Package weka.classifiers.evaluation
Class NumericPrediction
java.lang.Object
weka.classifiers.evaluation.NumericPrediction
- All Implemented Interfaces:
Serializable
,Prediction
,RevisionHandler
Encapsulates an evaluatable numeric prediction: the predicted class value
plus the actual class value.
- Version:
- $Revision: 8034 $
- Author:
- Len Trigg (len@reeltwo.com)
- See Also:
-
Field Summary
Fields inherited from interface weka.classifiers.evaluation.Prediction
MISSING_VALUE
-
Constructor Summary
ConstructorDescriptionNumericPrediction
(double actual, double predicted) Creates the NumericPrediction object with a default weight of 1.0.NumericPrediction
(double actual, double predicted, double weight) Creates the NumericPrediction object.NumericPrediction
(double actual, double predicted, double weight, double[][] predInt) Creates the NumericPrediction object. -
Method Summary
Modifier and TypeMethodDescriptiondouble
actual()
Gets the actual class value.double
error()
Calculates the prediction error.Returns the revision string.double
Gets the predicted class value.double[][]
Returns the predictions intervals.void
setPredictionIntervals
(double[][] predInt) Sets the prediction intervals for this prediction.toString()
Gets a human readable representation of this prediction.double
weight()
Gets the weight assigned to this prediction.
-
Constructor Details
-
NumericPrediction
public NumericPrediction(double actual, double predicted) Creates the NumericPrediction object with a default weight of 1.0.- Parameters:
actual
- the actual value, or MISSING_VALUE.predicted
- the predicted value, or MISSING_VALUE.
-
NumericPrediction
public NumericPrediction(double actual, double predicted, double weight) Creates the NumericPrediction object.- Parameters:
actual
- the actual value, or MISSING_VALUE.predicted
- the predicted value, or MISSING_VALUE.weight
- the weight assigned to the prediction.
-
NumericPrediction
public NumericPrediction(double actual, double predicted, double weight, double[][] predInt) Creates the NumericPrediction object.- Parameters:
actual
- the actual value, or MISSING_VALUE.predicted
- the predicted value, or MISSING_VALUE.weight
- the weight assigned to the prediction.predInt
- the prediction intervals from classifiers implementing theIntervalEstimator
interface.- See Also:
-
-
Method Details
-
actual
public double actual()Gets the actual class value.- Specified by:
actual
in interfacePrediction
- Returns:
- the actual class value, or MISSING_VALUE if no prediction was made.
-
predicted
public double predicted()Gets the predicted class value.- Specified by:
predicted
in interfacePrediction
- Returns:
- the predicted class value, or MISSING_VALUE if no prediction was made.
-
weight
public double weight()Gets the weight assigned to this prediction. This is typically the weight of the test instance the prediction was made for.- Specified by:
weight
in interfacePrediction
- Returns:
- the weight assigned to this prediction.
-
error
public double error()Calculates the prediction error. This is defined as the predicted value minus the actual value.- Returns:
- the error for this prediction, or MISSING_VALUE if either the actual or predicted value is missing.
-
setPredictionIntervals
public void setPredictionIntervals(double[][] predInt) Sets the prediction intervals for this prediction.- Parameters:
predInt
- the prediction intervals
-
predictionIntervals
public double[][] predictionIntervals()Returns the predictions intervals. Only classifiers implementing theIntervalEstimator
interface.- Returns:
- the prediction intervals.
- See Also:
-
toString
Gets a human readable representation of this prediction. -
getRevision
Returns the revision string.- Specified by:
getRevision
in interfaceRevisionHandler
- Returns:
- the revision
-