Package weka.classifiers.functions
Class VotedPerceptron
java.lang.Object
weka.classifiers.AbstractClassifier
weka.classifiers.functions.VotedPerceptron
- All Implemented Interfaces:
Serializable
,Cloneable
,Classifier
,BatchPredictor
,CapabilitiesHandler
,CapabilitiesIgnorer
,CommandlineRunnable
,OptionHandler
,RevisionHandler
,TechnicalInformationHandler
public class VotedPerceptron
extends AbstractClassifier
implements OptionHandler, TechnicalInformationHandler
Implementation of the voted perceptron algorithm by Freund and Schapire. Globally replaces all missing values, and transforms nominal attributes into binary ones.
For more information, see:
Y. Freund, R. E. Schapire: Large margin classification using the perceptron algorithm. In: 11th Annual Conference on Computational Learning Theory, New York, NY, 209-217, 1998. BibTeX:
For more information, see:
Y. Freund, R. E. Schapire: Large margin classification using the perceptron algorithm. In: 11th Annual Conference on Computational Learning Theory, New York, NY, 209-217, 1998. BibTeX:
@inproceedings{Freund1998, address = {New York, NY}, author = {Y. Freund and R. E. Schapire}, booktitle = {11th Annual Conference on Computational Learning Theory}, pages = {209-217}, publisher = {ACM Press}, title = {Large margin classification using the perceptron algorithm}, year = {1998} }Valid options are:
-I <int> The number of iterations to be performed. (default 1)
-E <double> The exponent for the polynomial kernel. (default 1)
-S <int> The seed for the random number generation. (default 1)
-M <int> The maximum number of alterations allowed. (default 10000)
- Version:
- $Revision: 15519 $
- Author:
- Eibe Frank (eibe@cs.waikato.ac.nz)
- See Also:
-
Field Summary
Fields inherited from class weka.classifiers.AbstractClassifier
BATCH_SIZE_DEFAULT, NUM_DECIMAL_PLACES_DEFAULT
-
Constructor Summary
-
Method Summary
Modifier and TypeMethodDescriptionvoid
buildClassifier
(Instances insts) Builds the ensemble of perceptrons.double[]
Outputs the distribution for the given output.Returns the tip text for this propertyReturns default capabilities of the classifier.double
Get the value of exponent.int
getMaxK()
Get the value of maxK.int
Get the value of NumIterations.String[]
Gets the current settings of the classifier.Returns the revision string.int
getSeed()
Get the value of Seed.Returns an instance of a TechnicalInformation object, containing detailed information about the technical background of this class, e.g., paper reference or book this class is based on.Returns a string describing this classifierReturns an enumeration describing the available options.static void
Main method.Returns the tip text for this propertyReturns the tip text for this propertyReturns the tip text for this propertyvoid
setExponent
(double v) Set the value of exponent.void
setMaxK
(int v) Set the value of maxK.void
setNumIterations
(int v) Set the value of NumIterations.void
setOptions
(String[] options) Parses a given list of options.void
setSeed
(int v) Set the value of Seed.toString()
Returns textual description of classifier.Methods inherited from class weka.classifiers.AbstractClassifier
batchSizeTipText, classifyInstance, debugTipText, distributionsForInstances, doNotCheckCapabilitiesTipText, forName, getBatchSize, getDebug, getDoNotCheckCapabilities, getNumDecimalPlaces, implementsMoreEfficientBatchPrediction, makeCopies, makeCopy, numDecimalPlacesTipText, postExecution, preExecution, run, runClassifier, setBatchSize, setDebug, setDoNotCheckCapabilities, setNumDecimalPlaces
-
Constructor Details
-
VotedPerceptron
public VotedPerceptron()
-
-
Method Details
-
globalInfo
Returns a string describing this classifier- Returns:
- a description of the classifier suitable for displaying in the explorer/experimenter gui
-
getTechnicalInformation
Returns an instance of a TechnicalInformation object, containing detailed information about the technical background of this class, e.g., paper reference or book this class is based on.- Specified by:
getTechnicalInformation
in interfaceTechnicalInformationHandler
- Returns:
- the technical information about this class
-
listOptions
Returns an enumeration describing the available options.- Specified by:
listOptions
in interfaceOptionHandler
- Overrides:
listOptions
in classAbstractClassifier
- Returns:
- an enumeration of all the available options.
-
setOptions
Parses a given list of options. Valid options are:-I <int> The number of iterations to be performed. (default 1)
-E <double> The exponent for the polynomial kernel. (default 1)
-S <int> The seed for the random number generation. (default 1)
-M <int> The maximum number of alterations allowed. (default 10000)
- Specified by:
setOptions
in interfaceOptionHandler
- Overrides:
setOptions
in classAbstractClassifier
- Parameters:
options
- the list of options as an array of strings- Throws:
Exception
- if an option is not supported
-
getOptions
Gets the current settings of the classifier.- Specified by:
getOptions
in interfaceOptionHandler
- Overrides:
getOptions
in classAbstractClassifier
- Returns:
- an array of strings suitable for passing to setOptions
-
getCapabilities
Returns default capabilities of the classifier.- Specified by:
getCapabilities
in interfaceCapabilitiesHandler
- Specified by:
getCapabilities
in interfaceClassifier
- Overrides:
getCapabilities
in classAbstractClassifier
- Returns:
- the capabilities of this classifier
- See Also:
-
buildClassifier
Builds the ensemble of perceptrons.- Specified by:
buildClassifier
in interfaceClassifier
- Parameters:
insts
- the data to train the classifier with- Throws:
Exception
- if something goes wrong during building
-
distributionForInstance
Outputs the distribution for the given output. Pipes output of SVM through sigmoid function.- Specified by:
distributionForInstance
in interfaceClassifier
- Overrides:
distributionForInstance
in classAbstractClassifier
- Parameters:
inst
- the instance for which distribution is to be computed- Returns:
- the distribution
- Throws:
Exception
- if something goes wrong
-
toString
Returns textual description of classifier. -
maxKTipText
Returns the tip text for this property- Returns:
- tip text for this property suitable for displaying in the explorer/experimenter gui
-
getMaxK
public int getMaxK()Get the value of maxK.- Returns:
- Value of maxK.
-
setMaxK
public void setMaxK(int v) Set the value of maxK.- Parameters:
v
- Value to assign to maxK.
-
numIterationsTipText
Returns the tip text for this property- Returns:
- tip text for this property suitable for displaying in the explorer/experimenter gui
-
getNumIterations
public int getNumIterations()Get the value of NumIterations.- Returns:
- Value of NumIterations.
-
setNumIterations
public void setNumIterations(int v) Set the value of NumIterations.- Parameters:
v
- Value to assign to NumIterations.
-
exponentTipText
Returns the tip text for this property- Returns:
- tip text for this property suitable for displaying in the explorer/experimenter gui
-
getExponent
public double getExponent()Get the value of exponent.- Returns:
- Value of exponent.
-
setExponent
public void setExponent(double v) Set the value of exponent.- Parameters:
v
- Value to assign to exponent.
-
seedTipText
Returns the tip text for this property- Returns:
- tip text for this property suitable for displaying in the explorer/experimenter gui
-
getSeed
public int getSeed()Get the value of Seed.- Returns:
- Value of Seed.
-
setSeed
public void setSeed(int v) Set the value of Seed.- Parameters:
v
- Value to assign to Seed.
-
getRevision
Returns the revision string.- Specified by:
getRevision
in interfaceRevisionHandler
- Overrides:
getRevision
in classAbstractClassifier
- Returns:
- the revision
-
main
Main method.- Parameters:
argv
- the commandline options
-