Package weka.classifiers.evaluation
Class NominalPrediction
java.lang.Object
weka.classifiers.evaluation.NominalPrediction
- All Implemented Interfaces:
Serializable
,Prediction
,RevisionHandler
Encapsulates an evaluatable nominal prediction: the predicted probability
distribution plus the actual class value.
- Version:
- $Revision: 8034 $
- Author:
- Len Trigg (len@reeltwo.com)
- See Also:
-
Field Summary
Fields inherited from interface weka.classifiers.evaluation.Prediction
MISSING_VALUE
-
Constructor Summary
ConstructorDescriptionNominalPrediction
(double actual, double[] distribution) Creates the NominalPrediction object with a default weight of 1.0.NominalPrediction
(double actual, double[] distribution, double weight) Creates the NominalPrediction object. -
Method Summary
Modifier and TypeMethodDescriptiondouble
actual()
Gets the actual class value.double[]
Gets the predicted probabilitiesReturns the revision string.static double[]
makeDistribution
(double predictedClass, int numClasses) Convert a single prediction into a probability distribution with all zero probabilities except the predicted value which has probability 1.0.static double[]
makeUniformDistribution
(int numClasses) Creates a uniform probability distribution -- where each of the possible classes is assigned equal probability.double
margin()
Calculates the prediction margin.double
Gets the predicted class value.toString()
Gets a human readable representation of this prediction.double
weight()
Gets the weight assigned to this prediction.
-
Constructor Details
-
NominalPrediction
public NominalPrediction(double actual, double[] distribution) Creates the NominalPrediction object with a default weight of 1.0.- Parameters:
actual
- the actual value, or MISSING_VALUE.distribution
- the predicted probability distribution. Use NominalPrediction.makeDistribution() if you only know the predicted value.
-
NominalPrediction
public NominalPrediction(double actual, double[] distribution, double weight) Creates the NominalPrediction object.- Parameters:
actual
- the actual value, or MISSING_VALUE.distribution
- the predicted probability distribution. Use NominalPrediction.makeDistribution() if you only know the predicted value.weight
- the weight assigned to the prediction.
-
-
Method Details
-
distribution
public double[] distribution()Gets the predicted probabilities- Returns:
- the predicted probabilities
-
actual
public double actual()Gets the actual class value.- Specified by:
actual
in interfacePrediction
- Returns:
- the actual class value, or MISSING_VALUE if no prediction was made.
-
predicted
public double predicted()Gets the predicted class value.- Specified by:
predicted
in interfacePrediction
- Returns:
- the predicted class value, or MISSING_VALUE if no prediction was made.
-
weight
public double weight()Gets the weight assigned to this prediction. This is typically the weight of the test instance the prediction was made for.- Specified by:
weight
in interfacePrediction
- Returns:
- the weight assigned to this prediction.
-
margin
public double margin()Calculates the prediction margin. This is defined as the difference between the probability predicted for the actual class and the highest predicted probability of the other classes.- Returns:
- the margin for this prediction, or MISSING_VALUE if either the actual or predicted value is missing.
-
makeDistribution
public static double[] makeDistribution(double predictedClass, int numClasses) Convert a single prediction into a probability distribution with all zero probabilities except the predicted value which has probability 1.0. If no prediction was made, all probabilities are zero.- Parameters:
predictedClass
- the index of the predicted class, or MISSING_VALUE if no prediction was made.numClasses
- the number of possible classes for this nominal prediction.- Returns:
- the probability distribution.
-
makeUniformDistribution
public static double[] makeUniformDistribution(int numClasses) Creates a uniform probability distribution -- where each of the possible classes is assigned equal probability.- Parameters:
numClasses
- the number of possible classes for this nominal prediction.- Returns:
- the probability distribution.
-
toString
Gets a human readable representation of this prediction. -
getRevision
Returns the revision string.- Specified by:
getRevision
in interfaceRevisionHandler
- Returns:
- the revision
-