> m_Comparator
the comparator to use for sorting. -
m_NewOrder
int[][] m_NewOrder
the new order for the labels. -
m_SortType
int m_SortType
the sort type.
-
-
Class weka.filters.unsupervised.attribute.SortLabels.CaseInsensitiveComparator
class CaseInsensitiveComparator extends Object implements Serializable- serialVersionUID:
- -4515292733342486066L
-
Class weka.filters.unsupervised.attribute.SortLabels.CaseSensitiveComparator
class CaseSensitiveComparator extends Object implements Serializable- serialVersionUID:
- 7071450356783873277L
-
Class weka.filters.unsupervised.attribute.Standardize
class Standardize extends PotentialClassIgnorer implements Serializable- serialVersionUID:
- -6830769026855053281L
-
Serialized Fields
-
m_Means
double[] m_Means
The means -
m_StdDevs
double[] m_StdDevs
The variances
-
-
Class weka.filters.unsupervised.attribute.StringToNominal
class StringToNominal extends Filter implements Serializable- serialVersionUID:
- 4864084427902797605L
-
Serialized Fields
-
m_AttIndices
Range m_AttIndices
The attribute's range indices setting.
-
-
Class weka.filters.unsupervised.attribute.StringToWordVector
class StringToWordVector extends Filter implements Serializable- serialVersionUID:
- 8249106275278565424L
-
Serialized Fields
-
m_dictionaryBuilder
DictionaryBuilder m_dictionaryBuilder
Used to build and manage the dictionary + vectorization -
m_dictionaryFile
File m_dictionaryFile
File to save the dictionary to -
m_dictionaryIsBinary
boolean m_dictionaryIsBinary
Whether to save the dictionary in serialized form rather than as plain text -
m_filterType
int m_filterType
The normalization to apply. -
m_PeriodicPruningRate
double m_PeriodicPruningRate
The percentage at which to periodically prune the dictionary.
-
-
Class weka.filters.unsupervised.attribute.SwapValues
class SwapValues extends Filter implements Serializable- serialVersionUID:
- 6155834679414275855L
-
Serialized Fields
-
m_AttIndex
SingleIndex m_AttIndex
The attribute's index setting. -
m_FirstIndex
SingleIndex m_FirstIndex
The first value's index setting. -
m_SecondIndex
SingleIndex m_SecondIndex
The second value's index setting.
-
-
Class weka.filters.unsupervised.attribute.TimeSeriesDelta
class TimeSeriesDelta extends TimeSeriesTranslate implements Serializable- serialVersionUID:
- 3101490081896634942L
-
Class weka.filters.unsupervised.attribute.TimeSeriesTranslate
class TimeSeriesTranslate extends AbstractTimeSeries implements Serializable- serialVersionUID:
- -8901621509691785705L
-
Class weka.filters.unsupervised.attribute.Transpose
class Transpose extends SimpleBatchFilter implements Serializable- serialVersionUID:
- 213999899640387499L
-
-
Package weka.filters.unsupervised.instance
-
Class weka.filters.unsupervised.instance.NonSparseToSparse
class NonSparseToSparse extends Filter implements Serializable- serialVersionUID:
- 4694489111366063852L
-
Serialized Fields
-
m_encodeMissingAsZero
boolean m_encodeMissingAsZero
-
-
Class weka.filters.unsupervised.instance.Randomize
class Randomize extends Filter implements Serializable- serialVersionUID:
- 8854479785121877582L
-
Serialized Fields
-
m_Random
Random m_Random
The current random number generator -
m_Seed
int m_Seed
The random number seed
-
-
Class weka.filters.unsupervised.instance.RemoveDuplicates
class RemoveDuplicates extends SimpleBatchFilter implements Serializable- serialVersionUID:
- 4518686110979589602L
-
Class weka.filters.unsupervised.instance.RemoveFolds
class RemoveFolds extends Filter implements Serializable- serialVersionUID:
- 8220373305559055700L
-
Serialized Fields
-
m_Fold
int m_Fold
Fold to output -
m_Inverse
boolean m_Inverse
Indicates if inverse of selection is to be output. -
m_NumFolds
int m_NumFolds
Number of folds to split dataset into -
m_Seed
long m_Seed
Random number seed.
-
-
Class weka.filters.unsupervised.instance.RemoveFrequentValues
class RemoveFrequentValues extends Filter implements Serializable- serialVersionUID:
- -2447432930070059511L
-
Serialized Fields
-
m_AttIndex
SingleIndex m_AttIndex
The attribute's index setting. -
m_Invert
boolean m_Invert
whether to invert the matching sense. -
m_LeastValues
boolean m_LeastValues
whether to retain values with least instances instead of most. -
m_ModifyHeader
boolean m_ModifyHeader
Modify header for nominal attributes? -
m_NominalMapping
int[] m_NominalMapping
If m_ModifyHeader, stores a mapping from old to new indexes -
m_NumValues
int m_NumValues
the number of values to retain. -
m_Values
HashSet<String> m_Values
contains the values to retain
-
-
Class weka.filters.unsupervised.instance.RemoveMisclassified
class RemoveMisclassified extends Filter implements Serializable- serialVersionUID:
- 5469157004717663171L
-
Serialized Fields
-
m_classIndex
int m_classIndex
The attribute to treat as the class for purposes of cleansing. -
m_cleansingClassifier
Classifier m_cleansingClassifier
The classifier used to do the cleansing -
m_firstBatchFinished
boolean m_firstBatchFinished
Have we processed the first batch (i.e. training data)? -
m_invertMatching
boolean m_invertMatching
Whether to invert the match so the correctly classified instances are discarded -
m_numericClassifyThreshold
double m_numericClassifyThreshold
The threshold for deciding when a numeric value is correctly classified -
m_numOfCleansingIterations
int m_numOfCleansingIterations
The maximum number of cleansing iterations to perform (<1 = until fully cleansed) -
m_numOfCrossValidationFolds
int m_numOfCrossValidationFolds
The number of cross validation folds to perform (<2 = no cross validation)
-
-
Class weka.filters.unsupervised.instance.RemovePercentage
class RemovePercentage extends Filter implements Serializable- serialVersionUID:
- 2150341191158533133L
-
Serialized Fields
-
m_Inverse
boolean m_Inverse
Indicates if inverse of selection is to be output. -
m_Percentage
double m_Percentage
Percentage of instances to select.
-
-
Class weka.filters.unsupervised.instance.RemoveRange
class RemoveRange extends Filter implements Serializable- serialVersionUID:
- -3064641215340828695L
-
Serialized Fields
-
m_Range
Range m_Range
Range of instances requested by the user.
-
-
Class weka.filters.unsupervised.instance.RemoveWithValues
class RemoveWithValues extends Filter implements Serializable- serialVersionUID:
- 4752870193679263361L
-
Serialized Fields
-
m_AttIndex
SingleIndex m_AttIndex
The attribute's index setting. -
m_dontFilterAfterFirstBatch
boolean m_dontFilterAfterFirstBatch
Whether to filter instances after the first batch has been processed -
m_MatchMissingValues
boolean m_MatchMissingValues
True if missing values should count as a match -
m_ModifyHeader
boolean m_ModifyHeader
Modify header for nominal attributes? -
m_NominalMapping
int[] m_NominalMapping
If m_ModifyHeader, stores a mapping from old to new indexes -
m_Value
double m_Value
Stores which value of a numeric attribute is to be used for filtering. -
m_Values
Range m_Values
Stores which values of nominal attribute are to be used for filtering.
-
-
Class weka.filters.unsupervised.instance.Resample
class Resample extends Filter implements Serializable- serialVersionUID:
- 3119607037607101160L
-
Serialized Fields
-
m_InvertSelection
boolean m_InvertSelection
Whether to invert the selection (only if instances are drawn WITHOUT replacement)- See Also:
-
Resample.m_NoReplacement
-
m_NoReplacement
boolean m_NoReplacement
Whether to perform sampling with replacement or without -
m_RandomSeed
int m_RandomSeed
The random number generator seed -
m_SampleSizePercent
double m_SampleSizePercent
The subsample size, percent of original set, default 100%
-
-
Class weka.filters.unsupervised.instance.ReservoirSample
class ReservoirSample extends Filter implements Serializable- serialVersionUID:
- 3119607037607101160L
-
Serialized Fields
-
m_containsStringAtts
boolean m_containsStringAtts
True if the incoming data contains string attributes -
m_currentInst
int m_currentInst
The current instance being processed -
m_random
Random m_random
The random number generator -
m_RandomSeed
int m_RandomSeed
The random number generator seed -
m_SampleSize
int m_SampleSize
The subsample size, number of instances% -
m_subSample
Object[] m_subSample
Holds the sub-sample (reservoir)
-
-
Class weka.filters.unsupervised.instance.SparseToNonSparse
class SparseToNonSparse extends Filter implements Serializable- serialVersionUID:
- 2481634184210236074L
-
Class weka.filters.unsupervised.instance.SubsetByExpression
class SubsetByExpression extends SimpleBatchFilter implements Serializable- serialVersionUID:
- 5628686110979589602L
-
Serialized Fields
-
m_Expression
String m_Expression
the expresion to use for filtering. -
m_filterAfterFirstBatch
boolean m_filterAfterFirstBatch
Whether to filter instances after the first batch has been processed
-
-
-
Package weka.gui
-
Class weka.gui.AbstractGUIApplication
class AbstractGUIApplication extends JPanel implements Serializable- serialVersionUID:
- -2116770422043462730L
-
Serialized Fields
-
m_applicationSettings
Settings m_applicationSettings
The settings for the application -
m_perspectiveManager
PerspectiveManager m_perspectiveManager
Manages perspectives and provides the perspectives toolbar
-
-
Class weka.gui.AbstractPerspective
class AbstractPerspective extends JPanel implements Serializable- serialVersionUID:
- 1919714661641262879L
-
Serialized Fields
-
m_isActive
boolean m_isActive
True if this perspective is currently the active/visible one -
m_isLoaded
boolean m_isLoaded
True if this perspective has been loaded -
m_log
Logger m_log
Logger for this perspective -
m_mainApplication
GUIApplication m_mainApplication
The main application that is displaying this perspective -
m_perspectiveIcon
Icon m_perspectiveIcon
Icon for this perspective -
m_perspectiveID
String m_perspectiveID
The ID of the perspective -
m_perspectiveTipText
String m_perspectiveTipText
Tip text for this perspective -
m_perspectiveTitle
String m_perspectiveTitle
The title of the perspective
-
-
Class weka.gui.AttributeListPanel
class AttributeListPanel extends JPanel implements Serializable- serialVersionUID:
- -2030706987910400362L
-
Serialized Fields
-
m_Model
weka.gui.AttributeListPanel.AttributeTableModel m_Model
The table model containing attribute names -
m_Table
JTable m_Table
The table displaying attribute names
-
-
Class weka.gui.AttributeSelectionPanel
class AttributeSelectionPanel extends JPanel implements Serializable- serialVersionUID:
- 627131485290359194L
-
Serialized Fields
-
m_IncludeAll
JButton m_IncludeAll
Press to select all attributes -
m_Invert
JButton m_Invert
Press to invert the current selection -
m_Model
weka.gui.AttributeSelectionPanel.AttributeTableModel m_Model
The table model containing attribute names and selection status -
m_Pattern
JButton m_Pattern
Press to enter a perl regular expression for selection -
m_PatternRegEx
String m_PatternRegEx
The current regular expression. -
m_RemoveAll
JButton m_RemoveAll
Press to deselect all attributes -
m_Table
JTable m_Table
The table displaying attribute names and selection status
-
-
Class weka.gui.AttributeSummaryPanel
class AttributeSummaryPanel extends JPanel implements Serializable- serialVersionUID:
- -5434987925737735880L
-
Serialized Fields
-
m_allEqualWeights
boolean m_allEqualWeights
Do all instances have the same weight -
m_AttributeNameLab
JLabel m_AttributeNameLab
Displays the name of the relation -
m_AttributeStats
AttributeStats[] m_AttributeStats
Cached stats on the attributes we've summarized so far -
m_AttributeTypeLab
JLabel m_AttributeTypeLab
Displays the type of attribute -
m_AttributeWeightLab
JLabel m_AttributeWeightLab
Displays the weight of attribute -
m_DistinctLab
JLabel m_DistinctLab
Displays the number of distinct values -
m_Instances
Instances m_Instances
The instances we're playing with -
m_MissingLab
JLabel m_MissingLab
Displays the number of missing values -
m_StatsTable
JTable m_StatsTable
Displays other stats in a table -
m_UniqueLab
JLabel m_UniqueLab
Displays the number of unique values -
m_WeightLab
JLabel m_WeightLab
Displays the string "Weight:"
-
-
Class weka.gui.AttributeVisualizationPanel
class AttributeVisualizationPanel extends PrintablePanel implements Serializable- serialVersionUID:
- -8650490488825371193L
-
Serialized Fields
-
m_as
AttributeStats m_as
This holds the attribute stats of the current attribute on display. It is calculated in setAttribute(int idx) when it is called to set a new attribute index. -
m_asCache
AttributeStats[] m_asCache
Cache of attribute stats info for the current data set -
m_attribIndex
int m_attribIndex
This holds the index of the current attribute on display and should be set through setAttribute(int idx). -
m_barRange
double m_barRange
Contains the range of each bar in a histogram. It is used to work out the range of bar the mouse pointer is on in getToolTipText(). -
m_classIndex
int m_classIndex
Contains the current class index. -
m_colorAttrib
JComboBox m_colorAttrib
This stores and lets the user select a class attribute. It also has an entry "No Class" if the user does not want to set a class attribute for colouring. -
m_colorList
ArrayList<Color> m_colorList
Contains discrete colours for colouring of subbars of histograms and bar plots when the class attribute is set and is nominal -
m_data
Instances m_data
This holds the current set of instances -
m_displayCurrentAttribute
boolean m_displayCurrentAttribute
-
m_doneCurrentAttribute
boolean m_doneCurrentAttribute
-
m_fm
FontMetrics m_fm
Fontmetrics used to get the font size which is required for calculating displayable area size, bar height ratio and width of strings that are displayed on top of bars indicating their count. -
m_hc
Thread m_hc
This stores the BarCalc or HistCalc thread while a new barplot or histogram is being calculated. -
m_histBarClassCounts
SparseInstance[] m_histBarClassCounts
This array holds the per class count (or per class height) of the each of the bars in a barplot or a histogram. For nominal attributes the format is:
m_histBarClassCounts[nominalValue][classValue+1]. For numeric attributes the format is:
m_histBarClassCounts[interval][classValues+1],
where the number of intervals is calculated by the Scott's method as mentioned above. The array is initialized to have 1+numClasses to accomodate for instances with missing class value. The ones with missing class value are displayed as a black sub par in a histogram or a barplot. NOTE: The values of this array are only calculated if the class attribute is set and it is nominal. -
m_histBarCounts
double[] m_histBarCounts
This array holds the count (or height) for the each of the bars in a barplot or a histogram. In case of barplots (and current attribute being nominal) its length (and the number of bars) is equal to the number of nominal values in the current attribute, with each field of the array being equal to the count of each nominal that it represents (the count of ith nominal value of an attribute is given by m_as.nominalWeights[i]). Whereas, in case of histograms (and current attribute being numeric) the width of its intervals is calculated by Scott's(1979) method:
intervalWidth = Max(1, 3.49*Std.Dev*numInstances^(1/3)) And the number of intervals by:
intervals = max(1, Math.round(Range/intervalWidth); Then each field of this array contains the number of values of the current attribute that fall in the histogram interval that it represents.
NOTE: The values of this array are only calculated if the class attribute is not set or if it is numeric. -
m_locker
Integer m_locker
Lock variable to synchronize the different threads running currently in this class. There are two to three threads in this class, AWT paint thread which is handled differently in paintComponent() which checks on m_threadRun to determine if it can perform full paint or not, the second thread is the main execution thread and the third is the one represented by m_hc which we start when we want to calculate the internal fields for a bar plot or a histogram. -
m_maxValue
double m_maxValue
This holds the max value of the current attribute. In case of nominal attribute it is the highest count that a nominal value has in the attribute (given by m_as.nominalWeights[i]), otherwise in case of numeric attribute it is simply the maximum value present in the attribute (given by m_as.numericStats.max). It is used to calculate the ratio of the height of the bars with respect to the height of the display area. -
m_threadRun
boolean m_threadRun
True if the thread m_hc above is running.
-
-
Class weka.gui.CheckBoxList
class CheckBoxList extends JList implements Serializable- serialVersionUID:
- -4359573373359270258L
-
Class weka.gui.CheckBoxList.CheckBoxListModel
class CheckBoxListModel extends DefaultListModel implements Serializable- serialVersionUID:
- 7772455499540273507L
-
Class weka.gui.CheckBoxList.CheckBoxListRenderer
class CheckBoxListRenderer extends JCheckBox implements Serializable- serialVersionUID:
- 1059591605858524586L
-
Class weka.gui.CloseableTabTitle
class CloseableTabTitle extends JPanel implements Serializable- serialVersionUID:
- 9178081197757118130L
-
Serialized Fields
-
m_callback
CloseableTabTitle.ClosingCallback m_callback
Owner to callback on closing widget click -
m_closeAccelleratorText
String m_closeAccelleratorText
Description of the keyboard accellerator used for closing the active tab (if any) -
m_enclosingPane
JTabbedPane m_enclosingPane
The enclosing JTabbedPane -
m_tabButton
weka.gui.CloseableTabTitle.TabButton m_tabButton
The close widget -
m_tabLabel
JLabel m_tabLabel
The label for the tab
-
-
Class weka.gui.ConverterFileChooser
class ConverterFileChooser extends WekaFileChooser implements Serializable- serialVersionUID:
- -5373058011025481738L
-
Serialized Fields
-
m_CapabilitiesFilter
Capabilities m_CapabilitiesFilter
the Capabilities filter for the savers. -
m_CheckBoxOptions
JCheckBox m_CheckBoxOptions
the checkbox for bringing up the GenericObjectEditor. -
m_CoreConvertersOnly
boolean m_CoreConvertersOnly
whether to display only core converters (hardcoded in ConverterUtils). Necessary for RMI/Remote Experiments for instance. -
m_CurrentConverter
Object m_CurrentConverter
the converter that was chosen by the user. -
m_DialogType
int m_DialogType
the type of dialog to display. -
m_Editor
GenericObjectEditor m_Editor
the GOE for displaying the options of a loader/saver. -
m_EditorResult
int m_EditorResult
whether the GOE was OKed or Canceled. -
m_FileMustExist
boolean m_FileMustExist
whether the file to be opened must exist (only open dialog). -
m_LastFilter
FileFilter m_LastFilter
the last filter that was used for opening/saving. -
m_Listener
PropertyChangeListener m_Listener
the propertychangelistener. -
m_OverwriteWarning
boolean m_OverwriteWarning
whether to popup a dialog in case the file already exists (only save dialog).
-
-
Class weka.gui.CostBenefitAnalysisPanel
class CostBenefitAnalysisPanel extends JPanel implements Serializable- serialVersionUID:
- 5364871945448769003L
-
Serialized Fields
-
m_benefitR
JRadioButton m_benefitR
-
m_classAttribute
Attribute m_classAttribute
The class attribute from the data that was used to generate the threshold curve -
m_classificationAccV
JLabel m_classificationAccV
Classification accuracy -
m_conf_aa
weka.gui.CostBenefitAnalysisPanel.ConfusionCell m_conf_aa
-
m_conf_ab
weka.gui.CostBenefitAnalysisPanel.ConfusionCell m_conf_ab
-
m_conf_actualA
JLabel m_conf_actualA
-
m_conf_actualB
JLabel m_conf_actualB
-
m_conf_ba
weka.gui.CostBenefitAnalysisPanel.ConfusionCell m_conf_ba
-
m_conf_bb
weka.gui.CostBenefitAnalysisPanel.ConfusionCell m_conf_bb
-
m_conf_predictedA
JLabel m_conf_predictedA
-
m_conf_predictedB
JLabel m_conf_predictedB
-
m_cost_aa
JTextField m_cost_aa
-
m_cost_ab
JTextField m_cost_ab
-
m_cost_actualA
JLabel m_cost_actualA
-
m_cost_actualB
JLabel m_cost_actualB
-
m_cost_ba
JTextField m_cost_ba
-
m_cost_bb
JTextField m_cost_bb
-
m_cost_predictedA
JLabel m_cost_predictedA
-
m_cost_predictedB
JLabel m_cost_predictedB
-
m_costBenefit
PlotData2D m_costBenefit
Data for the cost/benefit curve -
m_costBenefitL
JLabel m_costBenefitL
-
m_costBenefitPanel
VisualizePanel m_costBenefitPanel
Displays the cost/benefit (profit/loss) graph -
m_costBenefitV
JLabel m_costBenefitV
-
m_costR
JRadioButton m_costR
-
m_fnPrevious
double m_fnPrevious
-
m_fpPrevious
double m_fpPrevious
-
m_gainV
JLabel m_gainV
-
m_masterPlot
PlotData2D m_masterPlot
Data for the threshold curve -
m_maximizeCB
JButton m_maximizeCB
-
m_minimizeCB
JButton m_minimizeCB
-
m_originalPopSize
int m_originalPopSize
-
m_percOfTarget
JRadioButton m_percOfTarget
-
m_percOfTargetLab
JLabel m_percOfTargetLab
-
m_percPop
JRadioButton m_percPop
-
m_percPopLab
JLabel m_percPopLab
-
m_performancePanel
VisualizePanel m_performancePanel
Displays the performance graphs(s) -
m_previousShapeIndex
int m_previousShapeIndex
The index of the previous plotted point that was highlighted -
m_randomV
JLabel m_randomV
-
m_shapeSizes
int[] m_shapeSizes
The size of the points being plotted -
m_threshold
JRadioButton m_threshold
-
m_thresholdLab
JLabel m_thresholdLab
-
m_thresholdSlider
JSlider m_thresholdSlider
The slider for adjusting the threshold -
m_tnPrevious
double m_tnPrevious
-
m_totalPopField
JTextField m_totalPopField
Population text field -
m_totalPopPrevious
int m_totalPopPrevious
-
m_tpPrevious
double m_tpPrevious
-
-
Class weka.gui.CostBenefitAnalysisPanel.ConfusionCell
class ConfusionCell extends JPanel implements Serializable- serialVersionUID:
- 6148640235434494767L
-
Class weka.gui.DatabaseConnectionDialog
class DatabaseConnectionDialog extends JDialog implements Serializable- serialVersionUID:
- -1081946748666245054L
-
Serialized Fields
-
m_DbaseURLLab
JLabel m_DbaseURLLab
-
m_DbaseURLText
JTextField m_DbaseURLText
-
m_DebugCheckBox
JCheckBox m_DebugCheckBox
-
m_DebugLab
JLabel m_DebugLab
-
m_PasswordLab
JLabel m_PasswordLab
-
m_PasswordText
JPasswordField m_PasswordText
-
m_returnValue
int m_returnValue
-
m_UserNameLab
JLabel m_UserNameLab
-
m_UserNameText
JTextField m_UserNameText
-
-
Class weka.gui.EnvironmentField
class EnvironmentField extends JPanel implements Serializable- serialVersionUID:
- -3125404573324734121L
-
Serialized Fields
-
m_combo
JComboBox m_combo
The combo box -
m_currentCaretPos
int m_currentCaretPos
-
m_currentContents
String m_currentContents
-
m_env
Environment m_env
The current environment variables -
m_firstCaretPos
int m_firstCaretPos
-
m_label
JLabel m_label
The label for the widget -
m_previousCaretPos
int m_previousCaretPos
-
m_support
PropertyChangeSupport m_support
-
-
Class weka.gui.EnvironmentField.WideComboBox
class WideComboBox extends JComboBox implements Serializable- serialVersionUID:
- -6512065375459733517L
-
Serialized Fields
-
m_layingOut
boolean m_layingOut
-
-
Class weka.gui.ETable
class ETable extends JTable implements Serializable- serialVersionUID:
- -3028630226368293049L
-
Serialized Fields
-
MAC_FOCUSED_SELECTED_CELL_HORIZONTAL_LINE_COLOR
Color MAC_FOCUSED_SELECTED_CELL_HORIZONTAL_LINE_COLOR
-
MAC_FOCUSED_SELECTED_VERTICAL_LINE_COLOR
Color MAC_FOCUSED_SELECTED_VERTICAL_LINE_COLOR
-
MAC_FOCUSED_UNSELECTED_VERTICAL_LINE_COLOR
Color MAC_FOCUSED_UNSELECTED_VERTICAL_LINE_COLOR
-
MAC_OS_ALTERNATE_ROW_COLOR
Color MAC_OS_ALTERNATE_ROW_COLOR
-
MAC_UNFOCUSED_SELECTED_CELL_BACKGROUND_COLOR
Color MAC_UNFOCUSED_SELECTED_CELL_BACKGROUND_COLOR
-
MAC_UNFOCUSED_SELECTED_CELL_HORIZONTAL_LINE_COLOR
Color MAC_UNFOCUSED_SELECTED_CELL_HORIZONTAL_LINE_COLOR
-
MAC_UNFOCUSED_SELECTED_VERTICAL_LINE_COLOR
Color MAC_UNFOCUSED_SELECTED_VERTICAL_LINE_COLOR
-
MAC_UNFOCUSED_UNSELECTED_VERTICAL_LINE_COLOR
Color MAC_UNFOCUSED_UNSELECTED_VERTICAL_LINE_COLOR
-
-
Class weka.gui.EvaluationMetricSelectionDialog
class EvaluationMetricSelectionDialog extends JDialog implements Serializable- serialVersionUID:
- 4451184027143094270L
-
Class weka.gui.ExtensionFileFilter
class ExtensionFileFilter extends FileFilter implements Serializable- serialVersionUID:
- -5960622841390665131L
-
Class weka.gui.ExtensionFileFilterWithClass
class ExtensionFileFilterWithClass extends ExtensionFileFilter implements Serializable-
Serialized Fields
-
m_FilterClass
Class m_FilterClass
the underlying class.
-
-
-
Class weka.gui.FileEnvironmentField
class FileEnvironmentField extends EnvironmentField implements Serializable- serialVersionUID:
- -233731548086207652L
-
Serialized Fields
-
m_browseBut
JButton m_browseBut
The button to pop up the file dialog -
m_fileEditor
FileEditor m_fileEditor
File editor component -
m_fileEditorDialog
PropertyDialog m_fileEditorDialog
Dialog to hold the file editor
-
-
Class weka.gui.GenericObjectEditor.CapabilitiesFilterDialog
class CapabilitiesFilterDialog extends JDialog implements Serializable- serialVersionUID:
- -7845503345689646266L
-
Serialized Fields
-
m_CancelButton
JButton m_CancelButton
the Cancel button. -
m_Capabilities
Capabilities m_Capabilities
the capabilities used for initializing the dialog. -
m_InfoLabel
JLabel m_InfoLabel
the label, listing the name of the superclass. -
m_List
CheckBoxList m_List
the list with all the capabilities. -
m_OkButton
JButton m_OkButton
the OK button. -
m_Popup
JPopupMenu m_Popup
the popup to display again. -
m_Self
JDialog m_Self
the dialog itself.
-
-
Class weka.gui.GenericObjectEditor.GOEPanel
class GOEPanel extends JPanel implements Serializable- serialVersionUID:
- 3656028520876011335L
-
Serialized Fields
-
m_cancelBut
JButton m_cancelBut
cancel button. -
m_ChildPropertySheet
PropertySheetPanel m_ChildPropertySheet
The component that performs classifier customization. -
m_ClassNameLabel
JLabel m_ClassNameLabel
The name of the current class. -
m_FileChooser
WekaFileChooser m_FileChooser
The filechooser for opening and saving object files. -
m_okBut
JButton m_okBut
ok button. -
m_OpenBut
JButton m_OpenBut
Open object from disk. -
m_SaveBut
JButton m_SaveBut
Save object to disk.
-
-
Class weka.gui.GenericObjectEditor.GOETreeNode
class GOETreeNode extends DefaultMutableTreeNode implements Serializable- serialVersionUID:
- -1707872446682150133L
-
Serialized Fields
-
m_Capabilities
Capabilities m_Capabilities
the Capabilities object to use for filtering. -
m_toolTipText
String m_toolTipText
tool tip
-
-
Class weka.gui.GenericObjectEditor.JTreePopupMenu
class JTreePopupMenu extends JPopupMenu implements Serializable- serialVersionUID:
- -3404546329655057387L
-
Serialized Fields
-
m_CloseButton
JButton m_CloseButton
The button for closing the popup again. -
m_FilterButton
JButton m_FilterButton
The filter button in case of CapabilitiesHandlers. -
m_RemoveFilterButton
JButton m_RemoveFilterButton
The remove filter button in case of CapabilitiesHandlers. -
m_scroller
JScrollPane m_scroller
The scroller. -
m_Self
JPopupMenu m_Self
the popup itself. -
m_tree
JTree m_tree
The tree.
-
-
Class weka.gui.GenericObjectEditorHistory
class GenericObjectEditorHistory extends Object implements Serializable- serialVersionUID:
- -1255734638729633595L
-
Class weka.gui.GenericObjectEditorHistory.HistorySelectionEvent
class HistorySelectionEvent extends EventObject implements Serializable- serialVersionUID:
- 45824542929908105L
-
Serialized Fields
-
m_HistoryItem
Object m_HistoryItem
the selected favorite.
-
-
Class weka.gui.GUIChooserApp
class GUIChooserApp extends JFrame implements Serializable- serialVersionUID:
- 9001529425230247914L
-
Serialized Fields
-
m_ChildFrames
HashSet<Container> m_ChildFrames
contains the child frames (title <-> object). -
m_ExperimenterBut
JButton m_ExperimenterBut
Click to open the Explorer -
m_ExplorerBut
JButton m_ExplorerBut
Click to open the Explorer -
m_FileChooserGraphVisualizer
WekaFileChooser m_FileChooserGraphVisualizer
filechooser for the GraphVisualizer -
m_FileChooserPlot
WekaFileChooser m_FileChooserPlot
filechooser for Plots -
m_FileChooserROC
WekaFileChooser m_FileChooserROC
filechooser for ROC curves -
m_FileChooserTreeVisualizer
WekaFileChooser m_FileChooserTreeVisualizer
filechooser for the TreeVisualizer -
m_Frames
Vector<JFrame> m_Frames
The frames for the various applications that are open -
m_Icon
Image m_Icon
the icon for the frames -
m_jMenuBar
JMenuBar m_jMenuBar
-
m_jMenuHelp
JMenu m_jMenuHelp
-
m_jMenuProgram
JMenu m_jMenuProgram
-
m_jMenuTools
JMenu m_jMenuTools
-
m_jMenuVisualization
JMenu m_jMenuVisualization
-
m_KnowledgeFlowBut
JButton m_KnowledgeFlowBut
Click to open the KnowledgeFlow -
m_PanelApplications
JPanel m_PanelApplications
the panel for the application buttons -
m_Self
GUIChooserApp m_Self
the GUIChooser itself -
m_settings
Settings m_settings
GUIChooser settings -
m_SimpleBut
JButton m_SimpleBut
Click to open the simplecli -
m_weka
Image m_weka
The weka image -
m_WorkbenchBut
JButton m_WorkbenchBut
Click to open the Workbench
-
-
Class weka.gui.GUIChooserApp.ChildFrameSDI
class ChildFrameSDI extends JFrame implements Serializable- serialVersionUID:
- 8588293938686425618L
-
Serialized Fields
-
m_Parent
GUIChooserApp m_Parent
the parent frame.
-
-
Class weka.gui.GUIChooserApp.GUIChooserDefaults
class GUIChooserDefaults extends Defaults implements Serializable- serialVersionUID:
- -8524894440289936685L
-
Class weka.gui.HierarchyPropertyParser
class HierarchyPropertyParser extends Object implements Serializable- serialVersionUID:
- -4151103338506077544L
-
Serialized Fields
-
m_Current
weka.gui.HierarchyPropertyParser.TreeNode m_Current
Keep track of the current node when traversing the tree -
m_Depth
int m_Depth
The depth of the tree -
m_Root
weka.gui.HierarchyPropertyParser.TreeNode m_Root
Keep track of the root of the tree -
m_Seperator
String m_Seperator
The level separate in the path
-
-
Class weka.gui.InstancesSummaryPanel
class InstancesSummaryPanel extends JPanel implements Serializable- serialVersionUID:
- -5243579535296681063L
-
Serialized Fields
-
m_Instances
Instances m_Instances
The instances we're playing with -
m_NumAttributesLab
JLabel m_NumAttributesLab
Displays the number of attributes -
m_NumInstancesLab
JLabel m_NumInstancesLab
Displays the number of instances -
m_RelationNameLab
JLabel m_RelationNameLab
Displays the name of the relation -
m_showZeroInstancesAsUnknown
boolean m_showZeroInstancesAsUnknown
Whether to display 0 or ? for the number of instances in cases where a dataset has only structure. Depending on where this panel is used from, the user may have loaded a dataset with no instances or a Loader that can read incrementally may be being used (in which case we don't know how many instances are in the dataset... yet). -
m_sumOfWeightsLab
JLabel m_sumOfWeightsLab
Displays the sum of instance weights
-
-
Class weka.gui.InteractiveTableModel
class InteractiveTableModel extends AbstractTableModel implements Serializable- serialVersionUID:
- -5113873323690309667L
-
Class weka.gui.InteractiveTablePanel
class InteractiveTablePanel extends JPanel implements Serializable- serialVersionUID:
- 4495705463732140410L
-
Serialized Fields
-
m_columnNames
String[] m_columnNames
Holds column names -
m_scroller
JScrollPane m_scroller
Scroll panel for the table -
m_table
JTable m_table
The table itself -
m_tableModel
InteractiveTableModel m_tableModel
Model for the table
-
-
Class weka.gui.ListSelectorDialog
class ListSelectorDialog extends JDialog implements Serializable- serialVersionUID:
- 906147926840288895L
-
Serialized Fields
-
m_CancelBut
JButton m_CancelBut
Click to cancel the property selection -
m_List
JList m_List
The list component -
m_PatternBut
JButton m_PatternBut
Click to enter a regex pattern for selection -
m_PatternRegEx
String m_PatternRegEx
The current regular expression. -
m_Result
int m_Result
Whether the selection was made or cancelled -
m_SelectBut
JButton m_SelectBut
Click to choose the currently selected property
-
-
Class weka.gui.LogPanel
class LogPanel extends JPanel implements Serializable- serialVersionUID:
- -4072464549112439484L
-
Serialized Fields
-
m_First
boolean m_First
An indicator for whether text has been output yet -
m_Frame
JFrame m_Frame
The JFrame to use -
m_logButton
JButton m_logButton
The button for viewing the log -
m_LogText
JTextArea m_LogText
Displays the log messages -
m_StatusLab
JLabel m_StatusLab
Displays the current status -
m_TaskMonitor
WekaTaskMonitor m_TaskMonitor
The panel for monitoring the number of running tasks (if supplied)
-
-
Class weka.gui.LogWindow
class LogWindow extends JFrame implements Serializable- serialVersionUID:
- 5650947361381061112L
-
Serialized Fields
-
m_ButtonClear
JButton m_ButtonClear
the clear button -
m_ButtonClose
JButton m_ButtonClose
the close button -
m_CheckBoxWordwrap
JCheckBox m_CheckBoxWordwrap
whether to allow wordwrap or not -
m_LabelCurrentSize
JLabel m_LabelCurrentSize
the current size -
m_Output
JTextPane m_Output
the output -
m_SpinnerMaxSize
JSpinner m_SpinnerMaxSize
the spinner for the max number of chars -
m_UseWordwrap
boolean m_UseWordwrap
whether the JTextPane has wordwrap or not
-
-
Class weka.gui.Main
class Main extends JFrame implements Serializable- serialVersionUID:
- 1453813254824253849L
-
Serialized Fields
-
jDesktopPane
JDesktopPane jDesktopPane
-
jMenuApplications
JMenu jMenuApplications
-
jMenuBar
JMenuBar jMenuBar
-
jMenuExtensions
JMenu jMenuExtensions
-
jMenuHelp
JMenu jMenuHelp
-
jMenuItemApplicationsExperimenter
JMenuItem jMenuItemApplicationsExperimenter
-
jMenuItemApplicationsExplorer
JMenuItem jMenuItemApplicationsExplorer
-
jMenuItemApplicationsKnowledgeFlow
JMenuItem jMenuItemApplicationsKnowledgeFlow
-
jMenuItemApplicationsSimpleCLI
JMenuItem jMenuItemApplicationsSimpleCLI
-
jMenuItemHelpAbout
JMenuItem jMenuItemHelpAbout
-
jMenuItemHelpHomepage
JMenuItem jMenuItemHelpHomepage
-
jMenuItemHelpSourceforge
JMenuItem jMenuItemHelpSourceforge
-
jMenuItemHelpSystemInfo
JMenuItem jMenuItemHelpSystemInfo
-
jMenuItemHelpWekaWiki
JMenuItem jMenuItemHelpWekaWiki
-
jMenuItemProgramExit
JMenuItem jMenuItemProgramExit
-
jMenuItemProgramLogWindow
JMenuItem jMenuItemProgramLogWindow
-
jMenuItemProgramMemoryUsage
JMenuItem jMenuItemProgramMemoryUsage
-
jMenuItemToolsArffViewer
JMenuItem jMenuItemToolsArffViewer
-
jMenuItemToolsGroovyConsole
JMenuItem jMenuItemToolsGroovyConsole
-
jMenuItemToolsJythonConsole
JMenuItem jMenuItemToolsJythonConsole
-
jMenuItemToolsSqlViewer
JMenuItem jMenuItemToolsSqlViewer
-
jMenuItemVisualizationBoundaryVisualizer
JMenuItem jMenuItemVisualizationBoundaryVisualizer
-
jMenuItemVisualizationGraphVisualizer
JMenuItem jMenuItemVisualizationGraphVisualizer
-
jMenuItemVisualizationPlot
JMenuItem jMenuItemVisualizationPlot
-
jMenuItemVisualizationROC
JMenuItem jMenuItemVisualizationROC
-
jMenuItemVisualizationTreeVisualizer
JMenuItem jMenuItemVisualizationTreeVisualizer
-
jMenuProgram
JMenu jMenuProgram
-
jMenuTools
JMenu jMenuTools
-
jMenuVisualization
JMenu jMenuVisualization
-
jMenuWindows
JMenu jMenuWindows
-
m_ChildFrames
HashSet<Container> m_ChildFrames
contains the child frames (title <-> object). -
m_FileChooserGraphVisualizer
WekaFileChooser m_FileChooserGraphVisualizer
filechooser for the GraphVisualizer. -
m_FileChooserPlot
WekaFileChooser m_FileChooserPlot
filechooser for Plots. -
m_FileChooserROC
WekaFileChooser m_FileChooserROC
filechooser for ROC curves. -
m_FileChooserTreeVisualizer
WekaFileChooser m_FileChooserTreeVisualizer
filechooser for the TreeVisualizer. -
m_GUIType
int m_GUIType
the type of GUI to display. -
m_Self
Main m_Self
the frame itself.
-
-
Class weka.gui.Main.BackgroundDesktopPane
class BackgroundDesktopPane extends JDesktopPane implements Serializable- serialVersionUID:
- 2046713123452402745L
-
Serialized Fields
-
m_Background
Image m_Background
the actual background image.
-
-
Class weka.gui.Main.ChildFrameMDI
class ChildFrameMDI extends JInternalFrame implements Serializable- serialVersionUID:
- 3772573515346899959L
-
Serialized Fields
-
m_Parent
Main m_Parent
the parent frame.
-
-
Class weka.gui.Main.ChildFrameSDI
class ChildFrameSDI extends JFrame implements Serializable- serialVersionUID:
- 8588293938686425618L
-
Serialized Fields
-
m_Parent
Main m_Parent
the parent frame.
-
-
Class weka.gui.MemoryUsagePanel
class MemoryUsagePanel extends JPanel implements Serializable- serialVersionUID:
- -4812319791687471721L
-
Serialized Fields
-
m_BackgroundColor
Color m_BackgroundColor
the background color. -
m_ButtonGC
JButton m_ButtonGC
the button for running the garbage collector. -
m_Colors
Hashtable<Double,
Color> m_Colors the corresponding colors for the thresholds. -
m_DefaultColor
Color m_DefaultColor
the default color. -
m_FrameLocation
Point m_FrameLocation
the position for the dialog. -
m_History
Vector<Double> m_History
the memory usage over time. -
m_Memory
Memory m_Memory
for monitoring the memory usage. -
m_Monitor
weka.gui.MemoryUsagePanel.MemoryMonitor m_Monitor
the thread for monitoring the memory usage. -
m_Percentages
Vector<Double> m_Percentages
the threshold percentages to change color.
-
-
Class weka.gui.PackageManager
class PackageManager extends JPanel implements Serializable- serialVersionUID:
- -7463821313750352385L
-
Serialized Fields
-
m_allBut
JRadioButton m_allBut
All radio button -
m_allPackages
List<Package> m_allPackages
-
m_availableBut
JRadioButton m_availableBut
Available radio button -
m_availablePackages
List<Package> m_availablePackages
-
m_backB
JButton m_backB
-
m_browserHistory
LinkedList<URL> m_browserHistory
-
m_browserTools
JToolBar m_browserTools
-
m_cacheEstablished
boolean m_cacheEstablished
-
m_cacheRefreshInProgress
boolean m_cacheRefreshInProgress
-
m_detailLabel
JLabel m_detailLabel
-
m_forceBut
JCheckBox m_forceBut
-
m_homeB
JButton m_homeB
-
m_infoPane
JEditorPane m_infoPane
An editor pane to display package information -
m_installBut
JButton m_installBut
Button for installing the selected package -
m_installedBut
JRadioButton m_installedBut
Installed radio button -
m_installedPackages
List<Package> m_installedPackages
-
m_installing
boolean m_installing
-
m_model
DefaultTableModel m_model
-
m_newPackagesAvailableL
JLabel m_newPackagesAvailableL
-
m_packageComparator
Comparator<Package> m_packageComparator
-
m_packageDescriptions
Map<String,
String> m_packageDescriptions -
m_packageLookupInfo
Map<String,
List<Object>> m_packageLookupInfo -
m_progress
JProgressBar m_progress
-
m_refreshCacheBut
JButton m_refreshCacheBut
Button for refreshing the package meta data cache -
m_reverseSort
boolean m_reverseSort
Reverse the sort order if the user clicks the same column header twice -
m_searchField
JTextField m_searchField
-
m_searchHitsLab
JLabel m_searchHitsLab
-
m_searchResults
List<Package> m_searchResults
-
m_sortColumn
int m_sortColumn
The column in the table to sort the entries by -
m_splitP
JSplitPane m_splitP
-
m_table
JTable m_table
The JTable for displaying the package names and version numbers -
m_toggleLoad
JButton m_toggleLoad
Button for toggling the load status of an installed package -
m_uninstallBut
JButton m_uninstallBut
Button for uninstalling the selected package -
m_unofficialBut
JButton m_unofficialBut
Button to pop up the file environment field widget -
m_unofficialChooser
FileEnvironmentField m_unofficialChooser
Widget for specifying a URL or path to an unofficial package to install -
m_unofficialFrame
JFrame m_unofficialFrame
-
-
Class weka.gui.PackageManager.ComboBoxEditor
class ComboBoxEditor extends DefaultCellEditor implements Serializable- serialVersionUID:
- 5240331667759901966L
-
Class weka.gui.PasswordField
class PasswordField extends JPanel implements Serializable- serialVersionUID:
- 8180782063577036194L
-
Serialized Fields
-
m_label
JLabel m_label
The label for the widget -
m_password
JPasswordField m_password
The password field -
m_support
PropertyChangeSupport m_support
-
-
Class weka.gui.PerspectiveManager
class PerspectiveManager extends JPanel implements Serializable- serialVersionUID:
- -6099806469970666208L
-
Serialized Fields
-
m_allowedPerspectiveClassPrefixes
List<String> m_allowedPerspectiveClassPrefixes
Allow these perspectives in the toolbar (empty list means allow all) -
m_appMenuBar
JMenuBar m_appMenuBar
Main application menu bar -
m_configAndPerspectivesToolBar
JPanel m_configAndPerspectivesToolBar
Holds the config/settings button and toolbar -
m_configAndPerspectivesVisible
boolean m_configAndPerspectivesVisible
Whether the toolbar is visible or hidden -
m_disallowedPerspectiveClassPrefixes
List<String> m_disallowedPerspectiveClassPrefixes
Disallow these perspectives (non-empty list overrides meaning of empty allowed list) -
m_LogPanel
LogPanel m_LogPanel
The panel for log and status messages -
m_logVisible
boolean m_logVisible
Whether the log is visible in the current perspective -
m_mainApp
GUIApplication m_mainApp
The main application that owns this perspective manager -
m_mainPerspective
Perspective m_mainPerspective
The main perspective for the application owning this perspective manager -
m_perspectiveCache
Map<String,
Perspective> m_perspectiveCache Cache of perspectives -
m_perspectiveGroup
ButtonGroup m_perspectiveGroup
For grouping the perspectives buttons in the toolbar -
m_perspectiveNameLookup
Map<String,
String> m_perspectiveNameLookup Name lookup for perspectives -
m_perspectives
List<Perspective> m_perspectives
The perspectives that have a button in the toolbar -
m_perspectiveToolBar
JToolBar m_perspectiveToolBar
The actual perspectives toolbar -
m_programMenu
JMenu m_programMenu
Program menu -
m_togglePerspectivesToolBar
JMenuItem m_togglePerspectivesToolBar
Menu item for toggling whether the toolbar is visible or not -
m_visiblePerspectives
LinkedHashSet<String> m_visiblePerspectives
Names of visible perspectives (i.e. those that the user has opted to be available via a button in the toolbar
-
-
Class weka.gui.PerspectiveManager.SelectedPerspectivePreferences
class SelectedPerspectivePreferences extends Object implements Serializable- serialVersionUID:
- -2665480123235382483L
-
Serialized Fields
-
m_perspectivesToolbarAlwaysHidden
boolean m_perspectivesToolbarAlwaysHidden
Whether the toolbar should always be hidden (and not able to be toggled from the menu or widget. -
m_perspectivesToolbarVisibleOnStartup
boolean m_perspectivesToolbarVisibleOnStartup
Whether the toolbar should be visible (or hidden) at startup -
m_userVisiblePerspectives
LinkedList<String> m_userVisiblePerspectives
List of user selected perspectives to show
-
-
Class weka.gui.PropertyDialog
class PropertyDialog extends JDialog implements Serializable- serialVersionUID:
- -2314850859392433539L
-
Serialized Fields
-
m_Editor
PropertyEditor m_Editor
The property editor. -
m_EditorComponent
Component m_EditorComponent
The custom editor component.
-
-
Class weka.gui.PropertyPanel
class PropertyPanel extends JPanel implements Serializable- serialVersionUID:
- 5370025273466728904L
-
Serialized Fields
-
m_CustomPanel
JPanel m_CustomPanel
The custom panel (if any) -
m_Editor
PropertyEditor m_Editor
The property editor -
m_HasCustomPanel
boolean m_HasCustomPanel
Whether the editor has provided its own panel -
m_PD
PropertyDialog m_PD
The currently displayed property dialog, if any
-
-
Class weka.gui.PropertySelectorDialog
class PropertySelectorDialog extends JDialog implements Serializable- serialVersionUID:
- -3155058124137930518L
-
Serialized Fields
-
m_CancelBut
JButton m_CancelBut
Click to cancel the property selection -
m_Result
int m_Result
Whether the selection was made or cancelled -
m_ResultPath
Object[] m_ResultPath
Stores the path to the selected property -
m_Root
DefaultMutableTreeNode m_Root
The root of the property tree -
m_RootObject
Object m_RootObject
The object at the root of the tree -
m_SelectBut
JButton m_SelectBut
Click to choose the currently selected property -
m_Tree
JTree m_Tree
The component displaying the property tree
-
-
Class weka.gui.PropertySheetPanel
class PropertySheetPanel extends JPanel implements Serializable- serialVersionUID:
- -8939835593429918345L
-
Serialized Fields
-
m_aboutPanel
JPanel m_aboutPanel
The panel holding global info and help, if provided by the object being editied. -
m_CapabilitiesBut
JButton m_CapabilitiesBut
Button to pop up the capabilities in a separate dialog. -
m_CapabilitiesDialog
weka.gui.PropertySheetPanel.CapabilitiesHelpDialog m_CapabilitiesDialog
Capabilities Help dialog. -
m_CapabilitiesText
JTextArea m_CapabilitiesText
the TextArea of the Capabilities help dialog. -
m_Customizer
GOECustomizer m_Customizer
Holds the customizer (if one exists) for the object being edited -
m_Editors
PropertyEditor[] m_Editors
Holds property editors of the object. -
m_HelpBut
JButton m_HelpBut
Button to pop up the full help text in a separate dialog. -
m_HelpDialog
JDialog m_HelpDialog
Help dialog. -
m_HelpText
StringBuffer m_HelpText
StringBuffer containing help text for the object being edited. -
m_Labels
JLabel[] m_Labels
The labels for each property. -
m_Methods
MethodDescriptor[] m_Methods
Holds the methods of the target. -
m_NumEditable
int m_NumEditable
A count of the number of properties we have an editor for. -
m_Properties
PropertyDescriptor[] m_Properties
Holds properties of the target. -
m_propertyGroupingCategory
String m_propertyGroupingCategory
Non-empty if this panel is being used to group/display properties for a particular category -
m_showAboutPanel
boolean m_showAboutPanel
Whether to show the about panel -
m_Target
Object m_Target
The target object being edited. -
m_TipTexts
String[] m_TipTexts
The tool tip text for each property. -
m_useEnvironmentPropertyEditors
boolean m_useEnvironmentPropertyEditors
Whether to use EnvironmentField and FileEnvironmentField for text and file properties respectively -
m_Values
Object[] m_Values
Holds current object values for each property. -
m_Views
JComponent[] m_Views
Stores GUI components containing each editing component. -
support
PropertyChangeSupport support
A support object for handling property change listeners.
-
-
Class weka.gui.PropertySheetPanel.CapabilitiesHelpDialog
class CapabilitiesHelpDialog extends JDialog implements Serializable- serialVersionUID:
- -1404770987103289858L
-
Serialized Fields
-
m_Self
weka.gui.PropertySheetPanel.CapabilitiesHelpDialog m_Self
the dialog itself.
-
-
Class weka.gui.ResultHistoryPanel
class ResultHistoryPanel extends JPanel implements Serializable- serialVersionUID:
- 4297069440135326829L
-
Serialized Fields
-
m_FramedOutput
Hashtable<String,
JTextArea> m_FramedOutput A Hashtable mapping names to output text components -
m_HandleRightClicks
boolean m_HandleRightClicks
Let the result history list handle right clicks in the default manner---ie, pop up a window displaying the buffer -
m_List
JList m_List
The list component -
m_Model
DefaultListModel m_Model
The list model -
m_Objs
Hashtable<String,
Object> m_Objs A hashtable mapping names to arbitrary objects -
m_Printer
PrintableComponent m_Printer
for printing the output to files -
m_Results
Hashtable<String,
StringBuffer> m_Results A Hashtable mapping names to result buffers -
m_SingleName
String m_SingleName
The named result being viewed in the single-click display -
m_SingleText
JTextComponent m_SingleText
An optional component for single-click display
-
-
Class weka.gui.ResultHistoryPanel.RKeyAdapter
class RKeyAdapter extends KeyAdapter implements Serializable- serialVersionUID:
- -8675332541861828079L
-
Class weka.gui.ResultHistoryPanel.RMouseAdapter
class RMouseAdapter extends MouseAdapter implements Serializable- serialVersionUID:
- -8991922650552358669L
-
Class weka.gui.SetInstancesPanel
class SetInstancesPanel extends JPanel implements Serializable- serialVersionUID:
- -384804041420453735L
-
Serialized Fields
-
m_ClassComboBox
JComboBox m_ClassComboBox
the class combobox. -
m_ClassLabel
JLabel m_ClassLabel
the label for the class combobox. -
m_CloseBut
JButton m_CloseBut
Click to close the dialog. -
m_CloseButPanel
JPanel m_CloseButPanel
the panel the Close-Button is located in. -
m_FileChooser
ConverterFileChooser m_FileChooser
The file chooser for selecting arff files. -
m_Instances
Instances m_Instances
The current set of instances loaded. -
m_IOThread
Thread m_IOThread
The thread we do loading in. -
m_LastURL
String m_LastURL
Stores the last URL that instances were loaded from. -
m_Loader
Loader m_Loader
The current loader used to obtain the current instances. -
m_OpenFileBut
JButton m_OpenFileBut
Click to open instances from a file. -
m_OpenURLBut
JButton m_OpenURLBut
Click to open instances from a URL. -
m_ParentFrame
JFrame m_ParentFrame
the parent frame. if one is provided, the close-button is displayed -
m_readIncrementally
boolean m_readIncrementally
whether to read the instances incrementally, if possible. -
m_showClassComboBox
boolean m_showClassComboBox
whether to display a combobox that allows the user to choose the class attribute. -
m_showZeroInstancesAsUnknown
boolean m_showZeroInstancesAsUnknown
whether to display zero instances as unknown ("?"). -
m_Summary
InstancesSummaryPanel m_Summary
The instance summary component. -
m_Support
PropertyChangeSupport m_Support
Manages sending notifications to people when we change the set of working instances.
-
-
Class weka.gui.SettingsEditor
class SettingsEditor extends JPanel implements Serializable- serialVersionUID:
- 1453121012707399758L
-
Serialized Fields
-
m_ownerApp
GUIApplication m_ownerApp
-
m_perspectiveEditors
List<SettingsEditor.SingleSettingsEditor> m_perspectiveEditors
-
m_perspectiveSelector
weka.gui.SettingsEditor.PerspectiveSelector m_perspectiveSelector
-
m_settings
Settings m_settings
-
m_settingsTabs
JTabbedPane m_settingsTabs
-
-
Class weka.gui.SettingsEditor.PerspectiveSelector
class PerspectiveSelector extends JPanel implements Serializable- serialVersionUID:
- -4765015948030757897L
-
Class weka.gui.SettingsEditor.PickList
class PickList extends JPanel implements Serializable- serialVersionUID:
- 3505647427533464230L
-
Class weka.gui.SettingsEditor.SingleSettingsEditor
class SingleSettingsEditor extends JPanel implements Serializable- serialVersionUID:
- 8896265984902770239L
-
Serialized Fields
-
m_editorMap
Map<Settings.SettingKey,
PropertyEditor> m_editorMap -
m_perspSettings
Map<Settings.SettingKey,
Object> m_perspSettings
-
-
Class weka.gui.SimpleCLI
class SimpleCLI extends JFrame implements Serializable- serialVersionUID:
- -50661410800566036L
-
Class weka.gui.SimpleCLIPanel
class SimpleCLIPanel extends ScriptingPanel implements Serializable- serialVersionUID:
- 1089039734615114942L
-
Serialized Fields
-
m_CommandHistory
Vector<String> m_CommandHistory
The history of commands entered interactively. -
m_Completion
SimpleCLIPanel.CommandlineCompletion m_Completion
The commandline completion. -
m_HistoryPos
int m_HistoryPos
The current position in the command history. -
m_Input
JTextField m_Input
The command input area. -
m_mainApp
GUIApplication m_mainApp
Main application (if any) owning this perspective -
m_OutputArea
JTextPane m_OutputArea
The output area canvas added to the frame. -
m_perspectiveIcon
Icon m_perspectiveIcon
The Icon for this perspective -
m_RunThread
Thread m_RunThread
The thread currently running a class main method. -
m_Variables
Map<String,
Object> m_Variables for storing variables.
-
-
Class weka.gui.SortedTableModel
class SortedTableModel extends AbstractTableModel implements Serializable- serialVersionUID:
- 4030907921461127548L
-
Serialized Fields
-
mAscending
boolean mAscending
whether sorting is ascending or descending -
mIndices
int[] mIndices
the mapping between displayed and actual index -
mModel
TableModel mModel
the actual table model -
mSortColumn
int mSortColumn
the sort column
-
-
Class weka.gui.SplashWindow
class SplashWindow extends Window implements Serializable- serialVersionUID:
- -2685134277041307795L
-
Serialized Fields
-
image
Image image
The splash image which is displayed on the splash window. -
message
List<String> message
Any message to overlay on the image -
paintCalled
boolean paintCalled
This attribute indicates whether the method paint(Graphics) has been called at least once since the construction of this window.
This attribute is used to notify method splash(Image) that the window has been drawn at least once by the AWT event dispatcher thread.
This attribute acts like a latch. Once set to true, it will never be changed back to false again.
-
-
Class weka.gui.ViewerDialog
class ViewerDialog extends JDialog implements Serializable- serialVersionUID:
- 6747718484736047752L
-
Serialized Fields
-
m_addInstanceButton
JButton m_addInstanceButton
Click to add a new instance to the end of the dataset -
m_ArffPanel
ArffPanel m_ArffPanel
the panel to display the Instances-object -
m_CancelButton
JButton m_CancelButton
Click to cancel the dialog -
m_OkButton
JButton m_OkButton
Click to activate the current set parameters -
m_Result
int m_Result
the result of the user's action, either OK or CANCEL -
m_UndoButton
JButton m_UndoButton
Click to undo the last action
-
-
Class weka.gui.WekaFileChooser
class WekaFileChooser extends JFileChooser implements Serializable-
Serialized Fields
-
m_AccessoryPanel
JPanel m_AccessoryPanel
the accessory panel. -
m_BookmarksPanel
WekaFileChooser.FileChooserBookmarksPanel m_BookmarksPanel
the bookmarks.
-
-
-
Class weka.gui.WekaFileChooser.Factory
class Factory extends com.googlecode.jfilechooserbookmarks.DefaultFactory implements Serializable -
Class weka.gui.WekaFileChooser.FileChooserBookmarksPanel
class FileChooserBookmarksPanel extends com.googlecode.jfilechooserbookmarks.AbstractBookmarksPanel implements Serializable -
Class weka.gui.WekaFileChooser.PropertiesHandler
class PropertiesHandler extends com.googlecode.jfilechooserbookmarks.AbstractPropertiesHandler implements Serializable -
Class weka.gui.WekaTaskMonitor
class WekaTaskMonitor extends JPanel implements Serializable- serialVersionUID:
- 508309816292197578L
-
Serialized Fields
-
m_ActiveTasks
int m_ActiveTasks
The number of running weka threads -
m_animating
boolean m_animating
True if their are active tasks -
m_iconAnimated
ImageIcon m_iconAnimated
The icon for the animated bird -
m_iconStationary
ImageIcon m_iconStationary
The icon for the stationary bird -
m_MonitorLabel
JLabel m_MonitorLabel
The label for displaying info
-
-
Class weka.gui.WorkbenchApp
class WorkbenchApp extends AbstractGUIApplication implements Serializable- serialVersionUID:
- -2357486011273897728L
-
Serialized Fields
-
m_mainPerspective
PreprocessPanel m_mainPerspective
The main perspective for this application -
m_workbenchSettings
Settings m_workbenchSettings
Settings for the Workbench
-
-
Class weka.gui.WorkbenchDefaults
class WorkbenchDefaults extends Defaults implements Serializable- serialVersionUID:
- 7881327795923189743L
-
Class weka.gui.WrapLayout
class WrapLayout extends FlowLayout implements Serializable- serialVersionUID:
- 7055023419450383821L
-
Serialized Fields
-
preferredLayoutSize
Dimension preferredLayoutSize
-
-
-
Package weka.gui.arffviewer
-
Class weka.gui.arffviewer.ArffPanel
class ArffPanel extends JPanel implements Serializable- serialVersionUID:
- -4697041150989513939L
-
Serialized Fields
-
m_Changed
boolean m_Changed
flag for whether data got changed -
m_ChangeListeners
HashSet<ChangeListener> m_ChangeListeners
the listeners that listen for modifications -
m_CurrentCol
int m_CurrentCol
the currently selected column -
m_Filename
String m_Filename
the filename used in the title -
m_LabelName
JLabel m_LabelName
displays the relation name -
m_LastReplace
String m_LastReplace
the string used in the last replace -
m_LastSearch
String m_LastSearch
the string used in the last search -
m_PopupHeader
JPopupMenu m_PopupHeader
the popup menu for the header row -
m_PopupRows
JPopupMenu m_PopupRows
the popup menu for the data rows -
m_ShowAttributeIndex
boolean m_ShowAttributeIndex
whether to display the attribute index in the table header. -
m_TableArff
ArffTable m_TableArff
the underlying table -
m_Title
String m_Title
the title prefix -
menuItemAttributeAsClass
JMenuItem menuItemAttributeAsClass
-
menuItemClearSearch
JMenuItem menuItemClearSearch
-
menuItemCopy
JMenuItem menuItemCopy
-
menuItemDeleteAllSelectedInstances
JMenuItem menuItemDeleteAllSelectedInstances
-
menuItemDeleteAttribute
JMenuItem menuItemDeleteAttribute
-
menuItemDeleteAttributes
JMenuItem menuItemDeleteAttributes
-
menuItemDeleteSelectedInstance
JMenuItem menuItemDeleteSelectedInstance
-
menuItemInsertInstance
JMenuItem menuItemInsertInstance
-
menuItemMean
JMenuItem menuItemMean
-
menuItemOptimalColWidth
JMenuItem menuItemOptimalColWidth
-
menuItemOptimalColWidths
JMenuItem menuItemOptimalColWidths
-
menuItemRenameAttribute
JMenuItem menuItemRenameAttribute
-
menuItemReplaceValues
JMenuItem menuItemReplaceValues
-
menuItemSearch
JMenuItem menuItemSearch
-
menuItemSetAllValues
JMenuItem menuItemSetAllValues
-
menuItemSetAttributeWeight
JMenuItem menuItemSetAttributeWeight
-
menuItemSetInstanceWeight
JMenuItem menuItemSetInstanceWeight
-
menuItemSetMissingValues
JMenuItem menuItemSetMissingValues
-
menuItemSortInstances
JMenuItem menuItemSortInstances
-
menuItemUndo
JMenuItem menuItemUndo
-
-
Class weka.gui.arffviewer.ArffSortedTableModel
class ArffSortedTableModel extends SortedTableModel implements Serializable- serialVersionUID:
- -5733148376354254030L
-
Class weka.gui.arffviewer.ArffTable
class ArffTable extends JTable implements Serializable- serialVersionUID:
- -2016200506908637967L
-
Serialized Fields
-
m_ChangeListeners
HashSet<ChangeListener> m_ChangeListeners
the listeners for changes -
m_SearchString
String m_SearchString
the search string
-
-
Class weka.gui.arffviewer.ArffTable.RelationalCellEditor
class RelationalCellEditor extends AbstractCellEditor implements Serializable- serialVersionUID:
- 657969163293205963L
-
Class weka.gui.arffviewer.ArffTableCellRenderer
class ArffTableCellRenderer extends DefaultTableCellRenderer implements Serializable- serialVersionUID:
- 9195794493301191171L
-
Serialized Fields
-
highlightColor
Color highlightColor
the color for highlighted values -
highlightColorSelected
Color highlightColorSelected
the color for selected highlighted values -
missingColor
Color missingColor
the color for missing values -
missingColorSelected
Color missingColorSelected
the color for selected missing values
-
-
Class weka.gui.arffviewer.ArffTableModel
class ArffTableModel extends DefaultTableModel implements Serializable- serialVersionUID:
- 3411795562305994946L
-
Serialized Fields
-
m_Cache
Hashtable<String,
String> m_Cache for caching long relational and string values that get processed for display. -
m_Data
Instances m_Data
the data -
m_IgnoreChanges
boolean m_IgnoreChanges
whether to ignore changes, i.e. not adding to undo history -
m_Listeners
HashSet<TableModelListener> m_Listeners
the listeners -
m_NotificationEnabled
boolean m_NotificationEnabled
whether notfication is enabled -
m_ReadOnly
boolean m_ReadOnly
whether the table is read-only -
m_ShowAttributeIndex
boolean m_ShowAttributeIndex
whether to display the attribute index in the table header. -
m_ShowAttributeWeights
boolean m_ShowAttributeWeights
whether to show attribute weights. -
m_ShowInstanceWeights
boolean m_ShowInstanceWeights
whether to show instance weights. -
m_UndoEnabled
boolean m_UndoEnabled
whether undo is active -
m_UndoList
Vector<File> m_UndoList
the undo list (contains temp. filenames)
-
-
Class weka.gui.arffviewer.ArffViewer
class ArffViewer extends JFrame implements Serializable- serialVersionUID:
- -7455845566922685175L
-
Serialized Fields
-
m_MainPanel
ArffViewerMainPanel m_MainPanel
the main panel
-
-
Class weka.gui.arffviewer.ArffViewerMainPanel
class ArffViewerMainPanel extends JPanel implements Serializable- serialVersionUID:
- -8763161167586738753L
-
Serialized Fields
-
confirmExit
boolean confirmExit
-
exitOnClose
boolean exitOnClose
-
fileChooser
ConverterFileChooser fileChooser
-
frameTitle
String frameTitle
-
height
int height
-
left
int left
-
menuBar
JMenuBar menuBar
-
menuEdit
JMenu menuEdit
-
menuEditAttributeAsClass
JMenuItem menuEditAttributeAsClass
-
menuEditClearSearch
JMenuItem menuEditClearSearch
-
menuEditCopy
JMenuItem menuEditCopy
-
menuEditDeleteAttribute
JMenuItem menuEditDeleteAttribute
-
menuEditDeleteAttributes
JMenuItem menuEditDeleteAttributes
-
menuEditDeleteInstance
JMenuItem menuEditDeleteInstance
-
menuEditDeleteInstances
JMenuItem menuEditDeleteInstances
-
menuEditRenameAttribute
JMenuItem menuEditRenameAttribute
-
menuEditSearch
JMenuItem menuEditSearch
-
menuEditSortInstances
JMenuItem menuEditSortInstances
-
menuEditUndo
JMenuItem menuEditUndo
-
menuFile
JMenu menuFile
-
menuFileClose
JMenuItem menuFileClose
-
menuFileCloseAll
JMenuItem menuFileCloseAll
-
menuFileExit
JMenuItem menuFileExit
-
menuFileOpen
JMenuItem menuFileOpen
-
menuFileProperties
JMenuItem menuFileProperties
-
menuFileSave
JMenuItem menuFileSave
-
menuFileSaveAs
JMenuItem menuFileSaveAs
-
menuView
JMenu menuView
-
menuViewAttributes
JMenuItem menuViewAttributes
-
menuViewOptimalColWidths
JMenuItem menuViewOptimalColWidths
-
menuViewValues
JMenuItem menuViewValues
-
parent
Container parent
-
tabbedPane
JTabbedPane tabbedPane
-
top
int top
-
width
int width
-
-
-
Package weka.gui.beans
-
Class weka.gui.beans.AbstractDataSink
class AbstractDataSink extends JPanel implements Serializable- serialVersionUID:
- 3956528599473814287L
-
Serialized Fields
-
m_listenee
Object m_listenee
Non null if this object is a target for any events. Provides for the simplest case when only one incomming connection is allowed. Subclasses can overide the appropriate BeanCommon methods to change this behaviour and allow multiple connections if desired -
m_visual
BeanVisual m_visual
Default visual for data sources
-
-
Class weka.gui.beans.AbstractDataSource
class AbstractDataSource extends JPanel implements Serializable- serialVersionUID:
- -4127257701890044793L
-
Serialized Fields
-
m_bcSupport
BeanContextChildSupport m_bcSupport
BeanContextChild support -
m_design
boolean m_design
True if this bean's appearance is the design mode appearance -
m_listeners
Vector<EventListener> m_listeners
Objects listening for events from data sources -
m_visual
BeanVisual m_visual
Default visual for data sources
-
-
Class weka.gui.beans.AbstractEvaluator
class AbstractEvaluator extends JPanel implements Serializable- serialVersionUID:
- 3983303541814121632L
-
Serialized Fields
-
m_listenee
Object m_listenee
-
m_visual
BeanVisual m_visual
Default visual for evaluators
-
-
Class weka.gui.beans.AbstractTestSetProducer
class AbstractTestSetProducer extends JPanel implements Serializable- serialVersionUID:
- -7905764845789349839L
-
Serialized Fields
-
m_listenee
Object m_listenee
non null if this object is a target for any events. -
m_listeners
Vector<EventListener> m_listeners
Objects listening to us -
m_visual
BeanVisual m_visual
-
-
Class weka.gui.beans.AbstractTrainAndTestSetProducer
class AbstractTrainAndTestSetProducer extends JPanel implements Serializable- serialVersionUID:
- -1809339823613492037L
-
Serialized Fields
-
m_listenee
Object m_listenee
non null if this object is a target for any events. -
m_testListeners
Vector<EventListener> m_testListeners
Objects listening for test set events -
m_trainingListeners
Vector<EventListener> m_trainingListeners
Objects listening for trainin set events -
m_visual
BeanVisual m_visual
-
-
Class weka.gui.beans.AbstractTrainingSetProducer
class AbstractTrainingSetProducer extends JPanel implements Serializable- serialVersionUID:
- -7842746199524591125L
-
Serialized Fields
-
m_listenee
Object m_listenee
non null if this object is a target for any events. -
m_listeners
Vector<EventListener> m_listeners
Objects listening for training set events -
m_visual
BeanVisual m_visual
-
-
Class weka.gui.beans.Appender
class Appender extends JPanel implements Serializable- serialVersionUID:
- 9177433051794199463L
-
Serialized Fields
-
m_busy
boolean m_busy
True if we are busy -
m_dataListeners
ArrayList<DataSourceListener> m_dataListeners
Downstream steps listening to batch data events -
m_finishedCount
int m_finishedCount
Keeps track of how many incoming instance streams have finished -
m_ie
InstanceEvent m_ie
Instance event to use for incremental mode -
m_instanceListeners
ArrayList<InstanceListener> m_instanceListeners
Downstream steps listening to instance events -
m_listenees
Map<Object,
Object> m_listenees -
m_listeneeTypes
Set<String> m_listeneeTypes
Upstream components sending us data -
m_visual
BeanVisual m_visual
Default visual for data sources
-
-
Class weka.gui.beans.Associator
class Associator extends JPanel implements Serializable- serialVersionUID:
- -7843500322130210057L
-
Serialized Fields
-
m_Associator
Associator m_Associator
-
m_buildThread
Thread m_buildThread
-
m_globalInfo
String m_globalInfo
Global info for the wrapped associator (if it exists). -
m_graphListeners
Vector<EventListener> m_graphListeners
Objects listening for graph events -
m_listenees
Hashtable<String,
Object> m_listenees Objects talking to us -
m_rulesListeners
Vector<BatchAssociationRulesListener> m_rulesListeners
The objects listening for batchAssociationRules events -
m_state
int m_state
-
m_textListeners
Vector<EventListener> m_textListeners
Objects listening for text events -
m_visual
BeanVisual m_visual
-
-
Class weka.gui.beans.AssociatorCustomizer
class AssociatorCustomizer extends JPanel implements Serializable- serialVersionUID:
- 5767664969353495974L
-
Serialized Fields
-
m_AssociatorEditor
PropertySheetPanel m_AssociatorEditor
-
m_backup
Associator m_backup
Backup is user presses cancel -
m_dsAssociator
Associator m_dsAssociator
-
m_modifyListener
BeanCustomizer.ModifyListener m_modifyListener
-
m_parentWindow
Window m_parentWindow
-
m_pcSupport
PropertyChangeSupport m_pcSupport
-
-
Class weka.gui.beans.AttributeSummarizer
class AttributeSummarizer extends DataVisualizer implements Serializable- serialVersionUID:
- -294354961169372758L
-
Serialized Fields
-
m_activePerspective
boolean m_activePerspective
-
m_coloringIndex
int m_coloringIndex
Index on which to color the plots. -
m_gridWidth
int m_gridWidth
The number of plots horizontally in the display -
m_maxPlots
int m_maxPlots
The maximum number of plots to show -
m_runningAsPerspective
boolean m_runningAsPerspective
-
m_showClassCombo
boolean m_showClassCombo
-
-
Class weka.gui.beans.AttributeSummarizerCustomizer
class AttributeSummarizerCustomizer extends JPanel implements Serializable- serialVersionUID:
- -6973666187676272788L
-
Serialized Fields
-
m_dataVis
DataVisualizer m_dataVis
-
m_env
Environment m_env
-
m_height
EnvironmentField m_height
-
m_heightBack
String m_heightBack
-
m_modifyListener
BeanCustomizer.ModifyListener m_modifyListener
-
m_opts
EnvironmentField m_opts
-
m_optsBack
String m_optsBack
-
m_parent
Window m_parent
-
m_rendererCombo
JComboBox m_rendererCombo
-
m_rendererNameBack
String m_rendererNameBack
-
m_width
EnvironmentField m_width
-
m_widthBack
String m_widthBack
-
m_xAxis
EnvironmentField m_xAxis
-
m_xAxisBack
String m_xAxisBack
-
-
Class weka.gui.beans.BatchAssociationRulesEvent
class BatchAssociationRulesEvent extends EventObject implements Serializable- serialVersionUID:
- 6332614648885439492L
-
Serialized Fields
-
m_rules
AssociationRules m_rules
The encapsulated rules
-
-
Class weka.gui.beans.BatchClassifierEvent
class BatchClassifierEvent extends EventObject implements Serializable- serialVersionUID:
- 878097199815991084L
-
Serialized Fields
-
m_classifier
Classifier m_classifier
The classifier -
m_eventLabel
String m_eventLabel
Label for this event -
m_groupIdentifier
long m_groupIdentifier
An identifier that can be used to group all related runs/sets together. -
m_maxRunNumber
int m_maxRunNumber
The maximum number of runs -
m_maxSetNumber
int m_maxSetNumber
The last set number for this series -
m_runNumber
int m_runNumber
The run number that this classifier was generated for -
m_setNumber
int m_setNumber
The set number for the test set -
m_testSet
DataSetEvent m_testSet
Instances that can be used for testing the classifier -
m_trainSet
DataSetEvent m_trainSet
Instances that were used to train the classifier (may be null if not available)
-
-
Class weka.gui.beans.BatchClustererEvent
class BatchClustererEvent extends EventObject implements Serializable- serialVersionUID:
- 7268777944939129714L
-
Serialized Fields
-
m_clusterer
Clusterer m_clusterer
The clusterer -
m_maxSetNumber
int m_maxSetNumber
The last set number for this series -
m_setNumber
int m_setNumber
The set number for the test set -
m_testOrTrain
int m_testOrTrain
Indicates if m_testSet is a training or a test set. 0 for test, >0 for training -
m_testSet
DataSetEvent m_testSet
Training or Test Instances
-
-
Class weka.gui.beans.BeanConnection
class BeanConnection extends Object implements Serializable- serialVersionUID:
- 8804264241791332064L
-
Serialized Fields
-
m_eventName
String m_eventName
The name of the event for this connection -
m_hidden
boolean m_hidden
-
m_source
BeanInstance m_source
-
m_target
BeanInstance m_target
-
-
Class weka.gui.beans.BeanInstance
class BeanInstance extends Object implements Serializable- serialVersionUID:
- -7575653109025406342L
-
Serialized Fields
-
m_bean
Object m_bean
Holds the bean encapsulated in this instance -
m_x
int m_x
-
m_y
int m_y
-
-
Class weka.gui.beans.BeansProperties
class BeansProperties extends Object implements Serializable- serialVersionUID:
- 7183413615090695785L
-
Class weka.gui.beans.BeanVisual
class BeanVisual extends JPanel implements Serializable- serialVersionUID:
- -6677473561687129614L
-
Serialization Methods
-
readObject
Overides default read object in order to reload icons. This is necessary because for some strange reason animated gifs stop being animated after being serialized/deserialized.- Parameters:
ois
- anObjectInputStream
value- Throws:
IOException
- if an error occursClassNotFoundException
- if an error occurs
-
-
Serialized Fields
-
m_animatedIconPath
String m_animatedIconPath
Holds name (including path) of the animated icon -
m_connectorColor
Color m_connectorColor
-
m_displayConnectors
boolean m_displayConnectors
-
m_iconPath
String m_iconPath
Holds name (including path) of the static icon -
m_pcs
PropertyChangeSupport m_pcs
Container for the icon -
m_visualLabel
JLabel m_visualLabel
-
m_visualName
String m_visualName
Name for the bean
-
-
Class weka.gui.beans.ChartEvent
class ChartEvent extends EventObject implements Serializable- serialVersionUID:
- 7812460715499569390L
-
Class weka.gui.beans.ClassAssigner
class ClassAssigner extends JPanel implements Serializable- serialVersionUID:
- 4011131665025817924L
-
Serialized Fields
-
m_classColumn
String m_classColumn
-
m_connectedFormat
Instances m_connectedFormat
format of instances for current incoming connection (if any) -
m_dataFormatListeners
Vector<DataFormatListener> m_dataFormatListeners
-
m_dataListeners
Vector<DataSourceListener> m_dataListeners
-
m_dataProvider
Object m_dataProvider
-
m_instanceListeners
Vector<InstanceListener> m_instanceListeners
-
m_instanceProvider
Object m_instanceProvider
-
m_testListeners
Vector<TestSetListener> m_testListeners
-
m_testProvider
Object m_testProvider
-
m_trainingListeners
Vector<TrainingSetListener> m_trainingListeners
-
m_trainingProvider
Object m_trainingProvider
-
m_visual
BeanVisual m_visual
-
-
Class weka.gui.beans.ClassAssignerCustomizer
class ClassAssignerCustomizer extends JPanel implements Serializable- serialVersionUID:
- 476539385765301907L
-
Serialized Fields
-
m_displayColNames
boolean m_displayColNames
-
-
Class weka.gui.beans.Classifier
class Classifier extends JPanel implements Serializable- serialVersionUID:
- 659603893917736008L
-
Serialized Fields
-
m_batchClassifierListeners
Vector<BatchClassifierListener> m_batchClassifierListeners
Objects listening for batch classifier events -
m_binaryFilter
FileFilter m_binaryFilter
-
m_block
boolean m_block
True if we should block rather reject until all processing has been completed. -
m_Classifier
Classifier m_Classifier
-
m_ClassifierTemplate
Classifier m_ClassifierTemplate
Template used for creating copies when building in parallel -
m_executionSlots
int m_executionSlots
Number of threads to use to train models with -
m_globalInfo
String m_globalInfo
Global info for the wrapped classifier (if it exists). -
m_graphListeners
Vector<GraphListener> m_graphListeners
Objects listening for graph events -
m_ie
IncrementalClassifierEvent m_ie
-
m_incrementalClassifierListeners
Vector<IncrementalClassifierListener> m_incrementalClassifierListeners
Objects listening for incremental classifier events -
m_incrementalEvent
InstanceEvent m_incrementalEvent
Event to handle when processing incremental updates -
m_KOMLFilter
FileFilter m_KOMLFilter
-
m_listenees
HashMap<String,
List<Object>> m_listenees Objects talking to us. String connection event key, 2 element list containing source and count -
m_loadModelFileName
String m_loadModelFileName
Optional file to load a pre-trained model to score with (batch, or to score and update (incremental) in the case of testSet only (batch) or instance (incremental) connections -
m_oldText
String m_oldText
Holds original icon label text -
m_reject
boolean m_reject
true if we should reject any further training data sets, until all processing has been finished, once we've received the last fold of the last run. -
m_resetIncrementalClassifier
boolean m_resetIncrementalClassifier
If the classifier is an incremental classifier, should we reset it (i.e. call buildClassifier()) and discard any previously learned model before processing the first instance in the stream. Note that this happens automatically if the incoming instance structure does not match that (if any) that the classifier was trained with previously. -
m_state
int m_state
-
m_textListeners
Vector<TextListener> m_textListeners
Objects listening for text events -
m_trainingSet
Instances m_trainingSet
Holds training instances for batch training. Not transient because header is retained for validating any instance events that this classifier might be asked to predict in the future. -
m_updateIncrementalClassifier
boolean m_updateIncrementalClassifier
If the classifier is an incremental classifier, should we update it (ie train it on incoming instances). This makes it possible incrementally test on a separate stream of instances without updating the classifier, or mix batch training/testing with incremental training/testing -
m_visual
BeanVisual m_visual
-
m_XStreamFilter
FileFilter m_XStreamFilter
-
-
Class weka.gui.beans.Classifier.TrainingTask
class TrainingTask extends Object implements Serializable- serialVersionUID:
- -7918128680624169641L
-
Serialized Fields
-
m_maxRunNum
int m_maxRunNum
-
m_maxSetNum
int m_maxSetNum
-
m_runNum
int m_runNum
-
m_setNum
int m_setNum
-
m_taskInfo
TaskStatusInfo m_taskInfo
-
m_train
Instances m_train
-
-
Class weka.gui.beans.ClassifierCustomizer
class ClassifierCustomizer extends JPanel implements Serializable- serialVersionUID:
- -6688000820160821429L
-
Serialized Fields
-
m_backup
Classifier m_backup
Copy of the current classifier in case cancel is selected -
m_blockOnLastFold
JCheckBox m_blockOnLastFold
-
m_ClassifierEditor
PropertySheetPanel m_ClassifierEditor
-
m_dsClassifier
Classifier m_dsClassifier
-
m_env
Environment m_env
-
m_executionSlotsLabel
JLabel m_executionSlotsLabel
-
m_executionSlotsPanel
JPanel m_executionSlotsPanel
-
m_executionSlotsText
JTextField m_executionSlotsText
-
m_holderPanel
JPanel m_holderPanel
-
m_incrementalPanel
JPanel m_incrementalPanel
-
m_loadModelField
FileEnvironmentField m_loadModelField
-
m_modifyListener
BeanCustomizer.ModifyListener m_modifyListener
Listener that wants to know the the modified status of the object that we're customizing -
m_panelVisible
boolean m_panelVisible
-
m_parentWindow
Window m_parentWindow
-
m_pcSupport
PropertyChangeSupport m_pcSupport
-
m_resetIncrementalClassifier
JCheckBox m_resetIncrementalClassifier
-
m_updateIncrementalClassifier
JCheckBox m_updateIncrementalClassifier
-
-
Class weka.gui.beans.ClassifierPerformanceEvaluator
class ClassifierPerformanceEvaluator extends AbstractEvaluator implements Serializable- serialVersionUID:
- -3511801418192148690L
-
Serialized Fields
-
m_errorPlotPointSizeProportionalToMargin
boolean m_errorPlotPointSizeProportionalToMargin
-
m_executionSlots
int m_executionSlots
Number of threads to use to train models with -
m_metricsList
List<String> m_metricsList
-
m_selectedEvalMetrics
String m_selectedEvalMetrics
Evaluation metrics to output -
m_textListeners
Vector<TextListener> m_textListeners
-
m_thresholdListeners
Vector<ThresholdDataListener> m_thresholdListeners
-
m_visualizableErrorListeners
Vector<VisualizableErrorListener> m_visualizableErrorListeners
-
-
Class weka.gui.beans.ClassifierPerformanceEvaluator.AggregateableClassifierErrorsPlotInstances
class AggregateableClassifierErrorsPlotInstances extends ClassifierErrorsPlotInstances implements Serializable- serialVersionUID:
- 2012744784036684168L
-
Class weka.gui.beans.ClassifierPerformanceEvaluator.EvaluationTask
class EvaluationTask extends Object implements Serializable- serialVersionUID:
- -8939077467030259059L
-
Serialized Fields
-
m_classifier
Classifier m_classifier
-
m_evalLabel
String m_evalLabel
-
m_maxSetNum
int m_maxSetNum
-
m_setNum
int m_setNum
-
m_stopped
boolean m_stopped
-
m_testData
Instances m_testData
-
m_trainData
Instances m_trainData
-
-
Class weka.gui.beans.ClassifierPerformanceEvaluatorCustomizer
class ClassifierPerformanceEvaluatorCustomizer extends JPanel implements Serializable- serialVersionUID:
- -1055460295546483853L
-
Serialized Fields
-
m_cpe
ClassifierPerformanceEvaluator m_cpe
-
m_evalMetricsBut
JButton m_evalMetricsBut
-
m_evaluationMetrics
List<String> m_evaluationMetrics
-
m_executionSlotsBackup
int m_executionSlotsBackup
-
m_modifyListener
BeanCustomizer.ModifyListener m_modifyListener
-
m_parent
Window m_parent
-
m_pcSupport
PropertyChangeSupport m_pcSupport
-
m_splitEditor
PropertySheetPanel m_splitEditor
-
-
Class weka.gui.beans.ClassValuePicker
class ClassValuePicker extends JPanel implements Serializable- serialVersionUID:
- -1196143276710882989L
-
Serialized Fields
-
m_classValue
String m_classValue
the class value considered to be the positive class -
m_connectedFormat
Instances m_connectedFormat
format of instances for the current incoming connection (if any) -
m_dataFormatListeners
Vector<DataFormatListener> m_dataFormatListeners
-
m_dataListeners
Vector<DataSourceListener> m_dataListeners
-
m_dataProvider
Object m_dataProvider
-
m_visual
BeanVisual m_visual
-
-
Class weka.gui.beans.ClassValuePickerCustomizer
class ClassValuePickerCustomizer extends JPanel implements Serializable- serialVersionUID:
- 8213423053861600469L
-
Serialized Fields
-
m_backup
String m_backup
-
m_ClassValueCombo
JComboBox m_ClassValueCombo
-
m_classValuePicker
ClassValuePicker m_classValuePicker
-
m_displayValNames
boolean m_displayValNames
-
m_holderP
JPanel m_holderP
-
m_messageLabel
JLabel m_messageLabel
-
m_modified
boolean m_modified
-
m_modifyListener
BeanCustomizer.ModifyListener m_modifyListener
-
m_parent
Window m_parent
-
m_pcSupport
PropertyChangeSupport m_pcSupport
-
m_textBoxEntryMode
boolean m_textBoxEntryMode
-
m_valueTextBox
JTextField m_valueTextBox
-
-
Class weka.gui.beans.Clusterer
class Clusterer extends JPanel implements Serializable- serialVersionUID:
- 7729795159836843810L
-
Serialized Fields
-
m_batchClustererListeners
Vector<BatchClustererListener> m_batchClustererListeners
Objects listening for batch clusterer events -
m_buildThread
Thread m_buildThread
-
m_Clusterer
Clusterer m_Clusterer
-
m_dummy
Double m_dummy
-
m_globalInfo
String m_globalInfo
Global info for the wrapped classifier (if it exists). -
m_graphListeners
Vector<GraphListener> m_graphListeners
Objects listening for graph events -
m_listenees
Hashtable<String,
Object> m_listenees Objects talking to us -
m_state
int m_state
-
m_textListeners
Vector<TextListener> m_textListeners
Objects listening for text events -
m_trainingSet
Instances m_trainingSet
Holds training instances for batch training. -
m_visual
BeanVisual m_visual
-
-
Class weka.gui.beans.ClustererCustomizer
class ClustererCustomizer extends JPanel implements Serializable- serialVersionUID:
- -2035688458149534161L
-
Serialized Fields
-
m_backup
Clusterer m_backup
Backup if the user presses cancel -
m_ClustererEditor
PropertySheetPanel m_ClustererEditor
-
m_dsClusterer
Clusterer m_dsClusterer
-
m_modifyListener
BeanCustomizer.ModifyListener m_modifyListener
-
m_parentWindow
Window m_parentWindow
-
m_pcSupport
PropertyChangeSupport m_pcSupport
-
-
Class weka.gui.beans.ClustererPerformanceEvaluator
class ClustererPerformanceEvaluator extends AbstractEvaluator implements Serializable- serialVersionUID:
- 8041163601333978584L
-
Serialized Fields
-
m_textListeners
Vector<TextListener> m_textListeners
-
-
Class weka.gui.beans.ConfigurationEvent
class ConfigurationEvent extends EventObject implements Serializable- serialVersionUID:
- 5433562112093780868L
-
Class weka.gui.beans.CostBenefitAnalysis
class CostBenefitAnalysis extends JPanel implements Serializable- serialVersionUID:
- 8647471654613320469L
-
Serialized Fields
-
m_bcSupport
BeanContextChildSupport m_bcSupport
BeanContextChild support -
m_design
boolean m_design
True if this bean's appearance is the design mode appearance -
m_framePoppedUp
boolean m_framePoppedUp
-
m_headlessEvents
List<EventObject> m_headlessEvents
-
m_listenee
Object m_listenee
The object sending us data (we allow only one connection at any one time) -
m_visual
BeanVisual m_visual
-
-
Class weka.gui.beans.CostBenefitAnalysis.AnalysisPanel
class AnalysisPanel extends JPanel implements Serializable- serialVersionUID:
- 5364871945448769003L
-
Serialized Fields
-
m_benefitR
JRadioButton m_benefitR
-
m_classAttribute
Attribute m_classAttribute
The class attribute from the data that was used to generate the threshold curve -
m_classificationAccV
JLabel m_classificationAccV
Classification accuracy -
m_conf_aa
weka.gui.beans.CostBenefitAnalysis.AnalysisPanel.ConfusionCell m_conf_aa
-
m_conf_ab
weka.gui.beans.CostBenefitAnalysis.AnalysisPanel.ConfusionCell m_conf_ab
-
m_conf_actualA
JLabel m_conf_actualA
-
m_conf_actualB
JLabel m_conf_actualB
-
m_conf_ba
weka.gui.beans.CostBenefitAnalysis.AnalysisPanel.ConfusionCell m_conf_ba
-
m_conf_bb
weka.gui.beans.CostBenefitAnalysis.AnalysisPanel.ConfusionCell m_conf_bb
-
m_conf_predictedA
JLabel m_conf_predictedA
-
m_conf_predictedB
JLabel m_conf_predictedB
-
m_cost_aa
JTextField m_cost_aa
-
m_cost_ab
JTextField m_cost_ab
-
m_cost_actualA
JLabel m_cost_actualA
-
m_cost_actualB
JLabel m_cost_actualB
-
m_cost_ba
JTextField m_cost_ba
-
m_cost_bb
JTextField m_cost_bb
-
m_cost_predictedA
JLabel m_cost_predictedA
-
m_cost_predictedB
JLabel m_cost_predictedB
-
m_costBenefit
PlotData2D m_costBenefit
Data for the cost/benefit curve -
m_costBenefitL
JLabel m_costBenefitL
-
m_costBenefitPanel
VisualizePanel m_costBenefitPanel
Displays the cost/benefit (profit/loss) graph -
m_costBenefitV
JLabel m_costBenefitV
-
m_costR
JRadioButton m_costR
-
m_fnPrevious
double m_fnPrevious
-
m_fpPrevious
double m_fpPrevious
-
m_gainV
JLabel m_gainV
-
m_masterPlot
PlotData2D m_masterPlot
Data for the threshold curve -
m_maximizeCB
JButton m_maximizeCB
-
m_minimizeCB
JButton m_minimizeCB
-
m_originalPopSize
int m_originalPopSize
-
m_percOfTarget
JRadioButton m_percOfTarget
-
m_percOfTargetLab
JLabel m_percOfTargetLab
-
m_percPop
JRadioButton m_percPop
-
m_percPopLab
JLabel m_percPopLab
-
m_performancePanel
VisualizePanel m_performancePanel
Displays the performance graphs(s) -
m_previousShapeIndex
int m_previousShapeIndex
The index of the previous plotted point that was highlighted -
m_randomV
JLabel m_randomV
-
m_shapeSizes
int[] m_shapeSizes
The size of the points being plotted -
m_threshold
JRadioButton m_threshold
-
m_thresholdLab
JLabel m_thresholdLab
-
m_thresholdSlider
JSlider m_thresholdSlider
The slider for adjusting the threshold -
m_tnPrevious
double m_tnPrevious
-
m_totalPopField
JTextField m_totalPopField
Population text field -
m_totalPopPrevious
int m_totalPopPrevious
-
m_tpPrevious
double m_tpPrevious
-
-
Class weka.gui.beans.CostBenefitAnalysis.AnalysisPanel.ConfusionCell
class ConfusionCell extends JPanel implements Serializable- serialVersionUID:
- 6148640235434494767L
-
Class weka.gui.beans.CrossValidationFoldMaker
class CrossValidationFoldMaker extends AbstractTrainAndTestSetProducer implements Serializable- serialVersionUID:
- -6350179298851891512L
-
Serialized Fields
-
m_dataProvider
boolean m_dataProvider
-
m_numFolds
int m_numFolds
-
m_preserveOrder
boolean m_preserveOrder
-
m_randomSeed
int m_randomSeed
-
m_testProvider
boolean m_testProvider
-
m_trainingProvider
boolean m_trainingProvider
-
-
Class weka.gui.beans.CrossValidationFoldMakerCustomizer
class CrossValidationFoldMakerCustomizer extends JPanel implements Serializable- serialVersionUID:
- 1229878140258668581L
-
Serialized Fields
-
m_cvEditor
PropertySheetPanel m_cvEditor
-
m_cvMaker
CrossValidationFoldMaker m_cvMaker
-
m_foldsBackup
int m_foldsBackup
-
m_modifyListener
BeanCustomizer.ModifyListener m_modifyListener
-
m_orderBackup
boolean m_orderBackup
-
m_parent
Window m_parent
-
m_pcSupport
PropertyChangeSupport m_pcSupport
-
m_seedBackup
int m_seedBackup
-
-
Class weka.gui.beans.DataSetEvent
class DataSetEvent extends EventObject implements Serializable- serialVersionUID:
- -5111218447577318057L
-
Serialized Fields
-
m_dataSet
Instances m_dataSet
-
m_structureOnly
boolean m_structureOnly
-
-
Class weka.gui.beans.DataVisualizer
class DataVisualizer extends JPanel implements Serializable- serialVersionUID:
- 1949062132560159028L
-
Serialized Fields
-
m_additionalOptions
String m_additionalOptions
Additional options for the offscreen renderer -
m_bcSupport
BeanContextChildSupport m_bcSupport
BeanContextChild support -
m_dataSetListeners
Vector<DataSourceListener> m_dataSetListeners
Objects listening for data set events -
m_design
boolean m_design
True if this bean's appearance is the design mode appearance -
m_framePoppedUp
boolean m_framePoppedUp
-
m_headlessEvents
List<EventObject> m_headlessEvents
Events received and stored during headless execution -
m_height
String m_height
Height of offscreen plots -
m_imageListeners
ArrayList<ImageListener> m_imageListeners
-
m_listenees
List<Object> m_listenees
-
m_offscreenRendererName
String m_offscreenRendererName
Name of the renderer to use for offscreen chart rendering -
m_visPanel
VisualizePanel m_visPanel
-
m_visual
BeanVisual m_visual
-
m_width
String m_width
Width of offscreen plots -
m_xAxis
String m_xAxis
The name of the attribute to use for the x-axis of offscreen plots. If left empty, False Positive Rate is used for threshold curves -
m_yAxis
String m_yAxis
The name of the attribute to use for the y-axis of offscreen plots. If left empty, True Positive Rate is used for threshold curves
-
-
Class weka.gui.beans.DataVisualizerCustomizer
class DataVisualizerCustomizer extends JPanel implements Serializable- serialVersionUID:
- 27802741348090392L
-
Serialized Fields
-
m_dataVis
DataVisualizer m_dataVis
-
m_env
Environment m_env
-
m_height
EnvironmentField m_height
-
m_heightBack
String m_heightBack
-
m_modifyListener
BeanCustomizer.ModifyListener m_modifyListener
-
m_opts
EnvironmentField m_opts
-
m_optsBack
String m_optsBack
-
m_parent
Window m_parent
-
m_rendererCombo
JComboBox m_rendererCombo
-
m_rendererNameBack
String m_rendererNameBack
-
m_width
EnvironmentField m_width
-
m_widthBack
String m_widthBack
-
m_xAxis
EnvironmentField m_xAxis
-
m_xAxisBack
String m_xAxisBack
-
m_yAxis
EnvironmentField m_yAxis
-
m_yAxisBack
String m_yAxisBack
-
-
Class weka.gui.beans.EnvironmentField
class EnvironmentField extends JPanel implements Serializable- serialVersionUID:
- -3125404573324734121L
-
Serialized Fields
-
m_combo
JComboBox m_combo
Deprecated.The combo box -
m_currentCaretPos
int m_currentCaretPos
Deprecated. -
m_currentContents
String m_currentContents
Deprecated. -
m_env
Environment m_env
Deprecated.The current environment variables -
m_firstCaretPos
int m_firstCaretPos
Deprecated. -
m_label
JLabel m_label
Deprecated.The label for the widget -
m_previousCaretPos
int m_previousCaretPos
Deprecated. -
m_support
PropertyChangeSupport m_support
Deprecated.
-
-
Class weka.gui.beans.EnvironmentField.WideComboBox
class WideComboBox extends JComboBox implements Serializable- serialVersionUID:
- -6512065375459733517L
-
Serialized Fields
-
m_layingOut
boolean m_layingOut
-
-
Class weka.gui.beans.FileEnvironmentField
class FileEnvironmentField extends EnvironmentField implements Serializable- serialVersionUID:
- -233731548086207652L
-
Serialized Fields
-
m_browseBut
JButton m_browseBut
Deprecated.The button to pop up the file dialog -
m_fileEditor
FileEditor m_fileEditor
Deprecated.File editor component -
m_fileEditorDialog
PropertyDialog m_fileEditorDialog
Deprecated.Dialog to hold the file editor
-
-
Class weka.gui.beans.Filter
class Filter extends JPanel implements Serializable- serialVersionUID:
- 8249759470189439321L
-
Serialized Fields
-
m_dataListeners
Vector<DataSourceListener> m_dataListeners
Objects listening for data set events -
m_Filter
Filter m_Filter
The filter to use. -
m_globalInfo
String m_globalInfo
Global info for the wrapped filter (if it exists). -
m_ie
InstanceEvent m_ie
Instance event object for passing on filtered instance streams -
m_instanceListeners
Vector<InstanceListener> m_instanceListeners
Objects listening for instance events -
m_listenees
Hashtable<String,
Object> m_listenees Objects talking to us -
m_state
int m_state
-
m_structurePassedOn
boolean m_structurePassedOn
-
m_testListeners
Vector<TestSetListener> m_testListeners
Objects listening for test set events -
m_trainingListeners
Vector<TrainingSetListener> m_trainingListeners
Objects listening for training set events -
m_visual
BeanVisual m_visual
-
-
Class weka.gui.beans.FilterCustomizer
class FilterCustomizer extends JPanel implements Serializable- serialVersionUID:
- 2049895469240109738L
-
Serialized Fields
-
m_backup
Filter m_backup
Backup if user presses cancel -
m_filter
Filter m_filter
-
m_filterEditor
PropertySheetPanel m_filterEditor
-
m_modifyListener
BeanCustomizer.ModifyListener m_modifyListener
-
m_parentWindow
Window m_parentWindow
-
m_pcSupport
PropertyChangeSupport m_pcSupport
-
-
Class weka.gui.beans.FlowByExpression
class FlowByExpression extends JPanel implements Serializable- serialVersionUID:
- 2492050246494259885L
-
Serialized Fields
-
m_connectedFormat
Instances m_connectedFormat
format of instances for current incoming connection (if any) -
m_connectionType
String m_connectionType
The type of the incoming connection -
m_customNameOfFalseStep
String m_customNameOfFalseStep
Name of the step to receive instances that evaluate to false via the expression -
m_customNameOfTrueStep
String m_customNameOfTrueStep
Name of the step to receive instances that evaluate to true via the expression -
m_downstream
Object[] m_downstream
The one or two downstream steps - one for instances that match the expression and the other for instances that don't -
m_expressionString
String m_expressionString
The expression tree to use in internal textual format -
m_ie
InstanceEvent m_ie
Instance event to use -
m_indexOfFalseStep
int m_indexOfFalseStep
-
m_indexOfTrueStep
int m_indexOfTrueStep
-
m_listenee
Object m_listenee
Component talking to us -
m_root
weka.gui.beans.FlowByExpression.ExpressionNode m_root
The root of the expression tree -
m_visual
BeanVisual m_visual
Default visual filters
-
-
Class weka.gui.beans.FlowByExpression.BracketNode
class BracketNode extends weka.gui.beans.FlowByExpression.ExpressionNode implements Serializable- serialVersionUID:
- 8732159083173001115L
-
Serialized Fields
-
m_children
List<weka.gui.beans.FlowByExpression.ExpressionNode> m_children
-
-
Class weka.gui.beans.FlowByExpression.ExpressionClause
class ExpressionClause extends weka.gui.beans.FlowByExpression.ExpressionNode implements Serializable- serialVersionUID:
- 2754006654981248325L
-
Serialized Fields
-
m_lhsAttIndex
int m_lhsAttIndex
The index of the lhs attribute -
m_lhsAttributeName
String m_lhsAttributeName
The name of the lhs attribute -
m_numericOperand
double m_numericOperand
The rhs operand (if constant and is a number ) -
m_operator
FlowByExpression.ExpressionClause.ExpressionType m_operator
The operator for this expression -
m_regexPattern
Pattern m_regexPattern
the compiled regex pattern (if the operator is REGEX) -
m_resolvedLhsName
String m_resolvedLhsName
The name of the lhs attribute after resolving variables -
m_resolvedRhsOperand
String m_resolvedRhsOperand
The rhs operand after resolving variables -
m_rhsAttIndex
int m_rhsAttIndex
index of the rhs if it is an attribute -
m_rhsIsAttribute
boolean m_rhsIsAttribute
True if the rhs operand is an attribute -
m_rhsOperand
String m_rhsOperand
The rhs operand (constant value or attribute name)
-
-
Class weka.gui.beans.FlowByExpression.ExpressionNode
class ExpressionNode extends Object implements Serializable- serialVersionUID:
- -8427857202322768762L
-
Serialized Fields
-
m_isAnOr
boolean m_isAnOr
boolean operator for combining with result so far -
m_isNegated
boolean m_isNegated
is this node negated? -
m_showAndOr
boolean m_showAndOr
Whether to show the combination operator in the textual representation
-
-
Class weka.gui.beans.FlowByExpressionCustomizer
class FlowByExpressionCustomizer extends JPanel implements Serializable- serialVersionUID:
- -3574741335754017794L
-
Serialized Fields
-
m_addBracketNode
JButton m_addBracketNode
-
m_addExpressionNode
JButton m_addExpressionNode
-
m_andOr
JButton m_andOr
-
m_deleteNode
JButton m_deleteNode
-
m_env
Environment m_env
-
m_expression
FlowByExpression m_expression
-
m_expressionLab
JLabel m_expressionLab
-
m_expressionTree
JTree m_expressionTree
-
m_falseData
JComboBox m_falseData
-
m_lhsField
JComboBox m_lhsField
-
m_modifyL
BeanCustomizer.ModifyListener m_modifyL
-
m_operatorCombo
JComboBox m_operatorCombo
-
m_parent
Window m_parent
-
m_rhsField
JComboBox m_rhsField
-
m_rhsIsAttribute
JCheckBox m_rhsIsAttribute
-
m_tempEditor
PropertySheetPanel m_tempEditor
-
m_toggleNegation
JButton m_toggleNegation
-
m_treeRoot
DefaultMutableTreeNode m_treeRoot
-
m_trueData
JComboBox m_trueData
-
-
Class weka.gui.beans.GraphEvent
class GraphEvent extends EventObject implements Serializable- serialVersionUID:
- 2099494034652519986L
-
Class weka.gui.beans.GraphViewer
class GraphViewer extends JPanel implements Serializable- serialVersionUID:
- -5183121972114900617L
-
Serialized Fields
-
m_bcSupport
BeanContextChildSupport m_bcSupport
BeanContextChild support -
m_design
boolean m_design
True if this bean's appearance is the design mode appearance -
m_visual
BeanVisual m_visual
-
-
Class weka.gui.beans.ImageEvent
class ImageEvent extends EventObject implements Serializable- serialVersionUID:
- -8126533743311557969L
-
Serialized Fields
-
m_image
BufferedImage m_image
The image -
m_imageName
String m_imageName
The name of the image
-
-
Class weka.gui.beans.ImageSaver
class ImageSaver extends JPanel implements Serializable- serialVersionUID:
- -641438159956934314L
-
Serialized Fields
-
m_fileName
String m_fileName
The file to save to -
m_listenee
Object m_listenee
Non null if this object is a target for any events. Provides for the simplest case when only one incomming connection is allowed. -
m_visual
BeanVisual m_visual
Default visual for data sources
-
-
Class weka.gui.beans.ImageSaverCustomizer
class ImageSaverCustomizer extends JPanel implements Serializable- serialVersionUID:
- 5215477777077643368L
-
Serialized Fields
-
m_env
Environment m_env
-
m_fileBackup
String m_fileBackup
-
m_fileEditor
FileEnvironmentField m_fileEditor
-
m_imageSaver
ImageSaver m_imageSaver
-
m_modifyListener
BeanCustomizer.ModifyListener m_modifyListener
-
m_parent
Window m_parent
-
-
Class weka.gui.beans.ImageViewer
class ImageViewer extends JPanel implements Serializable- serialVersionUID:
- 7976930810628389750L
-
Serialized Fields
-
m_history
ResultHistoryPanel m_history
Keeps a history of the images received -
m_plotter
weka.gui.beans.ImageViewer.ImageDisplayer m_plotter
Panel for displaying the image -
m_visual
BeanVisual m_visual
Default visual for data sources
-
-
Class weka.gui.beans.IncrementalClassifierEvaluator
class IncrementalClassifierEvaluator extends AbstractEvaluator implements Serializable- serialVersionUID:
- -3105419818939541291L
-
Serialized Fields
-
m_ce
ChartEvent m_ce
-
m_dataLegend
Vector<String> m_dataLegend
-
m_dataPoint
double[] m_dataPoint
-
m_instanceCount
int m_instanceCount
-
m_listeners
Vector<ChartListener> m_listeners
-
m_max
double m_max
-
m_min
double m_min
-
m_outputInfoRetrievalStats
boolean m_outputInfoRetrievalStats
-
m_reset
boolean m_reset
-
m_statusFrequency
int m_statusFrequency
-
m_textListeners
Vector<TextListener> m_textListeners
-
m_window
LinkedList<Instance> m_window
-
m_windowedPreds
LinkedList<double[]> m_windowedPreds
-
m_windowEval
Evaluation m_windowEval
-
m_windowSize
int m_windowSize
-
-
Class weka.gui.beans.IncrementalClassifierEvaluatorCustomizer
class IncrementalClassifierEvaluatorCustomizer extends JPanel implements Serializable- serialVersionUID:
- 443506897387629418L
-
Serialized Fields
-
m_evaluator
IncrementalClassifierEvaluator m_evaluator
-
m_freqBackup
int m_freqBackup
-
m_ieEditor
PropertySheetPanel m_ieEditor
-
m_modifyListener
BeanCustomizer.ModifyListener m_modifyListener
-
m_parent
Window m_parent
-
m_pcSupport
PropertyChangeSupport m_pcSupport
for serialization -
m_perClassBackup
boolean m_perClassBackup
-
-
Class weka.gui.beans.IncrementalClassifierEvent
class IncrementalClassifierEvent extends EventObject implements Serializable- serialVersionUID:
- 28979464317643232L
-
Serialized Fields
-
m_classifier
Classifier m_classifier
-
m_currentInstance
Instance m_currentInstance
-
m_status
int m_status
-
m_structure
Instances m_structure
-
-
Class weka.gui.beans.InstanceEvent
class InstanceEvent extends EventObject implements Serializable- serialVersionUID:
- 6104920894559423946L
-
Serialized Fields
-
m_formatNotificationOnly
boolean m_formatNotificationOnly
for FORMAT_AVAILABLE, if this is true then it indicates that this is not the actual start of stream processing, but rather that a file/source has changed via the user from the UI -
m_instance
Instance m_instance
-
m_status
int m_status
-
m_structure
Instances m_structure
-
-
Class weka.gui.beans.InstanceStreamToBatchMaker
class InstanceStreamToBatchMaker extends JPanel implements Serializable- serialVersionUID:
- -7037141087208627799L
-
Serialized Fields
-
m_batch
List<Instance> m_batch
Collects up the instances. -
m_dataListeners
ArrayList<DataSourceListener> m_dataListeners
-
m_listenee
Object m_listenee
Component connected to us. -
m_structure
Instances m_structure
-
m_visual
BeanVisual m_visual
-
-
Class weka.gui.beans.InteractiveTableModel
class InteractiveTableModel extends InteractiveTableModel implements Serializable- serialVersionUID:
- 7628124449228704885L
-
Class weka.gui.beans.InteractiveTablePanel
class InteractiveTablePanel extends InteractiveTablePanel implements Serializable- serialVersionUID:
- -5331129312037269302L
-
Class weka.gui.beans.Join
class Join extends JPanel implements Serializable- serialVersionUID:
- 398021880509558185L
-
Serialized Fields
-
m_busy
boolean m_busy
True if we are busy -
m_dataListeners
ArrayList<DataSourceListener> m_dataListeners
Downstream steps listening to batch data events -
m_firstInput
Object m_firstInput
The first source of data -
m_firstInputConnectionType
String m_firstInputConnectionType
Connection type of the first input -
m_firstIsWaiting
boolean m_firstIsWaiting
True if the first input stream is waiting due to a full buffer (incremental mode only) -
m_ie
InstanceEvent m_ie
Instance event to use for incremental mode -
m_incomingBatchConnections
boolean m_incomingBatchConnections
Upstream components sending us data -
m_instanceListeners
ArrayList<InstanceListener> m_instanceListeners
Downstream steps listening to instance events -
m_keyIndexesOne
int[] m_keyIndexesOne
Indexes of the key fields for the first input -
m_keyIndexesTwo
int[] m_keyIndexesTwo
Indexes of the key fields for the second input -
m_keySpec
String m_keySpec
Holds the internal representation of the key specification -
m_runningIncrementally
boolean m_runningIncrementally
True if the step is running incrementally -
m_secondInput
Object m_secondInput
The second source of data -
m_secondInputConnectionType
String m_secondInputConnectionType
Connection type of the second input -
m_secondIsWaiting
boolean m_secondIsWaiting
True if the second input stream is waiting due to a full buffer (incremental mode only) -
m_stopRequested
AtomicBoolean m_stopRequested
True if the step has been told to stop processing -
m_stringAttIndexesOne
Map<String,
Integer> m_stringAttIndexesOne Holds indexes of string attributes, keyed by attribute name -
m_stringAttIndexesTwo
Map<String,
Integer> m_stringAttIndexesTwo Holds indexes of string attributes, keyed by attribute name -
m_stringAttsPresent
boolean m_stringAttsPresent
True if string attributes are present in the incoming data -
m_visual
BeanVisual m_visual
Default visual for data sources
-
-
Class weka.gui.beans.Join.InstanceHolder
class InstanceHolder extends Object implements Serializable- serialVersionUID:
- -2554438923824758088L
-
Serialized Fields
-
m_instance
Instance m_instance
The instance -
m_stringVals
Map<String,
String> m_stringVals for incremental operation, if string attributes are present then we need to store them with each instance - since incremental streaming in the knowledge flow only maintains one string value in memory (and hence in the header) at any one time
-
-
Class weka.gui.beans.JoinCustomizer
class JoinCustomizer extends JPanel implements Serializable- serialVersionUID:
- 5797383368777382010L
-
Serialized Fields
-
m_addOneBut
JButton m_addOneBut
-
m_addTwoBut
JButton m_addTwoBut
-
m_deleteOneBut
JButton m_deleteOneBut
-
m_deleteTwoBut
JButton m_deleteTwoBut
-
m_downOneBut
JButton m_downOneBut
-
m_downTwoBut
JButton m_downTwoBut
-
m_env
Environment m_env
-
m_firstKeyFields
JComboBox m_firstKeyFields
-
m_firstList
JList m_firstList
-
m_firstListModel
DefaultListModel m_firstListModel
-
m_join
Join m_join
-
m_modifyL
BeanCustomizer.ModifyListener m_modifyL
-
m_parent
Window m_parent
-
m_secondKeyFields
JComboBox m_secondKeyFields
-
m_secondList
JList m_secondList
-
m_secondListModel
DefaultListModel m_secondListModel
-
m_tempEditor
PropertySheetPanel m_tempEditor
-
m_upOneBut
JButton m_upOneBut
-
m_upTwoBut
JButton m_upTwoBut
-
-
Class weka.gui.beans.KnowledgeFlowApp
class KnowledgeFlowApp extends JPanel implements Serializable- serialVersionUID:
- -7064906770289728431L
-
Serialized Fields
-
m_allowMultipleTabs
boolean m_allowMultipleTabs
Whether to allow more than one tab or not -
m_bcSupport
BeanContextSupport m_bcSupport
-
m_beanLayout
weka.gui.beans.KnowledgeFlowApp.BeanLayout m_beanLayout
The layout area -
m_componentTree
JTree m_componentTree
Palette of components stored in a JTree -
m_configAndPerspectives
JPanel m_configAndPerspectives
Panel to hold the perspectives toolbar and config button -
m_configAndPerspectivesVisible
boolean m_configAndPerspectivesVisible
Whether the perspectives toolbar is visible at present (will never be visible if there are no plugin perspectives installed) -
m_copyB
JButton m_copyB
-
m_cutB
JButton m_cutB
-
m_deleteB
JButton m_deleteB
-
m_editElement
BeanInstance m_editElement
Reference to bean being manipulated -
m_FileChooser
WekaFileChooser m_FileChooser
The file chooser for selecting layout files -
m_firstUserComponentOpp
boolean m_firstUserComponentOpp
-
m_flowEnvironment
Environment m_flowEnvironment
Environment variables for the current flow -
m_FlowHeight
int m_FlowHeight
the flow layout height -
m_FlowWidth
int m_FlowWidth
the flow layout width -
m_fontM
FontMetrics m_fontM
-
m_gridSpacing
int m_gridSpacing
Snap-to-grid spacing -
m_groupB
JButton m_groupB
-
m_helpB
JButton m_helpB
-
m_KfFilter
FileFilter m_KfFilter
A filter to ensure only KnowledgeFlow files in binary format get shown in the chooser -
m_KOMLFilter
FileFilter m_KOMLFilter
A filter to ensure only KnowledgeFlow files in KOML format get shown in the chooser -
m_layoutZoom
int m_layoutZoom
-
m_loadB
JButton m_loadB
-
m_logPanel
weka.gui.beans.KnowledgeFlowApp.KFLogPanel m_logPanel
-
m_mainKFPerspective
KnowledgeFlowApp.MainKFPerspective m_mainKFPerspective
Shortcut to the main perspective -
m_mode
int m_mode
-
m_newB
JButton m_newB
-
m_noteB
JButton m_noteB
-
m_oldX
int m_oldX
Used to record screen coordinates during move, select and connect operations -
m_oldY
int m_oldY
Used to record screen coordinates during move, select and connect operations -
m_pasteB
JButton m_pasteB
-
m_pasteBuffer
StringBuffer m_pasteBuffer
The clip board -
m_perspectiveCache
Map<String,
KnowledgeFlowApp.KFPerspective> m_perspectiveCache Those perspectives that have been instantiated -
m_perspectiveConfigurer
AttributeSelectionPanel m_perspectiveConfigurer
-
m_perspectiveDataLoadThread
Thread m_perspectiveDataLoadThread
Thread for loading data for perspectives -
m_perspectiveGroup
ButtonGroup m_perspectiveGroup
Button group to manage all perspective toggle buttons -
m_perspectiveHolder
JPanel m_perspectiveHolder
Component that holds the currently visible perspective -
m_perspectives
List<KnowledgeFlowApp.KFPerspective> m_perspectives
Holds the list of currently loaded perspectives. Element at 0 is always the main KF data mining flow perspective -
m_perspectiveToolBar
JToolBar m_perspectiveToolBar
Toolbar to hold the perspective buttons -
m_playB
JButton m_playB
-
m_playBB
JButton m_playBB
-
m_pluginPerspectiveLookup
Map<String,
String> m_pluginPerspectiveLookup Map of all plugin perspectives -
m_pointerB
JButton m_pointerB
-
m_PreferredExtension
String m_PreferredExtension
the preferred file extension -
m_saveB
JButton m_saveB
-
m_saveBB
JButton m_saveBB
-
m_ScrollBarIncrementComponents
int m_ScrollBarIncrementComponents
the scrollbar increment of the components scrollpane -
m_ScrollBarIncrementLayout
int m_ScrollBarIncrementLayout
the scrollbar increment of the layout scrollpane -
m_selectAllB
JButton m_selectAllB
-
m_showFileMenu
boolean m_showFileMenu
-
m_snapToGridB
JToggleButton m_snapToGridB
-
m_sourceEventSetDescriptor
EventSetDescriptor m_sourceEventSetDescriptor
Event set descriptor for the bean being manipulated -
m_startX
int m_startX
-
m_startY
int m_startY
-
m_stopB
JButton m_stopB
-
m_templatesB
JButton m_templatesB
-
m_togglePerspectivesB
JButton m_togglePerspectivesB
-
m_toolBarBean
Object m_toolBarBean
Holds the selected toolbar bean -
m_undoB
JButton m_undoB
-
m_untitledCount
int m_untitledCount
Number of untitled tabs so far -
m_userCompNode
DefaultMutableTreeNode m_userCompNode
The node of the JTree that holds "user" (metabean) components -
m_userComponents
Vector<Object> m_userComponents
-
m_UserComponentsInXML
boolean m_UserComponentsInXML
whether to store the user components in XML or in binary format -
m_XMLFilter
FileFilter m_XMLFilter
A filter to ensure only KnowledgeFlow layout files in XML format get shown in the chooser -
m_XStreamFilter
FileFilter m_XStreamFilter
A filter to ensure only KnowledgeFlow files in XStream format get shown in the chooser -
m_zoomInB
JButton m_zoomInB
-
m_zoomOutB
JButton m_zoomOutB
-
-
Class weka.gui.beans.KnowledgeFlowApp.BeanIconRenderer
class BeanIconRenderer extends DefaultTreeCellRenderer implements Serializable- serialVersionUID:
- -4488876734500244945L
-
Class weka.gui.beans.KnowledgeFlowApp.BeanLayout
class BeanLayout extends PrintablePanel implements Serializable- serialVersionUID:
- -146377012429662757L
-
Class weka.gui.beans.KnowledgeFlowApp.InvisibleNode
class InvisibleNode extends DefaultMutableTreeNode implements Serializable- serialVersionUID:
- -9064396835384819887L
-
Serialized Fields
-
m_isVisible
boolean m_isVisible
-
-
Class weka.gui.beans.KnowledgeFlowApp.InvisibleTreeModel
class InvisibleTreeModel extends DefaultTreeModel implements Serializable- serialVersionUID:
- 6940101211275068260L
-
Serialized Fields
-
m_filterIsActive
boolean m_filterIsActive
-
-
Class weka.gui.beans.KnowledgeFlowApp.JTreeLeafDetails
class JTreeLeafDetails extends Object implements Serializable- serialVersionUID:
- 6197221540272931626L
-
Serialized Fields
-
m_fullyQualifiedCompName
String m_fullyQualifiedCompName
fully qualified bean name -
m_isMeta
boolean m_isMeta
true if this is a MetaBean (user component) -
m_leafLabel
String m_leafLabel
the label (usually derived from the qualified name or wrapped algorithm) for the leaf -
m_metaBean
Vector<Object> m_metaBean
XML serialized MetaBean (if this is a user component) -
m_toolTipText
String m_toolTipText
tool tip text to display -
m_wekaAlgoName
String m_wekaAlgoName
the fully qualified wrapped weka algorithm name
-
-
Class weka.gui.beans.KnowledgeFlowApp.KFLogPanel
class KFLogPanel extends LogPanel implements Serializable- serialVersionUID:
- -2224509243343105276L
-
Class weka.gui.beans.KnowledgeFlowApp.MainKFPerspective
class MainKFPerspective extends JPanel implements Serializable- serialVersionUID:
- 7666381888012259527L
-
Serialized Fields
-
m_beanLayouts
List<weka.gui.beans.KnowledgeFlowApp.BeanLayout> m_beanLayouts
List of layouts - one for each tab -
m_editedList
List<Boolean> m_editedList
Keeps track of which tabs have been edited but not saved -
m_environmentSettings
List<Environment> m_environmentSettings
List of environment variable settings - one for each tab -
m_executingList
List<Boolean> m_executingList
Keeps track of which tabs have flows that are executing -
m_executionThreads
List<weka.gui.beans.KnowledgeFlowApp.RunThread> m_executionThreads
Keeps track of the threads used for execution -
m_filePaths
List<File> m_filePaths
List of flow file paths - one for each tab -
m_flowTabs
JTabbedPane m_flowTabs
Holds the tabs of the perspective -
m_logPanels
List<weka.gui.beans.KnowledgeFlowApp.KFLogPanel> m_logPanels
List of log panels - one for each tab -
m_nodeTextIndex
Map<String,
DefaultMutableTreeNode> m_nodeTextIndex -
m_selectedBeans
List<Vector<Object>> m_selectedBeans
Keeps track of any highlighted beans on the canvas for a tab -
m_undoBufferList
List<Stack<File>> m_undoBufferList
Keeps track of the undo buffers for each tab -
m_zoomSettings
List<Integer> m_zoomSettings
List of zoom settings - one for each tab
-
-
Class weka.gui.beans.Loader
class Loader extends AbstractDataSource implements Serializable- serialVersionUID:
- 1993738191961163027L
-
Serialization Methods
-
readObject
- Throws:
IOException
ClassNotFoundException
-
readResolve
- Throws:
ObjectStreamException
-
-
Serialized Fields
-
m_dataSetEventTargets
int m_dataSetEventTargets
-
m_dbSet
boolean m_dbSet
Flag indicating that a database has already been configured -
m_globalInfo
String m_globalInfo
Global info for the wrapped loader (if it exists). -
m_ie
InstanceEvent m_ie
-
m_instanceEventTargets
int m_instanceEventTargets
Keep track of how many listeners for different types of events there are. -
m_ioThread
weka.gui.beans.Loader.LoadThread m_ioThread
Thread for doing IO in -
m_Loader
Loader m_Loader
Loader -
m_state
int m_state
-
m_stopped
boolean m_stopped
Asked to stop?
-
-
Class weka.gui.beans.LoaderCustomizer
class LoaderCustomizer extends JPanel implements Serializable- serialVersionUID:
- 6990446313118930298L
-
Serialized Fields
-
m_backup
Loader m_backup
-
m_dbaseURLText
EnvironmentField m_dbaseURLText
-
m_dbProps
FileEnvironmentField m_dbProps
-
m_dsLoader
Loader m_dsLoader
-
m_env
Environment m_env
-
m_fileChooser
WekaFileChooser m_fileChooser
-
m_fileChooserFrame
JDialog m_fileChooserFrame
-
m_fileText
EnvironmentField m_fileText
-
m_keyText
EnvironmentField m_keyText
-
m_LoaderEditor
PropertySheetPanel m_LoaderEditor
-
m_modifyListener
BeanCustomizer.ModifyListener m_modifyListener
-
m_parentWindow
Window m_parentWindow
-
m_passwordText
JPasswordField m_passwordText
-
m_pcSupport
PropertyChangeSupport m_pcSupport
-
m_queryText
EnvironmentField m_queryText
-
m_userNameText
EnvironmentField m_userNameText
-
-
Class weka.gui.beans.LogPanel
class LogPanel extends JPanel implements Serializable- serialVersionUID:
- 6583097154513435548L
-
Serialized Fields
-
m_formatter
DecimalFormat m_formatter
For formatting timer digits -
m_logPanel
LogPanel m_logPanel
The log panel to delegate log messages to. -
m_table
JTable m_table
The table for the status area -
m_tableIndexes
HashMap<String,
Integer> m_tableIndexes Holds the index (line number) in the JTable of each component being tracked. -
m_tableModel
DefaultTableModel m_tableModel
The table model for the JTable used in the status area -
m_tabs
JTabbedPane m_tabs
Tabbed pane to hold both the status and the log -
m_timers
HashMap<String,
Timer> m_timers Holds the timers associated with each component being tracked.
-
-
Class weka.gui.beans.MetaBean
class MetaBean extends JPanel implements Serializable- serialVersionUID:
- -6582768902038027077L
-
Serialized Fields
-
m_associatedConnections
Vector<BeanConnection> m_associatedConnections
-
m_inputs
Vector<Object> m_inputs
-
m_originalCoords
Vector<Point> m_originalCoords
-
m_outputs
Vector<Object> m_outputs
-
m_subFlow
Vector<Object> m_subFlow
-
m_subFlowPreview
ImageIcon m_subFlowPreview
-
m_visual
BeanVisual m_visual
-
m_xCreate
int m_xCreate
-
m_xDrop
int m_xDrop
-
m_yCreate
int m_yCreate
-
m_yDrop
int m_yDrop
-
-
Class weka.gui.beans.ModelPerformanceChart
class ModelPerformanceChart extends JPanel implements Serializable- serialVersionUID:
- -4602034200071195924L
-
Serialized Fields
-
m_additionalOptions
String m_additionalOptions
Additional options for the offscreen renderer -
m_bcSupport
BeanContextChildSupport m_bcSupport
BeanContextChild support -
m_design
boolean m_design
True if this bean's appearance is the design mode appearance -
m_framePoppedUp
boolean m_framePoppedUp
-
m_headlessEvents
List<EventObject> m_headlessEvents
Events received and stored during headless execution -
m_height
String m_height
Height of offscreen plots -
m_imageListeners
ArrayList<ImageListener> m_imageListeners
-
m_listenees
List<Object> m_listenees
-
m_offscreenRendererName
String m_offscreenRendererName
Name of the renderer to use for offscreen chart rendering -
m_visual
BeanVisual m_visual
-
m_width
String m_width
Width of offscreen plots -
m_xAxis
String m_xAxis
The name of the attribute to use for the x-axis of offscreen plots. If left empty, False Positive Rate is used for threshold curves -
m_yAxis
String m_yAxis
The name of the attribute to use for the y-axis of offscreen plots. If left empty, True Positive Rate is used for threshold curves
-
-
Class weka.gui.beans.ModelPerformanceChartCustomizer
class ModelPerformanceChartCustomizer extends JPanel implements Serializable- serialVersionUID:
- 27802741348090392L
-
Serialized Fields
-
m_env
Environment m_env
-
m_height
EnvironmentField m_height
-
m_heightBack
String m_heightBack
-
m_modelPC
ModelPerformanceChart m_modelPC
-
m_modifyListener
BeanCustomizer.ModifyListener m_modifyListener
-
m_opts
EnvironmentField m_opts
-
m_optsBack
String m_optsBack
-
m_parent
Window m_parent
-
m_rendererCombo
JComboBox m_rendererCombo
-
m_rendererNameBack
String m_rendererNameBack
-
m_width
EnvironmentField m_width
-
m_widthBack
String m_widthBack
-
m_xAxis
EnvironmentField m_xAxis
-
m_xAxisBack
String m_xAxisBack
-
m_yAxis
EnvironmentField m_yAxis
-
m_yAxisBack
String m_yAxisBack
-
-
Class weka.gui.beans.Note
class Note extends JPanel implements Serializable- serialVersionUID:
- -7272355421198069040L
-
Class weka.gui.beans.NoteCustomizer
class NoteCustomizer extends JPanel implements Serializable- serialVersionUID:
- 995648616684953391L
-
Serialized Fields
-
m_modifyListener
BeanCustomizer.ModifyListener m_modifyListener
Listener that wants to know the the modified status of the object that we're customizing -
m_note
Note m_note
the note to be edited -
m_parentWindow
Window m_parentWindow
the parent window -
m_textArea
JTextArea m_textArea
text area for displaying the note's text
-
-
Class weka.gui.beans.PredictionAppender
class PredictionAppender extends JPanel implements Serializable- serialVersionUID:
- -2987740065058976673L
-
Serialized Fields
-
m_appendProbabilities
boolean m_appendProbabilities
Append classifier's predicted probabilities (if the class is discrete and the classifier is a distribution classifier) -
m_dataSourceListeners
Vector<DataSourceListener> m_dataSourceListeners
Objects listenening for dataset events -
m_format
Instances m_format
Format of instances to be produced. -
m_instanceEvent
InstanceEvent m_instanceEvent
-
m_instanceListeners
Vector<InstanceListener> m_instanceListeners
Objects listening for instances events -
m_listenee
Object m_listenee
Non null if this object is a target for any events. -
m_testSetListeners
Vector<TestSetListener> m_testSetListeners
Objects listening for test set events -
m_trainingSetListeners
Vector<TrainingSetListener> m_trainingSetListeners
Objects listening for training set events -
m_visual
BeanVisual m_visual
-
-
Class weka.gui.beans.PredictionAppenderCustomizer
class PredictionAppenderCustomizer extends JPanel implements Serializable- serialVersionUID:
- 6884933202506331888L
-
Serialized Fields
-
m_appender
PredictionAppender m_appender
-
m_appendProbsBackup
boolean m_appendProbsBackup
-
m_modifyListener
BeanCustomizer.ModifyListener m_modifyListener
-
m_paEditor
PropertySheetPanel m_paEditor
-
m_parent
Window m_parent
-
m_pcSupport
PropertyChangeSupport m_pcSupport
-
-
Class weka.gui.beans.Saver
class Saver extends AbstractDataSink implements Serializable- serialVersionUID:
- 5371716690308950755L
-
Serialization Methods
-
readObject
- Throws:
IOException
ClassNotFoundException
-
-
Serialized Fields
-
m_count
int m_count
Count for structure available messages -
m_dataSet
Instances m_dataSet
Holds the instances to be saved -
m_fileName
String m_fileName
The relation name that becomes part of the file name -
m_globalInfo
String m_globalInfo
Global info for the wrapped loader (if it exists). -
m_isDBSaver
boolean m_isDBSaver
Flag indicating that instances will be saved to database. Used because structure information can only be sent after a database has been configured. -
m_relationNameForFilename
boolean m_relationNameForFilename
For file-based savers - if true (default), relation name is used as the primary part of the filename. If false, then the prefix is used as the filename. Useful for preventing filenames from getting too long when there are many filters in a flow. -
m_Saver
Saver m_Saver
Saver -
m_SaverTemplate
Saver m_SaverTemplate
-
m_structure
Instances m_structure
Holds the structure
-
-
Class weka.gui.beans.SaverCustomizer
class SaverCustomizer extends JPanel implements Serializable- serialVersionUID:
- -4874208115942078471L
-
Serialized Fields
-
m_dbaseURLText
EnvironmentField m_dbaseURLText
-
m_dbProps
FileEnvironmentField m_dbProps
-
m_directoryText
EnvironmentField m_directoryText
-
m_dsSaver
Saver m_dsSaver
-
m_env
Environment m_env
-
m_fileChooser
WekaFileChooser m_fileChooser
-
m_fileChooserFrame
JDialog m_fileChooserFrame
-
m_idBox
JCheckBox m_idBox
-
m_modifyListener
BeanCustomizer.ModifyListener m_modifyListener
-
m_parentWindow
Window m_parentWindow
-
m_passwordText
JPasswordField m_passwordText
-
m_pcSupport
PropertyChangeSupport m_pcSupport
-
m_prefixText
EnvironmentField m_prefixText
-
m_relationNameForFilename
JCheckBox m_relationNameForFilename
-
m_relativeFilePath
JCheckBox m_relativeFilePath
-
m_SaverEditor
PropertySheetPanel m_SaverEditor
-
m_tabBox
JCheckBox m_tabBox
-
m_tableText
EnvironmentField m_tableText
-
m_truncateBox
JCheckBox m_truncateBox
-
m_userNameText
EnvironmentField m_userNameText
-
-
Class weka.gui.beans.ScatterPlotMatrix
class ScatterPlotMatrix extends DataVisualizer implements Serializable- serialVersionUID:
- -657856527563507491L
-
Serialized Fields
-
m_matrixPanel
MatrixPanel m_matrixPanel
-
-
Class weka.gui.beans.SerializedModelSaver
class SerializedModelSaver extends JPanel implements Serializable- serialVersionUID:
- 3956528599473814287L
-
Serialization Methods
-
readObject
- Throws:
IOException
ClassNotFoundException
-
-
Serialized Fields
-
m_directory
File m_directory
The directory to hold the saved model(s) -
m_fileFormat
Tag m_fileFormat
File format stuff -
m_filenamePrefix
String m_filenamePrefix
The prefix for the file name (model + training set info will be appended) -
m_includeRelationName
boolean m_includeRelationName
include relation name in filename -
m_incrementalSaveSchedule
int m_incrementalSaveSchedule
How often to save an incremental classifier (<= 0 means only at the end of the stream) -
m_listenee
Object m_listenee
Non null if this object is a target for any events. Provides for the simplest case when only one incomming connection is allowed. -
m_useRelativePath
boolean m_useRelativePath
relative path for the directory (relative to the user.dir (startup directory))? -
m_visual
BeanVisual m_visual
Default visual for data sources
-
-
Class weka.gui.beans.SerializedModelSaverCustomizer
class SerializedModelSaverCustomizer extends JPanel implements Serializable- serialVersionUID:
- -4874208115942078471L
-
Serialized Fields
-
m_directoryBackup
File m_directoryBackup
-
m_directoryText
EnvironmentField m_directoryText
-
m_env
Environment m_env
-
m_fileChooser
WekaFileChooser m_fileChooser
-
m_fileChooserFrame
JDialog m_fileChooserFrame
-
m_fileFormatBox
JComboBox m_fileFormatBox
-
m_formatBackup
Tag m_formatBackup
-
m_includeRelationName
JCheckBox m_includeRelationName
-
m_incrementalSaveSchedule
JTextField m_incrementalSaveSchedule
-
m_modifyListener
BeanCustomizer.ModifyListener m_modifyListener
-
m_parentWindow
Window m_parentWindow
-
m_pcSupport
PropertyChangeSupport m_pcSupport
-
m_prefixBackup
String m_prefixBackup
-
m_prefixText
EnvironmentField m_prefixText
-
m_relationBackup
boolean m_relationBackup
-
m_relativeBackup
boolean m_relativeBackup
-
m_relativeFilePath
JCheckBox m_relativeFilePath
-
m_SaverEditor
PropertySheetPanel m_SaverEditor
-
m_smSaver
SerializedModelSaver m_smSaver
-
-
Class weka.gui.beans.ShadowBorder
class ShadowBorder extends AbstractBorder implements Serializable- serialVersionUID:
- -2117842133475125463L
-
Serialized Fields
-
m_color
Color m_color
the color of the drop shadow -
m_width
int m_width
The width in pixels of the drop shadow
-
-
Class weka.gui.beans.Sorter
class Sorter extends JPanel implements Serializable- serialVersionUID:
- 4978227384322482115L
-
Serialized Fields
-
m_bufferSize
String m_bufferSize
Size of the in-memory buffer -
m_bufferSizeI
int m_bufferSizeI
Size of the in-memory buffer after resolving any environment vars -
m_busy
boolean m_busy
True if we are busy -
m_connectedFormat
Instances m_connectedFormat
format of instances for current incoming connection (if any) -
m_connectionType
String m_connectionType
The type of the incoming connection -
m_dataListeners
ArrayList<DataSourceListener> m_dataListeners
Downstream steps listening to batch data events -
m_ie
InstanceEvent m_ie
For printing status updates in incremental mode -
m_instanceListeners
ArrayList<InstanceListener> m_instanceListeners
Downstream steps listening to instance events -
m_listenee
Object m_listenee
Step talking to us -
m_sortDetails
String m_sortDetails
Holds the internal textual description of the sort definitions -
m_stopRequested
AtomicBoolean m_stopRequested
True if a stop has been requested -
m_stringAttIndexes
Map<String,
Integer> m_stringAttIndexes Holds indexes of string attributes, keyed by attribute name -
m_tempDirectory
String m_tempDirectory
The directory to hold the temp files - if not set the system tmp directory is used -
m_visual
BeanVisual m_visual
Default visual for data sources
-
-
Class weka.gui.beans.Sorter.InstanceHolder
class InstanceHolder extends Object implements Serializable- serialVersionUID:
- -3985730394250172995L
-
Serialized Fields
-
m_fileNumber
int m_fileNumber
index into the list of files on disk -
m_instance
Instance m_instance
The instance -
m_stringVals
Map<String,
String> m_stringVals for incremental operation, if string attributes are present then we need to store them with each instance - since incremental streaming in the knowledge flow only maintains one string value in memory (and hence in the header) at any one time
-
-
Class weka.gui.beans.SorterCustomizer
class SorterCustomizer extends JPanel implements Serializable- serialVersionUID:
- -4860246697276275408L
-
Serialized Fields
-
m_attCombo
JComboBox m_attCombo
-
m_buffSize
EnvironmentField m_buffSize
-
m_deleteBut
JButton m_deleteBut
-
m_descending
JComboBox m_descending
-
m_downBut
JButton m_downBut
-
m_env
Environment m_env
-
m_list
JList m_list
-
m_listModel
DefaultListModel m_listModel
-
m_modifyL
BeanCustomizer.ModifyListener m_modifyL
-
m_newBut
JButton m_newBut
-
m_parent
Window m_parent
-
m_sorter
Sorter m_sorter
The Sorter we are editing -
m_tempDir
FileEnvironmentField m_tempDir
-
m_tempEditor
PropertySheetPanel m_tempEditor
-
m_upBut
JButton m_upBut
-
-
Class weka.gui.beans.SQLViewerPerspective
class SQLViewerPerspective extends JPanel implements Serializable- serialVersionUID:
- 3684166225482042972L
-
Serialized Fields
-
m_mainPerspective
KnowledgeFlowApp.MainKFPerspective m_mainPerspective
-
m_newFlowBut
JButton m_newFlowBut
-
m_viewer
SqlViewer m_viewer
-
-
Class weka.gui.beans.StreamThroughput
class StreamThroughput extends Object implements Serializable- serialVersionUID:
- 2820675210555581676L
-
Class weka.gui.beans.StripChart
class StripChart extends JPanel implements Serializable- serialVersionUID:
- 1483649041577695019L
-
Serialization Methods
-
readObject
Provide some necessary initialization after object has been deserialized.- Parameters:
ois
- anObjectInputStream
value- Throws:
IOException
- if an error occursClassNotFoundException
- if an error occurs
-
-
Serialized Fields
-
m_BackgroundColor
Color m_BackgroundColor
the background color. -
m_ce
ChartEvent m_ce
-
m_colorList
Color[] m_colorList
default colours for colouring lines -
m_dataList
LinkedList<double[]> m_dataList
Holds the data to be plotted. Entries in the list are arrays of y points. -
m_dataPoint
double[] m_dataPoint
-
m_iheight
int m_iheight
Width and height of the off screen image. -
m_iwidth
int m_iwidth
-
m_labelFont
Font m_labelFont
-
m_labelMetrics
FontMetrics m_labelMetrics
-
m_legendPanel
weka.gui.beans.StripChart.LegendPanel m_legendPanel
the legend. -
m_LegendPanelBorderColor
Color m_LegendPanelBorderColor
the color of the legend panel's border. -
m_legendText
Vector<String> m_legendText
-
m_listenee
Object m_listenee
-
m_max
double m_max
Max value for the y axis. -
m_min
double m_min
Min value for the y axis. -
m_oldMax
double m_oldMax
-
m_oldMin
double m_oldMin
-
m_previousY
double[] m_previousY
-
m_Printer
PrintableComponent m_Printer
the class responsible for printing -
m_refreshFrequency
int m_refreshFrequency
Plot every m_refreshFrequency'th point -
m_refreshWidth
int m_refreshWidth
Shift the plot by this many pixels every time a point is plotted -
m_scalePanel
weka.gui.beans.StripChart.ScalePanel m_scalePanel
the scale. -
m_userRefreshWidth
int m_userRefreshWidth
-
m_visual
BeanVisual m_visual
-
m_xCount
int m_xCount
-
m_xValFreq
int m_xValFreq
Print x axis labels every m_xValFreq points -
m_yScaleUpdate
boolean m_yScaleUpdate
Scale update requested.
-
-
Class weka.gui.beans.StripChartCustomizer
class StripChartCustomizer extends JPanel implements Serializable- serialVersionUID:
- 7441741530975984608L
-
Serialized Fields
-
m_cvEditor
PropertySheetPanel m_cvEditor
-
m_pcSupport
PropertyChangeSupport m_pcSupport
-
-
Class weka.gui.beans.SubstringLabeler
class SubstringLabeler extends JPanel implements Serializable- serialVersionUID:
- 6297059699297260134L
-
Serialized Fields
-
m_addFilter
Add m_addFilter
Add filter for adding the new attribute -
m_attName
String m_attName
Name of the new attribute -
m_consumeNonMatchingInstances
boolean m_consumeNonMatchingInstances
For multi-valued labeled rules, whether or not to consume non-matching instances or output them with missing value for the match attribute. -
m_dataListeners
ArrayList<DataSourceListener> m_dataListeners
Downstream steps listening to data set events -
m_ie
InstanceEvent m_ie
Instance event to use -
m_instanceListeners
ArrayList<InstanceListener> m_instanceListeners
Downstream steps listening to instance events -
m_listenee
Object m_listenee
Component talking to us -
m_matchDetails
String m_matchDetails
Internally encoded list of match rules -
m_nominalBinary
boolean m_nominalBinary
Whether to make the binary match/non-match attribute a nominal (rather than numeric) binary attribute. -
m_visual
BeanVisual m_visual
Default visual filters
-
-
Class weka.gui.beans.SubstringLabelerCustomizer
class SubstringLabelerCustomizer extends JPanel implements Serializable- serialVersionUID:
- 7636584212353183751L
-
Serialized Fields
-
m_attListField
EnvironmentField m_attListField
-
m_consumeNonMatchingCheck
JCheckBox m_consumeNonMatchingCheck
-
m_deleteBut
JButton m_deleteBut
-
m_downBut
JButton m_downBut
-
m_env
Environment m_env
-
m_ignoreCaseCheck
JCheckBox m_ignoreCaseCheck
-
m_labeler
SubstringLabeler m_labeler
-
m_labelField
EnvironmentField m_labelField
-
m_list
JList m_list
-
m_listModel
DefaultListModel m_listModel
-
m_matchAttNameField
EnvironmentField m_matchAttNameField
-
m_matchField
EnvironmentField m_matchField
-
m_modifyL
BeanCustomizer.ModifyListener m_modifyL
-
m_newBut
JButton m_newBut
-
m_nominalBinaryCheck
JCheckBox m_nominalBinaryCheck
-
m_parent
Window m_parent
-
m_regexCheck
JCheckBox m_regexCheck
-
m_tempEditor
PropertySheetPanel m_tempEditor
-
m_upBut
JButton m_upBut
-
-
Class weka.gui.beans.SubstringLabelerRules
class SubstringLabelerRules extends Object implements Serializable- serialVersionUID:
- 1392983905562573599L
-
Serialized Fields
-
m_attName
String m_attName
The name of the new "label" attribute -
m_consumeNonMatching
boolean m_consumeNonMatching
True if non matching instances should be "consumed" - i.e no output instance created -
m_hasLabels
boolean m_hasLabels
True if the rules have user supplied labels -
m_inputStructure
Instances m_inputStructure
The input structure -
m_matchRules
List<SubstringLabelerRules.SubstringLabelerMatchRule> m_matchRules
The list of rules -
m_nominalBinary
boolean m_nominalBinary
If not multiple labels then should new att be a nominal rather than numeric binary one? -
m_outputStructure
Instances m_outputStructure
The output structure -
m_statusMessagePrefix
String m_statusMessagePrefix
An optional prefix for status log messages -
m_voteLabels
boolean m_voteLabels
-
-
Class weka.gui.beans.SubstringLabelerRules.SubstringLabelerMatchRule
class SubstringLabelerMatchRule extends Object implements Serializable- serialVersionUID:
- 6518104085439241523L
-
Serialized Fields
-
m_attsToApplyTo
String m_attsToApplyTo
The attributes to apply the match-replace rule to -
m_ignoreCase
boolean m_ignoreCase
True if case should be ignored when matching -
m_label
String m_label
The label (if any) for this rule -
m_labelS
String m_labelS
Resolved label string -
m_logger
Logger m_logger
Logger to use -
m_match
String m_match
The substring literal/regex to use for matching -
m_matchS
String m_matchS
Resolved match string -
m_regex
boolean m_regex
True if a regular expression match is to be used -
m_regexPattern
Pattern m_regexPattern
Precompiled regex pattern -
m_selectedAtts
int[] m_selectedAtts
Attributes to apply to -
m_statusMessagePrefix
String m_statusMessagePrefix
Status message prefix
-
-
Class weka.gui.beans.SubstringReplacer
class SubstringReplacer extends JPanel implements Serializable- serialVersionUID:
- 5636877747903965818L
-
Serialized Fields
-
m_ie
InstanceEvent m_ie
Instance event to use -
m_instanceListeners
ArrayList<InstanceListener> m_instanceListeners
Downstream steps listening to instance events -
m_listenee
Object m_listenee
Component sending us instances -
m_matchReplaceDetails
String m_matchReplaceDetails
Internally encoded list of match-replace rules -
m_visual
BeanVisual m_visual
Default visual filters
-
-
Class weka.gui.beans.SubstringReplacerCustomizer
class SubstringReplacerCustomizer extends JPanel implements Serializable- serialVersionUID:
- -1245155414691393809L
-
Serialized Fields
-
m_attListField
EnvironmentField m_attListField
-
m_deleteBut
JButton m_deleteBut
-
m_downBut
JButton m_downBut
-
m_env
Environment m_env
-
m_ignoreCaseCheck
JCheckBox m_ignoreCaseCheck
-
m_list
JList m_list
-
m_listModel
DefaultListModel m_listModel
-
m_matchField
EnvironmentField m_matchField
-
m_modifyL
BeanCustomizer.ModifyListener m_modifyL
-
m_newBut
JButton m_newBut
-
m_parent
Window m_parent
-
m_regexCheck
JCheckBox m_regexCheck
-
m_replaceField
EnvironmentField m_replaceField
-
m_replacer
SubstringReplacer m_replacer
-
m_tempEditor
PropertySheetPanel m_tempEditor
-
m_upBut
JButton m_upBut
-
-
Class weka.gui.beans.SubstringReplacerRules
class SubstringReplacerRules extends Object implements Serializable- serialVersionUID:
- -7151320452496749698L
-
Serialized Fields
-
m_inputStructure
Instances m_inputStructure
The input structure -
m_matchRules
List<SubstringReplacerRules.SubstringReplacerMatchRule> m_matchRules
-
m_outputStructure
Instances m_outputStructure
The output structure -
m_statusMessagePrefix
String m_statusMessagePrefix
An optional prefix for status log messages
-
-
Class weka.gui.beans.SubstringReplacerRules.SubstringReplacerMatchRule
class SubstringReplacerMatchRule extends Object implements Serializable- serialVersionUID:
- 5792838913737819728L
-
Serialized Fields
-
m_attsToApplyTo
String m_attsToApplyTo
The attributes to apply the match-replace rule to -
m_ignoreCase
boolean m_ignoreCase
True if case should be ignored when matching -
m_logger
Logger m_logger
-
m_match
String m_match
The substring literal/regex to use for matching -
m_matchS
String m_matchS
-
m_regex
boolean m_regex
True if a regular expression match is to be used -
m_regexPattern
Pattern m_regexPattern
Precompiled regex -
m_replace
String m_replace
The string to replace with -
m_replaceS
String m_replaceS
-
m_selectedAtts
int[] m_selectedAtts
-
m_statusMessagePrefix
String m_statusMessagePrefix
-
-
Class weka.gui.beans.TestSetEvent
class TestSetEvent extends EventObject implements Serializable- serialVersionUID:
- 8780718708498854231L
-
Serialized Fields
-
m_maxRunNumber
int m_maxRunNumber
Maximum number of runs. -
m_maxSetNumber
int m_maxSetNumber
Maximum number of sets (ie 10 in a 10 fold) -
m_runNumber
int m_runNumber
What run number is this training set from. -
m_setNumber
int m_setNumber
what number is this test set (ie fold 2 of 10 folds) -
m_structureOnly
boolean m_structureOnly
-
m_testSet
Instances m_testSet
The test set instances
-
-
Class weka.gui.beans.TestSetMaker
class TestSetMaker extends AbstractTestSetProducer implements Serializable- serialVersionUID:
- -8473882857628061841L
-
Serialized Fields
-
m_receivedStopNotification
boolean m_receivedStopNotification
-
-
Class weka.gui.beans.TextEvent
class TextEvent extends EventObject implements Serializable- serialVersionUID:
- 4196810607402973744L
-
Class weka.gui.beans.TextSaver
class TextSaver extends JPanel implements Serializable- serialVersionUID:
- 6363577506969809332L
-
Serialized Fields
-
m_append
boolean m_append
Whether to append to the file or not -
m_fileName
String m_fileName
The file to save to -
m_visual
BeanVisual m_visual
Default visual for data sources
-
-
Class weka.gui.beans.TextSaverCustomizer
class TextSaverCustomizer extends JPanel implements Serializable- serialVersionUID:
- -1012433373647714743L
-
Serialized Fields
-
m_append
JCheckBox m_append
-
m_env
Environment m_env
-
m_fileBackup
String m_fileBackup
-
m_fileEditor
FileEnvironmentField m_fileEditor
-
m_modifyListener
BeanCustomizer.ModifyListener m_modifyListener
-
m_parent
Window m_parent
-
m_textSaver
TextSaver m_textSaver
-
-
Class weka.gui.beans.TextViewer
class TextViewer extends JPanel implements Serializable- serialVersionUID:
- 104838186352536832L
-
Serialized Fields
-
m_bcSupport
BeanContextChildSupport m_bcSupport
BeanContextChild support -
m_design
boolean m_design
True if this bean's appearance is the design mode appearance -
m_headlessEvents
List<EventObject> m_headlessEvents
-
m_textListeners
Vector<TextListener> m_textListeners
Objects listening for text events -
m_visual
BeanVisual m_visual
-
-
Class weka.gui.beans.ThresholdDataEvent
class ThresholdDataEvent extends EventObject implements Serializable- serialVersionUID:
- -8309334224492439644L
-
Serialized Fields
-
m_classAttribute
Attribute m_classAttribute
-
m_dataSet
PlotData2D m_dataSet
-
-
Class weka.gui.beans.TrainingSetEvent
class TrainingSetEvent extends EventObject implements Serializable- serialVersionUID:
- 5872343811810872662L
-
Serialized Fields
-
m_maxRunNumber
int m_maxRunNumber
Maximum number of runs. -
m_maxSetNumber
int m_maxSetNumber
Maximum number of sets (ie 10 in a 10 fold) -
m_runNumber
int m_runNumber
What run number is this training set from. -
m_setNumber
int m_setNumber
what number is this training set (ie fold 2 of 10 folds) -
m_structureOnly
boolean m_structureOnly
-
m_trainingSet
Instances m_trainingSet
The training instances
-
-
Class weka.gui.beans.TrainingSetMaker
class TrainingSetMaker extends AbstractTrainingSetProducer implements Serializable- serialVersionUID:
- -6152577265471535786L
-
Serialized Fields
-
m_receivedStopNotification
boolean m_receivedStopNotification
-
-
Class weka.gui.beans.TrainTestSplitMaker
class TrainTestSplitMaker extends AbstractTrainAndTestSetProducer implements Serializable- serialVersionUID:
- 7390064039444605943L
-
Serialized Fields
-
m_dataProvider
boolean m_dataProvider
-
m_randomSeed
int m_randomSeed
-
m_splitThread
Thread m_splitThread
-
m_testProvider
boolean m_testProvider
-
m_trainingProvider
boolean m_trainingProvider
-
m_trainPercentage
double m_trainPercentage
-
-
Class weka.gui.beans.TrainTestSplitMakerCustomizer
class TrainTestSplitMakerCustomizer extends JPanel implements Serializable- serialVersionUID:
- -1684662340241807260L
-
Serialized Fields
-
m_pcSupport
PropertyChangeSupport m_pcSupport
-
m_splitEditor
PropertySheetPanel m_splitEditor
-
-
Class weka.gui.beans.VisualizableErrorEvent
class VisualizableErrorEvent extends EventObject implements Serializable- serialVersionUID:
- -5811819270887223400L
-
Serialized Fields
-
m_dataSet
PlotData2D m_dataSet
-
-
-
Package weka.gui.boundaryvisualizer
-
Class weka.gui.boundaryvisualizer.BoundaryPanel
class BoundaryPanel extends JPanel implements Serializable- serialVersionUID:
- -8499445518744770458L
-
Serialized Fields
-
m_classifier
Classifier m_classifier
distribution classifier to use -
m_classIndex
int m_classIndex
index of the class attribute -
m_Colors
ArrayList<Color> m_Colors
-
m_dataGenerator
DataGenerator m_dataGenerator
data generator to use -
m_dummy
Double m_dummy
-
m_initialTiling
boolean m_initialTiling
is the main plot thread performing the initial coarse tiling -
m_listeners
Vector<ActionListener> m_listeners
listeners to be notified when plot is complete -
m_maxX
double m_maxX
-
m_maxY
double m_maxY
-
m_minX
double m_minX
-
m_minY
double m_minY
-
m_numOfSamplesPerGenerator
int m_numOfSamplesPerGenerator
-
m_numOfSamplesPerRegion
int m_numOfSamplesPerRegion
-
m_osi
Image m_osi
used for offscreen drawing -
m_panelHeight
int m_panelHeight
-
m_panelWidth
int m_panelWidth
-
m_pausePlotting
boolean m_pausePlotting
-
m_pixHeight
double m_pixHeight
-
m_pixWidth
double m_pixWidth
-
m_plotPanel
weka.gui.boundaryvisualizer.BoundaryPanel.PlotPanel m_plotPanel
the actual plotting area -
m_plotThread
Thread m_plotThread
thread for running the plotting operation in -
m_plotTrainingData
boolean m_plotTrainingData
plot the training data -
m_probabilityCache
double[][][] m_probabilityCache
cache of probabilities for fast replotting -
m_random
Random m_random
A random number generator -
m_rangeX
double m_rangeX
-
m_rangeY
double m_rangeY
-
m_samplesBase
double m_samplesBase
-
m_size
int m_size
what size of tile is currently being plotted -
m_stopPlotting
boolean m_stopPlotting
Stop the plotting thread -
m_stopReplotting
boolean m_stopReplotting
Stop any replotting threads -
m_trainingData
Instances m_trainingData
training data -
m_xAttribute
int m_xAttribute
-
m_yAttribute
int m_yAttribute
-
-
Class weka.gui.boundaryvisualizer.BoundaryPanelDistributed
class BoundaryPanelDistributed extends BoundaryPanel implements Serializable- serialVersionUID:
- -1743284397893937776L
-
Serialized Fields
-
m_failedCount
int m_failedCount
The count of failed sub-tasks -
m_hostPollingTime
int[] m_hostPollingTime
-
m_listeners
Vector<RemoteExperimentListener> m_listeners
a list of RemoteExperimentListeners -
m_minTaskPollTime
int m_minTaskPollTime
number of seconds between polling server -
m_plottingAborted
boolean m_plottingAborted
Set to true if MAX_FAILURES exceeded on all hosts or connections fail on all hosts or user aborts plotting -
m_remoteHostFailureCounts
int[] m_remoteHostFailureCounts
The number of times tasks have failed on each remote host -
m_remoteHosts
Vector<String> m_remoteHosts
Holds the names of machines with remoteEngine servers running -
m_remoteHostsQueue
Queue m_remoteHostsQueue
The queue of available hosts -
m_remoteHostsStatus
int[] m_remoteHostsStatus
The status of each of the remote hosts -
m_removedHosts
int m_removedHosts
The number of hosts removed due to exceeding max failures -
m_subExpQueue
Queue m_subExpQueue
The queue of sub-tasks waiting to be processed
-
-
Class weka.gui.boundaryvisualizer.BoundaryVisualizer
class BoundaryVisualizer extends JPanel implements Serializable- serialVersionUID:
- 3933877580074013208L
-
Serialized Fields
-
chooseButton
JButton chooseButton
-
COMBO_SIZE
Dimension COMBO_SIZE
-
dataFileLabel
JLabel dataFileLabel
-
m_addPointsButton
JRadioButton m_addPointsButton
-
m_addRemovePointsButtonGroup
ButtonGroup m_addRemovePointsButtonGroup
-
m_addRemovePointsPanel
JPanel m_addRemovePointsPanel
-
m_arffFileFilter
ExtensionFileFilter m_arffFileFilter
-
m_boundaryPanel
BoundaryPanel m_boundaryPanel
the plotting panel -
m_classAttBox
JComboBox m_classAttBox
-
m_classifier
Classifier m_classifier
the classifier to use -
m_classifierEditor
GenericObjectEditor m_classifierEditor
-
m_ClassifierPanel
PropertyPanel m_ClassifierPanel
-
m_classPanel
ClassPanel m_classPanel
-
m_classValueSelector
JComboBox m_classValueSelector
-
m_controlPanel
JPanel m_controlPanel
-
m_dataGenerator
KDDataGenerator m_dataGenerator
-
m_FileChooser
WekaFileChooser m_FileChooser
The file chooser for selecting arff files -
m_generatorSamplesBase
int m_generatorSamplesBase
base for sampling in the non-fixed dimensions -
m_generatorSamplesText
JTextField m_generatorSamplesText
-
m_kernelBandwidth
int m_kernelBandwidth
Set the kernel bandwidth to cover this many nearest neighbours -
m_kernelBandwidthText
JTextField m_kernelBandwidthText
-
m_maxX
double m_maxX
-
m_maxY
double m_maxY
-
m_minX
double m_minX
-
m_minY
double m_minY
-
m_numberOfSamplesFromEachRegion
int m_numberOfSamplesFromEachRegion
-
m_plotAreaHeight
int m_plotAreaHeight
-
m_plotAreaWidth
int m_plotAreaWidth
-
m_plotTrainingData
JCheckBox m_plotTrainingData
-
m_regionSamplesText
JTextField m_regionSamplesText
-
m_removePointsButton
JRadioButton m_removePointsButton
-
m_startBut
JButton m_startBut
-
m_trainingInstances
Instances m_trainingInstances
the training instances -
m_xAttBox
JComboBox m_xAttBox
-
m_xAxisPanel
weka.gui.boundaryvisualizer.BoundaryVisualizer.AxisPanel m_xAxisPanel
-
m_xIndex
int m_xIndex
-
m_yAttBox
JComboBox m_yAttBox
-
m_yAxisPanel
weka.gui.boundaryvisualizer.BoundaryVisualizer.AxisPanel m_yAxisPanel
-
m_yIndex
int m_yIndex
-
removeAllButton
JButton removeAllButton
-
-
Class weka.gui.boundaryvisualizer.KDDataGenerator
class KDDataGenerator extends Object implements Serializable- serialVersionUID:
- -958573275606402792L
-
Serialized Fields
-
m_globalMeansOrModes
double[] m_globalMeansOrModes
global means or modes to use for missing values -
m_instances
Instances m_instances
the instances to use -
m_kernelBandwidth
int m_kernelBandwidth
Number of neighbours to use for kernel bandwidth -
m_kernelParams
double[][] m_kernelParams
standard deviations for numeric attributes computed from the m_kernelBandwidth nearest neighbours for each kernel. -
m_laplaceConst
double m_laplaceConst
Laplace correction for discrete distributions -
m_Max
double[] m_Max
The maximum values for numeric attributes. -
m_Min
double[] m_Min
The minimum values for numeric attributes. -
m_random
Random m_random
random number generator -
m_seed
int m_seed
random number seed -
m_weightingDimensions
boolean[] m_weightingDimensions
which dimensions to use for computing a weight for each generated instance -
m_weightingValues
double[] m_weightingValues
the values for the weighting dimensions to use for computing the weight for the next instance to be generated
-
-
Class weka.gui.boundaryvisualizer.RemoteBoundaryVisualizerSubTask
class RemoteBoundaryVisualizerSubTask extends Object implements Serializable- serialVersionUID:
- -5275252329449241592L
-
Serialized Fields
-
m_attsToWeightOn
boolean[] m_attsToWeightOn
-
m_classifier
Classifier m_classifier
-
m_dataGenerator
DataGenerator m_dataGenerator
-
m_dist
double[] m_dist
-
m_minX
double m_minX
-
m_minY
double m_minY
-
m_numOfSamplesPerGenerator
int m_numOfSamplesPerGenerator
-
m_numOfSamplesPerRegion
int m_numOfSamplesPerRegion
-
m_panelHeight
int m_panelHeight
-
m_panelWidth
int m_panelWidth
-
m_pixHeight
double m_pixHeight
-
m_pixWidth
double m_pixWidth
-
m_predInst
Instance m_predInst
-
m_random
Random m_random
-
m_result
RemoteResult m_result
-
m_rowNumber
int m_rowNumber
-
m_samplesBase
double m_samplesBase
-
m_status
TaskStatusInfo m_status
-
m_trainingData
Instances m_trainingData
-
m_vals
double[] m_vals
-
m_weightingAttsValues
double[] m_weightingAttsValues
-
m_xAttribute
int m_xAttribute
-
m_yAttribute
int m_yAttribute
-
-
Class weka.gui.boundaryvisualizer.RemoteResult
class RemoteResult extends Object implements Serializable- serialVersionUID:
- 1873271280044633808L
-
Serialized Fields
-
m_percentCompleted
int m_percentCompleted
progress on computing this row -
m_probabilities
double[][] m_probabilities
the result - ie. the probability distributions produced by the classifier for this row in the visualization
-
-
-
Package weka.gui.experiment
-
Class weka.gui.experiment.AbstractSetupPanel
class AbstractSetupPanel extends JPanel implements Serializable -
Class weka.gui.experiment.AlgorithmListPanel
class AlgorithmListPanel extends JPanel implements Serializable- serialVersionUID:
- -7204528834764898671L
-
Serialized Fields
-
m_ActionListener
ActionListener m_ActionListener
An action listener that needs to be available globally to permit garbage collection. -
m_AddBut
JButton m_AddBut
Click to add an algorithm -
m_AlgorithmListModel
DefaultListModel m_AlgorithmListModel
The list model used -
m_ClassifierEditor
GenericObjectEditor m_ClassifierEditor
Lets the user configure the classifier -
m_DeleteBut
JButton m_DeleteBut
Click to remove the selected dataset from the list -
m_DownBut
JButton m_DownBut
Click to move the selected algorithm(s) one down -
m_EditBut
JButton m_EditBut
Click to edit the selected algorithm -
m_Editing
boolean m_Editing
Whether an algorithm is added or only edited -
m_Exp
Experiment m_Exp
The experiment to set the algorithm list of -
m_FileChooser
WekaFileChooser m_FileChooser
The file chooser for selecting experiments -
m_List
JList<Classifier> m_List
The component displaying the algorithm list -
m_LoadOptionsBut
JButton m_LoadOptionsBut
Click to edit the load the options for athe selected algorithm -
m_PD
PropertyDialog m_PD
The currently displayed property dialog, if any -
m_PropertyChangeListener
PropertyChangeListener m_PropertyChangeListener
An property change listener that needs to be available globally to permit garbage collection. -
m_SaveOptionsBut
JButton m_SaveOptionsBut
Click to edit the save the options from selected algorithm -
m_UpBut
JButton m_UpBut
Click to move the selected algorithm(s) one up -
m_XMLFilter
FileFilter m_XMLFilter
A filter to ensure only experiment (in XML format) files get shown in the chooser
-
-
Class weka.gui.experiment.AlgorithmListPanel.ObjectCellRenderer
class ObjectCellRenderer extends DefaultListCellRenderer implements Serializable- serialVersionUID:
- -5067138526587433808L
-
Class weka.gui.experiment.DatasetListPanel
class DatasetListPanel extends JPanel implements Serializable- serialVersionUID:
- 7068857852794405769L
-
Serialized Fields
-
m_AddBut
JButton m_AddBut
Click to add a dataset. -
m_DeleteBut
JButton m_DeleteBut
Click to remove the selected dataset from the list. -
m_DownBut
JButton m_DownBut
Click to move the selected dataset(s) one down. -
m_EditBut
JButton m_EditBut
Click to edit the selected algorithm. -
m_Exp
Experiment m_Exp
The experiment to set the dataset list of. -
m_FileChooser
ConverterFileChooser m_FileChooser
The file chooser component. -
m_List
JList m_List
The component displaying the dataset list. -
m_relativeCheck
JCheckBox m_relativeCheck
Make file paths relative to the user (start) directory. -
m_UpBut
JButton m_UpBut
Click to move the selected dataset(s) one up.
-
-
Class weka.gui.experiment.DistributeExperimentPanel
class DistributeExperimentPanel extends JPanel implements Serializable- serialVersionUID:
- 5206721431754800278L
-
Serialized Fields
-
m_configureHostNames
JButton m_configureHostNames
Popup the HostListPanel -
m_enableDistributedExperiment
JCheckBox m_enableDistributedExperiment
Distribute the current experiment to remote hosts -
m_Exp
RemoteExperiment m_Exp
The experiment to configure. -
m_hostList
HostListPanel m_hostList
The host list panel -
m_radioListener
ActionListener m_radioListener
Handle radio buttons -
m_splitByDataSet
JRadioButton m_splitByDataSet
Split experiment up by data set. -
m_splitByProperty
JRadioButton m_splitByProperty
Split experiment up by algorithm. -
m_splitByRun
JRadioButton m_splitByRun
Split experiment up by run number.
-
-
Class weka.gui.experiment.Experimenter
class Experimenter extends AbstractPerspective implements Serializable- serialVersionUID:
- -5751617505738193788L
-
Serialized Fields
-
m_ClassFirst
boolean m_ClassFirst
True if the class attribute is the first attribute for all datasets involved in this experiment. -
m_ResultsPanel
ResultsPanel m_ResultsPanel
The panel for analysing experimental results -
m_RunPanel
RunPanel m_RunPanel
The panel for running the experiment -
m_SetupPanel
SetupModePanel m_SetupPanel
The panel for configuring the experiment -
m_TabbedPane
JTabbedPane m_TabbedPane
The tabbed pane that controls which sub-pane we are working with
-
-
Class weka.gui.experiment.ExperimenterDefaults
class ExperimenterDefaults extends Object implements Serializable- serialVersionUID:
- -2835933184632147981L
-
Class weka.gui.experiment.GeneratorPropertyIteratorPanel
class GeneratorPropertyIteratorPanel extends JPanel implements Serializable- serialVersionUID:
- -6026938995241632139L
-
Serialized Fields
-
m_ArrayEditor
GenericArrayEditor m_ArrayEditor
Allows editing of the custom property values -
m_ConfigureBut
JButton m_ConfigureBut
Click to select the property to iterate over -
m_Exp
Experiment m_Exp
The experiment this all applies to -
m_Listeners
ArrayList<ActionListener> m_Listeners
Listeners who want to be notified about editing status of this panel -
m_StatusBox
JComboBox m_StatusBox
Controls whether the custom iterator is used or not
-
-
Class weka.gui.experiment.HostListPanel
class HostListPanel extends JPanel implements Serializable- serialVersionUID:
- 7182791134585882197L
-
Serialized Fields
-
m_DeleteBut
JButton m_DeleteBut
Click to remove the selected host from the list -
m_Exp
RemoteExperiment m_Exp
The remote experiment to set the host list of -
m_HostField
JTextField m_HostField
The field with which to enter host names -
m_List
JList m_List
The component displaying the host list
-
-
Class weka.gui.experiment.OutputFormatDialog
class OutputFormatDialog extends JDialog implements Serializable- serialVersionUID:
- 2169792738187807378L
-
Serialized Fields
-
m_CancelButton
JButton m_CancelButton
Click to cancel the dialog. -
m_IgnoreChanges
boolean m_IgnoreChanges
whether to ignore updates in the GUI momentarily. -
m_MeanPrecLabel
JLabel m_MeanPrecLabel
the label for the mean precision. -
m_MeanPrecSpinner
JSpinner m_MeanPrecSpinner
the spinner to choose the precision for the mean from. -
m_OkButton
JButton m_OkButton
Click to activate the current set parameters. -
m_OutputFormatClasses
Vector<Class<?>> m_OutputFormatClasses
the different classes for outputting the comparison tables. -
m_OutputFormatComboBox
JComboBox m_OutputFormatComboBox
lets the user choose the format for the output. -
m_OutputFormatLabel
JLabel m_OutputFormatLabel
the label for the format. -
m_OutputFormatNames
Vector<String> m_OutputFormatNames
the different names of matrices for outputting the comparison tables. -
m_RemoveFilterNameCheckBox
JCheckBox m_RemoveFilterNameCheckBox
the checkbox for the removing of filter classnames. -
m_RemoveFilterNameLabel
JLabel m_RemoveFilterNameLabel
the label for the removing the filter classnames. -
m_Result
int m_Result
the result of the user's action, either OK or CANCEL. -
m_ResultMatrix
ResultMatrix m_ResultMatrix
the current result matrix. -
m_ResultMatrixEditor
GenericObjectEditor m_ResultMatrixEditor
Lets the user configure the result matrix. -
m_ResultMatrixLabel
JLabel m_ResultMatrixLabel
the label for the GOE. -
m_ResultMatrixPanel
PropertyPanel m_ResultMatrixPanel
the panel for the GOE. -
m_ShowAverageCheckBox
JCheckBox m_ShowAverageCheckBox
the checkbox for outputting the average. -
m_ShowAverageLabel
JLabel m_ShowAverageLabel
the label for showing the average. -
m_StdDevPrecLabel
JLabel m_StdDevPrecLabel
the label for the std dev precision. -
m_StdDevPrecSpinner
JSpinner m_StdDevPrecSpinner
the spinner to choose the precision for the std. deviation from
-
-
Class weka.gui.experiment.ResultsPanel
class ResultsPanel extends JPanel implements Serializable- serialVersionUID:
- -4913007978534178569L
-
Serialized Fields
-
COMBO_SIZE
Dimension COMBO_SIZE
the size for a combobox. -
m_arffFileFilter
ExtensionFileFilter m_arffFileFilter
ARFF file filter. -
m_CompareCombo
JComboBox m_CompareCombo
Lets the user select which performance measure to analyze. -
m_CompareModel
DefaultComboBoxModel m_CompareModel
The model embedded in m_CompareCombo. -
m_csvFileFilter
ExtensionFileFilter m_csvFileFilter
CSV file filter. -
m_DatasetAndResultKeysLabel
JLabel m_DatasetAndResultKeysLabel
Label for the dataset and result key buttons. -
m_DatasetKeyBut
JButton m_DatasetKeyBut
Click to edit the columns used to determine the scheme. -
m_DatasetKeyList
JList m_DatasetKeyList
Displays the list of selected columns determining the scheme. -
m_DatasetKeyModel
DefaultListModel m_DatasetKeyModel
Stores the list of attributes for selecting the scheme columns. -
m_DatasetModel
DefaultComboBoxModel m_DatasetModel
The model embedded in m_DatasetCombo. -
m_DisplayedButton
JButton m_DisplayedButton
Lets the user select which schemes are compared to base. -
m_DisplayedList
JList m_DisplayedList
Holds the list of schemes to display. -
m_DisplayedModel
DefaultListModel m_DisplayedModel
The model embedded in m_DisplayedList. -
m_Exp
Experiment m_Exp
An experiment (used for identifying a result source) -- optional. -
m_Explorer
JButton m_Explorer
Click to load the results instances into the Explorer -
m_FileChooser
WekaFileChooser m_FileChooser
The file chooser for selecting result files. -
m_FromDBaseBut
JButton m_FromDBaseBut
Click to load results from a database. -
m_FromExpBut
JButton m_FromExpBut
Click to get results from the destination given in the experiment. -
m_FromFileBut
JButton m_FromFileBut
Click to load results from a file. -
m_FromLab
JLabel m_FromLab
Displays a message about the current result set. -
m_History
ResultHistoryPanel m_History
A panel controlling results viewing. -
m_InstanceQuery
InstanceQuery m_InstanceQuery
Does any database querying for us. -
m_Instances
Instances m_Instances
The instances we're extracting results from. -
m_LoadThread
Thread m_LoadThread
A thread to load results instances from a file or database. -
m_mainPerspective
Perspective m_mainPerspective
If running in the Workbench (or otherGUIApplication
) this will hold a reference to the main perspective. Otherwise it will be null -
m_OutputFormatButton
JButton m_OutputFormatButton
lets the user choose the format for the output. -
m_OutText
JTextArea m_OutText
Displays the output of tests. -
m_PanelDatasetResultKeys
JPanel m_PanelDatasetResultKeys
the panel encapsulating the Rows/Columns/Swap buttons. -
m_PerformBut
JButton m_PerformBut
Click to start the test. -
m_ResultKeyBut
JButton m_ResultKeyBut
Click to edit the columns used to determine the scheme. -
m_ResultKeyList
JList m_ResultKeyList
Displays the list of selected columns determining the scheme. -
m_ResultKeyModel
DefaultListModel m_ResultKeyModel
Stores the list of attributes for selecting the scheme columns. -
m_ResultMatrix
ResultMatrix m_ResultMatrix
the initial result matrix. -
m_SaveOut
SaveBuffer m_SaveOut
The buffer saving object for saving output. -
m_SaveOutBut
JButton m_SaveOutBut
Click to save test output to a file. -
m_ShowStdDevs
JCheckBox m_ShowStdDevs
Lets the user select whether standard deviations are to be output or not. -
m_SigTex
JTextField m_SigTex
Lets the user edit the test significance. -
m_SortCombo
JComboBox m_SortCombo
Lets the user select which column to use for sorting. -
m_SortModel
DefaultComboBoxModel m_SortModel
The model embedded in m_SortCombo. -
m_SwapDatasetKeyAndResultKeyBut
JButton m_SwapDatasetKeyAndResultKeyBut
For swapping rows and columns. -
m_TesterClasses
JComboBox m_TesterClasses
Lists all the available classes implementing the Tester-Interface.- See Also:
-
m_TesterClassesLabel
JLabel m_TesterClassesLabel
Displays the currently selected Tester-Class. -
m_TesterClassesModel
DefaultComboBoxModel m_TesterClassesModel
Contains all the available classes implementing the Tester-Interface (the display names).- See Also:
-
m_TestsButton
JButton m_TestsButton
Lets the user select which scheme to base comparisons against. -
m_TestsList
JList m_TestsList
Holds the list of schemes to base the test against. -
m_TestsModel
DefaultListModel m_TestsModel
The model embedded in m_TestsList. -
m_TTester
Tester m_TTester
The PairedTTester object.
-
-
Class weka.gui.experiment.RunNumberPanel
class RunNumberPanel extends JPanel implements Serializable- serialVersionUID:
- -1644336658426067852L
-
Serialized Fields
-
m_Exp
Experiment m_Exp
The experiment being configured -
m_LowerText
JTextField m_LowerText
Configures the lower run number -
m_UpperText
JTextField m_UpperText
Configures the upper run number
-
-
Class weka.gui.experiment.RunPanel
class RunPanel extends JPanel implements Serializable- serialVersionUID:
- 1691868018596872051L
-
Serialized Fields
-
m_Exp
Experiment m_Exp
The experiment to run -
m_Log
LogPanel m_Log
-
m_ResultsPanel
ResultsPanel m_ResultsPanel
A pointer to the results panel -
m_RunThread
Thread m_RunThread
The thread running the experiment -
m_StartBut
JButton m_StartBut
Click to start running the experiment -
m_StopBut
JButton m_StopBut
Click to signal the running experiment to halt
-
-
Class weka.gui.experiment.SetupModePanel
class SetupModePanel extends JPanel implements Serializable- serialVersionUID:
- -3758035565520727822L
-
Serialized Fields
-
m_advancedPanel
AbstractSetupPanel m_advancedPanel
The advanced setup panel -
m_ComboBoxPanels
JComboBox m_ComboBoxPanels
the combobox with all available setup panels. -
m_CurrentPanel
AbstractSetupPanel m_CurrentPanel
the current panel. -
m_defaultPanel
AbstractSetupPanel m_defaultPanel
The simple setup panel -
m_Panels
AbstractSetupPanel[] m_Panels
the available panels.
-
-
Class weka.gui.experiment.SetupPanel
class SetupPanel extends AbstractSetupPanel implements Serializable- serialVersionUID:
- 6552671886903170033L
-
Serialized Fields
-
m_advanceDataSetFirst
JRadioButton m_advanceDataSetFirst
Click to advacne data set before custom generator -
m_advanceIteratorFirst
JRadioButton m_advanceIteratorFirst
Click to advance custom generator before data set -
m_DatasetListPanel
DatasetListPanel m_DatasetListPanel
The panel for configuring selected datasets -
m_DistributeExperimentPanel
DistributeExperimentPanel m_DistributeExperimentPanel
The panel for enabling a distributed experiment -
m_Exp
Experiment m_Exp
The experiment being configured -
m_ExpFilter
FileFilter m_ExpFilter
A filter to ensure only experiment files get shown in the chooser -
m_FileChooser
WekaFileChooser m_FileChooser
The file chooser for selecting experiments -
m_GeneratorPropertyPanel
GeneratorPropertyIteratorPanel m_GeneratorPropertyPanel
The panel that configures iteration on custom resultproducer property -
m_KOMLFilter
FileFilter m_KOMLFilter
A filter to ensure only experiment (in KOML format) files get shown in the chooser -
m_modePanel
SetupModePanel m_modePanel
The panel which switched between simple and advanced setup modes -
m_NewBut
JButton m_NewBut
Click to create a new experiment with default settings -
m_NotesButton
JButton m_NotesButton
A button for bringing up the notes -
m_NotesFrame
JFrame m_NotesFrame
Frame for the notes -
m_NotesText
JTextArea m_NotesText
Area for user notes Default of 10 rows -
m_OpenBut
JButton m_OpenBut
Click to load an experiment -
m_RadioListener
ActionListener m_RadioListener
Handle radio buttons -
m_RLEditor
GenericObjectEditor m_RLEditor
The ResultListener editor -
m_RLEditorPanel
PropertyPanel m_RLEditorPanel
The panel to contain the ResultListener editor -
m_RPEditor
GenericObjectEditor m_RPEditor
The ResultProducer editor -
m_RPEditorPanel
PropertyPanel m_RPEditorPanel
The panel to contain the ResultProducer editor -
m_RunNumberPanel
RunNumberPanel m_RunNumberPanel
The panel for configuring run numbers -
m_SaveBut
JButton m_SaveBut
Click to save an experiment -
m_Support
PropertyChangeSupport m_Support
Manages sending notifications to people when we change the experiment, at this stage, only the resultlistener so the resultpanel can update. -
m_XMLFilter
FileFilter m_XMLFilter
A filter to ensure only experiment (in XML format) files get shown in the chooser
-
-
Class weka.gui.experiment.SimpleSetupPanel
class SimpleSetupPanel extends AbstractSetupPanel implements Serializable- serialVersionUID:
- 5257424515609176509L
-
Serialized Fields
-
m_AlgorithmListPanel
AlgorithmListPanel m_AlgorithmListPanel
The panel for configuring selected algorithms -
m_arffFileFilter
ExtensionFileFilter m_arffFileFilter
FIlter for choosing ARFF files -
m_BrowseDestinationButton
JButton m_BrowseDestinationButton
Button for browsing destination files -
m_csvFileFilter
ExtensionFileFilter m_csvFileFilter
Filter for choosing CSV files -
m_DatasetListPanel
DatasetListPanel m_DatasetListPanel
The panel for configuring selected datasets -
m_DestFileChooser
WekaFileChooser m_DestFileChooser
The file chooser for selecting result destinations -
m_destinationDatabaseURL
String m_destinationDatabaseURL
The database destination URL to store results into -
m_destinationFilename
String m_destinationFilename
The filename to store results into -
m_Exp
Experiment m_Exp
The experiment being configured -
m_ExpClassificationRBut
JRadioButton m_ExpClassificationRBut
Radio button for choosing classification experiment -
m_ExperimentParameterLabel
JLabel m_ExperimentParameterLabel
Label for parameter field -
m_ExperimentParameterTField
JTextField m_ExperimentParameterTField
Input field for experiment parameter -
m_ExperimentTypeCBox
JComboBox m_ExperimentTypeCBox
Combo box for choosing experiment type -
m_ExpFilter
FileFilter m_ExpFilter
A filter to ensure only experiment files get shown in the chooser -
m_ExpRegressionRBut
JRadioButton m_ExpRegressionRBut
Radio button for choosing regression experiment -
m_FileChooser
WekaFileChooser m_FileChooser
The file chooser for selecting experiments -
m_KOMLFilter
FileFilter m_KOMLFilter
A filter to ensure only experiment (in KOML format) files get shown in the chooser -
m_modePanel
SetupModePanel m_modePanel
The panel which switched between simple and advanced setup modes -
m_NewBut
JButton m_NewBut
Click to create a new experiment with default settings -
m_NotesButton
JButton m_NotesButton
A button for bringing up the notes -
m_NotesFrame
JFrame m_NotesFrame
Frame for the notes -
m_NotesText
JTextArea m_NotesText
Area for user notes Default of 10 rows -
m_NumberOfRepetitionsTField
JTextField m_NumberOfRepetitionsTField
Input field for number of repetitions -
m_numFolds
int m_numFolds
The number of folds for a cross-validation experiment -
m_numRepetitions
int m_numRepetitions
The number of times to repeat the sub-experiment -
m_OpenBut
JButton m_OpenBut
Click to load an experiment -
m_OrderAlgorithmsFirstRBut
JRadioButton m_OrderAlgorithmsFirstRBut
Radio button for choosing algorithms first in order of execution -
m_OrderDatasetsFirstRBut
JRadioButton m_OrderDatasetsFirstRBut
Radio button for choosing datasets first in order of execution -
m_ResultsDestinationCBox
JComboBox m_ResultsDestinationCBox
Combo box for choosing experiment destination type -
m_ResultsDestinationPathLabel
JLabel m_ResultsDestinationPathLabel
Label for destination field -
m_ResultsDestinationPathTField
JTextField m_ResultsDestinationPathTField
Input field for result destination path -
m_SaveBut
JButton m_SaveBut
Click to save an experiment -
m_Support
PropertyChangeSupport m_Support
Manages sending notifications to people when we change the experiment, at this stage, only the resultlistener so the resultpanel can update. -
m_trainPercent
double m_trainPercent
The training percentage for a train/test split experiment -
m_userHasBeenAskedAboutConversion
boolean m_userHasBeenAskedAboutConversion
Whether or not the user has consented for the experiment to be simplified -
m_XMLFilter
FileFilter m_XMLFilter
A filter to ensure only experiment (in XML format) files get shown in the chooser
-
-
-
Package weka.gui.explorer
-
Class weka.gui.explorer.AbstractPlotInstances
class AbstractPlotInstances extends Object implements Serializable- serialVersionUID:
- 2375155184845160908L
-
Class weka.gui.explorer.AssociationsPanel
class AssociationsPanel extends AbstractPerspective implements Serializable- serialVersionUID:
- -6867871711865476971L
-
Serialized Fields
-
m_AssociatorEditor
GenericObjectEditor m_AssociatorEditor
Lets the user configure the associator -
m_CEPanel
PropertyPanel m_CEPanel
The panel showing the current associator selection -
m_Explorer
Explorer m_Explorer
the parent frame -
m_History
ResultHistoryPanel m_History
A panel controlling results viewing -
m_initialSettingsSet
boolean m_initialSettingsSet
Whether start-up settings have been applied (i.e. initial default associator to use -
m_Instances
Instances m_Instances
The main set of instances we're playing with -
m_Log
Logger m_Log
The destination for log/status messages -
m_OutText
JTextArea m_OutText
The output area for associations -
m_RunThread
Thread m_RunThread
A thread that associator runs in -
m_SaveOut
SaveBuffer m_SaveOut
The buffer saving object for saving output -
m_StartBut
JButton m_StartBut
Click to start running the associator -
m_StopBut
JButton m_StopBut
Click to stop a running associator -
m_storeOutput
JCheckBox m_storeOutput
Whether to store any graph or xml rules output in the history list -
m_TestInstances
Instances m_TestInstances
The user-supplied test set (if any)
-
-
Class weka.gui.explorer.AssociationsPanel.AssociationsPanelDefaults
class AssociationsPanelDefaults extends Defaults implements Serializable- serialVersionUID:
- 1108450683775771792L
-
Class weka.gui.explorer.AttributeSelectionPanel
class AttributeSelectionPanel extends AbstractPerspective implements Serializable- serialVersionUID:
- 5627185966993476142L
-
Serialized Fields
-
COMBO_SIZE
Dimension COMBO_SIZE
Stop the class combo from taking up to much space -
m_AEEPanel
PropertyPanel m_AEEPanel
The panel showing the current attribute evaluation method -
m_ASEPanel
PropertyPanel m_ASEPanel
The panel showing the current search method -
m_AttributeEvaluatorEditor
GenericObjectEditor m_AttributeEvaluatorEditor
Lets the user configure the attribute evaluator -
m_AttributeSearchEditor
GenericObjectEditor m_AttributeSearchEditor
Lets the user configure the search method -
m_ClassCombo
JComboBox m_ClassCombo
Lets the user select the class column -
m_CVBut
JRadioButton m_CVBut
Click to set evaluation mode to cross-validation -
m_CVLab
JLabel m_CVLab
Label by where the cv folds are entered -
m_CVText
JTextField m_CVText
The field where the cv folds are entered -
m_Explorer
Explorer m_Explorer
the parent frame -
m_History
ResultHistoryPanel m_History
A panel controlling results viewing -
m_initialSettingsSet
boolean m_initialSettingsSet
True if startup settings have been applied -
m_Instances
Instances m_Instances
The main set of instances we're playing with -
m_Log
Logger m_Log
The destination for log/status messages -
m_OutText
JTextArea m_OutText
The output area for attribute selection results -
m_RadioListener
ActionListener m_RadioListener
Alters the enabled/disabled status of elements associated with each radio button -
m_RunThread
Thread m_RunThread
A thread that attribute selection runs in -
m_SaveOut
SaveBuffer m_SaveOut
The buffer saving object for saving output -
m_SeedLab
JLabel m_SeedLab
Label by where cv random seed is entered -
m_SeedText
JTextField m_SeedText
The field where the seed value is entered -
m_StartBut
JButton m_StartBut
Click to start running the attribute selector -
m_StopBut
JButton m_StopBut
Click to stop a running classifier -
m_TrainBut
JRadioButton m_TrainBut
Click to set test mode to test on training data
-
-
Class weka.gui.explorer.AttributeSelectionPanel.AttributeSelectionPanelDefaults
class AttributeSelectionPanelDefaults extends Defaults implements Serializable- serialVersionUID:
- -5413933415469545770L
-
Class weka.gui.explorer.ClassifierErrorsPlotInstances
class ClassifierErrorsPlotInstances extends AbstractPlotInstances implements Serializable- serialVersionUID:
- -3941976365792013279L
-
Serialized Fields
-
m_Classifier
Classifier m_Classifier
the classifier being used. -
m_ClassIndex
int m_ClassIndex
the class index. -
m_Evaluation
Evaluation m_Evaluation
the Evaluation object to use. -
m_MaximumPlotSizeNumeric
int m_MaximumPlotSizeNumeric
the maximum plot size for numeric errors. -
m_MinimumPlotSizeNumeric
int m_MinimumPlotSizeNumeric
the minimum plot size for numeric errors. -
m_PlotShapes
ArrayList<Integer> m_PlotShapes
for storing the plot shapes. -
m_PlotSizes
ArrayList<Object> m_PlotSizes
for storing the plot sizes. -
m_pointSizeProportionalToMargin
boolean m_pointSizeProportionalToMargin
-
m_SaveForVisualization
boolean m_SaveForVisualization
whether to save the instances for visualization or just evaluate the instance.
-
-
Class weka.gui.explorer.ClassifierPanel
class ClassifierPanel extends AbstractPerspective implements Serializable- serialVersionUID:
- 6959973704963624003L
-
Serialized Fields
-
COMBO_SIZE
Dimension COMBO_SIZE
Stop the class combo from taking up to much space. -
m_CEPanel
PropertyPanel m_CEPanel
The panel showing the current classifier selection. -
m_ClassCombo
JComboBox m_ClassCombo
Lets the user select the class column. -
m_ClassificationOutputEditor
GenericObjectEditor m_ClassificationOutputEditor
Lets the user configure the ClassificationOutput. -
m_ClassificationOutputPanel
PropertyPanel m_ClassificationOutputPanel
ClassificationOutput configuration. -
m_ClassifierEditor
GenericObjectEditor m_ClassifierEditor
Lets the user configure the classifier. -
m_CollectPredictionsForEvaluationBut
JCheckBox m_CollectPredictionsForEvaluationBut
Check to collect the predictions for computing statistics such as AUROC. -
m_CostMatrixEditor
CostMatrixEditor m_CostMatrixEditor
The cost matrix editor for evaluation costs. -
m_CVBut
JRadioButton m_CVBut
Click to set test mode to cross-validation. -
m_CVLab
JLabel m_CVLab
Label by where the cv folds are entered. -
m_CVText
JTextField m_CVText
The field where the cv folds are entered. -
m_errorPlotPointSizeProportionalToMargin
JCheckBox m_errorPlotPointSizeProportionalToMargin
Check to have the point size in error plots proportional to the prediction margin (classification only) -
m_EvalWRTCostsBut
JCheckBox m_EvalWRTCostsBut
Check to evaluate w.r.t a cost matrix. -
m_Explorer
Explorer m_Explorer
the parent frame. -
m_FileChooser
WekaFileChooser m_FileChooser
The file chooser for selecting model files. -
m_History
ResultHistoryPanel m_History
A panel controlling results viewing. -
m_initialSettingsSet
boolean m_initialSettingsSet
Whether start-up settings have been applied (i.e. initial classifier to use) -
m_Instances
Instances m_Instances
The main set of instances we're playing with. -
m_Log
Logger m_Log
The destination for log/status messages. -
m_ModelFilter
FileFilter m_ModelFilter
Filter to ensure only model files are selected. -
m_MoreOptions
JButton m_MoreOptions
Button for further output/visualize options. -
m_OutputAdditionalAttributesRange
Range m_OutputAdditionalAttributesRange
the range of attributes to output. -
m_OutputConfusionBut
JCheckBox m_OutputConfusionBut
Check to output a confusion matrix. -
m_OutputEntropyBut
JCheckBox m_OutputEntropyBut
Check to output entropy statistics. -
m_OutputModelBut
JCheckBox m_OutputModelBut
Check to output the model built from the training data. -
m_OutputModelsForTrainingSplitsBut
JCheckBox m_OutputModelsForTrainingSplitsBut
Check to output the models built from the training splits. -
m_OutputPerClassBut
JCheckBox m_OutputPerClassBut
Check to output true/false positives, precision/recall for each class. -
m_OutputSourceCode
JCheckBox m_OutputSourceCode
Whether to output the source code (only for classifiers importing Sourcable). -
m_OutText
JTextArea m_OutText
The output area for classification results. -
m_PercentBut
JRadioButton m_PercentBut
Click to set test mode to generate a % split. -
m_PercentLab
JLabel m_PercentLab
Label by where the % split is entered. -
m_PercentText
JTextField m_PercentText
The field where the % split is entered. -
m_PMMLModelFilter
FileFilter m_PMMLModelFilter
-
m_PreserveOrderBut
JCheckBox m_PreserveOrderBut
Whether randomization is turned off to preserve order. -
m_RadioListener
ActionListener m_RadioListener
Alters the enabled/disabled status of elements associated with each radio button. -
m_RandomLab
JLabel m_RandomLab
the label for the random seed textfield. -
m_RandomSeedText
JTextField m_RandomSeedText
User specified random seed for cross validation or % split. -
m_RunThread
Thread m_RunThread
A thread that classification runs in. -
m_SaveOut
SaveBuffer m_SaveOut
The buffer saving object for saving output. -
m_selectedEvalMetrics
List<String> m_selectedEvalMetrics
The user's list of selected evaluation metrics -
m_SetCostsBut
JButton m_SetCostsBut
for the cost matrix. -
m_SetCostsFrame
PropertyDialog m_SetCostsFrame
The frame used to show the cost matrix editing panel. -
m_SetTestBut
JButton m_SetTestBut
The button used to open a separate test dataset. -
m_SetTestFrame
JFrame m_SetTestFrame
The frame used to show the test set selection panel. -
m_SourceCodeClass
JTextField m_SourceCodeClass
The name of the generated class (only applicable to Sourcable schemes). -
m_StartBut
JButton m_StartBut
Click to start running the classifier. -
m_StopBut
JButton m_StopBut
Click to stop a running classifier. -
m_StoreTestDataAndPredictionsBut
JCheckBox m_StoreTestDataAndPredictionsBut
Check to save the test data and the predictions in the results list for visualizing later on. -
m_TestClassIndex
int m_TestClassIndex
the class index for the supplied test set. -
m_TestLoader
Loader m_TestLoader
The loader used to load the user-supplied test set (if any). -
m_TestSplitBut
JRadioButton m_TestSplitBut
Click to set test mode to a user-specified test set. -
m_TrainBut
JRadioButton m_TrainBut
Click to set test mode to test on training data.
-
-
Class weka.gui.explorer.ClassifierPanel.ClassifierPanelDefaults
class ClassifierPanelDefaults extends Defaults implements Serializable- serialVersionUID:
- 7109938811150596359L
-
Class weka.gui.explorer.ClustererAssignmentsPlotInstances
class ClustererAssignmentsPlotInstances extends AbstractPlotInstances implements Serializable- serialVersionUID:
- -4748134272046520423L
-
Serialized Fields
-
m_Clusterer
Clusterer m_Clusterer
the clusterer being used. -
m_Evaluation
ClusterEvaluation m_Evaluation
the cluster evaluation to use. -
m_PlotShapes
int[] m_PlotShapes
for storing the plot shapes.
-
-
Class weka.gui.explorer.ClustererPanel
class ClustererPanel extends AbstractPerspective implements Serializable- serialVersionUID:
- -2474932792950820990L
-
Serialized Fields
-
COMBO_SIZE
Dimension COMBO_SIZE
Stop the class combo from taking up to much space -
m_ClassCombo
JComboBox m_ClassCombo
Lets the user select the class column for classes to clusters based evaluation -
m_ClassesToClustersBut
JRadioButton m_ClassesToClustersBut
Click to set test mode to classes to clusters based evaluation -
m_CLPanel
PropertyPanel m_CLPanel
The panel showing the current clusterer selection -
m_ClustererEditor
GenericObjectEditor m_ClustererEditor
Lets the user configure the clusterer -
m_CurrentVis
VisualizePanel m_CurrentVis
The current visualization object -
m_Explorer
Explorer m_Explorer
the parent frame -
m_FileChooser
WekaFileChooser m_FileChooser
The file chooser for selecting model files -
m_History
ResultHistoryPanel m_History
A panel controlling results viewing -
m_ignoreBut
JButton m_ignoreBut
The button used to popup a list for choosing attributes to ignore while clustering -
m_ignoreKeyList
JList m_ignoreKeyList
-
m_ignoreKeyModel
DefaultListModel m_ignoreKeyModel
-
m_initialSettingsSet
boolean m_initialSettingsSet
Whether startup settings have been applied yet or not -
m_Instances
Instances m_Instances
The main set of instances we're playing with -
m_Log
Logger m_Log
The destination for log/status messages -
m_ModelFilter
FileFilter m_ModelFilter
Filter to ensure only model files are selected -
m_OutText
JTextArea m_OutText
The output area for classification results -
m_PercentBut
JRadioButton m_PercentBut
Click to set test mode to generate a % split -
m_PercentLab
JLabel m_PercentLab
Label by where the % split is entered -
m_PercentText
JTextField m_PercentText
The field where the % split is entered -
m_RadioListener
ActionListener m_RadioListener
Alters the enabled/disabled status of elements associated with each radio button -
m_RunThread
Thread m_RunThread
A thread that clustering runs in -
m_SaveOut
SaveBuffer m_SaveOut
The buffer saving object for saving output -
m_SetTestBut
JButton m_SetTestBut
The button used to open a separate test dataset -
m_SetTestFrame
JFrame m_SetTestFrame
The frame used to show the test set selection panel -
m_StartBut
JButton m_StartBut
Click to start running the clusterer -
m_StopBut
JButton m_StopBut
Click to stop a running clusterer -
m_StorePredictionsBut
JCheckBox m_StorePredictionsBut
Check to save the predictions in the results list for visualizing later on -
m_Summary
InstancesSummaryPanel m_Summary
The instances summary panel displayed by m_SetTestFrame -
m_TestInstances
Instances m_TestInstances
The user-supplied test set (if any) -
m_TestSplitBut
JRadioButton m_TestSplitBut
Click to set test mode to a user-specified test set -
m_TrainBut
JRadioButton m_TrainBut
Click to set test mode to test on training data
-
-
Class weka.gui.explorer.ClustererPanel.ClustererPanelDefaults
class ClustererPanelDefaults extends Defaults implements Serializable- serialVersionUID:
- 2708388782229179493L
-
Class weka.gui.explorer.DataGeneratorPanel
class DataGeneratorPanel extends JPanel implements Serializable- serialVersionUID:
- -2520408165350629380L
-
Serialized Fields
-
m_GeneratorEditor
GenericObjectEditor m_GeneratorEditor
the GOE for the generators -
m_Instances
Instances m_Instances
the generated Instances -
m_Log
Logger m_Log
The destination for log/status messages -
m_Output
StringWriter m_Output
the generated output (as text)
-
-
Class weka.gui.explorer.Explorer
class Explorer extends JPanel implements Serializable- serialVersionUID:
- -7674003708867909578L
-
Serialized Fields
-
m_CapabilitiesFilterChangeListeners
HashSet<Explorer.CapabilitiesFilterChangeListener> m_CapabilitiesFilterChangeListeners
the listeners that listen to filter changes -
m_LogPanel
LogPanel m_LogPanel
The panel for log and status messages -
m_Panels
Vector<Explorer.ExplorerPanel> m_Panels
Contains all the additional panels apart from the pre-processing panel -
m_PreprocessPanel
PreprocessPanel m_PreprocessPanel
The panel for preprocessing instances -
m_TabbedPane
JTabbedPane m_TabbedPane
The tabbed pane that controls which sub-pane we are working with
-
-
Class weka.gui.explorer.Explorer.CapabilitiesFilterChangeEvent
class CapabilitiesFilterChangeEvent extends ChangeEvent implements Serializable- serialVersionUID:
- 1194260517270385559L
-
Serialized Fields
-
m_Filter
Capabilities m_Filter
the capabilities filter
-
-
Class weka.gui.explorer.ExplorerDefaults
class ExplorerDefaults extends Object implements Serializable- serialVersionUID:
- 4954795757927524225L
-
Class weka.gui.explorer.PreprocessPanel
class PreprocessPanel extends AbstractPerspective implements Serializable- serialVersionUID:
- 6764850273874813049L
-
Serialized Fields
-
m_ApplyFilterBut
JButton m_ApplyFilterBut
Click to apply filters and save the results -
m_AttPanel
AttributeSelectionPanel m_AttPanel
Panel to let the user toggle attributes -
m_AttSummaryPanel
AttributeSummaryPanel m_AttSummaryPanel
Displays summary stats on the selected attribute -
m_AttVisualizePanel
AttributeVisualizationPanel m_AttVisualizePanel
The visualization of the attribute values -
m_DataGenerator
DataGenerator m_DataGenerator
The last generator that was selected -
m_EditBut
JButton m_EditBut
Click to open the current instances in a viewer -
m_EditM
JMenuItem m_EditM
-
m_Explorer
Explorer m_Explorer
the parent frame -
m_FileChooser
ConverterFileChooser m_FileChooser
The file chooser for selecting data files -
m_FilterEditor
GenericObjectEditor m_FilterEditor
Lets the user configure the filter -
m_FilterPanel
PropertyPanel m_FilterPanel
Filter configuration -
m_GenerateBut
JButton m_GenerateBut
Click to generate artificial data -
m_initialSettingsSet
boolean m_initialSettingsSet
True after settings have been applied the first time -
m_Instances
Instances m_Instances
The working instances -
m_InstSummaryPanel
InstancesSummaryPanel m_InstSummaryPanel
Displays simple stats on the working instances -
m_IOThread
Thread m_IOThread
A thread for loading/saving instances from a file or URL -
m_LastURL
String m_LastURL
Stores the last URL that instances were loaded from -
m_Log
Logger m_Log
The message logger -
m_menus
List<JMenu> m_menus
Menus provided by this perspective -
m_OpenDBBut
JButton m_OpenDBBut
Click to load base instances from a Database -
m_OpenFileBut
JButton m_OpenFileBut
Click to load base instances from a file -
m_OpenURLBut
JButton m_OpenURLBut
Click to load base instances from a URL -
m_RemoveButton
JButton m_RemoveButton
Button for removing attributes -
m_SaveBut
JButton m_SaveBut
Click to apply filters and save the results -
m_sendToPerspective
JMenu m_sendToPerspective
For sending instances to various perspectives/tabs -
m_SQLQ
String m_SQLQ
Stores the last sql query executed -
m_StopBut
JButton m_StopBut
Click to stop a running filter -
m_Support
PropertyChangeSupport m_Support
Manages sending notifications to people when we change the set of working instances. -
m_tempUndoFiles
File[] m_tempUndoFiles
Keeps track of undo points -
m_tempUndoIndex
int m_tempUndoIndex
The next available slot for an undo point -
m_UndoBut
JButton m_UndoBut
Click to revert back to the last saved point
-
-
Class weka.gui.explorer.PreprocessPanel.PreprocessDefaults
class PreprocessDefaults extends Defaults implements Serializable -
Class weka.gui.explorer.VisualizePanel
class VisualizePanel extends AbstractPerspective implements Serializable- serialVersionUID:
- 6084015036853918846L
-
Serialized Fields
-
m_Explorer
Explorer m_Explorer
the parent frame -
m_hasInstancesSet
boolean m_hasInstancesSet
True if a set of instances has been set on the panel -
m_matrixPanel
MatrixPanel m_matrixPanel
-
-
Class weka.gui.explorer.VisualizePanel.ScatterDefaults
class ScatterDefaults extends Defaults implements Serializable- serialVersionUID:
- -6890761195767034507L
-
-
Package weka.gui.filters
-
Class weka.gui.filters.AddUserFieldsCustomizer
class AddUserFieldsCustomizer extends JPanel implements Serializable- serialVersionUID:
- -3823417827142174931L
-
Serialized Fields
-
m_dateFormatField
EnvironmentField m_dateFormatField
-
m_deleteBut
JButton m_deleteBut
-
m_dontShowButs
boolean m_dontShowButs
-
m_downBut
JButton m_downBut
-
m_env
Environment m_env
-
m_filter
AddUserFields m_filter
THe filter being customized -
m_list
JList m_list
-
m_listModel
DefaultListModel m_listModel
-
m_modifyL
BeanCustomizer.ModifyListener m_modifyL
-
m_nameField
EnvironmentField m_nameField
-
m_newBut
JButton m_newBut
-
m_typeField
JComboBox m_typeField
-
m_upBut
JButton m_upBut
-
m_valueField
EnvironmentField m_valueField
-
-
-
Package weka.gui.graphvisualizer
-
Exception weka.gui.graphvisualizer.BIFFormatException
class BIFFormatException extends Exception implements Serializable- serialVersionUID:
- -4102518086411708140L
-
Class weka.gui.graphvisualizer.GraphVisualizer
class GraphVisualizer extends JPanel implements Serializable- serialVersionUID:
- -2038911085935515624L
-
Serialized Fields
-
fm
FontMetrics fm
-
graphID
String graphID
String containing graph's name -
ICONPATH
String ICONPATH
path for icons -
jBtLayout
JButton jBtLayout
Button for laying out the graph again, necessary after changing node's size or some other property of the layout engine -
jTfNodeHeight
JTextField jTfNodeHeight
TextField for nodes height -
jTfNodeWidth
JTextField jTfNodeWidth
TextField for node's width -
m_edges
ArrayList<GraphEdge> m_edges
Vector containing edges -
m_gp
weka.gui.graphvisualizer.GraphVisualizer.GraphPanel m_gp
Panel actually displaying the graph -
m_jBtSave
JButton m_jBtSave
Save button to save the current graph in DOT or XMLBIF format. The graph should be layed out again to get the original form if reloaded from command line, as the formats do not allow saving specific information for a properly layed out graph. -
m_js
JScrollPane m_js
this contains the m_gp GraphPanel -
m_le
LayoutEngine m_le
The current LayoutEngine -
m_nodes
ArrayList<GraphNode> m_nodes
Vector containing nodes -
maxStringWidth
int maxStringWidth
used for setting appropriate node size -
nodeHeight
int nodeHeight
-
nodeWidth
int nodeWidth
-
paddedNodeWidth
int paddedNodeWidth
-
scale
double scale
-
zoomPercents
int[] zoomPercents
used when using zoomIn and zoomOut buttons
-
-
Class weka.gui.graphvisualizer.LayoutCompleteEvent
class LayoutCompleteEvent extends EventObject implements Serializable- serialVersionUID:
- 6172467234026258427L
-
-
Package weka.gui.hierarchyvisualizer
-
Class weka.gui.hierarchyvisualizer.HierarchyVisualizer
class HierarchyVisualizer extends PrintablePanel implements Serializable- serialVersionUID:
- 1L
-
Serialized Fields
-
m_fHeight
double m_fHeight
-
m_fScaleX
double m_fScaleX
-
m_fScaleY
double m_fScaleY
-
m_fTmpLength
double m_fTmpLength
-
m_nLeafs
int m_nLeafs
-
m_sNewick
String m_sNewick
-
m_tree
weka.gui.hierarchyvisualizer.HierarchyVisualizer.Node m_tree
-
-
-
Package weka.gui.knowledgeflow
-
Class weka.gui.knowledgeflow.AttributeSummaryPerspective
class AttributeSummaryPerspective extends AbstractPerspective implements Serializable- serialVersionUID:
- 6697308901346612850L
-
Serialized Fields
-
m_coloringIndex
int m_coloringIndex
Index on which to color the plots -
m_visualizeDataSet
Instances m_visualizeDataSet
The dataset being visualized
-
-
Class weka.gui.knowledgeflow.AttributeSummaryPerspective.AttDefaults
class AttDefaults extends Defaults implements Serializable- serialVersionUID:
- -32801466385262321L
-
Class weka.gui.knowledgeflow.BaseInteractiveViewer
class BaseInteractiveViewer extends JPanel implements Serializable- serialVersionUID:
- -1191494001428785466L
-
Serialized Fields
-
m_buttonHolder
JPanel m_buttonHolder
Holds buttons displayed at the bottom of the window -
m_closeBut
JButton m_closeBut
The close button, for closing the viewer -
m_mainPerspective
MainKFPerspective m_mainPerspective
The main Knowledge Flow perspective -
m_parent
Window m_parent
The parent window -
m_step
Step m_step
Holds the step that this interactive viewer relates to
-
-
Class weka.gui.knowledgeflow.DesignPanel
class DesignPanel extends JPanel implements Serializable- serialVersionUID:
- 3324733191950871564L
-
Class weka.gui.knowledgeflow.GOEStepEditorDialog
class GOEStepEditorDialog extends StepEditorDialog implements Serializable- serialVersionUID:
- -2500973437145276268L
-
Serialized Fields
-
m_editor
PropertySheetPanel m_editor
Main editor for the step - used for editing properties of the step or properties of a wrapped algorithm (if the step is a subclass ofWekaAlgorithmWrapper
. -
m_editorHolder
JPanel m_editorHolder
The main holder panel -
m_manager
StepManagerImpl m_manager
TheStepManager
for the step being edited -
m_primaryEditorHolder
JPanel m_primaryEditorHolder
The panel that contains the main editor -
m_secondaryEditor
PropertySheetPanel m_secondaryEditor
Secondary editor. Used for additional properties that belong to a Step that extendsWekaAlgorithmWrapper
-
m_stepOriginal
Step m_stepOriginal
Holds a copy of the step (for restoring after cancel)
-
-
Class weka.gui.knowledgeflow.InvisibleNode
class InvisibleNode extends DefaultMutableTreeNode implements Serializable- serialVersionUID:
- -9064396835384819887L
-
Serialized Fields
-
m_isVisible
boolean m_isVisible
True if the node is visible
-
-
Class weka.gui.knowledgeflow.InvisibleTreeModel
class InvisibleTreeModel extends DefaultTreeModel implements Serializable- serialVersionUID:
- 6940101211275068260L
-
Serialized Fields
-
m_filterIsActive
boolean m_filterIsActive
True if the visibility filter is active
-
-
Class weka.gui.knowledgeflow.KnowledgeFlowApp
class KnowledgeFlowApp extends AbstractGUIApplication implements Serializable- serialVersionUID:
- -1460599392623083983L
-
Serialized Fields
-
m_kfProperties
Settings m_kfProperties
Settings for the Knowledge Flow -
m_mainPerspective
MainKFPerspective m_mainPerspective
Main perspective of the Knowledge Flow
-
-
Class weka.gui.knowledgeflow.KnowledgeFlowApp.KnowledgeFlowGeneralDefaults
class KnowledgeFlowGeneralDefaults extends Defaults implements Serializable- serialVersionUID:
- 6957165806947500265L
-
Class weka.gui.knowledgeflow.LayoutPanel
class LayoutPanel extends PrintablePanel implements Serializable- serialVersionUID:
- 4988098224376217099L
-
Serialized Fields
-
m_currentX
int m_currentX
-
m_currentY
int m_currentY
-
m_gridSpacing
int m_gridSpacing
Grid spacing -
m_oldX
int m_oldX
-
m_oldY
int m_oldY
-
m_perspectiveDataLoadThread
Thread m_perspectiveDataLoadThread
Thread for loading data for perspectives -
m_visLayout
VisibleLayout m_visLayout
The flow contained in this LayoutPanel as a visible (graphical) flow
-
-
Class weka.gui.knowledgeflow.MainKFPerspective
class MainKFPerspective extends AbstractPerspective implements Serializable- serialVersionUID:
- 3986047323839299447L
-
Serialized Fields
-
m_allowMultipleTabs
boolean m_allowMultipleTabs
Whether to allow multiple tabs -
m_FileChooser
WekaFileChooser m_FileChooser
The file chooser for loading layout files -
m_flowGraphs
List<VisibleLayout> m_flowGraphs
List of layouts - one for each tab -
m_flowTabs
JTabbedPane m_flowTabs
Holds the tabs of the perspective -
m_mainToolBar
MainKFPerspectiveToolBar m_mainToolBar
Main toolbar -
m_palleteSelectedStep
StepManagerImpl m_palleteSelectedStep
The current step selected from the design pallete -
m_pasteBuffer
String m_pasteBuffer
The paste buffer -
m_saveFileChooser
WekaFileChooser m_saveFileChooser
The file chooser for saving layout files (only supports saving as json .kf files -
m_stepTree
StepTree m_stepTree
The jtree holding steps -
m_templateManager
TemplateManager m_templateManager
Manages template flows -
m_untitledCount
int m_untitledCount
Count for new "untitled" tabs
-
-
Class weka.gui.knowledgeflow.MainKFPerspectiveToolBar
class MainKFPerspectiveToolBar extends JPanel implements Serializable- serialVersionUID:
- -157986423490835642L
-
Serialized Fields
-
m_mainPerspective
MainKFPerspective m_mainPerspective
Reference to the main knowledge flow perspective -
m_menuItemMap
Map<String,
JMenuItem> m_menuItemMap holds a map of menu items (for widgets that have corresponding menu items) -
m_menuMap
Map<String,
JMenu> m_menuMap Holds a map of top level menus -
m_showMenus
boolean m_showMenus
True if menu items corresponding to the toolbar widgets should be shown -
m_widgetMap
Map<String,
JComponent> m_widgetMap holds a map of widgets, keyed by widget name
-
-
Class weka.gui.knowledgeflow.NoteVisual
class NoteVisual extends StepVisual implements Serializable- serialVersionUID:
- -3291021235652124916L
-
Serialized Fields
-
m_fontSizeAdjust
int m_fontSizeAdjust
Adjustment for the font size -
m_label
JLabel m_label
The label that displays the note text
-
-
Class weka.gui.knowledgeflow.ScatterPlotMatrixPerspective
class ScatterPlotMatrixPerspective extends AbstractPerspective implements Serializable- serialVersionUID:
- 5661598509822826837L
-
Serialized Fields
-
m_matrixPanel
MatrixPanel m_matrixPanel
The actual matrix panel -
m_visualizeDataSet
Instances m_visualizeDataSet
The dataset being visualized
-
-
Class weka.gui.knowledgeflow.ShadowBorder
class ShadowBorder extends AbstractBorder implements Serializable- serialVersionUID:
- -2117842133475125463L
-
Serialized Fields
-
m_color
Color m_color
the color of the drop shadow -
m_width
int m_width
The width in pixels of the drop shadow
-
-
Class weka.gui.knowledgeflow.SQLViewerPerspective
class SQLViewerPerspective extends AbstractPerspective implements Serializable- serialVersionUID:
- -4771310190331379801L
-
Serialized Fields
-
m_buttonHolder
JPanel m_buttonHolder
Panel for holding buttons -
m_mainKFPerspective
MainKFPerspective m_mainKFPerspective
Reference to tne main knowledge flow perspective -
m_newFlowBut
JButton m_newFlowBut
Button for creating a new flow layout with a configured DBLoader step -
m_viewer
SqlViewer m_viewer
The wrapped SQLViewer
-
-
Class weka.gui.knowledgeflow.SQLViewerPerspective.SQLDefaults
class SQLDefaults extends Defaults implements Serializable- serialVersionUID:
- 5907476861935295960L
-
Class weka.gui.knowledgeflow.StepEditorDialog
class StepEditorDialog extends JPanel implements Serializable- serialVersionUID:
- -4860182109190301676L
-
Serialized Fields
-
m_buttonHolder
JPanel m_buttonHolder
Holder for buttons -
m_cancelBut
JButton m_cancelBut
Cancel button -
m_closingListener
StepEditorDialog.ClosingListener m_closingListener
Listener to be informed when the window closes -
m_commandHandler
KFGraphicalEnvironmentCommandHandler m_commandHandler
The handler for graphical commands -
m_env
Environment m_env
Environment variables -
m_helpBut
JButton m_helpBut
About button -
m_helpText
StringBuilder m_helpText
Buffer to hold the help text -
m_isEdited
boolean m_isEdited
True if the step's properties have been altered -
m_mainPerspective
MainKFPerspective m_mainPerspective
Reference to the main perspective -
m_okBut
JButton m_okBut
OK button -
m_parent
Window m_parent
Parent window -
m_settingsBut
JButton m_settingsBut
Settings button -
m_stepToEdit
Step m_stepToEdit
The step to edit
-
-
Class weka.gui.knowledgeflow.StepTree
class StepTree extends JTree implements Serializable- serialVersionUID:
- 3646119269455293741L
-
Serialized Fields
-
m_mainPerspective
MainKFPerspective m_mainPerspective
Reference to the main knowledge flow perspective -
m_nodeTextIndex
Map<String,
DefaultMutableTreeNode> m_nodeTextIndex Lookup for searching text of global info/tip texts
-
-
Class weka.gui.knowledgeflow.StepTree.StepIconRenderer
class StepIconRenderer extends DefaultTreeCellRenderer implements Serializable- serialVersionUID:
- -4488876734500244945L
-
Class weka.gui.knowledgeflow.StepTreeLeafDetails
class StepTreeLeafDetails extends Object implements Serializable- serialVersionUID:
- 6347861816716877761L
-
Serialized Fields
-
m_leafLabel
String m_leafLabel
the label (usually derived from the qualified name or wrapped algorithm) for the leaf -
m_showTipText
boolean m_showTipText
If a tool tip text is set, whether to show it or not -
m_stepClazz
Class m_stepClazz
Class of the step stored at this leaf -
m_toolTipText
String m_toolTipText
tool tip text to display -
m_wrappedWekaAlgoName
String m_wrappedWekaAlgoName
The name of the algorithm wrapped by a WekaAlgorithmWrapper step
-
-
Class weka.gui.knowledgeflow.StepVisual
class StepVisual extends JPanel implements Serializable- serialVersionUID:
- 4156046438296843760L
-
Serialized Fields
-
m_connectorColor
Color m_connectorColor
Current connector dot colour -
m_displayConnectors
boolean m_displayConnectors
Whether to display connector dots -
m_icon
ImageIcon m_icon
The icon for the step this visual represents -
m_stepManager
StepManagerImpl m_stepManager
The step manager for the step this visual represents -
m_x
int m_x
The x coordinate of the step on the graphical layout -
m_y
int m_y
The y coordinate of the step on the graphical layout
-
-
Class weka.gui.knowledgeflow.VisibleLayout
class VisibleLayout extends JPanel implements Serializable- serialVersionUID:
- -3644458365810712479L
-
Serialized Fields
-
m_editConnection
String m_editConnection
The name of the user-selected connection if the user has initiated a connection from a source step (stored in m_editStep) -
m_editStep
StepVisual m_editStep
Reference to the step being edited (if any) -
m_env
Environment m_env
Environment variables to use -
m_filePath
File m_filePath
Current path on disk for this flow -
m_flow
Flow m_flow
-
m_flowExecutor
FlowExecutor m_flowExecutor
The flow executor used to execute the flow -
m_hasBeenEdited
boolean m_hasBeenEdited
True if the flow has been edited, but not yet saved -
m_isExecuting
boolean m_isExecuting
True if this flow is executing -
m_layout
LayoutPanel m_layout
The panel used to render the flow -
m_logPanel
weka.gui.knowledgeflow.VisibleLayout.KFLogPanel m_logPanel
The log panel to use for this layout -
m_mainPerspective
MainKFPerspective m_mainPerspective
A reference to the main perspective -
m_renderGraph
List<StepVisual> m_renderGraph
The steps to be rendered on this layout -
m_selectedSteps
List<StepVisual> m_selectedSteps
Keeps track of any highlighted steps on the canvas -
m_undoBuffer
Stack<File> m_undoBuffer
Keeps track of the undo buffer for this flow -
m_userOpp
weka.gui.knowledgeflow.VisibleLayout.LayoutOperation m_userOpp
The current layout operation -
m_zoomSetting
int m_zoomSetting
Current zoom setting for this layout
-
-
Class weka.gui.knowledgeflow.VisibleLayout.KFLogPanel
class KFLogPanel extends LogPanel implements Serializable- serialVersionUID:
- -2224509243343105276L
-
-
Package weka.gui.knowledgeflow.steps
-
Class weka.gui.knowledgeflow.steps.ASEvaluatorStepEditorDialog
class ASEvaluatorStepEditorDialog extends GOEStepEditorDialog implements Serializable- serialVersionUID:
- -166234654984288982L
-
Serialized Fields
-
m_treatXValFoldsSeparately
JCheckBox m_treatXValFoldsSeparately
Check box for selecting whether to treat x-val folds separately or not
-
-
Class weka.gui.knowledgeflow.steps.AttributeSummarizerInteractiveView
class AttributeSummarizerInteractiveView extends BaseInteractiveViewer implements Serializable- serialVersionUID:
- -8080574605631027263L
-
Serialized Fields
-
m_clearButton
JButton m_clearButton
Button for clearing all results -
m_currentInstances
Instances m_currentInstances
The instances being visualized -
m_history
ResultHistoryPanel m_history
Holds results -
m_splitPane
JSplitPane m_splitPane
Split pane to separate result list from visualization -
m_summarizer
AttributeSummaryPerspective m_summarizer
Holds the actual visualization
-
-
Class weka.gui.knowledgeflow.steps.AttributeSummarizerStepEditorDialog
class AttributeSummarizerStepEditorDialog extends ModelPerformanceChartStepEditorDialog implements Serializable- serialVersionUID:
- -4504946065343184549L
-
Class weka.gui.knowledgeflow.steps.BlockStepEditorDialog
class BlockStepEditorDialog extends StepEditorDialog implements Serializable- serialVersionUID:
- 1183316309880876170L
-
Class weka.gui.knowledgeflow.steps.BoundaryPlotterInteractiveView
class BoundaryPlotterInteractiveView extends BaseInteractiveViewer implements Serializable- serialVersionUID:
- 5567187861739468636L
-
Serialized Fields
-
m_clearButton
JButton m_clearButton
-
m_history
ResultHistoryPanel m_history
Holds a list of plots -
m_plotter
weka.gui.knowledgeflow.steps.ImageViewerInteractiveView.ImageDisplayer m_plotter
Panel for displaying the image
-
-
Class weka.gui.knowledgeflow.steps.BoundaryPlotterStepEditorDialog
class BoundaryPlotterStepEditorDialog extends GOEStepEditorDialog implements Serializable- serialVersionUID:
- 4351742205211273840L
-
Serialized Fields
-
m_xCombo
JComboBox<String> m_xCombo
Combo box for selecting the x attribute to plot when there is an incoming instances structure at design time -
m_xEnviro
EnvironmentField m_xEnviro
Environment field for specifying the x attribute when there isn't incoming instances structure at design time -
m_yCombo
JComboBox<String> m_yCombo
Combo box for selecting the y attribute to plot when there is an incoming instances structure at design time -
m_yEnviro
EnvironmentField m_yEnviro
Environment field for specifying the y attribute when there isn't incoming instances structure at design time
-
-
Class weka.gui.knowledgeflow.steps.ClassAssignerStepEditorDialog
class ClassAssignerStepEditorDialog extends GOEStepEditorDialog implements Serializable- serialVersionUID:
- 3105898651212196539L
-
Class weka.gui.knowledgeflow.steps.ClassifierPerformanceEvaluatorStepEditorDialog
class ClassifierPerformanceEvaluatorStepEditorDialog extends GOEStepEditorDialog implements Serializable- serialVersionUID:
- -4459460141076392499L
-
Serialized Fields
-
m_CostMatrixEditor
CostMatrixEditor m_CostMatrixEditor
The cost matrix editor for evaluation costs. -
m_evaluationMetrics
List<String> m_evaluationMetrics
Holds selected evaluation metrics -
m_setCostMatrix
JButton m_setCostMatrix
Button for popping up cost editor -
m_SetCostsFrame
PropertyDialog m_SetCostsFrame
The frame used to show the cost matrix editing panel. -
m_showEvalDialog
JButton m_showEvalDialog
Button for popping up the evaluation metrics selector dialog -
m_useCosts
JCheckBox m_useCosts
Checkbox for selecting cost-sensitive evaluation
-
-
Class weka.gui.knowledgeflow.steps.ClassValuePickerStepEditorDialog
class ClassValuePickerStepEditorDialog extends GOEStepEditorDialog implements Serializable- serialVersionUID:
- 7009335918650499183L
-
Serialized Fields
-
m_classValueCombo
JComboBox m_classValueCombo
For displaying class values
-
-
Class weka.gui.knowledgeflow.steps.CostBenefitAnalysisInteractiveView
class CostBenefitAnalysisInteractiveView extends BaseInteractiveViewer implements Serializable- serialVersionUID:
- 4624182171551712860L
-
Serialized Fields
-
m_cbPanel
CostBenefitAnalysisPanel m_cbPanel
The actual cost benefit panel -
m_clearButton
JButton m_clearButton
Button for clearing all results -
m_history
ResultHistoryPanel m_history
Holds result entries -
m_splitPane
JSplitPane m_splitPane
JSplit pane for separating the result list from the visualization
-
-
Class weka.gui.knowledgeflow.steps.DataGridStepEditorDialog
class DataGridStepEditorDialog extends StepEditorDialog implements Serializable- serialVersionUID:
- -7314471130292016602L
-
Serialized Fields
-
m_attNameField
EnvironmentField m_attNameField
Field for editing an attribute name -
m_attTypeField
JComboBox<String> m_attTypeField
Combo box for selecting the type of the attribute -
m_deleteBut
JButton m_deleteBut
Button for deleting an attribute def -
m_downBut
JButton m_downBut
Button for moving an attribute down in the list -
m_list
JList<weka.gui.knowledgeflow.steps.DataGridStepEditorDialog.AttDef> m_list
Holds the list of attribute defs -
m_listModel
DefaultListModel<weka.gui.knowledgeflow.steps.DataGridStepEditorDialog.AttDef> m_listModel
List model -
m_newBut
JButton m_newBut
Button for adding a new attribute def -
m_nominalOrDateFormatField
EnvironmentField m_nominalOrDateFormatField
Field for editing nominal values/date format string -
m_stringInstances
String m_stringInstances
The instances data from the step as a string -
m_tabbedPane
JTabbedPane m_tabbedPane
Tabbed pane for the two parts of the editor -
m_upBut
JButton m_upBut
Button for moving an attribute up in the list -
m_viewerPanel
weka.gui.knowledgeflow.steps.DataGridStepEditorDialog.ArffViewerPanel m_viewerPanel
Panel for viewing/editing the instances data
-
-
Class weka.gui.knowledgeflow.steps.DataGridStepEditorDialog.ArffViewerPanel
class ArffViewerPanel extends JPanel implements Serializable- serialVersionUID:
- 2965315087365186710L
-
Class weka.gui.knowledgeflow.steps.DataVisualizerInteractiveView
class DataVisualizerInteractiveView extends BaseInteractiveViewer implements Serializable- serialVersionUID:
- 5345799787154266282L
-
Serialized Fields
-
m_clearButton
JButton m_clearButton
Button for clearing all results -
m_currentPlot
PlotData2D m_currentPlot
Curent plot data -
m_history
ResultHistoryPanel m_history
Holds results -
m_splitPane
JSplitPane m_splitPane
Split pane for separating result list from visualization -
m_visPanel
VisualizePanel m_visPanel
The actual visualization
-
-
Class weka.gui.knowledgeflow.steps.DataVisualizerStepEditorDialog
class DataVisualizerStepEditorDialog extends ModelPerformanceChartStepEditorDialog implements Serializable- serialVersionUID:
- -6032558757326543902L
-
Class weka.gui.knowledgeflow.steps.ExecuteProcessStepEditorDialog
class ExecuteProcessStepEditorDialog extends StepEditorDialog implements Serializable- serialVersionUID:
- -7740004961609720209L
-
Serialized Fields
-
m_dynamicPanel
weka.gui.knowledgeflow.steps.ExecuteProcessStepEditorDialog.DynamicProcessPanel m_dynamicPanel
Panel for dynamic commands -
m_raiseExceptonOnCommandFailure
JCheckBox m_raiseExceptonOnCommandFailure
Checkbox to indicate whether complete command failure (vs just returning a non-zero status) should generate an exception -
m_staticPanel
weka.gui.knowledgeflow.steps.ExecuteProcessStepEditorDialog.StaticProcessPanel m_staticPanel
Panel for static commands -
m_useDynamicCheck
JCheckBox m_useDynamicCheck
Checkbox to indicate whether dynamic commands are to be executed
-
-
Class weka.gui.knowledgeflow.steps.ExecuteProcessStepEditorDialog.DynamicProcessPanel
class DynamicProcessPanel extends JPanel implements Serializable- serialVersionUID:
- 6440523583792476595L
-
Class weka.gui.knowledgeflow.steps.ExecuteProcessStepEditorDialog.StaticProcessPanel
class StaticProcessPanel extends JPanel implements Serializable- serialVersionUID:
- -4215730214067279661L
-
Serialized Fields
-
m_argsText
JTextField m_argsText
-
m_cmdText
JTextField m_cmdText
-
m_workingDirField
FileEnvironmentField m_workingDirField
-
-
Class weka.gui.knowledgeflow.steps.FlowByExpressionStepEditorDialog
class FlowByExpressionStepEditorDialog extends StepEditorDialog implements Serializable- serialVersionUID:
- 1545740909421963983L
-
Serialized Fields
-
m_addBracketNode
JButton m_addBracketNode
Button for adding a new brackets node to the expression tree -
m_addExpressionNode
JButton m_addExpressionNode
Button for adding a new expression node to the expression tree -
m_andOr
JButton m_andOr
Button for and/or -
m_deleteNode
JButton m_deleteNode
Button for deleting a node from the expression tree -
m_expressionLab
JLabel m_expressionLab
Label for displaying the current expression -
m_expressionTree
JTree m_expressionTree
Holds the tree view of the expression -
m_falseData
JComboBox<String> m_falseData
Combo box for choosing the downstream step that instances failing to match the expression should go to -
m_lhsField
JComboBox m_lhsField
Combo box for the LHS of the expression being entered -
m_operatorCombo
JComboBox<String> m_operatorCombo
Combo box for choosing the operator -
m_rhsField
JComboBox m_rhsField
Combo box for the RHS of the expression being entered -
m_rhsIsAttribute
JCheckBox m_rhsIsAttribute
Check box for indicating that the RHS is the name of an attribute -
m_toggleNegation
JButton m_toggleNegation
Button for toggling negation -
m_treeRoot
DefaultMutableTreeNode m_treeRoot
Root of the tree -
m_trueData
JComboBox<String> m_trueData
Combo box for choosing the downstream step that instances matching the expression should go to
-
-
Class weka.gui.knowledgeflow.steps.GraphViewerInteractiveView
class GraphViewerInteractiveView extends BaseInteractiveViewer implements Serializable- serialVersionUID:
- 2109423349272114409L
-
Serialized Fields
-
m_clearButton
JButton m_clearButton
Button for clearing the results -
m_graphVisualizer
GraphVisualizer m_graphVisualizer
Visualization component for graphs -
m_history
ResultHistoryPanel m_history
Holds a list of results -
m_holderPanel
JPanel m_holderPanel
Holder panel for layout purposes -
m_splitPane
JSplitPane m_splitPane
Split pane for separating the results list from the visualization -
m_treeVisualizer
TreeVisualizer m_treeVisualizer
Visualization component for trees
-
-
Class weka.gui.knowledgeflow.steps.ImageViewerInteractiveView
class ImageViewerInteractiveView extends BaseInteractiveViewer implements Serializable- serialVersionUID:
- -6652203133445653870L
-
Serialized Fields
-
m_clearButton
JButton m_clearButton
Button for clearing the results -
m_history
ResultHistoryPanel m_history
A panel for holding a list of results -
m_plotter
weka.gui.knowledgeflow.steps.ImageViewerInteractiveView.ImageDisplayer m_plotter
Panel for displaying the image
-
-
Class weka.gui.knowledgeflow.steps.ImageViewerInteractiveView.ImageDisplayer
class ImageDisplayer extends JPanel implements Serializable- serialVersionUID:
- 4161957589912537357L
-
Serialized Fields
-
m_image
BufferedImage m_image
The image to display -
m_imageZoom
int m_imageZoom
-
-
Class weka.gui.knowledgeflow.steps.ImageViewerInteractiveView.MainPanel
class MainPanel extends JPanel implements Serializable- serialVersionUID:
- 5648976848887609072L
-
Class weka.gui.knowledgeflow.steps.JobStepEditorDialog
class JobStepEditorDialog extends GOEStepEditorDialog implements Serializable- serialVersionUID:
- -4921559717867446684L
-
Serialized Fields
-
m_editSubFlow
JButton m_editSubFlow
Button for loading the sub-flow in a new tab
-
-
Class weka.gui.knowledgeflow.steps.JoinStepEditorDialog
class JoinStepEditorDialog extends StepEditorDialog implements Serializable- serialVersionUID:
- -2648770811063889717L
-
Serialized Fields
-
m_addOneBut
JButton m_addOneBut
Add button for the first instance stream -
m_addTwoBut
JButton m_addTwoBut
Add button for the second instance stream -
m_deleteOneBut
JButton m_deleteOneBut
Delete button for the first instance stream -
m_deleteTwoBut
JButton m_deleteTwoBut
Delete button for the second instance stream -
m_downOneBut
JButton m_downOneBut
Move down button for the first instance stream -
m_downTwoBut
JButton m_downTwoBut
Move down button for the second instance stream -
m_firstKeyFields
JComboBox m_firstKeyFields
Combo box for selecting a key field to add from the first instance stream -
m_firstList
JList m_firstList
List of selected key fields for the first instance stream -
m_firstListModel
DefaultListModel<String> m_firstListModel
-
m_secondKeyFields
JComboBox m_secondKeyFields
Combo box for selecting a the key field to add from the second instance stream -
m_secondList
JList m_secondList
List of selected key fields for the second instance stream -
m_secondListModel
DefaultListModel<String> m_secondListModel
-
m_upOneBut
JButton m_upOneBut
Move up button for the first instance stream -
m_upTwoBut
JButton m_upTwoBut
Move up button for the second instance stream
-
-
Class weka.gui.knowledgeflow.steps.LoaderStepEditorDialog
class LoaderStepEditorDialog extends GOEStepEditorDialog implements Serializable- serialVersionUID:
- -6501371943783384741L
-
Serialized Fields
-
m_fileLoader
FileEnvironmentField m_fileLoader
Widget for specifying/choosing a file for file-based loaders
-
-
Class weka.gui.knowledgeflow.steps.ModelPerformanceChartInteractiveView
class ModelPerformanceChartInteractiveView extends BaseInteractiveViewer implements Serializable- serialVersionUID:
- 8818417648798221980L
-
Serialized Fields
-
m_clearButton
JButton m_clearButton
Button for clearing results -
m_visPanel
VisualizePanel m_visPanel
The actual visualization
-
-
Class weka.gui.knowledgeflow.steps.ModelPerformanceChartStepEditorDialog
class ModelPerformanceChartStepEditorDialog extends GOEStepEditorDialog implements Serializable- serialVersionUID:
- -3031265139980301695L
-
Serialized Fields
-
m_currentRendererName
String m_currentRendererName
Currently selected renderer name -
m_currentRendererOptions
String m_currentRendererOptions
Current renderer options -
m_offscreenSelector
JComboBox<String> m_offscreenSelector
For selecting the renderer to use -
m_rendererOptions
EnvironmentField m_rendererOptions
For editing the renderer options
-
-
Class weka.gui.knowledgeflow.steps.NoteEditorDialog
class NoteEditorDialog extends StepEditorDialog implements Serializable- serialVersionUID:
- 2358735294813135692L
-
Serialized Fields
-
m_textArea
JTextArea m_textArea
Text area of the note
-
-
Class weka.gui.knowledgeflow.steps.SaverStepEditorDialog
class SaverStepEditorDialog extends GOEStepEditorDialog implements Serializable- serialVersionUID:
- -8353826767500440827L
-
Serialized Fields
-
m_directory
FileEnvironmentField m_directory
Field for specifying the directory to save into -
m_dirLab
JLabel m_dirLab
Label for the directory field -
m_prefixOrFile
EnvironmentField m_prefixOrFile
Field for specifying either the file prefix to use or the actual filename itself -
m_prefLab
JLabel m_prefLab
Label for the file/prefix field
-
-
Class weka.gui.knowledgeflow.steps.ScatterPlotMatrixInteractiveView
class ScatterPlotMatrixInteractiveView extends BaseInteractiveViewer implements Serializable- serialVersionUID:
- 275603100387301133L
-
Serialized Fields
-
m_clearButton
JButton m_clearButton
Button for clearing the results list -
m_history
ResultHistoryPanel m_history
Holds a list of results -
m_matrixPanel
MatrixPanel m_matrixPanel
The actual visualization -
m_splitPane
JSplitPane m_splitPane
Split pane for separating the result list and visualization
-
-
Class weka.gui.knowledgeflow.steps.SendToPerspectiveStepEditorDialog
class SendToPerspectiveStepEditorDialog extends GOEStepEditorDialog implements Serializable- serialVersionUID:
- -8282588308511754826L
-
Class weka.gui.knowledgeflow.steps.SetVariablesStepEditorDialog
class SetVariablesStepEditorDialog extends StepEditorDialog implements Serializable- serialVersionUID:
- 5747505623497131129L
-
Serialized Fields
-
m_dvp
weka.gui.knowledgeflow.steps.SetVariablesStepEditorDialog.DynamicVariablesPanel m_dvp
-
m_vp
weka.gui.knowledgeflow.steps.SetVariablesStepEditorDialog.VariablesPanel m_vp
panel for editing variables
-
-
Class weka.gui.knowledgeflow.steps.SetVariablesStepEditorDialog.DynamicVariablesPanel
class DynamicVariablesPanel extends JPanel implements Serializable- serialVersionUID:
- -280047347103350039L
-
Serialized Fields
-
m_table
InteractiveTablePanel m_table
-
-
Class weka.gui.knowledgeflow.steps.SetVariablesStepEditorDialog.VariablesPanel
class VariablesPanel extends JPanel implements Serializable- serialVersionUID:
- 5188290550108775006L
-
Serialized Fields
-
m_table
InteractiveTablePanel m_table
-
-
Class weka.gui.knowledgeflow.steps.SorterStepEditorDialog
class SorterStepEditorDialog extends GOEStepEditorDialog implements Serializable- serialVersionUID:
- -1258170590422372948L
-
Serialized Fields
-
m_attCombo
JComboBox<String> m_attCombo
Combo box for selecting attribute to sort on -
m_deleteBut
JButton m_deleteBut
Button for deleting a selected rule -
m_descending
JComboBox<String> m_descending
Combo box for choosing to sort descending or not -
m_downBut
JButton m_downBut
Button for moving a rule down in the list -
m_list
JList<Sorter.SortRule> m_list
Holds the individual sorting criteria -
m_listModel
DefaultListModel<Sorter.SortRule> m_listModel
List model for sort rules -
m_newBut
JButton m_newBut
Button for creating a new rule -
m_upBut
JButton m_upBut
Button for moving a rule up in the list
-
-
Class weka.gui.knowledgeflow.steps.StorePropertiesInEnvironmentStepEditorDialog
class StorePropertiesInEnvironmentStepEditorDialog extends StepEditorDialog implements Serializable- serialVersionUID:
- 3797813883697010599L
-
Serialized Fields
-
m_dpp
weka.gui.knowledgeflow.steps.StorePropertiesInEnvironmentStepEditorDialog.DynamicPropertiesPanel m_dpp
-
-
Class weka.gui.knowledgeflow.steps.StorePropertiesInEnvironmentStepEditorDialog.DynamicPropertiesPanel
class DynamicPropertiesPanel extends JPanel implements Serializable- serialVersionUID:
- 5864117781960584665L
-
Serialized Fields
-
m_table
InteractiveTablePanel m_table
-
-
Class weka.gui.knowledgeflow.steps.StripChartInteractiveView
class StripChartInteractiveView extends BaseInteractiveViewer implements Serializable- serialVersionUID:
- 7697752421621805402L
-
Serialized Fields
-
m_BackgroundColor
Color m_BackgroundColor
the background color. -
m_colorList
Color[] m_colorList
default colours for colouring lines -
m_iheight
int m_iheight
Width and height of the off screen image. -
m_iwidth
int m_iwidth
-
m_labelFont
Font m_labelFont
Font to use on the plot -
m_labelMetrics
FontMetrics m_labelMetrics
Font metrics for string placement calculations -
m_legendPanel
weka.gui.knowledgeflow.steps.StripChartInteractiveView.LegendPanel m_legendPanel
Holds the legend -
m_LegendPanelBorderColor
Color m_LegendPanelBorderColor
the color of the legend panel's border. -
m_legendText
List<String> m_legendText
Holds the legend entries -
m_max
double m_max
Max value for the y axis. -
m_min
double m_min
Min value for the y axis. -
m_oldMax
double m_oldMax
-
m_oldMin
double m_oldMin
-
m_plotPanel
weka.gui.knowledgeflow.steps.StripChartInteractiveView.StripPlotter m_plotPanel
-
m_previousY
double[] m_previousY
Previous data point -
m_refreshWidth
int m_refreshWidth
Shift the plot by this many pixels every time a point is plotted -
m_scalePanel
weka.gui.knowledgeflow.steps.StripChartInteractiveView.ScalePanel m_scalePanel
the scale. -
m_xCount
int m_xCount
data point count -
m_yScaleUpdate
boolean m_yScaleUpdate
Scale update requested.
-
-
Class weka.gui.knowledgeflow.steps.StripChartInteractiveView.LegendPanel
class LegendPanel extends JPanel implements Serializable- serialVersionUID:
- 7713986576833797583L
-
Class weka.gui.knowledgeflow.steps.StripChartInteractiveView.StripChartInteractiveViewDefaults
class StripChartInteractiveViewDefaults extends Defaults implements Serializable- serialVersionUID:
- 2247370679260844812L
-
Class weka.gui.knowledgeflow.steps.SubstringLabelerStepEditorDialog
class SubstringLabelerStepEditorDialog extends StepEditorDialog implements Serializable- serialVersionUID:
- 2386951012941540643L
-
Serialized Fields
-
m_attListField
EnvironmentField m_attListField
Field for specifying the attributes to match on -
m_consumeNonMatchingCheck
JCheckBox m_consumeNonMatchingCheck
Checkbox for specifying that non-matching instances should be consumed rather than having the match attribute value set to missing value -
m_deleteBut
JButton m_deleteBut
Button for deleting a match rule -
m_downBut
JButton m_downBut
Button for moving a match rule down in the list -
m_ignoreCaseCheck
JCheckBox m_ignoreCaseCheck
Checkbox for specifying that case should be ignored when matching -
m_labelField
EnvironmentField m_labelField
Field for specifying the label to assign if match is positive -
m_list
JList<SubstringLabelerRules.SubstringLabelerMatchRule> m_list
Holds the list of match rules -
m_listModel
DefaultListModel<SubstringLabelerRules.SubstringLabelerMatchRule> m_listModel
List model -
m_matchAttNameField
EnvironmentField m_matchAttNameField
Field for specifying the name of the new attribute to create -
m_matchField
EnvironmentField m_matchField
Field for specifying the string/regex to match -
m_newBut
JButton m_newBut
Button for adding a new match rule -
m_nominalBinaryCheck
JCheckBox m_nominalBinaryCheck
Checkbox for making a binary label attribute into a nominal one (rather than numeric) -
m_regexCheck
JCheckBox m_regexCheck
Checkbox to specify that the match is a regex -
m_upBut
JButton m_upBut
Button for moving a match rule up in the list
-
-
Class weka.gui.knowledgeflow.steps.SubstringReplacerStepEditorDialog
class SubstringReplacerStepEditorDialog extends StepEditorDialog implements Serializable- serialVersionUID:
- 7804721324137987443L
-
Serialized Fields
-
m_attListField
EnvironmentField m_attListField
Field for specifying the attributes to match on -
m_deleteBut
JButton m_deleteBut
Button for deleting a match rule -
m_downBut
JButton m_downBut
Button for moving a match rule down in the list -
m_ignoreCaseCheck
JCheckBox m_ignoreCaseCheck
Checkbox for specifying that case should be ignored when matching -
m_list
JList<SubstringReplacerRules.SubstringReplacerMatchRule> m_list
Holds the list of match rules -
m_listModel
DefaultListModel<SubstringReplacerRules.SubstringReplacerMatchRule> m_listModel
List model -
m_matchField
EnvironmentField m_matchField
Field for specifying the string/regex to match -
m_newBut
JButton m_newBut
Button for adding a new match rule -
m_regexCheck
JCheckBox m_regexCheck
Checkbox to specify that the match is a regex -
m_replaceField
EnvironmentField m_replaceField
Field for specifying the value to replace a match with -
m_upBut
JButton m_upBut
Button for moving a match rule up in the list
-
-
Class weka.gui.knowledgeflow.steps.TextViewerInteractiveView
class TextViewerInteractiveView extends BaseInteractiveViewer implements Serializable- serialVersionUID:
- -3164518320257969282L
-
Serialized Fields
-
m_clearButton
JButton m_clearButton
Button for clearing the results -
m_history
ResultHistoryPanel m_history
Holds the list of results -
m_outText
JTextArea m_outText
The main text output area -
m_textScroller
JScrollPane m_textScroller
Scroll panel for the text area
-
-
Class weka.gui.knowledgeflow.steps.TextViewerInteractiveView.TextViewerInteractiveViewDefaults
class TextViewerInteractiveViewDefaults extends Defaults implements Serializable- serialVersionUID:
- 8361658568822013306L
-
-
Package weka.gui.scripting
-
Class weka.gui.scripting.FileScriptingPanel
class FileScriptingPanel extends ScriptingPanel implements Serializable- serialVersionUID:
- 1583670545010241816L
-
Serialized Fields
-
m_AboutAction
weka.gui.scripting.FileScriptingPanel.AboutAction m_AboutAction
the about action. -
m_Actions
HashMap<Object,
Action> m_Actions for storing the actions under their name. -
m_Args
String[] m_Args
the commandline arguments to use. -
m_ArgsAction
weka.gui.scripting.FileScriptingPanel.CommandlineArgsAction m_ArgsAction
the arguments action. -
m_ClearOutputAction
weka.gui.scripting.FileScriptingPanel.ClearOutputAction m_ClearOutputAction
the clear output action. -
m_CopyAction
Action m_CopyAction
the copy action. -
m_CutAction
Action m_CutAction
the cut action. -
m_ExitAction
weka.gui.scripting.FileScriptingPanel.ExitAction m_ExitAction
the exit action. -
m_FileChooser
WekaFileChooser m_FileChooser
for loading/saving file. -
m_LabelInfo
JLabel m_LabelInfo
for informing the user. -
m_NewAction
weka.gui.scripting.FileScriptingPanel.NewAction m_NewAction
the new action. -
m_OpenAction
weka.gui.scripting.FileScriptingPanel.OpenAction m_OpenAction
the open action. -
m_OutputArea
JTextArea m_OutputArea
the output area. -
m_PasteAction
Action m_PasteAction
the paste action. -
m_PrintAction
weka.gui.scripting.FileScriptingPanel.PrintAction m_PrintAction
the Print action. -
m_RedoAction
weka.gui.scripting.FileScriptingPanel.RedoAction m_RedoAction
the redo action. -
m_SaveAction
weka.gui.scripting.FileScriptingPanel.SaveAction m_SaveAction
the Save action. -
m_SaveAsAction
weka.gui.scripting.FileScriptingPanel.SaveAction m_SaveAsAction
the Save as action. -
m_Script
Script m_Script
the script. -
m_ScriptArea
JTextArea m_ScriptArea
the script area. -
m_StartAction
weka.gui.scripting.FileScriptingPanel.StartAction m_StartAction
the start action. -
m_StopAction
weka.gui.scripting.FileScriptingPanel.StopAction m_StopAction
the stop action. -
m_TextCode
JTextPane m_TextCode
the text pane with the code. -
m_TextOutput
JTextPane m_TextOutput
the text pane for the output. -
m_Undo
UndoManager m_Undo
the undo manager. -
m_UndoAction
weka.gui.scripting.FileScriptingPanel.UndoAction m_UndoAction
the undo action.
-
-
Class weka.gui.scripting.FileScriptingPanel.AboutAction
class AboutAction extends FileScriptingPanel.BasicAction implements Serializable- serialVersionUID:
- -6420463480569171227L
-
Class weka.gui.scripting.FileScriptingPanel.BasicAction
class BasicAction extends AbstractAction implements Serializable- serialVersionUID:
- 2821117985661550385L
-
Class weka.gui.scripting.FileScriptingPanel.ClearOutputAction
class ClearOutputAction extends FileScriptingPanel.BasicAction implements Serializable- serialVersionUID:
- 47986890456997211L
-
Class weka.gui.scripting.FileScriptingPanel.CommandlineArgsAction
class CommandlineArgsAction extends FileScriptingPanel.BasicAction implements Serializable- serialVersionUID:
- -3183470039010826204L
-
Class weka.gui.scripting.FileScriptingPanel.ExitAction
class ExitAction extends FileScriptingPanel.BasicAction implements Serializable- serialVersionUID:
- -5884709836238884180L
-
Class weka.gui.scripting.FileScriptingPanel.NewAction
class NewAction extends FileScriptingPanel.BasicAction implements Serializable- serialVersionUID:
- -8665722554539726090L
-
Class weka.gui.scripting.FileScriptingPanel.OpenAction
class OpenAction extends FileScriptingPanel.BasicAction implements Serializable- serialVersionUID:
- -4496148485267789162L
-
Class weka.gui.scripting.FileScriptingPanel.PrintAction
class PrintAction extends FileScriptingPanel.BasicAction implements Serializable- serialVersionUID:
- -6246539539545724632L
-
Class weka.gui.scripting.FileScriptingPanel.RedoAction
class RedoAction extends FileScriptingPanel.BasicAction implements Serializable- serialVersionUID:
- 4533966901523279350L
-
Class weka.gui.scripting.FileScriptingPanel.SaveAction
class SaveAction extends FileScriptingPanel.BasicAction implements Serializable- serialVersionUID:
- -74651145892063975L
-
Serialized Fields
-
m_ShowDialog
boolean m_ShowDialog
whether to bring up the save dialog all the time.
-
-
Class weka.gui.scripting.FileScriptingPanel.StartAction
class StartAction extends FileScriptingPanel.BasicAction implements Serializable- serialVersionUID:
- -7936456072955996220L
-
Class weka.gui.scripting.FileScriptingPanel.StopAction
class StopAction extends FileScriptingPanel.BasicAction implements Serializable- serialVersionUID:
- 8764023289575718872L
-
Class weka.gui.scripting.FileScriptingPanel.UndoAction
class UndoAction extends FileScriptingPanel.BasicAction implements Serializable- serialVersionUID:
- 4298096648424808522L
-
Class weka.gui.scripting.GroovyPanel
class GroovyPanel extends FileScriptingPanel implements Serializable- serialVersionUID:
- -3475707604414854111L
-
Class weka.gui.scripting.GroovyScript
class GroovyScript extends Script implements Serializable- serialVersionUID:
- -3708517162415549420L
-
Class weka.gui.scripting.JythonPanel
class JythonPanel extends FileScriptingPanel implements Serializable- serialVersionUID:
- -827358576217085413L
-
Class weka.gui.scripting.JythonScript
class JythonScript extends Script implements Serializable- serialVersionUID:
- 3469648507172973169L
-
Class weka.gui.scripting.Script
class Script extends Object implements Serializable- serialVersionUID:
- 5053328052680586401L
-
Serialized Fields
-
m_Document
Document m_Document
the document this script is a wrapper around. -
m_Filename
File m_Filename
the filename of the script. -
m_FinishedListeners
HashSet<ScriptExecutionListener> m_FinishedListeners
optional listeners when the script finishes. -
m_Modified
boolean m_Modified
whether the script is modified. -
m_NewLine
String m_NewLine
the newline used on this platform.
-
-
Class weka.gui.scripting.ScriptingPanel
class ScriptingPanel extends JPanel implements Serializable- serialVersionUID:
- 7593091442691911406L
-
Serialized Fields
-
m_Debug
boolean m_Debug
whether debug mode is on. -
m_ErrPrintStream
PrintStream m_ErrPrintStream
The print stream that is wrapped around the piped error output stream. We need a a reference to it at the class level so that we can remove it from the tee when the panel is terminated. -
m_ErrRedirector
ReaderToTextPane m_ErrRedirector
The thread that sends output from m_POE to the output box. -
m_ErrTee
Tee m_ErrTee
The Tee that the err stream will be part of. We need a reference to it at the class level so that we can remove the stream from it when the panel is terminated. -
m_OutRedirector
ReaderToTextPane m_OutRedirector
The thread that sends output from m_POO to the output box. -
m_POE
PipedOutputStream m_POE
The new output stream for System.err. -
m_POO
PipedOutputStream m_POO
The new output stream for System.out. -
m_PrintStream
PrintStream m_PrintStream
The print stream that is wrapped around the piped output stream. We need a a reference to it at the class level so that we can remove it from the tee when the panel is terminated. -
m_Tee
Tee m_Tee
The Tee that the output stream will be part of. We need a reference to it at the class level so that we can remove the stream from it when the panel is terminated. -
m_TitleUpdatedListeners
HashSet<TitleUpdatedListener> m_TitleUpdatedListeners
the listeners for the changes in the title.
-
-
Class weka.gui.scripting.SyntaxDocument
class SyntaxDocument extends DefaultStyledDocument implements Serializable- serialVersionUID:
- -3642426465631271381L
-
Serialized Fields
-
m_AddMatchingEndBlocks
boolean m_AddMatchingEndBlocks
whether to add matching brackets. -
m_BackgroundColor
Color m_BackgroundColor
the background color. -
m_BlockEnd
String m_BlockEnd
the end of a block. -
m_BlockStart
String m_BlockStart
the start of a block. -
m_CaseSensitive
boolean m_CaseSensitive
whether keywords are case-sensitive. -
m_Delimiters
String m_Delimiters
the delimiters. -
m_FontName
String m_FontName
the font name. -
m_FontSize
int m_FontSize
the font size. -
m_Indentation
String m_Indentation
the number of spaces used for indentation. -
m_InsideMultiLineComment
boolean m_InsideMultiLineComment
whether we're currently in a multi-line comment. -
m_Keywords
HashMap<String,
MutableAttributeSet> m_Keywords the keywords. -
m_MultiLineComment
boolean m_MultiLineComment
whether multi-line comments are enabled. -
m_MultiLineCommentEnd
String m_MultiLineCommentEnd
the multi-line comment end. -
m_MultiLineCommentStart
String m_MultiLineCommentStart
the multi-line comment start. -
m_QuoteDelimiters
String m_QuoteDelimiters
the quote delimiter. -
m_QuoteEscape
String m_QuoteEscape
the quote escape. -
m_RootElement
Element m_RootElement
the root element. -
m_Self
DefaultStyledDocument m_Self
the document. -
m_SingleLineCommentStart
String m_SingleLineCommentStart
the single-line comment start. -
m_UseBlanks
boolean m_UseBlanks
whether to use blanks instead of tabs.
-
-
-
Package weka.gui.scripting.event
-
Class weka.gui.scripting.event.ScriptExecutionEvent
class ScriptExecutionEvent extends EventObject implements Serializable- serialVersionUID:
- -8357216611114356632L
-
Serialized Fields
-
m_Additional
Object m_Additional
optional additional information. -
m_Type
ScriptExecutionEvent.Type m_Type
the type of event.
-
-
Class weka.gui.scripting.event.TitleUpdatedEvent
class TitleUpdatedEvent extends EventObject implements Serializable- serialVersionUID:
- 4971569742479666535L
-
-
Package weka.gui.simplecli
-
Class weka.gui.simplecli.AbstractCommand
class AbstractCommand extends Object implements Serializable-
Serialized Fields
-
m_Owner
SimpleCLIPanel m_Owner
the owner.
-
-
-
Class weka.gui.simplecli.Capabilities
class Capabilities extends AbstractCommand implements Serializable -
Class weka.gui.simplecli.Cls
class Cls extends AbstractCommand implements Serializable -
Class weka.gui.simplecli.Echo
class Echo extends AbstractCommand implements Serializable -
Class weka.gui.simplecli.Exit
class Exit extends AbstractCommand implements Serializable -
Class weka.gui.simplecli.Help
class Help extends AbstractCommand implements Serializable -
Class weka.gui.simplecli.History
class History extends AbstractCommand implements Serializable -
Class weka.gui.simplecli.Java
class Java extends AbstractCommand implements Serializable -
Class weka.gui.simplecli.Kill
class Kill extends AbstractCommand implements Serializable -
Class weka.gui.simplecli.Script
class Script extends AbstractCommand implements Serializable -
Class weka.gui.simplecli.Set
class Set extends AbstractCommand implements Serializable -
Class weka.gui.simplecli.Unset
class Unset extends AbstractCommand implements Serializable
-
-
Package weka.gui.sql
-
Class weka.gui.sql.ConnectionPanel
class ConnectionPanel extends JPanel implements Serializable- serialVersionUID:
- 3499317023969723490L
-
Serialized Fields
-
m_ButtonConnect
JButton m_ButtonConnect
the button for connecting to the database. -
m_ButtonDatabase
JButton m_ButtonDatabase
the button for the DB-Dialog. -
m_ButtonHistory
JButton m_ButtonHistory
the button for the history. -
m_ButtonSetup
JButton m_ButtonSetup
the button for the setup. -
m_ConnectionListeners
HashSet<ConnectionListener> m_ConnectionListeners
the connection listeners. -
m_DbDialog
DatabaseConnectionDialog m_DbDialog
the database connection dialog. -
m_DbUtils
DbUtils m_DbUtils
for connecting to the database. -
m_History
DefaultListModel m_History
the history of connections. -
m_HistoryChangedListeners
HashSet<HistoryChangedListener> m_HistoryChangedListeners
the history listeners. -
m_LabelURL
JLabel m_LabelURL
the label for the URL. -
m_Parent
JFrame m_Parent
the parent frame. -
m_Password
String m_Password
the password to use for connecting to the DB. -
m_SetupFileChooser
WekaFileChooser m_SetupFileChooser
the file chooser for the setup files. -
m_TextURL
JTextField m_TextURL
the textfield for the URL. -
m_URL
String m_URL
the URL to use. -
m_User
String m_User
the user to use for connecting to the DB.
-
-
Class weka.gui.sql.DbUtils
class DbUtils extends DatabaseUtils implements Serializable- serialVersionUID:
- 103748569037426479L
-
Class weka.gui.sql.InfoPanel
class InfoPanel extends JPanel implements Serializable- serialVersionUID:
- -7701133696481997973L
-
Serialized Fields
-
m_ButtonClear
JButton m_ButtonClear
the button to clear the area -
m_ButtonCopy
JButton m_ButtonCopy
the button to copy the selected message -
m_Info
JList m_Info
the list the contains the messages -
m_Model
DefaultListModel m_Model
the model for the list -
m_Parent
JFrame m_Parent
the parent of this panel
-
-
Class weka.gui.sql.InfoPanelCellRenderer
class InfoPanelCellRenderer extends JLabel implements Serializable- serialVersionUID:
- -533380118807178531L
-
Class weka.gui.sql.QueryPanel
class QueryPanel extends JPanel implements Serializable- serialVersionUID:
- 4348967824619706636L
-
Serialized Fields
-
m_ButtonClear
JButton m_ButtonClear
the clear button. -
m_ButtonExecute
JButton m_ButtonExecute
the execute button. -
m_ButtonHistory
JButton m_ButtonHistory
the history button. -
m_Connected
boolean m_Connected
whether we have a connection to a database or not. -
m_DbUtils
DbUtils m_DbUtils
for working on the database. -
m_History
DefaultListModel m_History
the query history. -
m_HistoryChangedListeners
HashSet<HistoryChangedListener> m_HistoryChangedListeners
the history listeners. -
m_Parent
JFrame m_Parent
the parent of this panel. -
m_QueryExecuteListeners
HashSet<QueryExecuteListener> m_QueryExecuteListeners
the connection listeners. -
m_SpinnerMaxRows
JSpinner m_SpinnerMaxRows
the spinner for the maximum number of rows. -
m_TextQuery
JTextArea m_TextQuery
the textarea for the query.
-
-
Class weka.gui.sql.ResultPanel
class ResultPanel extends JPanel implements Serializable- serialVersionUID:
- 278654800344034571L
-
Serialized Fields
-
m_ButtonClose
JButton m_ButtonClose
the close button -
m_ButtonCloseAll
JButton m_ButtonCloseAll
the close all button -
m_ButtonCopyQuery
JButton m_ButtonCopyQuery
the button that copies the query into the QueryPanel -
m_ButtonOptWidth
JButton m_ButtonOptWidth
the button for the optimal column width of the current table -
m_Listeners
HashSet<ResultChangedListener> m_Listeners
the result change listeners -
m_NameCounter
int m_NameCounter
the counter for the tab names -
m_Parent
JFrame m_Parent
the parent of this panel -
m_QueryPanel
QueryPanel m_QueryPanel
the panel where to output the queries -
m_TabbedPane
JTabbedPane m_TabbedPane
the tabbed pane for the results
-
-
Class weka.gui.sql.ResultSetTable
class ResultSetTable extends JTable implements Serializable- serialVersionUID:
- -3391076671854464137L
-
Class weka.gui.sql.ResultSetTableCellRenderer
class ResultSetTableCellRenderer extends DefaultTableCellRenderer implements Serializable- serialVersionUID:
- -8106963669703497351L
-
Class weka.gui.sql.SqlViewer
class SqlViewer extends JPanel implements Serializable- serialVersionUID:
- -4395028775566514329L
-
Serialized Fields
-
m_ConnectionPanel
ConnectionPanel m_ConnectionPanel
the connection panel. -
m_History
Properties m_History
stores the history. -
m_InfoPanel
InfoPanel m_InfoPanel
the info panel. -
m_Parent
JFrame m_Parent
the parent of this panel. -
m_Password
String m_Password
the password that was used to connect to the DB. -
m_Query
String m_Query
the currently selected query. -
m_QueryPanel
QueryPanel m_QueryPanel
the query panel. -
m_ResultPanel
ResultPanel m_ResultPanel
the result panel. -
m_URL
String m_URL
the connect string with which the query was run. -
m_User
String m_User
the user that was used to connect to the DB.
-
-
Class weka.gui.sql.SqlViewerDialog
class SqlViewerDialog extends JDialog implements Serializable- serialVersionUID:
- -31619864037233099L
-
Serialized Fields
-
m_ButtonCancel
JButton m_ButtonCancel
the Cancel button. -
m_ButtonOK
JButton m_ButtonOK
the OK button. -
m_CheckBoxSparseData
JCheckBox m_CheckBoxSparseData
whether to return sparse instances or not. -
m_LabelQuery
JLabel m_LabelQuery
displays the current query. -
m_PanelButtons
JPanel m_PanelButtons
the panel for the buttons. -
m_Parent
JFrame m_Parent
the parent frame. -
m_Password
String m_Password
the password that was used to connect to the DB. -
m_Query
String m_Query
the currently selected query. -
m_ReturnValue
int m_ReturnValue
the return value. -
m_URL
String m_URL
the connect string with which the query was run. -
m_User
String m_User
the user that was used to connect to the DB. -
m_Viewer
SqlViewer m_Viewer
the SQL panel.
-
-
-
Package weka.gui.sql.event
-
Class weka.gui.sql.event.ConnectionEvent
class ConnectionEvent extends EventObject implements Serializable- serialVersionUID:
- 5420308930427835037L
-
Class weka.gui.sql.event.HistoryChangedEvent
class HistoryChangedEvent extends EventObject implements Serializable- serialVersionUID:
- 7476087315774869973L
-
Serialized Fields
-
m_History
DefaultListModel m_History
the history model -
m_HistoryName
String m_HistoryName
the name of the history
-
-
Class weka.gui.sql.event.QueryExecuteEvent
class QueryExecuteEvent extends EventObject implements Serializable- serialVersionUID:
- -5556385019954730740L
-
Serialized Fields
-
m_DbUtils
DbUtils m_DbUtils
the Db utils instance for the current DB connection -
m_Exception
Exception m_Exception
a possible exception, if the query failed -
m_MaxRows
int m_MaxRows
the maximum number of rows to retrieve -
m_Query
String m_Query
the query that was executed -
m_ResultSet
ResultSet m_ResultSet
the produced ResultSet, if any
-
-
Class weka.gui.sql.event.ResultChangedEvent
class ResultChangedEvent extends EventObject implements Serializable- serialVersionUID:
- 36042516077236111L
-
Serialized Fields
-
-
Package weka.gui.streams
-
Class weka.gui.streams.InstanceCounter
class InstanceCounter extends JPanel implements Serializable- serialVersionUID:
- -6084967152645935934L
-
Serialized Fields
-
m_Count
int m_Count
-
m_Count_Lab
JLabel m_Count_Lab
-
m_Debug
boolean m_Debug
-
-
Class weka.gui.streams.InstanceEvent
class InstanceEvent extends EventObject implements Serializable- serialVersionUID:
- 3207259868110667379L
-
Serialized Fields
-
m_ID
int m_ID
-
-
Class weka.gui.streams.InstanceJoiner
class InstanceJoiner extends Object implements Serializable- serialVersionUID:
- -6529972700291329656L
-
Serialized Fields
-
b_Debug
boolean b_Debug
Debugging mode -
b_FirstInputFinished
boolean b_FirstInputFinished
Whether the first input batch has finished -
listeners
Vector<InstanceListener> listeners
The listeners -
m_InputFormat
Instances m_InputFormat
The input format for instances -
m_OutputInstance
Instance m_OutputInstance
The current output instance
-
-
Class weka.gui.streams.InstanceLoader
class InstanceLoader extends JPanel implements Serializable- serialVersionUID:
- -8725567310271862492L
-
Serialized Fields
-
m_Debug
boolean m_Debug
-
m_FileNameTex
JTextField m_FileNameTex
-
m_Listeners
Vector<InstanceListener> m_Listeners
-
m_LoaderThread
Thread m_LoaderThread
-
m_OutputInstance
Instance m_OutputInstance
-
m_OutputInstances
Instances m_OutputInstances
-
m_StartBut
JButton m_StartBut
-
-
Class weka.gui.streams.InstanceSavePanel
class InstanceSavePanel extends Panel implements Serializable- serialVersionUID:
- -6061005366989295026L
-
Serialized Fields
-
arffFile_Tex
TextField arffFile_Tex
-
b_Debug
boolean b_Debug
-
count_Lab
Label count_Lab
-
m_Count
int m_Count
-
outputWriter
PrintWriter outputWriter
-
-
Class weka.gui.streams.InstanceTable
class InstanceTable extends JPanel implements Serializable- serialVersionUID:
- -2462533698100834803L
-
Class weka.gui.streams.InstanceViewer
class InstanceViewer extends JPanel implements Serializable- serialVersionUID:
- -4925729441294121772L
-
-
Package weka.gui.treevisualizer
-
Class weka.gui.treevisualizer.TreeVisualizer
class TreeVisualizer extends PrintablePanel implements Serializable- serialVersionUID:
- -8668637962504080749L
-
Serialized Fields
-
m_accept
JMenuItem m_accept
An option on the win menu. -
m_autoScale
JMenuItem m_autoScale
An option on the win_menu -
m_BackgroundColor
Color m_BackgroundColor
the background color. -
m_classifyChild
JMenuItem m_classifyChild
Use this to have J48 classify this node. -
m_clickAvailable
boolean m_clickAvailable
A variable used to determine for the clicked method if any other mouse state has already taken place. -
m_currentFont
Font m_currentFont
The font used to display the tree. -
m_edges
weka.gui.treevisualizer.TreeVisualizer.EdgeInfo[] m_edges
An array with the Edges sorted into it and display information about the Edges. -
m_fitToScreen
JMenuItem m_fitToScreen
An option on the win_menu -
m_focusNode
int m_focusNode
The subscript for the currently selected node (this is an internal thing, so the user is unaware of this). -
m_FontColor
Color m_FontColor
the font color. -
m_fontSize
FontMetrics m_fontSize
The size information for the current font. -
m_frameLimiter
Timer m_frameLimiter
A timer to keep the frame rate constant. -
m_highlightNode
int m_highlightNode
The Node the user is currently focused on , this is similar to focus node except that it is used by other classes rather than this one. -
m_LineColor
Color m_LineColor
the line color. -
m_listener
TreeDisplayListener m_listener
-
m_mouseState
int m_mouseState
Describes the action the user is performing. -
m_newMousePos
Dimension m_newMousePos
A variable used to tag the most current point of a user action. -
m_NodeColor
Color m_NodeColor
the node color. -
m_nodeMenu
JPopupMenu m_nodeMenu
A right or middle click popup menu for nodes. -
m_nodes
weka.gui.treevisualizer.TreeVisualizer.NodeInfo[] m_nodes
An array with the Nodes sorted into it and display information about the Nodes. -
m_numLevels
int m_numLevels
The number of levels in the tree. -
m_numNodes
int m_numNodes
The number of Nodes in the tree. -
m_nViewPos
Dimension m_nViewPos
A variable used to remember the desired view pos. -
m_nViewSize
Dimension m_nViewSize
A variable used to remember the desired tree size. -
m_oldMousePos
Dimension m_oldMousePos
A variable used to tag the start pos of a user action. -
m_placer
NodePlace m_placer
The placement algorithm for the Node structure. -
m_remChildren
JMenuItem m_remChildren
Similar to add children but now it removes children. -
m_scaling
int m_scaling
The number of frames left to calculate. -
m_selectFont
JMenu m_selectFont
A sub group on the win_menu -
m_selectFontGroup
ButtonGroup m_selectFontGroup
A grouping for the font choices -
m_sendInstances
JMenuItem m_sendInstances
Use this to dump the instances from this node to the vis panel. -
m_ShowBorder
boolean m_ShowBorder
whether to show the border or not. -
m_size1
JRadioButtonMenuItem m_size1
A font choice. -
m_size10
JRadioButtonMenuItem m_size10
A font choice. -
m_size12
JRadioButtonMenuItem m_size12
A font choice. -
m_size14
JRadioButtonMenuItem m_size14
A font choice. -
m_size16
JRadioButtonMenuItem m_size16
A font choice. -
m_size18
JRadioButtonMenuItem m_size18
A font choice. -
m_size2
JRadioButtonMenuItem m_size2
A font choice. -
m_size20
JRadioButtonMenuItem m_size20
A font choice. -
m_size22
JRadioButtonMenuItem m_size22
A font choice. -
m_size24
JRadioButtonMenuItem m_size24
A font choice. -
m_size4
JRadioButtonMenuItem m_size4
A font choice. -
m_size6
JRadioButtonMenuItem m_size6
A font choice. -
m_size8
JRadioButtonMenuItem m_size8
A font choice. -
m_topN
JMenuItem m_topN
An option on the win_menu -
m_topNode
Node m_topNode
The top Node. -
m_viewPos
Dimension m_viewPos
The postion of the view relative to the tree. -
m_viewSize
Dimension m_viewSize
The size of the tree in pixels. -
m_visualise
JMenuItem m_visualise
A visualize choice for the node, may not be available. -
m_winMenu
JPopupMenu m_winMenu
A right (or middle) click popup menu. -
m_ZoomBoxColor
Color m_ZoomBoxColor
the color of the zoombox. -
m_ZoomBoxXORColor
Color m_ZoomBoxXORColor
the XOR color of the zoombox.
-
-
-
Package weka.gui.visualize
-
Class weka.gui.visualize.AttributePanel
class AttributePanel extends JScrollPane implements Serializable- serialVersionUID:
- 3533330317806757814L
-
Serialized Fields
-
m_backgroundColor
Color m_backgroundColor
If set, it allows this panel to avoid setting a color in the color list that is equal to the background color -
m_barColour
Color m_barColour
The default colour to use for the background of the bars if a colour is not defined in Visualize.props -
m_cIndex
int m_cIndex
-
m_colorList
ArrayList<Color> m_colorList
The colour map to use for colouring points -
m_DefaultColors
Color[] m_DefaultColors
default colours for colouring discrete class -
m_heights
int[] m_heights
Holds the random height for each instance. -
m_Listeners
ArrayList<AttributePanelListener> m_Listeners
The list of things listening to this panel -
m_maxC
double m_maxC
Holds the min and max values of the colouring attributes -
m_minC
double m_minC
-
m_plotInstances
Instances m_plotInstances
The instances to be plotted -
m_span
JPanel m_span
The container window for the attribute bars, and also where the X,Y or B get printed. -
m_xIndex
int m_xIndex
-
m_yIndex
int m_yIndex
-
-
Class weka.gui.visualize.AttributePanel.AttributeSpacing
class AttributeSpacing extends JPanel implements Serializable- serialVersionUID:
- 7220615894321679898L
-
Serialized Fields
-
m_attrib
Attribute m_attrib
The attribute itself. -
m_attribIndex
int m_attribIndex
The index for this attribute. -
m_cached
int[] m_cached
The x position of each point. -
m_maxVal
double m_maxVal
The min and max values for this attribute. -
m_minVal
double m_minVal
-
m_oldWidth
int m_oldWidth
Used to determine if the positions need to be recalculated. -
m_pointDrawn
boolean[][] m_pointDrawn
A temporary array used to strike any instances that would be drawn redundantly.
-
-
Class weka.gui.visualize.ClassPanel
class ClassPanel extends JPanel implements Serializable- serialVersionUID:
- -7969401840501661430L
-
Serialized Fields
-
m_backgroundColor
Color m_backgroundColor
if set, it allows this panel to steer away from setting up a color in the color list that is equal to the background color -
m_cIndex
int m_cIndex
Index of the colouring attribute -
m_colorList
ArrayList<Color> m_colorList
the list of colours to use for colouring nominal attribute labels -
m_ColourChangeListeners
ArrayList<ActionListener> m_ColourChangeListeners
An optional list of listeners who want to know when a colour changes. Listeners are notified via an ActionEvent -
m_DefaultColors
Color[] m_DefaultColors
default colours for colouring discrete class -
m_HorizontalPad
int m_HorizontalPad
The amount of space to leave either side of the legend -
m_Instances
Instances m_Instances
Instances being plotted -
m_isEnabled
boolean m_isEnabled
True when the panel has been enabled (ie after setNumeric or setNominal has been called -
m_isNumeric
boolean m_isNumeric
True if the colouring attribute is numeric -
m_labelFont
Font m_labelFont
The font used in labeling -
m_labelMetrics
FontMetrics m_labelMetrics
Font metrics -
m_maxC
double m_maxC
The maximum value for the colouring attribute -
m_minC
double m_minC
The minimum value for the colouring attribute -
m_oldWidth
int m_oldWidth
The old width. -
m_precisionC
int m_precisionC
The precision with which to display real values -
m_Repainters
ArrayList<Component> m_Repainters
An optional list of Components that use the colour list maintained by this class. If the user changes a colour using the colour chooser, then these components need to be repainted in order to display the change -
m_spectrumHeight
int m_spectrumHeight
The height of the spectrum for numeric class -
m_tickSize
int m_tickSize
The size of the ticks
-
-
Class weka.gui.visualize.InstanceInfoFrame
class InstanceInfoFrame extends JFrame implements Serializable- serialVersionUID:
- 4684184733677263009L
-
Class weka.gui.visualize.LegendPanel
class LegendPanel extends JScrollPane implements Serializable- serialVersionUID:
- -1262384440543001505L
-
Serialized Fields
-
m_plots
ArrayList<PlotData2D> m_plots
the list of plot elements -
m_Repainters
ArrayList<Component> m_Repainters
a list of components that need to be repainted when a colour is changed -
m_span
JPanel m_span
the panel that contains the legend entries
-
-
Class weka.gui.visualize.LegendPanel.LegendEntry
class LegendEntry extends JPanel implements Serializable- serialVersionUID:
- 3879990289042935670L
-
Serialized Fields
-
m_dataIndex
int m_dataIndex
the index (in the list of plots) of the data for this legend--- used to draw the correct shape for this data -
m_legendText
JLabel m_legendText
the text part of this legend -
m_plotData
PlotData2D m_plotData
the data for this legend entry -
m_pointShape
JPanel m_pointShape
displays the point shape associated with this legend entry
-
-
Class weka.gui.visualize.MatrixPanel
class MatrixPanel extends JPanel implements Serializable- serialVersionUID:
- -1232642719869188740L
-
Serialized Fields
-
datapointSize
int datapointSize
This stores the size of the datapoint -
f
Font f
font used in column and row names -
fontColor
Color fontColor
color for the font used in column and row names -
jitterVals
int[][] jitterVals
Array containing precalculated jitter values -
jp
JSplitPane jp
Split pane for splitting the matrix and the buttons and bars -
m_attribList
JList m_attribList
The list for selecting the attributes to display the plot matrix -
m_backgroundColor
Color m_backgroundColor
For the background of the little plots -
m_classAttrib
JComboBox m_classAttrib
The combo box to allow user to select the colouring attribute -
m_classIndex
int m_classIndex
This contains the index of the currently selected colouring attribute -
m_clearOSIPlottedCells
boolean m_clearOSIPlottedCells
-
m_colorList
ArrayList<Color> m_colorList
Contains discrete colours for colouring for nominal attributes -
m_cp
ClassPanel m_cp
The panel that displays the legend of the colouring attribute -
m_data
Instances m_data
The dataset for which this panel will display the plot matrix for -
m_fastScroll
JCheckBox m_fastScroll
-
m_jitter
JSlider m_jitter
The slider to add jitter to the plots -
m_js
JScrollPane m_js
The scroll pane to scrolling the matrix -
m_missing
boolean[][] m_missing
Contains true for each attribute value (only the selected attributes+class attribute) that is missing, for each instance. m_missing[i][j] == true if m_selectedAttribs[j] is missing in instance i. m_missing[i][m_missing[].length-1] == true if class value is missing in instance i. -
m_plotLBSizeD
Dimension m_plotLBSizeD
Stores the maximum size for PlotSize label to keep it's size constant -
m_plotSize
JSlider m_plotSize
The slider to adjust the size of the cells in the matrix -
m_plotSizeLb
JLabel m_plotSizeLb
Displays the current size beside the slider bar for cell size -
m_plotsPanel
weka.gui.visualize.MatrixPanel.Plot m_plotsPanel
The that panel contains the actual matrix -
m_plottedCells
boolean[][] m_plottedCells
-
m_pointColors
int[] m_pointColors
This is an array cache for the colour of each of the instances depending on the colouring attribute. If the colouring attribute is nominal then it contains the index of the colour in our colour list. Otherwise, for numeric colouring attribute, it contains the precalculated red component for each instance's colour -
m_pointLBSizeD
Dimension m_pointLBSizeD
Stores the maximum size for PointSize label to keep it's size constant -
m_points
int[][] m_points
This is a local array cache for all the instance values for faster rendering -
m_pointSize
JSlider m_pointSize
The slider to adjust the size of the datapoints -
m_pointSizeLb
JLabel m_pointSizeLb
Displays the current size beside the slider bar for point size -
m_previousPercent
double m_previousPercent
-
m_regenerateOSI
boolean m_regenerateOSI
-
m_resampleBt
JButton m_resampleBt
The label for resample percentage -
m_resamplePercent
JTextField m_resamplePercent
The text area for percentage to resample data -
m_rseed
JTextField m_rseed
Random seed for random subsample -
m_selAttrib
JButton m_selAttrib
The button to display a window to select attributes -
m_selectedAttribs
int[] m_selectedAttribs
This array contains the indices of the attributes currently selected -
m_settings
Settings m_settings
Settings (if available) to pass through to the VisualizePanels -
m_settingsOwnerID
String m_settingsOwnerID
ID of the owner (perspective, panel etc.) under which to lookup our settings -
m_type
int[] m_type
This array contains for the classAttribute:
m_type[0] = [type of attribute, nominal, string or numeric]
m_type[1] = [number of discrete values of nominal or string attribute
or same as m_type[0] for numeric attribute] -
m_updateBt
JButton m_updateBt
The button that updates the display to reflect the changes made by the user. E.g. changed attribute set for the matrix -
optionsPanel
JPanel optionsPanel
The panel that contains all the buttons and tools, i.e. resize, jitter bars and sub-sampling buttons etc on the bottom of the panel -
rnd
Random rnd
For adding random jitter
-
-
Class weka.gui.visualize.Plot2D
class Plot2D extends JPanel implements Serializable- serialVersionUID:
- -1673162410856660442L
-
Serialized Fields
-
m_axisChanged
boolean m_axisChanged
if the user changes attribute assigned to an axis -
m_axisColour
Color m_axisColour
Default colour for the axis -
m_axisPad
int m_axisPad
Axis padding -
m_backgroundColour
Color m_backgroundColour
Default colour for the plot background -
m_cIndex
int m_cIndex
-
m_colorList
ArrayList<Color> m_colorList
The list of the colors used -
m_DefaultColors
Color[] m_DefaultColors
default colours for colouring discrete class -
m_drawnPoints
int[][] m_drawnPoints
An array used to show if a point is hidden or not. This is used for speeding up the drawing of the plot panel although I am not sure how much performance this grants over not having it. -
m_InstanceInfo
JFrame m_InstanceInfo
For popping up text info on data points -
m_InstanceInfoFrameClass
Class<?> m_InstanceInfoFrameClass
the class for displaying instance info. -
m_JitterVal
int m_JitterVal
the level of jitter -
m_JRand
Random m_JRand
random values for perterbing the data points -
m_labelFont
Font m_labelFont
Font for labels -
m_labelMetrics
FontMetrics m_labelMetrics
-
m_masterName
String m_masterName
The name of the master plot -
m_masterPlot
PlotData2D m_masterPlot
The master plot -
m_maxC
double m_maxC
-
m_maxX
double m_maxX
Holds the min and max values of the x, y and colouring attributes over all plots -
m_maxY
double m_maxY
-
m_minC
double m_minC
-
m_minX
double m_minX
-
m_minY
double m_minY
-
m_plotCompanion
Plot2DCompanion m_plotCompanion
An optional "compainion" of the panel. If specified, this class will get to do its thing with our graphics context before we do any drawing. Eg. the visualize panel may need to draw polygons etc. before we draw plot axis and data points -
m_plotInstances
Instances m_plotInstances
The instances to be plotted -
m_plotResize
boolean m_plotResize
if the user resizes the window, or the attributes selected for the attributes change, then the lookup table for points needs to be recalculated -
m_plots
ArrayList<PlotData2D> m_plots
The plots to display -
m_sIndex
int m_sIndex
-
m_tickSize
int m_tickSize
Tick size -
m_XaxisEnd
int m_XaxisEnd
-
m_XaxisStart
int m_XaxisStart
the offsets of the axes once label metrics are calculated -
m_xIndex
int m_xIndex
Indexes of the attributes to go on the x and y axis and the attribute to use for colouring and the current shape for drawing -
m_YaxisEnd
int m_YaxisEnd
-
m_YaxisStart
int m_YaxisStart
-
m_yIndex
int m_yIndex
-
-
Class weka.gui.visualize.PlotData2D
class PlotData2D extends Object implements Serializable- serialVersionUID:
- -3979972167982697979L
-
Serialized Fields
-
m_alwaysDisplayPointsOfThisSize
int m_alwaysDisplayPointsOfThisSize
If the shape size of a point equals this size then always plot it (i.e. even if it is obscured by other points) -
m_cIndex
int m_cIndex
The colouring index -
m_connectPoints
boolean[] m_connectPoints
Additional optional information to control the drawing of lines between consecutive points. Setting an entry in the array to true indicates that the associated point should have a line connecting it to the previous point. -
m_customColour
Color m_customColour
-
m_displayAllPoints
boolean m_displayAllPoints
Display all points (ie. those that map to the same display coords) -
m_maxC
double m_maxC
-
m_maxX
double m_maxX
Holds the min and max values of the x, y and colouring attributes for this plot -
m_maxY
double m_maxY
-
m_minC
double m_minC
-
m_minX
double m_minX
-
m_minY
double m_minY
-
m_plotInstances
Instances m_plotInstances
The instances -
m_plotName
String m_plotName
The name of this plot -
m_plotNameHTML
String m_plotNameHTML
The name of this plot (possibly in html) suitable for using in a tool tip text. -
m_pointLookup
double[][] m_pointLookup
Panel coordinate cache for data points -
m_shapeSize
int[] m_shapeSize
Additional optional information to control the size of points. The default is shape size 2 -
m_shapeType
int[] m_shapeType
Additional optional information to control the point shape for this data. Default is to allow automatic assigning of point shape on the basis of plot number -
m_useCustomColour
boolean m_useCustomColour
Custom colour for this plot -
m_xIndex
int m_xIndex
The x index -
m_yIndex
int m_yIndex
The y index
-
-
Class weka.gui.visualize.PrintableComponent.JComponentWriterFileFilter
class JComponentWriterFileFilter extends ExtensionFileFilter implements Serializable- serialVersionUID:
- 8540426888094207515L
-
Serialized Fields
-
m_Writer
JComponentWriter m_Writer
the associated writer.
-
-
Class weka.gui.visualize.PrintablePanel
class PrintablePanel extends JPanel implements Serializable- serialVersionUID:
- 6281532227633417538L
-
Serialized Fields
-
m_Printer
PrintableComponent m_Printer
the class responsible for printing
-
-
Class weka.gui.visualize.ThresholdVisualizePanel
class ThresholdVisualizePanel extends VisualizePanel implements Serializable- serialVersionUID:
- 3070002211779443890L
-
Class weka.gui.visualize.VisualizePanel
class VisualizePanel extends PrintablePanel implements Serializable- serialVersionUID:
- 240108358588153943L
-
Serialized Fields
-
COMBO_SIZE
Dimension COMBO_SIZE
Stop the combos from growing out of control -
listener
ActionListener listener
An optional listener that we will inform when ComboBox selections change -
m_ArffFilter
FileFilter m_ArffFilter
Filter to ensure only arff files are selected -
m_attrib
AttributePanel m_attrib
The panel that displays the attributes , using color to represent another attribute. -
m_cancel
JButton m_cancel
Button for the user to remove all splits. -
m_classPanel
ClassPanel m_classPanel
The panel that displays the legend for the colouring attribute -
m_classSurround
JPanel m_classSurround
Panel that surrounds the class panel with a titled border -
m_colorList
ArrayList<Color> m_colorList
The list of the colors used -
m_ColourCombo
JComboBox m_ColourCombo
Lets the user select the attribute to use for colouring -
m_DefaultColors
Color[] m_DefaultColors
default colours for colouring discrete class -
m_FileChooser
WekaFileChooser m_FileChooser
file chooser for saving instances -
m_Jitter
JSlider m_Jitter
The jitter slider -
m_JitterLab
JLabel m_JitterLab
Label for the jitter slider -
m_legendPanel
LegendPanel m_legendPanel
The panel that displays legend info if there is more than one plot -
m_Log
Logger m_Log
the logger -
m_openBut
JButton m_openBut
Button for the user to open the visualized set of instances -
m_plot
weka.gui.visualize.VisualizePanel.PlotPanel m_plot
The panel that displays the plot -
m_plotName
String m_plotName
The name of the plot (not currently displayed, but can be used in the containing Frame or Panel) -
m_plotSurround
JPanel m_plotSurround
Panel that surrounds the plot panel with a titled border -
m_preferredColourDimension
String m_preferredColourDimension
-
m_preferredXDimension
String m_preferredXDimension
These hold the names of preferred columns to visualize on---if the user has defined them in the Visualize.props file -
m_preferredYDimension
String m_preferredYDimension
-
m_saveBut
JButton m_saveBut
Button for the user to save the visualized set of instances -
m_ShapeCombo
JComboBox m_ShapeCombo
Lets the user select the shape they want to create for instance selection. -
m_showAttBars
boolean m_showAttBars
Show the attribute bar panel -
m_showClassPanel
boolean m_showClassPanel
Show the class panel -
m_splitListener
VisualizePanelListener m_splitListener
An optional listener that we will inform when the user creates a split to seperate instances. -
m_submit
JButton m_submit
Button for the user to enter the splits. -
m_XCombo
JComboBox m_XCombo
Lets the user select the attribute for the x axis -
m_YCombo
JComboBox m_YCombo
Lets the user select the attribute for the y axis
-
-
Class weka.gui.visualize.VisualizePanel.PlotPanel
class PlotPanel extends PrintablePanel implements Serializable- serialVersionUID:
- -4823674171136494204L
-
Serialized Fields
-
m_cIndex
int m_cIndex
-
m_createShape
boolean m_createShape
True if the user is currently dragging a box. -
m_newMousePos
Dimension m_newMousePos
contains the position of the mouse (used for rubberbanding). -
m_originalPlot
PlotData2D m_originalPlot
The master plot -
m_plot2D
Plot2D m_plot2D
The actual generic plotting panel -
m_plotInstances
Instances m_plotInstances
The instances from the master plot -
m_shapePoints
ArrayList<Double> m_shapePoints
contains the points of the shape currently being drawn. -
m_shapes
ArrayList<ArrayList<Double>> m_shapes
contains all the shapes that have been drawn for these attribs -
m_sIndex
int m_sIndex
-
m_xIndex
int m_xIndex
Indexes of the attributes to go on the x and y axis and the attribute to use for colouring and the current shape for drawing -
m_yIndex
int m_yIndex
-
-
Class weka.gui.visualize.VisualizeUtils.VisualizeDefaults
class VisualizeDefaults extends Defaults implements Serializable- serialVersionUID:
- 4227480313375404688L
-
-
Package weka.knowledgeflow
-
Class weka.knowledgeflow.BaseExecutionEnvironment.BaseExecutionEnvironmentDefaults
class BaseExecutionEnvironmentDefaults extends Defaults implements Serializable- serialVersionUID:
- -3386792058002464330L
-
Class weka.knowledgeflow.Data
class Data extends Object implements Serializable- serialVersionUID:
- 239235113781041619L
-
Class weka.knowledgeflow.ExecutionResult
class ExecutionResult extends Object implements Serializable- serialVersionUID:
- -4495164361311877942L
-
Class weka.knowledgeflow.KFDefaults
class KFDefaults extends Defaults implements Serializable -
Class weka.knowledgeflow.StepTask
class StepTask extends Object implements Serializable- serialVersionUID:
- 2995081029283027784L
-
Serialized Fields
-
m_callbackNotifier
CallbackNotifierDelegate m_callbackNotifier
The callback notifier delegate. Performs the actual notification back to the step -
m_log
LogManager m_log
The log to use -
m_mustRunSingleThreaded
boolean m_mustRunSingleThreaded
True if only one of these tasks can be executing at any one time in the Knowledge Flow/JVM. This has priority over isResourceIntensive() and causes the task to run on an executor service with one worker thread. -
m_resourceIntensive
boolean m_resourceIntensive
True if this is a high resource (cpu/memory) task -
m_result
ExecutionResult<T> m_result
The result of executing the task - ready to be populated by subclass's call() implementation
-
-
-
Package weka.knowledgeflow.steps
-
Class weka.knowledgeflow.steps.AlterRelationName
class AlterRelationName extends BaseStep implements Serializable- serialVersionUID:
- 5894383194664583303L
-
Serialized Fields
-
m_hasAltered
Set<String> m_hasAltered
The set of source step identifiers that have had their data modified so far -
m_modType
weka.knowledgeflow.steps.AlterRelationName.ModType m_modType
The type of modification to make -
m_regexMatch
String m_regexMatch
Regex string to match -
m_regexPattern
Pattern m_regexPattern
For regex replacement -
m_relationNameModText
String m_relationNameModText
Text to modify the relation name with -
m_replaceAll
boolean m_replaceAll
Whether to replace all rexex matches, or just the first
-
-
Class weka.knowledgeflow.steps.Appender
class Appender extends BaseStep implements Serializable- serialVersionUID:
- -3003135257112845998L
-
Serialized Fields
-
m_completed
Map<Step,
Instances> m_completed Used to keep track of how many upstream steps have sent us complete data sets (batch) or headers (incremental) so far. -
m_completeHeader
Instances m_completeHeader
Used to hold the final header in the case of incremental operation -
m_isReset
boolean m_isReset
True if this step has been reset -
m_streamingCountDown
AtomicInteger m_streamingCountDown
Gets decremented for each incoming instance stream that has finished -
m_streamingData
Data m_streamingData
Re-usable data object for streaming mode -
m_tempBatchFiles
Map<Step,
File> m_tempBatchFiles Handles on temp files used to store batches of instances in batch mode
-
-
Class weka.knowledgeflow.steps.ASEvaluator
class ASEvaluator extends WekaAlgorithmWrapper implements Serializable- serialVersionUID:
- -1280208826860871742L
-
Serialized Fields
-
m_eval
AttributeSelection m_eval
Eval to use when performing a cross-validation and not outputting separate results for each fold -
m_evaluatorTemplate
ASEvaluation m_evaluatorTemplate
The evaluator (attribute or subset) being used -
m_isDoingXVal
boolean m_isDoingXVal
True if we are processing cross-validation folds to produce a summary over the folds (as opposed to producing separate results per fold). -
m_isRanking
boolean m_isRanking
Whether a ranking is being produced by the attribute selection -
m_isReset
boolean m_isReset
True if we've been reset -
m_numToSelectStore
Map<Integer,
Integer> m_numToSelectStore Holds the calculated number of attributes to select (may depend on thresholds) for each training fold -
m_searchTemplate
ASSearch m_searchTemplate
The search strategy being used (retrieved via an incoming "info" connection -
m_selectedAttsStore
Map<Integer,
int[]> m_selectedAttsStore Holds selected attribute indices corresponding to training folds -
m_setCount
AtomicInteger m_setCount
Keeps count of the folds processed -
m_transformerStore
Map<Integer,
AttributeTransformer> m_transformerStore Holds the evaluator trained per fold in the case when it is a transformer (such as PCA) -
m_treatXValFoldsSeparately
boolean m_treatXValFoldsSeparately
Whether to output separate evaluation results for each fold of a xval or report the cross-validation summary -
m_waitingTestData
Map<Integer,
Instances> m_waitingTestData Any test folds waiting to be processed (i.e. have their dimensionality reduced
-
-
Class weka.knowledgeflow.steps.ASSearchStrategy
class ASSearchStrategy extends WekaAlgorithmWrapper implements Serializable- serialVersionUID:
- 5038697382280884975L
-
Class weka.knowledgeflow.steps.Associator
class Associator extends WekaAlgorithmWrapper implements Serializable- serialVersionUID:
- -589410455393151511L
-
Serialized Fields
-
m_associatorTemplate
Associator m_associatorTemplate
Template for the associator in use
-
-
Class weka.knowledgeflow.steps.AttributeSummarizer
class AttributeSummarizer extends BaseSimpleDataVisualizer implements Serializable- serialVersionUID:
- 2313372820072708102L
-
Serialized Fields
-
m_additionalOptions
String m_additionalOptions
Additional options for the offscreen renderer -
m_height
String m_height
Height of offscreen plots -
m_offscreenRendererName
String m_offscreenRendererName
Name of the renderer to use for offscreen chart rendering -
m_width
String m_width
Width of offscreen plots -
m_xAxis
String m_xAxis
The x-axis attribute name
-
-
Class weka.knowledgeflow.steps.BaseSimpleDataVisualizer
class BaseSimpleDataVisualizer extends BaseStep implements Serializable- serialVersionUID:
- 4955068920302509451L
-
Class weka.knowledgeflow.steps.BaseStep
class BaseStep extends Object implements Serializable- serialVersionUID:
- -1595753549991953141L
-
Serialized Fields
-
m_stepIsResourceIntensive
boolean m_stepIsResourceIntensive
True if the step is resource (cpu/memory) intensive -
m_stepName
String m_stepName
The name of this step component
-
-
Class weka.knowledgeflow.steps.Block
class Block extends BaseStep implements Serializable- serialVersionUID:
- 3204082191908877620L
-
Serialized Fields
-
m_stepToWaitFor
String m_stepToWaitFor
The name of the step to wait for
-
-
Class weka.knowledgeflow.steps.BoundaryPlotter
class BoundaryPlotter extends BaseStep implements Serializable- serialVersionUID:
- 7864251468395026619L
-
Serialized Fields
-
m_classifierTemplates
List<Classifier> m_classifierTemplates
Classifiers to use -
m_clustererTemplates
List<DensityBasedClusterer> m_clustererTemplates
Clusterers to use -
m_Colors
List<Color> m_Colors
Holds colors to use -
m_currentDescription
String m_currentDescription
The spec of the scheme being used to render the current image -
m_dataGenerator
KDDataGenerator m_dataGenerator
The data generator to use -
m_imageHeight
int m_imageHeight
Height of images to generate -
m_imageWidth
int m_imageWidth
Width of images to generate -
m_isReset
boolean m_isReset
True if we've been reset -
m_kBand
String m_kBand
User-specified bandwidth -
m_kernelBandwidth
int m_kernelBandwidth
Parsed bandwidth -
m_maxRowsInParallel
int m_maxRowsInParallel
Number of rows of the visualization to compute in parallel. We don't want to dominate the thread pool that is used for executing all steps and step sub-tasks in the KF (this is currently fixed at 50 threads by FlowRunner). -
m_maxX
double m_maxX
-
m_maxY
double m_maxY
-
m_minX
double m_minX
-
m_minY
double m_minY
-
m_nSamples
String m_nSamples
User-specified num samples -
m_numSamplesPerRegion
int m_numSamplesPerRegion
Parsed samples -
m_pixHeight
double m_pixHeight
-
m_pixWidth
double m_pixWidth
-
m_plotTrainingData
boolean m_plotTrainingData
Superimpose the training data on the plot? -
m_rangeX
double m_rangeX
-
m_rangeY
double m_rangeY
-
m_samplesBase
int m_samplesBase
Parsed base -
m_sBase
String m_sBase
User-specified base for sampling -
m_threadClassifiers
Classifier[] m_threadClassifiers
Copies of trained classifier to use in parallel for prediction -
m_threadClusterers
Clusterer[] m_threadClusterers
Copies of trained clusterer to use in parallel for prediction -
m_threadGenerators
DataGenerator[] m_threadGenerators
Data generator copies to use in parallel -
m_xAttName
String m_xAttName
X axis attribute name/index -
m_xAttribute
int m_xAttribute
-
m_yAttName
String m_yAttName
Y axis attribute name/index -
m_yAttribute
int m_yAttribute
-
-
Class weka.knowledgeflow.steps.BoundaryPlotter.SchemeRowTask
class SchemeRowTask extends StepTask<weka.knowledgeflow.steps.BoundaryPlotter.RowResult> implements Serializable- serialVersionUID:
- -4144732293602550066L
-
Serialized Fields
-
m_attsToWeightOn
boolean[] m_attsToWeightOn
-
m_classifier
Classifier m_classifier
-
m_clusterer
DensityBasedClusterer m_clusterer
-
m_dataGenerator
DataGenerator m_dataGenerator
-
m_dist
double[] m_dist
-
m_imageHeight
int m_imageHeight
-
m_imageWidth
int m_imageWidth
-
m_maxX
double m_maxX
-
m_maxY
double m_maxY
-
m_minX
double m_minX
-
m_minY
double m_minY
-
m_numOfSamplesPerGenerator
int m_numOfSamplesPerGenerator
-
m_numOfSamplesPerRegion
int m_numOfSamplesPerRegion
-
m_pixHeight
double m_pixHeight
-
m_pixWidth
double m_pixWidth
-
m_predInst
Instance m_predInst
-
m_random
Random m_random
-
m_rowNum
int m_rowNum
-
m_samplesBase
double m_samplesBase
-
m_trainingData
Instances m_trainingData
-
m_vals
double[] m_vals
-
m_weightingAttsValues
double[] m_weightingAttsValues
-
m_xAtt
int m_xAtt
-
m_yAtt
int m_yAtt
-
-
Class weka.knowledgeflow.steps.ClassAssigner
class ClassAssigner extends BaseStep implements Serializable- serialVersionUID:
- -4269063233834866140L
-
Serialized Fields
-
m_classAssigned
boolean m_classAssigned
True if the class has already been assigned -
m_classCol
String m_classCol
Holds user-specified class column/index -
m_classColumnS
String m_classColumnS
Holds resoved class column/index -
m_isInstanceStream
boolean m_isInstanceStream
True if processing an instance stream -
m_streamCount
int m_streamCount
Counter used for streams
-
-
Class weka.knowledgeflow.steps.Classifier
class Classifier extends WekaAlgorithmWrapper implements Serializable- serialVersionUID:
- 8326706942962123155L
-
Serialized Fields
-
m_classifierIsIncremental
boolean m_classifierIsIncremental
True if the classifier in use is Updateable -
m_classifierTemplate
Classifier m_classifierTemplate
The template for constructing concrete instances of the classifier to train -
m_incrementalData
Data m_incrementalData
Reusable data for incremental streaming classifiers -
m_isReset
boolean m_isReset
True if we've been reset -
m_loadModelFileName
File m_loadModelFileName
Optional file to load a pre-trained model to score with (batch, or to score and update (incremental) in the case of testSet only (batch) or instance (incremental) connections -
m_resetIncrementalClassifier
boolean m_resetIncrementalClassifier
True if we should resent an Updateable classifier at the start of processing for an incoming "instance" stream -
m_streaming
boolean m_streaming
True if we are processing streaming data -
m_trainedClassifier
Classifier m_trainedClassifier
Holds the trained classifier in the case of single train/test pairs or instance stream connections -
m_trainedClassifierHeader
Instances m_trainedClassifierHeader
-
m_updateIncrementalClassifier
boolean m_updateIncrementalClassifier
True if we should update an incremental classifier when there is a incoming "instance" stream
-
-
Class weka.knowledgeflow.steps.ClassifierPerformanceEvaluator
class ClassifierPerformanceEvaluator extends BaseStep implements Serializable- serialVersionUID:
- -2679292079974676672L
-
Serialized Fields
-
m_collectDataForVisAndAUC
boolean m_collectDataForVisAndAUC
Whether to store test data and predictions for visualization -
m_costSensitiveEval
boolean m_costSensitiveEval
True to perform cost sensitive evaluation -
m_costString
String m_costString
The cost matrix (string form) -
m_errorPlotPointSizeProportionalToMargin
boolean m_errorPlotPointSizeProportionalToMargin
True if plot point sizes are to be rendered proportional to the size of the prediction margin -
m_isReset
boolean m_isReset
True if the step has been reset -
m_matrix
CostMatrix m_matrix
The cost matrix -
m_maxSetNum
int m_maxSetNum
The maximum set number in the batch of sets being processed -
m_metricsList
List<String> m_metricsList
Holds a list of metric names -
m_outputConfusionMatrix
boolean m_outputConfusionMatrix
True to output confusion matrix -
m_outputEntropyMetrics
boolean m_outputEntropyMetrics
True to output entropy-based metrics -
m_outputPerClassStats
boolean m_outputPerClassStats
True to output of per class stats -
m_selectedEvalMetrics
String m_selectedEvalMetrics
Evaluation metrics to output -
m_setsToGo
AtomicInteger m_setsToGo
For counting down the sets left to process -
m_taskCount
AtomicInteger m_taskCount
-
-
Class weka.knowledgeflow.steps.ClassifierPerformanceEvaluator.AggregateableClassifierErrorsPlotInstances
class AggregateableClassifierErrorsPlotInstances extends ClassifierErrorsPlotInstances implements Serializable- serialVersionUID:
- 2012744784036684168L
-
Class weka.knowledgeflow.steps.ClassifierPerformanceEvaluator.EvaluationTask
- serialVersionUID:
- -686972773536075889L
-
Serialized Fields
-
m_classifier
Classifier m_classifier
-
m_classifierDesc
String m_classifierDesc
-
m_cMatrix
CostMatrix m_cMatrix
-
m_collectPreds
boolean m_collectPreds
-
m_errPlotPtSizePropToMarg
boolean m_errPlotPtSizePropToMarg
-
m_evalLabel
String m_evalLabel
-
m_metricsList
List<String> m_metricsList
-
m_setNum
int m_setNum
-
m_testData
Instances m_testData
-
m_trainData
Instances m_trainData
-
-
Class weka.knowledgeflow.steps.ClassValuePicker
class ClassValuePicker extends BaseStep implements Serializable- serialVersionUID:
- 8558445535347028472L
-
Serialized Fields
-
m_classIsNominal
boolean m_classIsNominal
True if the class is set and is nominal -
m_classIsSet
boolean m_classIsSet
True if the class is set in the incoming data -
m_classValue
String m_classValue
Class label after environment variables have been resolved -
m_classValueS
String m_classValueS
User specified class label, label index or special identifier (e.g "first"/"last")
-
-
Class weka.knowledgeflow.steps.Clusterer
class Clusterer extends WekaAlgorithmWrapper implements Serializable- serialVersionUID:
- 3275754421525338036L
-
Serialized Fields
-
m_clustererTemplate
Clusterer m_clustererTemplate
The template for constructing concrete instances of the clusterer to train -
m_incrementalData
Data m_incrementalData
Re-usable Data object for incrementalClusterer output -
m_isReset
boolean m_isReset
True if the step has just been reset -
m_loadModelFileName
File m_loadModelFileName
Optional file to load a pre-trained model to score with (batch, or to score and update (incremental) in the case of testSet only (batch) or instance (incremental) connections -
m_streaming
boolean m_streaming
True if there is a single incoming "instance" connection -
m_trainedClusterer
Clusterer m_trainedClusterer
Holds a trained/loaded clusterer -
m_trainedClustererHeader
Instances m_trainedClustererHeader
Header used to train the clusterer
-
-
Class weka.knowledgeflow.steps.ClustererPerformanceEvaluator
class ClustererPerformanceEvaluator extends BaseStep implements Serializable- serialVersionUID:
- -6337375482954345717L
-
Class weka.knowledgeflow.steps.CostBenefitAnalysis
class CostBenefitAnalysis extends BaseSimpleDataVisualizer implements Serializable- serialVersionUID:
- 7756281775575854085L
-
Class weka.knowledgeflow.steps.CrossValidationFoldMaker
class CrossValidationFoldMaker extends BaseStep implements Serializable- serialVersionUID:
- 6090713408437825355L
-
Serialized Fields
-
m_numFolds
int m_numFolds
Resolved number of folds -
m_numFoldsS
String m_numFoldsS
User-specified number of folds -
m_preserveOrder
boolean m_preserveOrder
True to preserve order of the instances rather than randomly shuffling -
m_seed
long m_seed
Resolved random seed -
m_seedS
String m_seedS
User-specified random seed
-
-
Class weka.knowledgeflow.steps.DataGenerator
class DataGenerator extends WekaAlgorithmWrapper implements Serializable- serialVersionUID:
- -7716707145987484527L
-
Serialized Fields
-
m_flowThroughput
StreamThroughput m_flowThroughput
overall flow throughput when streaming -
m_incrementalData
Data m_incrementalData
reusable data object for streaming
-
-
Class weka.knowledgeflow.steps.DataGrid
class DataGrid extends BaseStep implements Serializable- serialVersionUID:
- 1318159328875458847L
-
Serialized Fields
-
m_data
String m_data
The instances to output (as a string) -
m_flowThroughput
StreamThroughput m_flowThroughput
For overall stream throughput measuring -
m_incrementalData
Data m_incrementalData
Reusable data object for streaming output
-
-
Class weka.knowledgeflow.steps.DataVisualizer
class DataVisualizer extends BaseStep implements Serializable- serialVersionUID:
- -8013077913672918384L
-
Serialized Fields
-
m_additionalOptions
String m_additionalOptions
Additional options for the offscreen renderer -
m_height
String m_height
Height of offscreen plots -
m_offscreenRendererName
String m_offscreenRendererName
Name of the renderer to use for offscreen chart rendering -
m_plots
List<PlotData2D> m_plots
Current set of plots. First element is the master plot -
m_width
String m_width
Width of offscreen plots -
m_xAxis
String m_xAxis
The name of the attribute to use for the x-axis of offscreen plots. If left empty, False Positive Rate is used for threshold curves -
m_yAxis
String m_yAxis
The name of the attribute to use for the y-axis of offscreen plots. If left empty, True Positive Rate is used for threshold curves
-
-
Class weka.knowledgeflow.steps.Dummy
class Dummy extends BaseStep implements Serializable- serialVersionUID:
- -5822675617001689385L
-
Class weka.knowledgeflow.steps.ExecuteProcess
class ExecuteProcess extends BaseStep implements Serializable- serialVersionUID:
- -9153714279540182885L
-
Serialized Fields
-
m_argsFieldIndex
int m_argsFieldIndex
Resolved attribute index of dynamic arguments -
m_cmdFieldIndex
int m_cmdFieldIndex
Resolved attribute index of dynamic command -
m_fieldArgs
String m_fieldArgs
Name of attribute that will hold optional arguments for dynamic command -
m_fieldCmd
String m_fieldCmd
Name of attribute that will hold dynamic command to be executed -
m_fieldWorkingDir
String m_fieldWorkingDir
Name of attribute that will hold optional working directory for dynamic command -
m_instanceOutHeader
Instances m_instanceOutHeader
Structure of output for outgoing instance connections -
m_raiseAnExceptionOnCommandFailure
boolean m_raiseAnExceptionOnCommandFailure
Whether to raise an exception when a command fails completely (i.e. doesn't exist or something) vs the case of a non-zero exit status. If not raising an exception, then output indicating failure (with exist status = 1 in the case of instance connections) will be generated -
m_runningProcess
Process m_runningProcess
The process that is used to execute the user's command(s) -
m_staticArgs
String m_staticArgs
Arguments (if necessary) for single static command -
m_staticExecCmd
String m_staticExecCmd
Single static command (may use env vars) -
m_staticWorkingDir
String m_staticWorkingDir
Optional working directory for single static command -
m_stdErrBuffer
StringBuffer m_stdErrBuffer
Std err from process -
m_stdOutbuffer
StringBuffer m_stdOutbuffer
Std out from process -
m_structureCheckComplete
boolean m_structureCheckComplete
True if the structure has been checked -
m_useDynamic
boolean m_useDynamic
True to execute commands specified in incoming instance fields -
m_workingDirFieldIndex
int m_workingDirFieldIndex
Resolved attribute index of dynamic working directory
-
-
Class weka.knowledgeflow.steps.Filter
class Filter extends WekaAlgorithmWrapper implements Serializable- serialVersionUID:
- 6857031910153224479L
-
Serialized Fields
-
m_filterMap
Map<Integer,
Filter> m_filterMap Map of filters that have processed the first batch -
m_filterTemplate
Filter m_filterTemplate
Template filter -
m_incrementalData
Data m_incrementalData
Data object to reuse when processing incrementally -
m_isReset
boolean m_isReset
True if we've been reset -
m_setCount
AtomicInteger m_setCount
Keeps track of the number of train/test batches processed -
m_streaming
boolean m_streaming
True if we're streaming -
m_streamingFilter
Filter m_streamingFilter
Used when processing streaming data -
m_stringAttsPresent
boolean m_stringAttsPresent
True if string attributes are present in streaming case -
m_waitingTestData
Map<Integer,
Instances> m_waitingTestData Map of waiting test sets when batch filtering
-
-
Class weka.knowledgeflow.steps.FlowByExpression
class FlowByExpression extends BaseStep implements Serializable- serialVersionUID:
- 7006511778677802572L
-
Serialized Fields
-
m_batchCount
AtomicInteger m_batchCount
Keep track of how many incoming batches we've seen -
m_customNameOfFalseStep
String m_customNameOfFalseStep
Name of the step to receive instances that evaluate to false via the expression -
m_customNameOfTrueStep
String m_customNameOfTrueStep
Name of the step to receive instances that evaluate to true via the expression -
m_expressionString
String m_expressionString
The expression tree to use in internal textual format -
m_incomingStructure
Instances m_incomingStructure
Incoming structure -
m_isReset
boolean m_isReset
-
m_root
FlowByExpression.ExpressionNode m_root
The root of the expression tree -
m_streamingData
Data m_streamingData
Re-usable data object for streaming -
m_validFalseStep
boolean m_validFalseStep
True if the "false" step is valid (i.e. exists in the flow) -
m_validTrueStep
boolean m_validTrueStep
True if the "true" step is valid (i.e. exists in the flow)
-
-
Class weka.knowledgeflow.steps.FlowByExpression.BracketNode
class BracketNode extends FlowByExpression.ExpressionNode implements Serializable- serialVersionUID:
- 8732159083173001115L
-
Serialized Fields
-
m_children
List<FlowByExpression.ExpressionNode> m_children
-
-
Class weka.knowledgeflow.steps.FlowByExpression.ExpressionClause
class ExpressionClause extends FlowByExpression.ExpressionNode implements Serializable- serialVersionUID:
- 2754006654981248325L
-
Serialized Fields
-
m_lhsAttIndex
int m_lhsAttIndex
The index of the lhs attribute -
m_lhsAttributeName
String m_lhsAttributeName
The name of the lhs attribute -
m_numericOperand
double m_numericOperand
The rhs operand (if constant and is a number ) -
m_operator
FlowByExpression.ExpressionClause.ExpressionType m_operator
The operator for this expression -
m_regexPattern
Pattern m_regexPattern
the compiled regex pattern (if the operator is REGEX) -
m_resolvedLhsName
String m_resolvedLhsName
The name of the lhs attribute after resolving variables -
m_resolvedRhsOperand
String m_resolvedRhsOperand
The rhs operand after resolving variables -
m_rhsAttIndex
int m_rhsAttIndex
index of the rhs if it is an attribute -
m_rhsIsAttribute
boolean m_rhsIsAttribute
True if the rhs operand is an attribute -
m_rhsOperand
String m_rhsOperand
The rhs operand (constant value or attribute name)
-
-
Class weka.knowledgeflow.steps.FlowByExpression.ExpressionNode
class ExpressionNode extends Object implements Serializable- serialVersionUID:
- -8427857202322768762L
-
Serialized Fields
-
m_isAnOr
boolean m_isAnOr
boolean operator for combining with result so far -
m_isNegated
boolean m_isNegated
is this node negated? -
m_showAndOr
boolean m_showAndOr
Whether to show the combination operator in the textual representation
-
-
Class weka.knowledgeflow.steps.GetDataFromResult
class GetDataFromResult extends BaseStep implements Serializable- serialVersionUID:
- 7447845310997458636L
-
Class weka.knowledgeflow.steps.GraphViewer
class GraphViewer extends BaseSimpleDataVisualizer implements Serializable- serialVersionUID:
- -3256888744740965144L
-
Class weka.knowledgeflow.steps.ImageSaver
class ImageSaver extends BaseStep implements Serializable- serialVersionUID:
- -8766164679635957891L
-
Serialized Fields
-
m_defaultFile
String m_defaultFile
Default location to write to, in case a file has not been explicitly set -
m_defaultFormat
weka.knowledgeflow.steps.ImageSaver.ImageFormat m_defaultFormat
Default format to use - read from the settings for this step, and used in the case when the user has selected/left DEFAULT as the format type in the step's options. Must not be set to the type DEFAULT of course :-) -
m_file
File m_file
The file to save to -
m_format
weka.knowledgeflow.steps.ImageSaver.ImageFormat m_format
Format to save to. If set to DEFAULT, then the default format the user has set in the settings for this step is used. -
m_imageCounter
int m_imageCounter
Gets incremented by 1 for each image received during execution. Can be used (via the image_count variable) to ensure that each image gets saved to a different file when there are multiple images expected during execution.
-
-
Class weka.knowledgeflow.steps.ImageSaver.ImageSaverDefaults
class ImageSaverDefaults extends Defaults implements Serializable- serialVersionUID:
- -2739579935119189195L
-
Class weka.knowledgeflow.steps.ImageViewer
class ImageViewer extends BaseStep implements Serializable- serialVersionUID:
- -4055716444227948343L
-
Serialized Fields
-
m_images
Map<String,
BufferedImage> m_images Holds the received images
-
-
Class weka.knowledgeflow.steps.IncrementalClassifierEvaluator
class IncrementalClassifierEvaluator extends BaseStep implements Serializable- serialVersionUID:
- -5951569492213633100L
-
Serialized Fields
-
m_chartData
Data m_chartData
Re-usable chart data -
m_classifierName
String m_classifierName
Holds the name of the classifier being used -
m_dataLegend
List<String> m_dataLegend
Legend information -
m_dataPoint
double[] m_dataPoint
Actual data point values -
m_eval
Evaluation m_eval
Main eval object -
m_instanceCount
int m_instanceCount
Count of instances seen -
m_max
double m_max
-
m_min
double m_min
-
m_outputInfoRetrievalStats
boolean m_outputInfoRetrievalStats
-
m_reset
boolean m_reset
True if rest -
m_statusFrequency
int m_statusFrequency
how often (in milliseconds) to report throughput to the log -
m_window
LinkedList<Instance> m_window
Window instances -
m_windowedPreds
LinkedList<double[]> m_windowedPreds
Window predictions -
m_windowEval
Evaluation m_windowEval
Evaluation object for window -
m_windowSize
int m_windowSize
window size for computing performance metrics - 0 means no window, i.e don't "forget" performance on any instances
-
-
Class weka.knowledgeflow.steps.InstanceStreamToBatchMaker
class InstanceStreamToBatchMaker extends BaseStep implements Serializable- serialVersionUID:
- 5461324282251111320L
-
Serialized Fields
-
m_hasStringAtts
boolean m_hasStringAtts
True if the incoming data contains string attributes -
m_isReset
boolean m_isReset
True if we've been reset -
m_structure
Instances m_structure
The structure of the incoming instances
-
-
Class weka.knowledgeflow.steps.Job
class Job extends BaseStep implements Serializable- serialVersionUID:
- -8684065684979500325L
-
Serialized Fields
-
m_flowToRun
File m_flowToRun
-
m_logLevel
LoggingLevel m_logLevel
-
-
Class weka.knowledgeflow.steps.Join
class Join extends BaseStep implements Serializable- serialVersionUID:
- -8248954818247532014L
-
Serialized Fields
-
m_firstInput
StepManager m_firstInput
First source of data -
m_firstInputConnectionType
String m_firstInputConnectionType
Connection type of the first input -
m_firstIsWaiting
boolean m_firstIsWaiting
True if the first input stream is waiting due to a full buffer (incremental mode only) -
m_keyIndexesOne
int[] m_keyIndexesOne
Indexes of the key fields for the first input -
m_keyIndexesTwo
int[] m_keyIndexesTwo
Indexes of the key fields for the second input -
m_keySpec
String m_keySpec
Holds the internal representation of the key specification -
m_runningIncrementally
boolean m_runningIncrementally
True if the step is running incrementally -
m_secondInput
StepManager m_secondInput
Second source of data -
m_secondInputConnectionType
String m_secondInputConnectionType
Connection type of the second input -
m_secondIsWaiting
boolean m_secondIsWaiting
True if the second input stream is waiting due to a full buffer (incremental mode only) -
m_streamingData
Data m_streamingData
Reusable data object for streaming output -
m_stringAttIndexesOne
Map<String,
Integer> m_stringAttIndexesOne Holds indexes of string attributes, keyed by attribute name -
m_stringAttIndexesTwo
Map<String,
Integer> m_stringAttIndexesTwo Holds indexes of string attributes, keyed by attribute name -
m_stringAttsPresent
boolean m_stringAttsPresent
True if string attributes are present in the incoming data
-
-
Class weka.knowledgeflow.steps.Loader
class Loader extends WekaAlgorithmWrapper implements Serializable- serialVersionUID:
- -788869066035779154L
-
Serialized Fields
-
m_flowThroughput
StreamThroughput m_flowThroughput
For measuring the overall flow throughput -
m_globalInfo
String m_globalInfo
Global info for the wrapped loader (if it exists). -
m_instanceData
Data m_instanceData
Reusable data container -
m_instanceGeneration
boolean m_instanceGeneration
True if we're going to be streaming instance objects -
m_noOutputs
boolean m_noOutputs
True if there are no outgoing connections
-
-
Class weka.knowledgeflow.steps.MakeResourceIntensive
class MakeResourceIntensive extends BaseStep implements Serializable- serialVersionUID:
- -5670771681991035130L
-
Serialized Fields
-
m_setAsResourceIntensive
boolean m_setAsResourceIntensive
True if downstream steps are to be made resource intensive
-
-
Class weka.knowledgeflow.steps.MemoryBasedDataSource
class MemoryBasedDataSource extends BaseStep implements Serializable- serialVersionUID:
- -1901014330145130275L
-
Serialized Fields
-
m_instances
Instances m_instances
The data that will be output from this step
-
-
Class weka.knowledgeflow.steps.ModelPerformanceChart
class ModelPerformanceChart extends BaseStep implements Serializable- serialVersionUID:
- 6166590810777938147L
-
Serialized Fields
-
m_additionalOptions
String m_additionalOptions
Additional options for the offscreen renderer -
m_dataIsThresholdData
boolean m_dataIsThresholdData
True if the collected plots contain threshold data -
m_height
String m_height
Height of offscreen plots -
m_offscreenRendererName
String m_offscreenRendererName
Name of the renderer to use for offscreen chart rendering -
m_plots
List<PlotData2D> m_plots
Current set of plots. First element is the master plot -
m_width
String m_width
Width of offscreen plots -
m_xAxis
String m_xAxis
The name of the attribute to use for the x-axis of offscreen plots. If left empty, False Positive Rate is used for threshold curves -
m_yAxis
String m_yAxis
The name of the attribute to use for the y-axis of offscreen plots. If left empty, True Positive Rate is used for threshold curves
-
-
Class weka.knowledgeflow.steps.Note
class Note extends BaseStep implements Serializable-
Serialized Fields
-
m_noteText
String m_noteText
The text of the note
-
-
-
Class weka.knowledgeflow.steps.PairedDataHelper
class PairedDataHelper extends Object implements Serializable- serialVersionUID:
- -7813465607881227514L
-
Serialized Fields
-
m_namedIndexedStore
Map<String,
Map<Integer, Object>> m_namedIndexedStore Storage of arbitrary indexed results computed during execution of PairedProcessor.processPrimary() -
m_primaryConType
String m_primaryConType
The type of connection to route to PairedProcessor.processPrimary() -
m_primaryResultMap
Map<Integer,
P> m_primaryResultMap Storage of the indexed primary result -
m_secondaryConType
String m_secondaryConType
The type of connection to route to PairedProcessor.processSecondary() -
m_secondaryDataMap
Map<Integer,
Data> m_secondaryDataMap Holds the secondary data objects, if they arrive before the corresponding primary has been computed
-
-
Class weka.knowledgeflow.steps.PredictionAppender
class PredictionAppender extends BaseStep implements Serializable- serialVersionUID:
- 3558618759400903936L
-
Serialized Fields
-
m_appendProbabilities
boolean m_appendProbabilities
True if probabilities are to be appended -
m_instanceData
Data m_instanceData
Re-usable Data object for streaming output -
m_streamingOutputStructure
Instances m_streamingOutputStructure
Holds structure of streaming output -
m_stringAttIndexes
List<Integer> m_stringAttIndexes
Keep track of indexes of string attributes in the streaming case
-
-
Class weka.knowledgeflow.steps.Saver
class Saver extends WekaAlgorithmWrapper implements Serializable- serialVersionUID:
- 6831606284211403465L
-
Serialized Fields
-
m_isDBSaver
boolean m_isDBSaver
True if the saver is a DatabaseSaver -
m_relationNameForFilename
boolean m_relationNameForFilename
For file-based savers - if true (default), relation name is used as the primary part of the filename. If false, then the prefix is used as the filename. Useful for preventing filenames from getting too long when there are many filters in a flow. -
m_saver
Saver m_saver
The actual saver instance to use -
m_structure
Instances m_structure
Holds the structure
-
-
Class weka.knowledgeflow.steps.ScatterPlotMatrix
class ScatterPlotMatrix extends BaseSimpleDataVisualizer implements Serializable- serialVersionUID:
- -2033576643553187310L
-
Class weka.knowledgeflow.steps.SendToPerspective
class SendToPerspective extends BaseStep implements Serializable- serialVersionUID:
- 7322550048407408819L
-
Serialized Fields
-
m_perspectiveName
String m_perspectiveName
-
-
Class weka.knowledgeflow.steps.SerializedModelSaver
class SerializedModelSaver extends BaseStep implements Serializable- serialVersionUID:
- -8343162241983197708L
-
Serialized Fields
-
m_counter
int m_counter
Counter for use when processing incremental classifier connections -
m_directory
File m_directory
The directory to hold the saved model(s) -
m_filenamePrefix
String m_filenamePrefix
The prefix for the file name (model + training set info will be appended) -
m_includeRelationName
boolean m_includeRelationName
Whether to include the relation name of the data in the file name for the model -
m_incrementalHeader
Instances m_incrementalHeader
Stores the header of data used to build an incremental model -
m_incrementalSaveSchedule
int m_incrementalSaveSchedule
How often to save an incremental classifier (<= 0 means only at the end of the stream)
-
-
Class weka.knowledgeflow.steps.SetPropertiesFromEnvironment
class SetPropertiesFromEnvironment extends BaseStep implements Serializable- serialVersionUID:
- -8316084792512232973L
-
Class weka.knowledgeflow.steps.SetVariables
class SetVariables extends BaseStep implements Serializable- serialVersionUID:
- 8042350408846800738L
-
Serialized Fields
-
m_dynamicInternalRep
String m_dynamicInternalRep
Holds dynamic variables in internal representation -
m_internalRep
String m_internalRep
Holds static variables in internal representation -
m_raiseErrorWhenValueMissing
boolean m_raiseErrorWhenValueMissing
True if an exception should be raised when an attribute value being used to set a variable is missing, instead of using a default value -
m_structureCheckComplete
boolean m_structureCheckComplete
True if the structure has been checked -
m_structureOK
boolean m_structureOK
OK if there is at least one specified attribute in the incoming instance structure -
m_varsToSet
Map<String,
String> m_varsToSet Map of variables to set with fixed values -
m_varsToSetFromIncomingInstances
Map<String,
List<String>> m_varsToSetFromIncomingInstances Map of variables to set based on the values of attributes in incoming instances
-
-
Class weka.knowledgeflow.steps.Sorter
class Sorter extends BaseStep implements Serializable- serialVersionUID:
- 3373283983192467264L
-
Serialized Fields
-
m_bufferSize
String m_bufferSize
Size of the in-memory buffer -
m_bufferSizeI
int m_bufferSizeI
Size of the in-memory buffer after resolving any environment vars -
m_connectedFormat
Instances m_connectedFormat
format of instances for current incoming connection (if any) -
m_isReset
boolean m_isReset
True if we've been reset -
m_sortDetails
String m_sortDetails
Holds the internal textual description of the sort definitions -
m_streaming
boolean m_streaming
True if processing streaming data -
m_streamingData
Data m_streamingData
To (re)use when streaming -
m_stringAttIndexes
Map<String,
Integer> m_stringAttIndexes Holds indexes of string attributes, keyed by attribute name -
m_tempDirectory
File m_tempDirectory
The directory to hold the temp files - if not set the system tmp directory is used
-
-
Class weka.knowledgeflow.steps.Sorter.InstanceHolder
class InstanceHolder extends Object implements Serializable- serialVersionUID:
- -3985730394250172995L
-
Serialized Fields
-
m_fileNumber
int m_fileNumber
index into the list of files on disk -
m_instance
Instance m_instance
The instance -
m_stringVals
Map<String,
String> m_stringVals for incremental operation, if string attributes are present then we need to store them with each instance - since incremental streaming in the knowledge flow only maintains one string value in memory (and hence in the header) at any one time
-
-
Class weka.knowledgeflow.steps.StorePropertiesInEnvironment
class StorePropertiesInEnvironment extends BaseStep implements Serializable- serialVersionUID:
- -1526289154505863542L
-
Serialized Fields
-
m_internalRep
String m_internalRep
Internal string-based representation of property configs -
m_propsToSetFromIncomingInstances
Map<String,
List<String>> m_propsToSetFromIncomingInstances Map of properties to set based on the values of attributes in incoming instances. Keyed by attribute name/index. List contains target step name, property path (can be empty string to indicate a command line spec for a complete base-scheme config), default property value. If an incoming attribute value is missing, and no default property value is available, an exception will be generated. -
m_raiseErrorWhenValueMissing
boolean m_raiseErrorWhenValueMissing
-
m_structureCheckComplete
boolean m_structureCheckComplete
True if the structure has been checked -
m_structureOK
boolean m_structureOK
OK if there is at least one specified attribute in the incoming instance structure
-
-
Class weka.knowledgeflow.steps.StripChart
class StripChart extends BaseStep implements Serializable- serialVersionUID:
- -2569383350174947630L
-
Serialized Fields
-
m_instanceWidth
int m_instanceWidth
Holds the number of attribute values (10 max) to plot if processing an incoming instance stream -
m_plotListeners
List<StripChart.PlotNotificationListener> m_plotListeners
Parties interested in knowing about updates -
m_refreshFrequency
int m_refreshFrequency
Plot every m_refreshFrequency'th point -
m_reset
boolean m_reset
True if we've been reset -
m_userRefreshWidth
int m_userRefreshWidth
-
m_xValFreq
int m_xValFreq
Frequency for plotting x values
-
-
Class weka.knowledgeflow.steps.SubstringLabeler
class SubstringLabeler extends BaseStep implements Serializable- serialVersionUID:
- 1409175779108600014L
-
Serialized Fields
-
m_addFilter
Add m_addFilter
Add filter for adding the new attribute -
m_attName
String m_attName
Name of the new attribute -
m_consumeNonMatchingInstances
boolean m_consumeNonMatchingInstances
For multi-valued labeled rules, whether or not to consume non-matching instances or output them with missing value for the match attribute. -
m_isReset
boolean m_isReset
Step has been reset - i.e. start of processing? -
m_matchDetails
String m_matchDetails
Internally encoded list of match rules -
m_nominalBinary
boolean m_nominalBinary
Whether to make the binary match/non-match attribute a nominal (rather than numeric) binary attribute. -
m_streaming
boolean m_streaming
Streaming instances? -
m_streamingData
Data m_streamingData
Reusable data object for output
-
-
Class weka.knowledgeflow.steps.SubstringReplacer
class SubstringReplacer extends BaseStep implements Serializable- serialVersionUID:
- -8786642000811852824L
-
Class weka.knowledgeflow.steps.TestSetMaker
class TestSetMaker extends BaseStep implements Serializable- serialVersionUID:
- 6384920860783839811L
-
Class weka.knowledgeflow.steps.TextSaver
class TextSaver extends BaseStep implements Serializable- serialVersionUID:
- -1434752243260858338L
-
Serialized Fields
-
m_append
boolean m_append
Whether to append to the file or not -
m_defaultFile
String m_defaultFile
Default location to write to, in case a file has not been explicitly set -
m_file
File m_file
The file to save to -
m_writeTitleString
boolean m_writeTitleString
Whether to write the title string for each textual result too
-
-
Class weka.knowledgeflow.steps.TextSaver.TextSaverDefaults
class TextSaverDefaults extends Defaults implements Serializable- serialVersionUID:
- -2739579935119189195L
-
Class weka.knowledgeflow.steps.TextViewer
class TextViewer extends BaseStep implements Serializable- serialVersionUID:
- 8602416209256135064L
-
Class weka.knowledgeflow.steps.TrainingSetMaker
class TrainingSetMaker extends BaseStep implements Serializable- serialVersionUID:
- 1082946912813721183L
-
Class weka.knowledgeflow.steps.TrainTestSplitMaker
class TrainTestSplitMaker extends BaseStep implements Serializable- serialVersionUID:
- 7685026723199727685L
-
Serialized Fields
-
m_preserveOrder
boolean m_preserveOrder
Whether to preserve the order of the data before making the split, rather than randomly shuffling -
m_seed
long m_seed
Resolved seed -
m_seedS
String m_seedS
Default seed for the random number generator -
m_trainPercentage
double m_trainPercentage
Resolved percentage -
m_trainPercentageS
String m_trainPercentageS
Default split percentage
-
-
Class weka.knowledgeflow.steps.WekaAlgorithmWrapper
class WekaAlgorithmWrapper extends BaseStep implements Serializable- serialVersionUID:
- -1013404060247467085L
-
Serialized Fields
-
m_defaultIconPath
String m_defaultIconPath
Icon path to the default icon for the type of wrapped algorithm - e.g. Classifier, Loader etc. -
m_defaultPackageIconPath
String m_defaultPackageIconPath
Icon path to the default icon at the package level - e.g. weka.classifiers.rules -
m_iconPath
String m_iconPath
Icon path to the specific icon for the wrapped algorithim -
m_wrappedAlgorithm
Object m_wrappedAlgorithm
The wrapped algorithm
-
-
Class weka.knowledgeflow.steps.WriteDataToResult
class WriteDataToResult extends BaseStep implements Serializable- serialVersionUID:
- -1932252461151862615L
-
Class weka.knowledgeflow.steps.WriteWekaLog
class WriteWekaLog extends BaseStep implements Serializable- serialVersionUID:
- -2306717547200779711L
-
Serialized Fields
-
m_incrCount
int m_incrCount
Count of how many incremental data points have been seen so far -
m_incrementalWriteFrequency
String m_incrementalWriteFrequency
How often to write incremental data to the log -
m_incrFreq
int m_incrFreq
Resolved frequency -
m_inputIsIncremental
boolean m_inputIsIncremental
True if the input is incremental -
m_isReset
boolean m_isReset
True if the step has been reset -
m_logLevel
LoggingLevel m_logLevel
Level to log at
-
-