Package weka.experiment
Class RandomSplitResultProducer
java.lang.Object
weka.experiment.RandomSplitResultProducer
- All Implemented Interfaces:
Serializable
,AdditionalMeasureProducer
,OptionHandler
,RevisionHandler
,ResultProducer
public class RandomSplitResultProducer
extends Object
implements ResultProducer, OptionHandler, AdditionalMeasureProducer, RevisionHandler
Generates a single train/test split and calls the
appropriate SplitEvaluator to generate some results.
Valid options are:
-P <percent> The percentage of instances to use for training. (default 66)
-D Save raw split evaluator output.
-O <file/directory name/path> The filename where raw output will be stored. If a directory name is specified then then individual outputs will be gzipped, otherwise all output will be zipped to the named file. Use in conjuction with -D. (default splitEvalutorOut.zip)
-W <class name> The full class name of a SplitEvaluator. eg: weka.experiment.ClassifierSplitEvaluator
-R Set when data is not to be randomized and the data sets' size. Is not to be determined via probabilistic rounding.
Options specific to split evaluator weka.experiment.ClassifierSplitEvaluator:
-W <class name> The full class name of the classifier. eg: weka.classifiers.bayes.NaiveBayes
-C <index> The index of the class for which IR statistics are to be output. (default 1)
-I <index> The index of an attribute to output in the results. This attribute should identify an instance in order to know which instances are in the test set of a cross validation. if 0 no output (default 0).
-P Add target and prediction columns to the result for each fold.
Options specific to classifier weka.classifiers.rules.ZeroR:
-D If set, classifier is run in debug mode and may output additional info to the consoleAll options after -- will be passed to the split evaluator.
- Version:
- $Revision: 10203 $
- Author:
- Len Trigg (trigg@cs.waikato.ac.nz)
- See Also:
-
Field Summary
-
Constructor Summary
-
Method Summary
Modifier and TypeMethodDescriptionvoid
doRun
(int run) Gets the results for a specified run number.void
doRunKeys
(int run) Gets the keys for a specified run number.Returns an enumeration of any additional measure names that might be in the SplitEvaluatorGets a description of the internal settings of the result producer, sufficient for distinguishing a ResultProducer instance from another with different settings (ignoring those settings set through this interface).String[]
Gets the names of each of the columns produced for a single run.Object[]
Gets the data types of each of the columns produced for a single run.double
getMeasure
(String additionalMeasureName) Returns the value of the named measureString[]
Gets the current settings of the result producer.Get the value of OutputFile.boolean
Get if dataset is to be randomizedboolean
Get if raw split evaluator output is to be savedString[]
Gets the names of each of the columns produced for a single run.Object[]
Gets the data types of each of the columns produced for a single run.Returns the revision string.Get the SplitEvaluator.static Double
Gets a Double representing the current date and time.double
Get the value of TrainPercent.Returns a string describing this result producerReturns an enumeration describing the available options..Returns the tip text for this propertyvoid
Perform any postprocessing.void
Prepare to generate results.Returns the tip text for this propertyReturns the tip text for this propertyvoid
setAdditionalMeasures
(String[] additionalMeasures) Set a list of method names for additional measures to look for in SplitEvaluators.void
setInstances
(Instances instances) Sets the dataset that results will be obtained for.void
setOptions
(String[] options) Parses a given list of options.void
setOutputFile
(File newOutputFile) Set the value of OutputFile.void
setRandomizeData
(boolean d) Set to true if dataset is to be randomizedvoid
setRawOutput
(boolean d) Set to true if raw split evaluator output is to be savedvoid
setResultListener
(ResultListener listener) Sets the object to send results of each run to.void
setSplitEvaluator
(SplitEvaluator newSplitEvaluator) Set the SplitEvaluator.void
setTrainPercent
(double newTrainPercent) Set the value of TrainPercent.Returns the tip text for this propertytoString()
Gets a text descrption of the result producer.Returns the tip text for this property
-
Field Details
-
DATASET_FIELD_NAME
The name of the key field containing the dataset name -
RUN_FIELD_NAME
The name of the key field containing the run number -
TIMESTAMP_FIELD_NAME
The name of the result field containing the timestamp
-
-
Constructor Details
-
RandomSplitResultProducer
public RandomSplitResultProducer()
-
-
Method Details
-
globalInfo
Returns a string describing this result producer- Returns:
- a description of the result producer suitable for displaying in the explorer/experimenter gui
-
setInstances
Sets the dataset that results will be obtained for.- Specified by:
setInstances
in interfaceResultProducer
- Parameters:
instances
- a value of type 'Instances'.
-
setAdditionalMeasures
Set a list of method names for additional measures to look for in SplitEvaluators. This could contain many measures (of which only a subset may be produceable by the current SplitEvaluator) if an experiment is the type that iterates over a set of properties.- Specified by:
setAdditionalMeasures
in interfaceResultProducer
- Parameters:
additionalMeasures
- an array of measure names, null if none
-
enumerateMeasures
Returns an enumeration of any additional measure names that might be in the SplitEvaluator- Specified by:
enumerateMeasures
in interfaceAdditionalMeasureProducer
- Returns:
- an enumeration of the measure names
-
getMeasure
Returns the value of the named measure- Specified by:
getMeasure
in interfaceAdditionalMeasureProducer
- Parameters:
additionalMeasureName
- the name of the measure to query for its value- Returns:
- the value of the named measure
- Throws:
IllegalArgumentException
- if the named measure is not supported
-
setResultListener
Sets the object to send results of each run to.- Specified by:
setResultListener
in interfaceResultProducer
- Parameters:
listener
- a value of type 'ResultListener'
-
getTimestamp
Gets a Double representing the current date and time. eg: 1:46pm on 20/5/1999 -> 19990520.1346- Returns:
- a value of type Double
-
preProcess
Prepare to generate results.- Specified by:
preProcess
in interfaceResultProducer
- Throws:
Exception
- if an error occurs during preprocessing.
-
postProcess
Perform any postprocessing. When this method is called, it indicates that no more requests to generate results for the current experiment will be sent.- Specified by:
postProcess
in interfaceResultProducer
- Throws:
Exception
- if an error occurs
-
doRunKeys
Gets the keys for a specified run number. Different run numbers correspond to different randomizations of the data. Keys produced should be sent to the current ResultListener- Specified by:
doRunKeys
in interfaceResultProducer
- Parameters:
run
- the run number to get keys for.- Throws:
Exception
- if a problem occurs while getting the keys
-
doRun
Gets the results for a specified run number. Different run numbers correspond to different randomizations of the data. Results produced should be sent to the current ResultListener- Specified by:
doRun
in interfaceResultProducer
- Parameters:
run
- the run number to get results for.- Throws:
Exception
- if a problem occurs while getting the results
-
getKeyNames
Gets the names of each of the columns produced for a single run. This method should really be static.- Specified by:
getKeyNames
in interfaceResultProducer
- Returns:
- an array containing the name of each column
-
getKeyTypes
Gets the data types of each of the columns produced for a single run. This method should really be static.- Specified by:
getKeyTypes
in interfaceResultProducer
- Returns:
- an array containing objects of the type of each column. The objects should be Strings, or Doubles.
-
getResultNames
Gets the names of each of the columns produced for a single run. This method should really be static.- Specified by:
getResultNames
in interfaceResultProducer
- Returns:
- an array containing the name of each column
-
getResultTypes
Gets the data types of each of the columns produced for a single run. This method should really be static.- Specified by:
getResultTypes
in interfaceResultProducer
- Returns:
- an array containing objects of the type of each column. The objects should be Strings, or Doubles.
-
getCompatibilityState
Gets a description of the internal settings of the result producer, sufficient for distinguishing a ResultProducer instance from another with different settings (ignoring those settings set through this interface). For example, a cross-validation ResultProducer may have a setting for the number of folds. For a given state, the results produced should be compatible. Typically if a ResultProducer is an OptionHandler, this string will represent the command line arguments required to set the ResultProducer to that state.- Specified by:
getCompatibilityState
in interfaceResultProducer
- Returns:
- the description of the ResultProducer state, or null if no state is defined
-
outputFileTipText
Returns the tip text for this property- Returns:
- tip text for this property suitable for displaying in the explorer/experimenter gui
-
getOutputFile
Get the value of OutputFile.- Returns:
- Value of OutputFile.
-
setOutputFile
Set the value of OutputFile.- Parameters:
newOutputFile
- Value to assign to OutputFile.
-
randomizeDataTipText
Returns the tip text for this property- Returns:
- tip text for this property suitable for displaying in the explorer/experimenter gui
-
getRandomizeData
public boolean getRandomizeData()Get if dataset is to be randomized- Returns:
- true if dataset is to be randomized
-
setRandomizeData
public void setRandomizeData(boolean d) Set to true if dataset is to be randomized- Parameters:
d
- true if dataset is to be randomized
-
rawOutputTipText
Returns the tip text for this property- Returns:
- tip text for this property suitable for displaying in the explorer/experimenter gui
-
getRawOutput
public boolean getRawOutput()Get if raw split evaluator output is to be saved- Returns:
- true if raw split evalutor output is to be saved
-
setRawOutput
public void setRawOutput(boolean d) Set to true if raw split evaluator output is to be saved- Parameters:
d
- true if output is to be saved
-
trainPercentTipText
Returns the tip text for this property- Returns:
- tip text for this property suitable for displaying in the explorer/experimenter gui
-
getTrainPercent
public double getTrainPercent()Get the value of TrainPercent.- Returns:
- Value of TrainPercent.
-
setTrainPercent
public void setTrainPercent(double newTrainPercent) Set the value of TrainPercent.- Parameters:
newTrainPercent
- Value to assign to TrainPercent.
-
splitEvaluatorTipText
Returns the tip text for this property- Returns:
- tip text for this property suitable for displaying in the explorer/experimenter gui
-
getSplitEvaluator
Get the SplitEvaluator.- Returns:
- the SplitEvaluator.
-
setSplitEvaluator
Set the SplitEvaluator.- Parameters:
newSplitEvaluator
- new SplitEvaluator to use.
-
listOptions
Returns an enumeration describing the available options..- Specified by:
listOptions
in interfaceOptionHandler
- Returns:
- an enumeration of all the available options.
-
setOptions
Parses a given list of options. Valid options are:-P <percent> The percentage of instances to use for training. (default 66)
-D Save raw split evaluator output.
-O <file/directory name/path> The filename where raw output will be stored. If a directory name is specified then then individual outputs will be gzipped, otherwise all output will be zipped to the named file. Use in conjuction with -D. (default splitEvalutorOut.zip)
-W <class name> The full class name of a SplitEvaluator. eg: weka.experiment.ClassifierSplitEvaluator
-R Set when data is not to be randomized and the data sets' size. Is not to be determined via probabilistic rounding.
Options specific to split evaluator weka.experiment.ClassifierSplitEvaluator:
-W <class name> The full class name of the classifier. eg: weka.classifiers.bayes.NaiveBayes
-C <index> The index of the class for which IR statistics are to be output. (default 1)
-I <index> The index of an attribute to output in the results. This attribute should identify an instance in order to know which instances are in the test set of a cross validation. if 0 no output (default 0).
-P Add target and prediction columns to the result for each fold.
Options specific to classifier weka.classifiers.rules.ZeroR:
-D If set, classifier is run in debug mode and may output additional info to the console
All options after -- will be passed to the split evaluator.- Specified by:
setOptions
in interfaceOptionHandler
- Parameters:
options
- the list of options as an array of strings- Throws:
Exception
- if an option is not supported
-
getOptions
Gets the current settings of the result producer.- Specified by:
getOptions
in interfaceOptionHandler
- Returns:
- an array of strings suitable for passing to setOptions
-
toString
Gets a text descrption of the result producer. -
getRevision
Returns the revision string.- Specified by:
getRevision
in interfaceRevisionHandler
- Returns:
- the revision
-