Package weka.classifiers
Interface Classifier
- All Known Subinterfaces:
IterativeClassifier
- All Known Implementing Classes:
AbstractClassifier
,AdaBoostM1
,AdditiveRegression
,AttributeSelectedClassifier
,Bagging
,BayesNet
,BayesNetGenerator
,BIFReader
,ClassificationViaRegression
,CostSensitiveClassifier
,CVParameterSelection
,DecisionStump
,DecisionTable
,EditableBayesNet
,FilteredClassifier
,GaussianProcesses
,GeneralRegression
,HoeffdingTree
,IBk
,InputMappedClassifier
,IteratedSingleClassifierEnhancer
,IterativeClassifierOptimizer
,J48
,JRip
,KStar
,LinearRegression
,LMT
,LMTNode
,Logistic
,LogisticBase
,LogitBoost
,LWL
,M5Base
,M5P
,M5Rules
,MultiClassClassifier
,MultiClassClassifierUpdateable
,MultilayerPerceptron
,MultipleClassifiersCombiner
,MultiScheme
,NaiveBayes
,NaiveBayesMultinomial
,NaiveBayesMultinomialText
,NaiveBayesMultinomialUpdateable
,NaiveBayesUpdateable
,NeuralNetwork
,OneR
,ParallelIteratedSingleClassifierEnhancer
,ParallelMultipleClassifiersCombiner
,PART
,PMMLClassifier
,PreConstructedLinearModel
,RandomCommittee
,RandomForest
,RandomizableClassifier
,RandomizableFilteredClassifier
,RandomizableIteratedSingleClassifierEnhancer
,RandomizableMultipleClassifiersCombiner
,RandomizableParallelIteratedSingleClassifierEnhancer
,RandomizableParallelMultipleClassifiersCombiner
,RandomizableSingleClassifierEnhancer
,RandomSubSpace
,RandomTree
,Regression
,RegressionByDiscretization
,REPTree
,RuleNode
,RuleSetModel
,SerializedClassifier
,SGD
,SGDText
,SimpleLinearRegression
,SimpleLogistic
,SingleClassifierEnhancer
,SMO
,SMOreg
,Stacking
,SupportVectorMachineModel
,TreeModel
,Vote
,VotedPerceptron
,WeightedInstancesHandlerWrapper
,ZeroR
public interface Classifier
Classifier interface. All schemes for numeric or nominal prediction in
Weka implement this interface. Note that a classifier MUST either implement
distributionForInstance() or classifyInstance().
- Version:
- $Revision: 8034 $
- Author:
- Eibe Frank (eibe@cs.waikato.ac.nz), Len Trigg (trigg@cs.waikato.ac.nz)
-
Method Summary
Modifier and TypeMethodDescriptionvoid
buildClassifier
(Instances data) Generates a classifier.double
classifyInstance
(Instance instance) Classifies the given test instance.double[]
distributionForInstance
(Instance instance) Predicts the class memberships for a given instance.Returns the Capabilities of this classifier.
-
Method Details
-
buildClassifier
Generates a classifier. Must initialize all fields of the classifier that are not being set via options (ie. multiple calls of buildClassifier must always lead to the same result). Must not change the dataset in any way.- Parameters:
data
- set of instances serving as training data- Throws:
Exception
- if the classifier has not been generated successfully
-
classifyInstance
Classifies the given test instance. The instance has to belong to a dataset when it's being classified. Note that a classifier MUST implement either this or distributionForInstance().- Parameters:
instance
- the instance to be classified- Returns:
- the predicted most likely class for the instance or Utils.missingValue() if no prediction is made
- Throws:
Exception
- if an error occurred during the prediction
-
distributionForInstance
Predicts the class memberships for a given instance. If an instance is unclassified, the returned array elements must be all zero. If the class is numeric, the array must consist of only one element, which contains the predicted value. Note that a classifier MUST implement either this or classifyInstance().- Parameters:
instance
- the instance to be classified- Returns:
- an array containing the estimated membership probabilities of the test instance in each class or the numeric prediction
- Throws:
Exception
- if distribution could not be computed successfully
-
getCapabilities
Capabilities getCapabilities()Returns the Capabilities of this classifier. Maximally permissive capabilities are allowed by default. Derived classifiers should override this method and first disable all capabilities and then enable just those capabilities that make sense for the scheme.- Returns:
- the capabilities of this object
- See Also:
-