Class SimulatedAnnealing
java.lang.Object
weka.classifiers.bayes.net.search.SearchAlgorithm
weka.classifiers.bayes.net.search.global.GlobalScoreSearchAlgorithm
weka.classifiers.bayes.net.search.global.SimulatedAnnealing
- All Implemented Interfaces:
Serializable
,OptionHandler
,RevisionHandler
,TechnicalInformationHandler
public class SimulatedAnnealing
extends GlobalScoreSearchAlgorithm
implements TechnicalInformationHandler
This Bayes Network learning algorithm uses the
general purpose search method of simulated annealing to find a well scoring
network structure.
For more information see:
R.R. Bouckaert (1995). Bayesian Belief Networks: from Construction to Inference. Utrecht, Netherlands. BibTeX:
For more information see:
R.R. Bouckaert (1995). Bayesian Belief Networks: from Construction to Inference. Utrecht, Netherlands. BibTeX:
@phdthesis{Bouckaert1995, address = {Utrecht, Netherlands}, author = {R.R. Bouckaert}, institution = {University of Utrecht}, title = {Bayesian Belief Networks: from Construction to Inference}, year = {1995} }Valid options are:
-A <float> Start temperature
-U <integer> Number of runs
-D <float> Delta temperature
-R <seed> Random number seed
-mbc Applies a Markov Blanket correction to the network structure, after a network structure is learned. This ensures that all nodes in the network are part of the Markov blanket of the classifier node.
-S [LOO-CV|k-Fold-CV|Cumulative-CV] Score type (LOO-CV,k-Fold-CV,Cumulative-CV)
-Q Use probabilistic or 0/1 scoring. (default probabilistic scoring)
- Version:
- $Revision: 11267 $
- Author:
- Remco Bouckaert (rrb@xm.co.nz)
- See Also:
-
Field Summary
Fields inherited from class weka.classifiers.bayes.net.search.global.GlobalScoreSearchAlgorithm
TAGS_CV_TYPE
-
Constructor Summary
-
Method Summary
Modifier and TypeMethodDescriptiondouble
getDelta()
String[]
Gets the current settings of the search algorithm.Returns the revision string.int
getRuns()
int
getSeed()
Returns an instance of a TechnicalInformation object, containing detailed information about the technical background of this class, e.g., paper reference or book this class is based on.double
This will return a string describing the classifier.Returns an enumeration describing the available options.void
void
setDelta
(double fDelta) Sets the m_fDelta.void
setOptions
(String[] options) Parses a given list of options.void
setRuns
(int nRuns) Sets the m_nRuns.void
setSeed
(int nSeed) Sets the random number seedvoid
setTStart
(double fTStart) Sets the m_fTStart.Methods inherited from class weka.classifiers.bayes.net.search.global.GlobalScoreSearchAlgorithm
calcScore, calcScoreWithExtraParent, calcScoreWithMissingParent, calcScoreWithReversedParent, cumulativeCV, CVTypeTipText, getCVType, getMarkovBlanketClassifier, getUseProb, kFoldCV, leaveOneOutCV, markovBlanketClassifierTipText, setCVType, setMarkovBlanketClassifier, setUseProb, useProbTipText
Methods inherited from class weka.classifiers.bayes.net.search.SearchAlgorithm
buildStructure, initAsNaiveBayesTipText, maxNrOfParentsTipText, toString
-
Constructor Details
-
SimulatedAnnealing
public SimulatedAnnealing()
-
-
Method Details
-
getTechnicalInformation
Returns an instance of a TechnicalInformation object, containing detailed information about the technical background of this class, e.g., paper reference or book this class is based on.- Specified by:
getTechnicalInformation
in interfaceTechnicalInformationHandler
- Returns:
- the technical information about this class
-
search
- Parameters:
bayesNet
- the bayes net to useinstances
- the data to use- Throws:
Exception
- if something goes wrong
-
getDelta
public double getDelta()- Returns:
- double
-
getTStart
public double getTStart()- Returns:
- double
-
getRuns
public int getRuns()- Returns:
- int
-
setDelta
public void setDelta(double fDelta) Sets the m_fDelta.- Parameters:
fDelta
- The m_fDelta to set
-
setTStart
public void setTStart(double fTStart) Sets the m_fTStart.- Parameters:
fTStart
- The m_fTStart to set
-
setRuns
public void setRuns(int nRuns) Sets the m_nRuns.- Parameters:
nRuns
- The m_nRuns to set
-
getSeed
public int getSeed()- Returns:
- random number seed
-
setSeed
public void setSeed(int nSeed) Sets the random number seed- Parameters:
nSeed
- The number of the seed to set
-
listOptions
Returns an enumeration describing the available options.- Specified by:
listOptions
in interfaceOptionHandler
- Overrides:
listOptions
in classGlobalScoreSearchAlgorithm
- Returns:
- an enumeration of all the available options.
-
setOptions
Parses a given list of options. Valid options are:-A <float> Start temperature
-U <integer> Number of runs
-D <float> Delta temperature
-R <seed> Random number seed
-mbc Applies a Markov Blanket correction to the network structure, after a network structure is learned. This ensures that all nodes in the network are part of the Markov blanket of the classifier node.
-S [LOO-CV|k-Fold-CV|Cumulative-CV] Score type (LOO-CV,k-Fold-CV,Cumulative-CV)
-Q Use probabilistic or 0/1 scoring. (default probabilistic scoring)
- Specified by:
setOptions
in interfaceOptionHandler
- Overrides:
setOptions
in classGlobalScoreSearchAlgorithm
- Parameters:
options
- the list of options as an array of strings- Throws:
Exception
- if an option is not supported
-
getOptions
Gets the current settings of the search algorithm.- Specified by:
getOptions
in interfaceOptionHandler
- Overrides:
getOptions
in classGlobalScoreSearchAlgorithm
- Returns:
- an array of strings suitable for passing to setOptions
-
globalInfo
This will return a string describing the classifier.- Overrides:
globalInfo
in classGlobalScoreSearchAlgorithm
- Returns:
- The string.
-
TStartTipText
- Returns:
- a string to describe the TStart option.
-
runsTipText
- Returns:
- a string to describe the Runs option.
-
deltaTipText
- Returns:
- a string to describe the Delta option.
-
seedTipText
- Returns:
- a string to describe the Seed option.
-
getRevision
Returns the revision string.- Specified by:
getRevision
in interfaceRevisionHandler
- Overrides:
getRevision
in classGlobalScoreSearchAlgorithm
- Returns:
- the revision
-