Package weka.classifiers.functions
Class Logistic
java.lang.Object
weka.classifiers.AbstractClassifier
weka.classifiers.functions.Logistic
- All Implemented Interfaces:
Serializable
,Cloneable
,Classifier
,Aggregateable<Logistic>
,BatchPredictor
,CapabilitiesHandler
,CapabilitiesIgnorer
,CommandlineRunnable
,OptionHandler
,PMMLProducer
,RevisionHandler
,TechnicalInformationHandler
,WeightedInstancesHandler
public class Logistic
extends AbstractClassifier
implements OptionHandler, WeightedInstancesHandler, TechnicalInformationHandler, PMMLProducer, Aggregateable<Logistic>
Class for building and using a multinomial logistic
regression model with a ridge estimator.
There are some modifications, however, compared to the paper of leCessie and van Houwelingen(1992):
If there are k classes for n instances with m attributes, the parameter matrix B to be calculated will be an m*(k-1) matrix.
The probability for class j with the exception of the last class is
Pj(Xi) = exp(XiBj)/((sum[j=1..(k-1)]exp(Xi*Bj))+1)
The last class has probability
1-(sum[j=1..(k-1)]Pj(Xi))
= 1/((sum[j=1..(k-1)]exp(Xi*Bj))+1)
The (negative) multinomial log-likelihood is thus:
L = -sum[i=1..n]{
sum[j=1..(k-1)](Yij * ln(Pj(Xi)))
+(1 - (sum[j=1..(k-1)]Yij))
* ln(1 - sum[j=1..(k-1)]Pj(Xi))
} + ridge * (B^2)
In order to find the matrix B for which L is minimised, a Quasi-Newton Method is used to search for the optimized values of the m*(k-1) variables. Note that before we use the optimization procedure, we 'squeeze' the matrix B into a m*(k-1) vector. For details of the optimization procedure, please check weka.core.Optimization class.
Although original Logistic Regression does not deal with instance weights, we modify the algorithm a little bit to handle the instance weights.
For more information see:
le Cessie, S., van Houwelingen, J.C. (1992). Ridge Estimators in Logistic Regression. Applied Statistics. 41(1):191-201.
Note: Missing values are replaced using a ReplaceMissingValuesFilter, and nominal attributes are transformed into numeric attributes using a NominalToBinaryFilter. BibTeX:
There are some modifications, however, compared to the paper of leCessie and van Houwelingen(1992):
If there are k classes for n instances with m attributes, the parameter matrix B to be calculated will be an m*(k-1) matrix.
The probability for class j with the exception of the last class is
Pj(Xi) = exp(XiBj)/((sum[j=1..(k-1)]exp(Xi*Bj))+1)
The last class has probability
1-(sum[j=1..(k-1)]Pj(Xi))
= 1/((sum[j=1..(k-1)]exp(Xi*Bj))+1)
The (negative) multinomial log-likelihood is thus:
L = -sum[i=1..n]{
sum[j=1..(k-1)](Yij * ln(Pj(Xi)))
+(1 - (sum[j=1..(k-1)]Yij))
* ln(1 - sum[j=1..(k-1)]Pj(Xi))
} + ridge * (B^2)
In order to find the matrix B for which L is minimised, a Quasi-Newton Method is used to search for the optimized values of the m*(k-1) variables. Note that before we use the optimization procedure, we 'squeeze' the matrix B into a m*(k-1) vector. For details of the optimization procedure, please check weka.core.Optimization class.
Although original Logistic Regression does not deal with instance weights, we modify the algorithm a little bit to handle the instance weights.
For more information see:
le Cessie, S., van Houwelingen, J.C. (1992). Ridge Estimators in Logistic Regression. Applied Statistics. 41(1):191-201.
Note: Missing values are replaced using a ReplaceMissingValuesFilter, and nominal attributes are transformed into numeric attributes using a NominalToBinaryFilter. BibTeX:
@article{leCessie1992, author = {le Cessie, S. and van Houwelingen, J.C.}, journal = {Applied Statistics}, number = {1}, pages = {191-201}, title = {Ridge Estimators in Logistic Regression}, volume = {41}, year = {1992} }Valid options are:
-D Turn on debugging output.
-S Do not standardize the attributes in the input data.
-R <ridge> Set the ridge in the log-likelihood.
-M <number> Set the maximum number of iterations (default -1, until convergence).
- Version:
- $Revision: 15534 $
- Author:
- Xin Xu (xx5@cs.waikato.ac.nz)
- See Also:
-
Field Summary
Fields inherited from class weka.classifiers.AbstractClassifier
BATCH_SIZE_DEFAULT, NUM_DECIMAL_PLACES_DEFAULT
-
Constructor Summary
-
Method Summary
Modifier and TypeMethodDescriptionAggregate an object with this onevoid
buildClassifier
(Instances train) Builds the classifierdouble[][]
Returns the coefficients for this logistic model.Returns the tip text for this propertydouble[]
distributionForInstance
(Instance instance) Computes the distribution for a given instanceReturns the tip text for this propertyvoid
Call to complete the aggregation process.Returns default capabilities of the classifier.boolean
getDebug()
Gets whether debugging output will be printed.boolean
Gets whether not to standardize attributes.int
Get the value of MaxIts.String[]
Gets the current settings of the classifier.Returns the revision string.double
getRidge()
Gets the ridge in the log-likelihood.Returns an instance of a TechnicalInformation object, containing detailed information about the technical background of this class, e.g., paper reference or book this class is based on.boolean
Gets whether to use conjugate gradient descent rather than BFGS updates.Returns a string describing this classifierReturns an enumeration describing the available optionsstatic void
Main method for testing this class.Returns the tip text for this propertyReturns the tip text for this propertyvoid
setDebug
(boolean debug) Sets whether debugging output will be printed.void
setDoNotStandardizeAttributes
(boolean DoNotStandardizeAttributes) Sets whether not to standardize attributesvoid
setMaxIts
(int newMaxIts) Set the value of MaxIts.void
setOptions
(String[] options) Parses a given list of options.void
setRidge
(double ridge) Sets the ridge in the log-likelihood.void
setUseConjugateGradientDescent
(boolean useConjugateGradientDescent) Sets whether conjugate gradient descent is used.Produce a PMML representation of this logistic modeltoString()
Gets a string describing the classifier.Returns the tip text for this propertyMethods inherited from class weka.classifiers.AbstractClassifier
batchSizeTipText, classifyInstance, distributionsForInstances, doNotCheckCapabilitiesTipText, forName, getBatchSize, getDoNotCheckCapabilities, getNumDecimalPlaces, implementsMoreEfficientBatchPrediction, makeCopies, makeCopy, numDecimalPlacesTipText, postExecution, preExecution, run, runClassifier, setBatchSize, setDoNotCheckCapabilities, setNumDecimalPlaces
-
Constructor Details
-
Logistic
public Logistic()Constructor that sets the default number of decimal places to 4.
-
-
Method Details
-
globalInfo
Returns a string describing this classifier- Returns:
- a description of the classifier suitable for displaying in the explorer/experimenter gui
-
getTechnicalInformation
Returns an instance of a TechnicalInformation object, containing detailed information about the technical background of this class, e.g., paper reference or book this class is based on.- Specified by:
getTechnicalInformation
in interfaceTechnicalInformationHandler
- Returns:
- the technical information about this class
-
listOptions
Returns an enumeration describing the available options- Specified by:
listOptions
in interfaceOptionHandler
- Overrides:
listOptions
in classAbstractClassifier
- Returns:
- an enumeration of all the available options
-
setOptions
Parses a given list of options. Valid options are:-D Turn on debugging output.
-S Do not standardize the attributes in the input data.
-R <ridge> Set the ridge in the log-likelihood.
-M <number> Set the maximum number of iterations (default -1, until convergence).
- Specified by:
setOptions
in interfaceOptionHandler
- Overrides:
setOptions
in classAbstractClassifier
- Parameters:
options
- the list of options as an array of strings- Throws:
Exception
- if an option is not supported
-
getOptions
Gets the current settings of the classifier.- Specified by:
getOptions
in interfaceOptionHandler
- Overrides:
getOptions
in classAbstractClassifier
- Returns:
- an array of strings suitable for passing to setOptions
-
debugTipText
Returns the tip text for this property- Overrides:
debugTipText
in classAbstractClassifier
- Returns:
- tip text for this property suitable for displaying in the explorer/experimenter gui
-
setDebug
public void setDebug(boolean debug) Sets whether debugging output will be printed.- Overrides:
setDebug
in classAbstractClassifier
- Parameters:
debug
- true if debugging output should be printed
-
getDebug
public boolean getDebug()Gets whether debugging output will be printed.- Overrides:
getDebug
in classAbstractClassifier
- Returns:
- true if debugging output will be printed
-
useConjugateGradientDescentTipText
Returns the tip text for this property- Returns:
- tip text for this property suitable for displaying in the explorer/experimenter gui
-
setUseConjugateGradientDescent
public void setUseConjugateGradientDescent(boolean useConjugateGradientDescent) Sets whether conjugate gradient descent is used.- Parameters:
useConjugateGradientDescent
- true if CGD is to be used.
-
getUseConjugateGradientDescent
public boolean getUseConjugateGradientDescent()Gets whether to use conjugate gradient descent rather than BFGS updates.- Returns:
- true if CGD is used
-
doNotStandardizeAttributesTipText
Returns the tip text for this property- Returns:
- tip text for this property suitable for displaying in the explorer/experimenter gui
-
setDoNotStandardizeAttributes
public void setDoNotStandardizeAttributes(boolean DoNotStandardizeAttributes) Sets whether not to standardize attributes- Parameters:
DoNotStandardizeAttributes
- true if attributes are not to be standardize
-
getDoNotStandardizeAttributes
public boolean getDoNotStandardizeAttributes()Gets whether not to standardize attributes.- Returns:
- true if attributes are not being standardized
-
ridgeTipText
Returns the tip text for this property- Returns:
- tip text for this property suitable for displaying in the explorer/experimenter gui
-
setRidge
public void setRidge(double ridge) Sets the ridge in the log-likelihood.- Parameters:
ridge
- the ridge
-
getRidge
public double getRidge()Gets the ridge in the log-likelihood.- Returns:
- the ridge
-
maxItsTipText
Returns the tip text for this property- Returns:
- tip text for this property suitable for displaying in the explorer/experimenter gui
-
getMaxIts
public int getMaxIts()Get the value of MaxIts.- Returns:
- Value of MaxIts.
-
setMaxIts
public void setMaxIts(int newMaxIts) Set the value of MaxIts.- Parameters:
newMaxIts
- Value to assign to MaxIts.
-
getCapabilities
Returns default capabilities of the classifier.- Specified by:
getCapabilities
in interfaceCapabilitiesHandler
- Specified by:
getCapabilities
in interfaceClassifier
- Overrides:
getCapabilities
in classAbstractClassifier
- Returns:
- the capabilities of this classifier
- See Also:
-
buildClassifier
Builds the classifier- Specified by:
buildClassifier
in interfaceClassifier
- Parameters:
train
- the training data to be used for generating the boosted classifier.- Throws:
Exception
- if the classifier could not be built successfully
-
distributionForInstance
Computes the distribution for a given instance- Specified by:
distributionForInstance
in interfaceClassifier
- Overrides:
distributionForInstance
in classAbstractClassifier
- Parameters:
instance
- the instance for which distribution is computed- Returns:
- the distribution
- Throws:
Exception
- if the distribution can't be computed successfully
-
coefficients
public double[][] coefficients()Returns the coefficients for this logistic model. The first dimension indexes the attributes, and the second the classes.- Returns:
- the coefficients for this logistic model
-
toString
Gets a string describing the classifier. -
getRevision
Returns the revision string.- Specified by:
getRevision
in interfaceRevisionHandler
- Overrides:
getRevision
in classAbstractClassifier
- Returns:
- the revision
-
aggregate
Aggregate an object with this one- Specified by:
aggregate
in interfaceAggregateable<Logistic>
- Parameters:
toAggregate
- the object to aggregate- Returns:
- the result of aggregation
- Throws:
Exception
- if the supplied object can't be aggregated for some reason
-
finalizeAggregation
Call to complete the aggregation process. Allows implementers to do any final processing based on how many objects were aggregated.- Specified by:
finalizeAggregation
in interfaceAggregateable<Logistic>
- Throws:
Exception
- if the aggregation can't be finalized for some reason
-
main
Main method for testing this class.- Parameters:
argv
- should contain the command line arguments to the scheme (see Evaluation)
-
toPMML
Produce a PMML representation of this logistic model- Specified by:
toPMML
in interfacePMMLProducer
- Parameters:
train
- the training data that was used to construct the model- Returns:
- a string containing the PMML representation
-