Package weka.filters.supervised.instance
Class Resample
java.lang.Object
weka.filters.Filter
weka.filters.supervised.instance.Resample
- All Implemented Interfaces:
Serializable,CapabilitiesHandler,CapabilitiesIgnorer,CommandlineRunnable,OptionHandler,Randomizable,RevisionHandler,WeightedAttributesHandler,SupervisedFilter
public class Resample
extends Filter
implements SupervisedFilter, OptionHandler, Randomizable, WeightedAttributesHandler
Produces a random subsample of a dataset using
either sampling with replacement or without replacement.
The original dataset must fit entirely in memory. The number of instances in the generated dataset may be specified. The dataset must have a nominal class attribute. If not, use the unsupervised version. The filter can be made to maintain the class distribution in the subsample, or to bias the class distribution toward a uniform distribution. When used in batch mode (i.e. in the FilteredClassifier), subsequent batches are NOT resampled. Valid options are:
The original dataset must fit entirely in memory. The number of instances in the generated dataset may be specified. The dataset must have a nominal class attribute. If not, use the unsupervised version. The filter can be made to maintain the class distribution in the subsample, or to bias the class distribution toward a uniform distribution. When used in batch mode (i.e. in the FilteredClassifier), subsequent batches are NOT resampled. Valid options are:
-S <num> Specify the random number seed (default 1)
-Z <num> The size of the output dataset, as a percentage of the input dataset (default 100)
-B <num> Bias factor towards uniform class distribution. 0 = distribution in input data -- 1 = uniform distribution. (default 0)
-no-replacement Disables replacement of instances (default: with replacement)
-V Inverts the selection - only available with '-no-replacement'.
- Version:
- $Revision: 15265 $
- Author:
- Len Trigg (len@reeltwo.com), FracPete (fracpete at waikato dot ac dot nz), Eibe Frank
- See Also:
-
Constructor Summary
Constructors -
Method Summary
Modifier and TypeMethodDescriptionbooleanSignify that this batch of input to the filter is finished.Returns the tip text for this property.doubleGets the bias towards a uniform class.Returns the Capabilities of this filter.booleanGets whether selection is inverted (only if instances are drawn WIHTOUT replacement).booleanGets whether instances are drawn with or without replacement.String[]Gets the current settings of the filter.intGets the random number seed.Returns the revision string.doubleGets the subsample size as a percentage of the original set.intgetSeed()Gets the seed for the random number generationsReturns a string describing this filter.booleanInput an instance for filtering.Returns the tip text for this property.Returns an enumeration describing the available options.static voidMain method for testing this class.Returns the tip text for this property.Returns the tip text for this property.Returns the tip text for this property.voidsetBiasToUniformClass(double newBiasToUniformClass) Sets the bias towards a uniform class.booleansetInputFormat(Instances instanceInfo) Sets the format of the input instances.voidsetInvertSelection(boolean value) Sets whether the selection is inverted (only if instances are drawn WIHTOUT replacement).voidsetNoReplacement(boolean value) Sets whether instances are drawn with or with out replacement.voidsetOptions(String[] options) Parses a given list of options.voidsetRandomSeed(int newSeed) Sets the random number seed.voidsetSampleSizePercent(double newSampleSizePercent) Sets the size of the subsample, as a percentage of the original set.voidsetSeed(int seed) Set the seed for random number generation.Methods inherited from class weka.filters.Filter
batchFilterFile, debugTipText, doNotCheckCapabilitiesTipText, filterFile, getCapabilities, getCopyOfInputFormat, getDebug, getDoNotCheckCapabilities, getOutputFormat, isFirstBatchDone, isNewBatch, isOutputFormatDefined, makeCopies, makeCopy, mayRemoveInstanceAfterFirstBatchDone, numPendingOutput, output, outputPeek, postExecution, preExecution, run, runFilter, setDebug, setDoNotCheckCapabilities, toString, useFilter, wekaStaticWrapper
-
Constructor Details
-
Resample
public Resample()
-
-
Method Details
-
globalInfo
Returns a string describing this filter.- Returns:
- a description of the filter suitable for displaying in the explorer/experimenter gui
-
listOptions
Returns an enumeration describing the available options.- Specified by:
listOptionsin interfaceOptionHandler- Overrides:
listOptionsin classFilter- Returns:
- an enumeration of all the available options.
-
setOptions
Parses a given list of options. Valid options are:-S <num> Specify the random number seed (default 1)
-Z <num> The size of the output dataset, as a percentage of the input dataset (default 100)
-B <num> Bias factor towards uniform class distribution. 0 = distribution in input data -- 1 = uniform distribution. (default 0)
-no-replacement Disables replacement of instances (default: with replacement)
-V Inverts the selection - only available with '-no-replacement'.
- Specified by:
setOptionsin interfaceOptionHandler- Overrides:
setOptionsin classFilter- Parameters:
options- the list of options as an array of strings- Throws:
Exception- if an option is not supported
-
getOptions
Gets the current settings of the filter.- Specified by:
getOptionsin interfaceOptionHandler- Overrides:
getOptionsin classFilter- Returns:
- an array of strings suitable for passing to setOptions
-
biasToUniformClassTipText
Returns the tip text for this property.- Returns:
- tip text for this property suitable for displaying in the explorer/experimenter gui
-
getBiasToUniformClass
public double getBiasToUniformClass()Gets the bias towards a uniform class. A value of 0 leaves the class distribution as-is, a value of 1 ensures the class distributions are uniform in the output data.- Returns:
- the current bias
-
setBiasToUniformClass
public void setBiasToUniformClass(double newBiasToUniformClass) Sets the bias towards a uniform class. A value of 0 leaves the class distribution as-is, a value of 1 ensures the class distributions are uniform in the output data.- Parameters:
newBiasToUniformClass- the new bias value, between 0 and 1.
-
randomSeedTipText
Returns the tip text for this property.- Returns:
- tip text for this property suitable for displaying in the explorer/experimenter gui
-
getRandomSeed
public int getRandomSeed()Gets the random number seed.- Returns:
- the random number seed.
-
setRandomSeed
public void setRandomSeed(int newSeed) Sets the random number seed.- Parameters:
newSeed- the new random number seed.
-
setSeed
Description copied from interface:RandomizableSet the seed for random number generation.- Specified by:
setSeedin interfaceRandomizable- Parameters:
seed- the seed
-
getSeed
Description copied from interface:RandomizableGets the seed for the random number generations- Specified by:
getSeedin interfaceRandomizable- Returns:
- the seed for the random number generation
-
sampleSizePercentTipText
Returns the tip text for this property.- Returns:
- tip text for this property suitable for displaying in the explorer/experimenter gui
-
getSampleSizePercent
public double getSampleSizePercent()Gets the subsample size as a percentage of the original set.- Returns:
- the subsample size
-
setSampleSizePercent
public void setSampleSizePercent(double newSampleSizePercent) Sets the size of the subsample, as a percentage of the original set.- Parameters:
newSampleSizePercent- the subsample set size, between 0 and 100.
-
noReplacementTipText
Returns the tip text for this property.- Returns:
- tip text for this property suitable for displaying in the explorer/experimenter gui
-
getNoReplacement
public boolean getNoReplacement()Gets whether instances are drawn with or without replacement.- Returns:
- true if the replacement is disabled
-
setNoReplacement
public void setNoReplacement(boolean value) Sets whether instances are drawn with or with out replacement.- Parameters:
value- if true then the replacement of instances is disabled
-
invertSelectionTipText
Returns the tip text for this property.- Returns:
- tip text for this property suitable for displaying in the explorer/experimenter gui
-
getInvertSelection
public boolean getInvertSelection()Gets whether selection is inverted (only if instances are drawn WIHTOUT replacement).- Returns:
- true if the replacement is disabled
- See Also:
-
m_NoReplacement
-
setInvertSelection
public void setInvertSelection(boolean value) Sets whether the selection is inverted (only if instances are drawn WIHTOUT replacement).- Parameters:
value- if true then selection is inverted
-
getCapabilities
Returns the Capabilities of this filter.- Specified by:
getCapabilitiesin interfaceCapabilitiesHandler- Overrides:
getCapabilitiesin classFilter- Returns:
- the capabilities of this object
- See Also:
-
setInputFormat
Sets the format of the input instances.- Overrides:
setInputFormatin classFilter- Parameters:
instanceInfo- an Instances object containing the input instance structure (any instances contained in the object are ignored - only the structure is required).- Returns:
- true if the outputFormat may be collected immediately
- Throws:
Exception- if the input format can't be set successfully
-
input
Input an instance for filtering. Filter requires all training instances be read before producing output.- Overrides:
inputin classFilter- Parameters:
instance- the input instance- Returns:
- true if the filtered instance may now be collected with output().
- Throws:
IllegalStateException- if no input structure has been defined
-
batchFinished
public boolean batchFinished()Signify that this batch of input to the filter is finished. If the filter requires all instances prior to filtering, output() may now be called to retrieve the filtered instances.- Overrides:
batchFinishedin classFilter- Returns:
- true if there are instances pending output
- Throws:
IllegalStateException- if no input structure has been defined
-
getRevision
Returns the revision string.- Specified by:
getRevisionin interfaceRevisionHandler- Overrides:
getRevisionin classFilter- Returns:
- the revision
-
main
Main method for testing this class.- Parameters:
argv- should contain arguments to the filter: use -h for help
-