Package weka.attributeSelection
Class ReliefFAttributeEval
java.lang.Object
weka.attributeSelection.ASEvaluation
weka.attributeSelection.ReliefFAttributeEval
- All Implemented Interfaces:
Serializable
,AttributeEvaluator
,CapabilitiesHandler
,CapabilitiesIgnorer
,CommandlineRunnable
,OptionHandler
,RevisionHandler
,TechnicalInformationHandler
public class ReliefFAttributeEval
extends ASEvaluation
implements AttributeEvaluator, OptionHandler, TechnicalInformationHandler
ReliefFAttributeEval :
Evaluates the worth of an attribute by repeatedly sampling an instance and considering the value of the given attribute for the nearest instance of the same and different class. Can operate on both discrete and continuous class data.
For more information see:
Kenji Kira, Larry A. Rendell: A Practical Approach to Feature Selection. In: Ninth International Workshop on Machine Learning, 249-256, 1992.
Igor Kononenko: Estimating Attributes: Analysis and Extensions of RELIEF. In: European Conference on Machine Learning, 171-182, 1994.
Marko Robnik-Sikonja, Igor Kononenko: An adaptation of Relief for attribute estimation in regression. In: Fourteenth International Conference on Machine Learning, 296-304, 1997. BibTeX:
Evaluates the worth of an attribute by repeatedly sampling an instance and considering the value of the given attribute for the nearest instance of the same and different class. Can operate on both discrete and continuous class data.
For more information see:
Kenji Kira, Larry A. Rendell: A Practical Approach to Feature Selection. In: Ninth International Workshop on Machine Learning, 249-256, 1992.
Igor Kononenko: Estimating Attributes: Analysis and Extensions of RELIEF. In: European Conference on Machine Learning, 171-182, 1994.
Marko Robnik-Sikonja, Igor Kononenko: An adaptation of Relief for attribute estimation in regression. In: Fourteenth International Conference on Machine Learning, 296-304, 1997. BibTeX:
@inproceedings{Kira1992, author = {Kenji Kira and Larry A. Rendell}, booktitle = {Ninth International Workshop on Machine Learning}, editor = {Derek H. Sleeman and Peter Edwards}, pages = {249-256}, publisher = {Morgan Kaufmann}, title = {A Practical Approach to Feature Selection}, year = {1992} } @inproceedings{Kononenko1994, author = {Igor Kononenko}, booktitle = {European Conference on Machine Learning}, editor = {Francesco Bergadano and Luc De Raedt}, pages = {171-182}, publisher = {Springer}, title = {Estimating Attributes: Analysis and Extensions of RELIEF}, year = {1994} } @inproceedings{Robnik-Sikonja1997, author = {Marko Robnik-Sikonja and Igor Kononenko}, booktitle = {Fourteenth International Conference on Machine Learning}, editor = {Douglas H. Fisher}, pages = {296-304}, publisher = {Morgan Kaufmann}, title = {An adaptation of Relief for attribute estimation in regression}, year = {1997} }Valid options are:
-M <num instances> Specify the number of instances to sample when estimating attributes. If not specified, then all instances will be used.
-D <seed> Seed for randomly sampling instances. (Default = 1)
-K <number of neighbours> Number of nearest neighbours (k) used to estimate attribute relevances (Default = 10).
-W Weight nearest neighbours by distance
-A <num> Specify sigma value (used in an exp function to control how quickly weights for more distant instances decrease. Use in conjunction with -W. Sensible value=1/5 to 1/10 of the number of nearest neighbours. (Default = 2)
- Version:
- $Revision: 15519 $
- Author:
- Mark Hall (mhall@cs.waikato.ac.nz)
- See Also:
-
Constructor Summary
-
Method Summary
Modifier and TypeMethodDescriptionvoid
buildEvaluator
(Instances data) Initializes a ReliefF attribute evaluator.double
evaluateAttribute
(int attribute) Evaluates an individual attribute using ReliefF's instance based approach.Returns the capabilities of this evaluator.int
Get the number of nearest neighboursString[]
Gets the current settings of ReliefFAttributeEval.Returns the revision string.int
Get the number of instances used for estimating attributesint
getSeed()
Get the seed used for randomly sampling instances.int
getSigma()
Get the value of sigma.Returns an instance of a TechnicalInformation object, containing detailed information about the technical background of this class, e.g., paper reference or book this class is based on.boolean
Get whether nearest neighbours are being weighted by distanceReturns a string describing this attribute evaluatorReturns an enumeration describing the available options.static void
Main method for testing this class.Returns the tip text for this propertyint[]
postProcess
(int[] attributeSet) Provides a chance for a attribute evaluator to do any special post processing of the selected attribute set.Returns the tip text for this propertyReturns the tip text for this propertyvoid
setNumNeighbours
(int n) Set the number of nearest neighboursvoid
setOptions
(String[] options) Parses a given list of options.void
setSampleSize
(int s) Set the number of instances to sample for attribute estimationvoid
setSeed
(int s) Set the random number seed for randomly sampling instances.void
setSigma
(int s) Sets the sigma value.void
setWeightByDistance
(boolean b) Set the nearest neighbour weighting methodReturns the tip text for this propertytoString()
Return a description of the ReliefF attribute evaluator.Returns the tip text for this propertyMethods inherited from class weka.attributeSelection.ASEvaluation
clean, doNotCheckCapabilitiesTipText, forName, getDoNotCheckCapabilities, makeCopies, postExecution, preExecution, run, runEvaluator, setDoNotCheckCapabilities
-
Constructor Details
-
ReliefFAttributeEval
public ReliefFAttributeEval()Constructor
-
-
Method Details
-
globalInfo
Returns a string describing this attribute evaluator- Returns:
- a description of the evaluator suitable for displaying in the explorer/experimenter gui
-
getTechnicalInformation
Returns an instance of a TechnicalInformation object, containing detailed information about the technical background of this class, e.g., paper reference or book this class is based on.- Specified by:
getTechnicalInformation
in interfaceTechnicalInformationHandler
- Returns:
- the technical information about this class
-
listOptions
Returns an enumeration describing the available options.- Specified by:
listOptions
in interfaceOptionHandler
- Overrides:
listOptions
in classASEvaluation
- Returns:
- an enumeration of all the available options.
-
setOptions
Parses a given list of options. Valid options are:-M <num instances> Specify the number of instances to sample when estimating attributes. If not specified, then all instances will be used.
-D <seed> Seed for randomly sampling instances. (Default = 1)
-K <number of neighbours> Number of nearest neighbours (k) used to estimate attribute relevances (Default = 10).
-W Weight nearest neighbours by distance
-A <num> Specify sigma value (used in an exp function to control how quickly weights for more distant instances decrease. Use in conjunction with -W. Sensible value=1/5 to 1/10 of the number of nearest neighbours. (Default = 2)
- Specified by:
setOptions
in interfaceOptionHandler
- Overrides:
setOptions
in classASEvaluation
- Parameters:
options
- the list of options as an array of strings- Throws:
Exception
- if an option is not supported
-
sigmaTipText
Returns the tip text for this property- Returns:
- tip text for this property suitable for displaying in the explorer/experimenter gui
-
setSigma
Sets the sigma value.- Parameters:
s
- the value of sigma (> 0)- Throws:
Exception
- if s is not positive
-
getSigma
public int getSigma()Get the value of sigma.- Returns:
- the sigma value.
-
numNeighboursTipText
Returns the tip text for this property- Returns:
- tip text for this property suitable for displaying in the explorer/experimenter gui
-
setNumNeighbours
public void setNumNeighbours(int n) Set the number of nearest neighbours- Parameters:
n
- the number of nearest neighbours.
-
getNumNeighbours
public int getNumNeighbours()Get the number of nearest neighbours- Returns:
- the number of nearest neighbours
-
seedTipText
Returns the tip text for this property- Returns:
- tip text for this property suitable for displaying in the explorer/experimenter gui
-
setSeed
public void setSeed(int s) Set the random number seed for randomly sampling instances.- Parameters:
s
- the random number seed.
-
getSeed
public int getSeed()Get the seed used for randomly sampling instances.- Returns:
- the random number seed.
-
sampleSizeTipText
Returns the tip text for this property- Returns:
- tip text for this property suitable for displaying in the explorer/experimenter gui
-
setSampleSize
public void setSampleSize(int s) Set the number of instances to sample for attribute estimation- Parameters:
s
- the number of instances to sample.
-
getSampleSize
public int getSampleSize()Get the number of instances used for estimating attributes- Returns:
- the number of instances.
-
weightByDistanceTipText
Returns the tip text for this property- Returns:
- tip text for this property suitable for displaying in the explorer/experimenter gui
-
setWeightByDistance
public void setWeightByDistance(boolean b) Set the nearest neighbour weighting method- Parameters:
b
- true nearest neighbours are to be weighted by distance.
-
getWeightByDistance
public boolean getWeightByDistance()Get whether nearest neighbours are being weighted by distance- Returns:
- m_weightByDiffernce
-
getOptions
Gets the current settings of ReliefFAttributeEval.- Specified by:
getOptions
in interfaceOptionHandler
- Overrides:
getOptions
in classASEvaluation
- Returns:
- an array of strings suitable for passing to setOptions()
-
toString
Return a description of the ReliefF attribute evaluator. -
getCapabilities
Returns the capabilities of this evaluator.- Specified by:
getCapabilities
in interfaceCapabilitiesHandler
- Overrides:
getCapabilities
in classASEvaluation
- Returns:
- the capabilities of this evaluator
- See Also:
-
buildEvaluator
Initializes a ReliefF attribute evaluator.- Specified by:
buildEvaluator
in classASEvaluation
- Parameters:
data
- set of instances serving as training data- Throws:
Exception
- if the evaluator has not been generated successfully
-
evaluateAttribute
Evaluates an individual attribute using ReliefF's instance based approach. The actual work is done by buildEvaluator which evaluates all features.- Specified by:
evaluateAttribute
in interfaceAttributeEvaluator
- Parameters:
attribute
- the index of the attribute to be evaluated- Returns:
- the "merit" of the attribute
- Throws:
Exception
- if the attribute could not be evaluated
-
getRevision
Returns the revision string.- Specified by:
getRevision
in interfaceRevisionHandler
- Overrides:
getRevision
in classASEvaluation
- Returns:
- the revision
-
postProcess
public int[] postProcess(int[] attributeSet) Description copied from class:ASEvaluation
Provides a chance for a attribute evaluator to do any special post processing of the selected attribute set. Can also be used to clean up any data structures post attribute selection.- Overrides:
postProcess
in classASEvaluation
- Parameters:
attributeSet
- the set of attributes found by the search- Returns:
- a possibly ranked list of postprocessed attributes
-
main
Main method for testing this class.- Parameters:
args
- the options
-