Package weka.classifiers.bayes
Class NaiveBayesMultinomial
java.lang.Object
weka.classifiers.AbstractClassifier
weka.classifiers.bayes.NaiveBayesMultinomial
- All Implemented Interfaces:
Serializable
,Cloneable
,Classifier
,BatchPredictor
,CapabilitiesHandler
,CapabilitiesIgnorer
,CommandlineRunnable
,OptionHandler
,RevisionHandler
,TechnicalInformationHandler
,WeightedInstancesHandler
- Direct Known Subclasses:
NaiveBayesMultinomialUpdateable
public class NaiveBayesMultinomial
extends AbstractClassifier
implements WeightedInstancesHandler, TechnicalInformationHandler
Class for building and using a multinomial Naive Bayes classifier. For more information see,
Andrew Mccallum, Kamal Nigam: A Comparison of Event Models for Naive Bayes Text Classification. In: AAAI-98 Workshop on 'Learning for Text Categorization', 1998.
The core equation for this classifier:
P[Ci|D] = (P[D|Ci] x P[Ci]) / P[D] (Bayes rule)
where Ci is class i and D is a document. BibTeX:
If set, classifier is run in debug mode and may output additional info to the console.
Andrew Mccallum, Kamal Nigam: A Comparison of Event Models for Naive Bayes Text Classification. In: AAAI-98 Workshop on 'Learning for Text Categorization', 1998.
The core equation for this classifier:
P[Ci|D] = (P[D|Ci] x P[Ci]) / P[D] (Bayes rule)
where Ci is class i and D is a document. BibTeX:
@inproceedings{Mccallum1998, author = {Andrew Mccallum and Kamal Nigam}, booktitle = {AAAI-98 Workshop on 'Learning for Text Categorization'}, title = {A Comparison of Event Models for Naive Bayes Text Classification}, year = {1998} }Valid options are: -output-debug-info
If set, classifier is run in debug mode and may output additional info to the console.
-do-not-check-capabilities
If set, classifier capabilities are not checked before classifier is built
(use with caution).
-num-decimal-laces
The number of decimal places for the output of numbers in the model.
-batch-size
The desired batch size for batch prediction.
- Version:
- $Revision: 14250 $
- Author:
- Andrew Golightly (acg4@cs.waikato.ac.nz), Bernhard Pfahringer (bernhard@cs.waikato.ac.nz), Eibe Frank (eibe@cs.waikato.ac.nz)
- See Also:
-
Field Summary
Fields inherited from class weka.classifiers.AbstractClassifier
BATCH_SIZE_DEFAULT, NUM_DECIMAL_PLACES_DEFAULT
-
Constructor Summary
-
Method Summary
Modifier and TypeMethodDescriptionvoid
buildClassifier
(Instances instances) Generates the classifier.double[]
distributionForInstance
(Instance instance) Calculates the class membership probabilities for the given test instance.Returns default capabilities of the classifier.Returns the revision string.Returns an instance of a TechnicalInformation object, containing detailed information about the technical background of this class, e.g., paper reference or book this class is based on.Returns a string describing this classifierstatic void
Main method for testing this class.toString()
Returns a string representation of the classifier.Methods inherited from class weka.classifiers.AbstractClassifier
batchSizeTipText, classifyInstance, debugTipText, distributionsForInstances, doNotCheckCapabilitiesTipText, forName, getBatchSize, getDebug, getDoNotCheckCapabilities, getNumDecimalPlaces, getOptions, implementsMoreEfficientBatchPrediction, listOptions, makeCopies, makeCopy, numDecimalPlacesTipText, postExecution, preExecution, run, runClassifier, setBatchSize, setDebug, setDoNotCheckCapabilities, setNumDecimalPlaces, setOptions
-
Constructor Details
-
NaiveBayesMultinomial
public NaiveBayesMultinomial()
-
-
Method Details
-
globalInfo
Returns a string describing this classifier- Returns:
- a description of the classifier suitable for displaying in the explorer/experimenter gui
-
getTechnicalInformation
Returns an instance of a TechnicalInformation object, containing detailed information about the technical background of this class, e.g., paper reference or book this class is based on.- Specified by:
getTechnicalInformation
in interfaceTechnicalInformationHandler
- Returns:
- the technical information about this class
-
getCapabilities
Returns default capabilities of the classifier.- Specified by:
getCapabilities
in interfaceCapabilitiesHandler
- Specified by:
getCapabilities
in interfaceClassifier
- Overrides:
getCapabilities
in classAbstractClassifier
- Returns:
- the capabilities of this classifier
- See Also:
-
buildClassifier
Generates the classifier.- Specified by:
buildClassifier
in interfaceClassifier
- Parameters:
instances
- set of instances serving as training data- Throws:
Exception
- if the classifier has not been generated successfully
-
distributionForInstance
Calculates the class membership probabilities for the given test instance.- Specified by:
distributionForInstance
in interfaceClassifier
- Overrides:
distributionForInstance
in classAbstractClassifier
- Parameters:
instance
- the instance to be classified- Returns:
- predicted class probability distribution
- Throws:
Exception
- if there is a problem generating the prediction
-
toString
Returns a string representation of the classifier. -
getRevision
Returns the revision string.- Specified by:
getRevision
in interfaceRevisionHandler
- Overrides:
getRevision
in classAbstractClassifier
- Returns:
- the revision
-
main
Main method for testing this class.- Parameters:
argv
- the options
-