Package weka.classifiers.rules
Class M5Rules
java.lang.Object
weka.classifiers.AbstractClassifier
weka.classifiers.trees.m5.M5Base
weka.classifiers.rules.M5Rules
- All Implemented Interfaces:
Serializable
,Cloneable
,Classifier
,AdditionalMeasureProducer
,BatchPredictor
,CapabilitiesHandler
,CapabilitiesIgnorer
,CommandlineRunnable
,OptionHandler
,RevisionHandler
,TechnicalInformationHandler
Generates a decision list for regression problems using separate-and-conquer. In each iteration it builds a model tree using M5 and makes the "best" leaf into a rule.
For more information see:
Geoffrey Holmes, Mark Hall, Eibe Frank: Generating Rule Sets from Model Trees. In: Twelfth Australian Joint Conference on Artificial Intelligence, 1-12, 1999.
Ross J. Quinlan: Learning with Continuous Classes. In: 5th Australian Joint Conference on Artificial Intelligence, Singapore, 343-348, 1992.
Y. Wang, I. H. Witten: Induction of model trees for predicting continuous classes. In: Poster papers of the 9th European Conference on Machine Learning, 1997. BibTeX:
For more information see:
Geoffrey Holmes, Mark Hall, Eibe Frank: Generating Rule Sets from Model Trees. In: Twelfth Australian Joint Conference on Artificial Intelligence, 1-12, 1999.
Ross J. Quinlan: Learning with Continuous Classes. In: 5th Australian Joint Conference on Artificial Intelligence, Singapore, 343-348, 1992.
Y. Wang, I. H. Witten: Induction of model trees for predicting continuous classes. In: Poster papers of the 9th European Conference on Machine Learning, 1997. BibTeX:
@inproceedings{Holmes1999, author = {Geoffrey Holmes and Mark Hall and Eibe Frank}, booktitle = {Twelfth Australian Joint Conference on Artificial Intelligence}, pages = {1-12}, publisher = {Springer}, title = {Generating Rule Sets from Model Trees}, year = {1999} } @inproceedings{Quinlan1992, address = {Singapore}, author = {Ross J. Quinlan}, booktitle = {5th Australian Joint Conference on Artificial Intelligence}, pages = {343-348}, publisher = {World Scientific}, title = {Learning with Continuous Classes}, year = {1992} } @inproceedings{Wang1997, author = {Y. Wang and I. H. Witten}, booktitle = {Poster papers of the 9th European Conference on Machine Learning}, publisher = {Springer}, title = {Induction of model trees for predicting continuous classes}, year = {1997} }Valid options are:
-N Use unpruned tree/rules
-U Use unsmoothed predictions
-R Build regression tree/rule rather than a model tree/rule
-M <minimum number of instances> Set minimum number of instances per leaf (default 4)
- Version:
- $Revision: 8034 $
- Author:
- Mark Hall
- See Also:
-
Field Summary
Fields inherited from class weka.classifiers.AbstractClassifier
BATCH_SIZE_DEFAULT, NUM_DECIMAL_PLACES_DEFAULT
-
Constructor Summary
-
Method Summary
Modifier and TypeMethodDescriptionReturns the revision string.Returns an instance of a TechnicalInformation object, containing detailed information about the technical background of this class, e.g., paper reference or book this class is based on.Returns a string describing classifierstatic void
Main method by which this class can be testedMethods inherited from class weka.classifiers.trees.m5.M5Base
buildClassifier, buildRegressionTreeTipText, classifyInstance, enumerateMeasures, generateRulesTipText, getBuildRegressionTree, getCapabilities, getM5RootNode, getMeasure, getMinNumInstances, getOptions, getUnpruned, getUseUnsmoothed, listOptions, measureNumRules, minNumInstancesTipText, setBuildRegressionTree, setMinNumInstances, setOptions, setUnpruned, setUseUnsmoothed, toString, unprunedTipText, useUnsmoothedTipText
Methods inherited from class weka.classifiers.AbstractClassifier
batchSizeTipText, debugTipText, distributionForInstance, distributionsForInstances, doNotCheckCapabilitiesTipText, forName, getBatchSize, getDebug, getDoNotCheckCapabilities, getNumDecimalPlaces, implementsMoreEfficientBatchPrediction, makeCopies, makeCopy, numDecimalPlacesTipText, postExecution, preExecution, run, runClassifier, setBatchSize, setDebug, setDoNotCheckCapabilities, setNumDecimalPlaces
-
Constructor Details
-
M5Rules
public M5Rules()Constructor
-
-
Method Details
-
globalInfo
Returns a string describing classifier- Returns:
- a description suitable for displaying in the explorer/experimenter gui
-
getTechnicalInformation
Returns an instance of a TechnicalInformation object, containing detailed information about the technical background of this class, e.g., paper reference or book this class is based on.- Specified by:
getTechnicalInformation
in interfaceTechnicalInformationHandler
- Overrides:
getTechnicalInformation
in classM5Base
- Returns:
- the technical information about this class
-
getRevision
Returns the revision string.- Specified by:
getRevision
in interfaceRevisionHandler
- Overrides:
getRevision
in classAbstractClassifier
- Returns:
- the revision
-
main
Main method by which this class can be tested- Parameters:
args
- an array of options
-