Package weka.classifiers.trees.lmt
Class LogisticBase
java.lang.Object
weka.classifiers.AbstractClassifier
weka.classifiers.trees.lmt.LogisticBase
- All Implemented Interfaces:
Serializable
,Cloneable
,Classifier
,BatchPredictor
,CapabilitiesHandler
,CapabilitiesIgnorer
,CommandlineRunnable
,OptionHandler
,RevisionHandler
,WeightedInstancesHandler
- Direct Known Subclasses:
LMTNode
Base/helper class for building logistic regression models with the LogitBoost
algorithm. Used for building logistic model trees
(weka.classifiers.trees.lmt.LMT) and standalone logistic regression
(weka.classifiers.functions.SimpleLogistic).
Valid options are:
-D If set, classifier is run in debug mode and may output additional info to the console
- Version:
- $Revision: 14202 $
- Author:
- Niels Landwehr, Marc Sumner
- See Also:
-
Field Summary
Fields inherited from class weka.classifiers.AbstractClassifier
BATCH_SIZE_DEFAULT, NUM_DECIMAL_PLACES_DEFAULT
-
Constructor Summary
ConstructorDescriptionConstructor that creates LogisticBase object with standard options.LogisticBase
(int numBoostingIterations, boolean useCrossValidation, boolean errorOnProbabilities) Constructor to create LogisticBase object. -
Method Summary
Modifier and TypeMethodDescriptionvoid
buildClassifier
(Instances data) Builds the logistic regression model usiing LogitBoost.void
cleanup()
Cleanup in order to save memory.double[]
distributionForInstance
(Instance instance) Returns class probabilities for an instance.int
Returns the maxIterations parameter.int
The number of LogitBoost iterations performed (= the number of simple regression functions fit).Returns the revision string.boolean
Get the value of useAIC.int[][]
Returns an array of the indices of the attributes used in the logistic model.double
Get the value of weightTrimBeta.double
Returns the fraction of all attributes in the data that are used in the logistic model (in percent).void
setHeuristicStop
(int heuristicStop) Sets the option "heuristicStop".void
setMaxIterations
(int maxIterations) Sets the parameter "maxIterations".void
setUseAIC
(boolean c) Set the value of useAIC.void
setWeightTrimBeta
(double w) Sets the option "weightTrimBeta".toString()
Returns a description of the logistic model (i.e., attributes and coefficients).Methods inherited from class weka.classifiers.AbstractClassifier
batchSizeTipText, classifyInstance, debugTipText, distributionsForInstances, doNotCheckCapabilitiesTipText, forName, getBatchSize, getCapabilities, getDebug, getDoNotCheckCapabilities, getNumDecimalPlaces, getOptions, implementsMoreEfficientBatchPrediction, listOptions, makeCopies, makeCopy, numDecimalPlacesTipText, postExecution, preExecution, run, runClassifier, setBatchSize, setDebug, setDoNotCheckCapabilities, setNumDecimalPlaces, setOptions
-
Constructor Details
-
LogisticBase
public LogisticBase()Constructor that creates LogisticBase object with standard options. -
LogisticBase
public LogisticBase(int numBoostingIterations, boolean useCrossValidation, boolean errorOnProbabilities) Constructor to create LogisticBase object.- Parameters:
numBoostingIterations
- fixed number of iterations for LogitBoost (if negative, use cross-validation or stopping criterion on the training data).useCrossValidation
- cross-validate number of LogitBoost iterations (if false, use stopping criterion on the training data).errorOnProbabilities
- if true, use error on probabilities instead of misclassification for stopping criterion of LogitBoost
-
-
Method Details
-
buildClassifier
Builds the logistic regression model usiing LogitBoost.- Specified by:
buildClassifier
in interfaceClassifier
- Parameters:
data
- the training data- Throws:
Exception
- if something goes wrong
-
getUsedAttributes
public int[][] getUsedAttributes()Returns an array of the indices of the attributes used in the logistic model. The first dimension is the class, the second dimension holds a list of attribute indices. Attribute indices start at zero.- Returns:
- the array of attribute indices
-
getNumRegressions
public int getNumRegressions()The number of LogitBoost iterations performed (= the number of simple regression functions fit).- Returns:
- the number of LogitBoost iterations performed
-
getWeightTrimBeta
public double getWeightTrimBeta()Get the value of weightTrimBeta.- Returns:
- Value of weightTrimBeta.
-
getUseAIC
public boolean getUseAIC()Get the value of useAIC.- Returns:
- Value of useAIC.
-
setMaxIterations
public void setMaxIterations(int maxIterations) Sets the parameter "maxIterations".- Parameters:
maxIterations
- the maximum iterations
-
setHeuristicStop
public void setHeuristicStop(int heuristicStop) Sets the option "heuristicStop".- Parameters:
heuristicStop
- the heuristic stop to use
-
setWeightTrimBeta
public void setWeightTrimBeta(double w) Sets the option "weightTrimBeta". -
setUseAIC
public void setUseAIC(boolean c) Set the value of useAIC.- Parameters:
c
- Value to assign to useAIC.
-
getMaxIterations
public int getMaxIterations()Returns the maxIterations parameter.- Returns:
- the maximum iteration
-
percentAttributesUsed
public double percentAttributesUsed()Returns the fraction of all attributes in the data that are used in the logistic model (in percent). An attribute is used in the model if it is used in any of the models for the different classes.- Returns:
- the fraction of all attributes that are used
-
toString
Returns a description of the logistic model (i.e., attributes and coefficients). -
distributionForInstance
Returns class probabilities for an instance.- Specified by:
distributionForInstance
in interfaceClassifier
- Overrides:
distributionForInstance
in classAbstractClassifier
- Parameters:
instance
- the instance to compute the distribution for- Returns:
- the class probabilities
- Throws:
Exception
- if distribution can't be computed successfully
-
cleanup
public void cleanup()Cleanup in order to save memory. -
getRevision
Returns the revision string.- Specified by:
getRevision
in interfaceRevisionHandler
- Overrides:
getRevision
in classAbstractClassifier
- Returns:
- the revision
-