Class NumericPrediction

java.lang.Object
weka.classifiers.evaluation.NumericPrediction
All Implemented Interfaces:
Serializable, Prediction, RevisionHandler

public class NumericPrediction extends Object implements Prediction, Serializable, RevisionHandler
Encapsulates an evaluatable numeric prediction: the predicted class value plus the actual class value.
Version:
$Revision: 8034 $
Author:
Len Trigg (len@reeltwo.com)
See Also:
  • Field Summary

    Fields inherited from interface weka.classifiers.evaluation.Prediction

    MISSING_VALUE
  • Constructor Summary

    Constructors
    Constructor
    Description
    NumericPrediction(double actual, double predicted)
    Creates the NumericPrediction object with a default weight of 1.0.
    NumericPrediction(double actual, double predicted, double weight)
    Creates the NumericPrediction object.
    NumericPrediction(double actual, double predicted, double weight, double[][] predInt)
    Creates the NumericPrediction object.
  • Method Summary

    Modifier and Type
    Method
    Description
    double
    Gets the actual class value.
    double
    Calculates the prediction error.
    Returns the revision string.
    double
    Gets the predicted class value.
    double[][]
    Returns the predictions intervals.
    void
    setPredictionIntervals(double[][] predInt)
    Sets the prediction intervals for this prediction.
    Gets a human readable representation of this prediction.
    double
    Gets the weight assigned to this prediction.

    Methods inherited from class java.lang.Object

    equals, getClass, hashCode, notify, notifyAll, wait, wait, wait
  • Constructor Details

    • NumericPrediction

      public NumericPrediction(double actual, double predicted)
      Creates the NumericPrediction object with a default weight of 1.0.
      Parameters:
      actual - the actual value, or MISSING_VALUE.
      predicted - the predicted value, or MISSING_VALUE.
    • NumericPrediction

      public NumericPrediction(double actual, double predicted, double weight)
      Creates the NumericPrediction object.
      Parameters:
      actual - the actual value, or MISSING_VALUE.
      predicted - the predicted value, or MISSING_VALUE.
      weight - the weight assigned to the prediction.
    • NumericPrediction

      public NumericPrediction(double actual, double predicted, double weight, double[][] predInt)
      Creates the NumericPrediction object.
      Parameters:
      actual - the actual value, or MISSING_VALUE.
      predicted - the predicted value, or MISSING_VALUE.
      weight - the weight assigned to the prediction.
      predInt - the prediction intervals from classifiers implementing the IntervalEstimator interface.
      See Also:
  • Method Details

    • actual

      public double actual()
      Gets the actual class value.
      Specified by:
      actual in interface Prediction
      Returns:
      the actual class value, or MISSING_VALUE if no prediction was made.
    • predicted

      public double predicted()
      Gets the predicted class value.
      Specified by:
      predicted in interface Prediction
      Returns:
      the predicted class value, or MISSING_VALUE if no prediction was made.
    • weight

      public double weight()
      Gets the weight assigned to this prediction. This is typically the weight of the test instance the prediction was made for.
      Specified by:
      weight in interface Prediction
      Returns:
      the weight assigned to this prediction.
    • error

      public double error()
      Calculates the prediction error. This is defined as the predicted value minus the actual value.
      Returns:
      the error for this prediction, or MISSING_VALUE if either the actual or predicted value is missing.
    • setPredictionIntervals

      public void setPredictionIntervals(double[][] predInt)
      Sets the prediction intervals for this prediction.
      Parameters:
      predInt - the prediction intervals
    • predictionIntervals

      public double[][] predictionIntervals()
      Returns the predictions intervals. Only classifiers implementing the IntervalEstimator interface.
      Returns:
      the prediction intervals.
      See Also:
    • toString

      public String toString()
      Gets a human readable representation of this prediction.
      Overrides:
      toString in class Object
      Returns:
      a human readable representation of this prediction.
    • getRevision

      public String getRevision()
      Returns the revision string.
      Specified by:
      getRevision in interface RevisionHandler
      Returns:
      the revision