Package weka.classifiers.functions
Class LinearRegression
java.lang.Object
weka.classifiers.AbstractClassifier
weka.classifiers.functions.LinearRegression
- All Implemented Interfaces:
Serializable
,Cloneable
,Classifier
,BatchPredictor
,CapabilitiesHandler
,CapabilitiesIgnorer
,CommandlineRunnable
,OptionHandler
,RevisionHandler
,WeightedInstancesHandler
public class LinearRegression
extends AbstractClassifier
implements OptionHandler, WeightedInstancesHandler
Class for using linear regression for prediction.
Uses the Akaike criterion for model selection, and is able to deal with
weighted instances.
Valid options are:
-S <number of selection method> Set the attribute selection method to use. 1 = None, 2 = Greedy. (default 0 = M5' method)
-C Do not try to eliminate colinear attributes.
-R <double> Set ridge parameter (default 1.0e-8).
-minimal Conserve memory, don't keep dataset header and means/stdevs. Model cannot be printed out if this option is enabled. (default: keep data)
-additional-stats Output additional statistics.
-output-debug-info If set, classifier is run in debug mode and may output additional info to the console
-do-not-check-capabilities If set, classifier capabilities are not checked before classifier is built (use with caution).
-do-not-check-capabilities If set, classifier capabilities are not checked before classifier is built (use with caution).
- Version:
- $Revision: 15519 $
- Author:
- Eibe Frank (eibe@cs.waikato.ac.nz), Len Trigg (trigg@cs.waikato.ac.nz)
- See Also:
-
Field Summary
Modifier and TypeFieldDescriptionstatic final int
Attribute selection method: Greedy methodstatic final int
Attribute selection method: M5 methodstatic final int
Attribute selection method: No attribute selectionstatic final Tag[]
Attribute selection methodsFields inherited from class weka.classifiers.AbstractClassifier
BATCH_SIZE_DEFAULT, NUM_DECIMAL_PLACES_DEFAULT
-
Constructor Summary
-
Method Summary
Modifier and TypeMethodDescriptionReturns the tip text for this propertyvoid
buildClassifier
(Instances data) Builds a regression model for the given data.double
classifyInstance
(Instance instance) Classifies the given instance using the linear regression function.double[]
Returns the coefficients for this linear model.Returns the tip text for this propertyGets the method used to select attributes for use in the linear regression.Returns default capabilities of the classifier.boolean
Get the value of EliminateColinearAttributes.boolean
Returns whether to be more memory conservative or being able to output the model as string.String[]
Gets the current settings of the classifier.boolean
Get whether to output additional statistics (such as std.Returns the revision string.double
getRidge()
Get the value of Ridge.boolean
Get whether to use QR decomposition.Returns a string describing this classifierReturns an enumeration describing the available options.static void
Generates a linear regression function predictor.Returns the tip text for this property.int
Get the number of coefficients used in the modelReturns the tip text for this property.Returns the tip text for this propertyvoid
Sets the method used to select attributes for use in the linear regression.void
setEliminateColinearAttributes
(boolean newEliminateColinearAttributes) Set the value of EliminateColinearAttributes.void
setMinimal
(boolean value) Sets whether to be more memory conservative or being able to output the model as string.void
setOptions
(String[] options) Parses a given list of options.void
setOutputAdditionalStats
(boolean additional) Set whether to output additional statistics (such as std.void
setRidge
(double newRidge) Set the value of Ridge.void
setUseQRDecomposition
(boolean useQR) Set whether to use QR decomposition.toString()
Outputs the linear regression model as a string.void
Turns off checks for missing values, etc.void
Turns on checks for missing values, etc.Returns the tip text for this property.Methods inherited from class weka.classifiers.AbstractClassifier
batchSizeTipText, debugTipText, distributionForInstance, distributionsForInstances, doNotCheckCapabilitiesTipText, forName, getBatchSize, getDebug, getDoNotCheckCapabilities, getNumDecimalPlaces, implementsMoreEfficientBatchPrediction, makeCopies, makeCopy, numDecimalPlacesTipText, postExecution, preExecution, run, runClassifier, setBatchSize, setDebug, setDoNotCheckCapabilities, setNumDecimalPlaces
-
Field Details
-
SELECTION_M5
public static final int SELECTION_M5Attribute selection method: M5 method- See Also:
-
SELECTION_NONE
public static final int SELECTION_NONEAttribute selection method: No attribute selection- See Also:
-
SELECTION_GREEDY
public static final int SELECTION_GREEDYAttribute selection method: Greedy method- See Also:
-
TAGS_SELECTION
Attribute selection methods
-
-
Constructor Details
-
LinearRegression
public LinearRegression()
-
-
Method Details
-
main
Generates a linear regression function predictor.- Parameters:
argv
- the options
-
globalInfo
Returns a string describing this classifier- Returns:
- a description of the classifier suitable for displaying in the explorer/experimenter gui
-
getCapabilities
Returns default capabilities of the classifier.- Specified by:
getCapabilities
in interfaceCapabilitiesHandler
- Specified by:
getCapabilities
in interfaceClassifier
- Overrides:
getCapabilities
in classAbstractClassifier
- Returns:
- the capabilities of this classifier
- See Also:
-
buildClassifier
Builds a regression model for the given data.- Specified by:
buildClassifier
in interfaceClassifier
- Parameters:
data
- the training data to be used for generating the linear regression function- Throws:
Exception
- if the classifier could not be built successfully
-
classifyInstance
Classifies the given instance using the linear regression function.- Specified by:
classifyInstance
in interfaceClassifier
- Overrides:
classifyInstance
in classAbstractClassifier
- Parameters:
instance
- the test instance- Returns:
- the classification
- Throws:
Exception
- if classification can't be done successfully
-
toString
Outputs the linear regression model as a string. -
listOptions
Returns an enumeration describing the available options.- Specified by:
listOptions
in interfaceOptionHandler
- Overrides:
listOptions
in classAbstractClassifier
- Returns:
- an enumeration of all the available options.
-
coefficients
public double[] coefficients()Returns the coefficients for this linear model.- Returns:
- the coefficients for this linear model
-
getOptions
Gets the current settings of the classifier.- Specified by:
getOptions
in interfaceOptionHandler
- Overrides:
getOptions
in classAbstractClassifier
- Returns:
- an array of strings suitable for passing to setOptions
-
setOptions
Parses a given list of options. Valid options are:-S <number of selection method> Set the attribute selection method to use. 1 = None, 2 = Greedy. (default 0 = M5' method)
-C Do not try to eliminate colinear attributes.
-R <double> Set ridge parameter (default 1.0e-8).
-minimal Conserve memory, don't keep dataset header and means/stdevs. Model cannot be printed out if this option is enabled. (default: keep data)
-additional-stats Output additional statistics.
-output-debug-info If set, classifier is run in debug mode and may output additional info to the console
-do-not-check-capabilities If set, classifier capabilities are not checked before classifier is built (use with caution).
-use-qr If set, QR decomposition will be used to find coefficients.
- Specified by:
setOptions
in interfaceOptionHandler
- Overrides:
setOptions
in classAbstractClassifier
- Parameters:
options
- the list of options as an array of strings- Throws:
Exception
- if an option is not supported
-
ridgeTipText
Returns the tip text for this property- Returns:
- tip text for this property suitable for displaying in the explorer/experimenter gui
-
getRidge
public double getRidge()Get the value of Ridge.- Returns:
- Value of Ridge.
-
setRidge
public void setRidge(double newRidge) Set the value of Ridge.- Parameters:
newRidge
- Value to assign to Ridge.
-
eliminateColinearAttributesTipText
Returns the tip text for this property- Returns:
- tip text for this property suitable for displaying in the explorer/experimenter gui
-
getEliminateColinearAttributes
public boolean getEliminateColinearAttributes()Get the value of EliminateColinearAttributes.- Returns:
- Value of EliminateColinearAttributes.
-
setEliminateColinearAttributes
public void setEliminateColinearAttributes(boolean newEliminateColinearAttributes) Set the value of EliminateColinearAttributes.- Parameters:
newEliminateColinearAttributes
- Value to assign to EliminateColinearAttributes.
-
numParameters
public int numParameters()Get the number of coefficients used in the model- Returns:
- the number of coefficients
-
attributeSelectionMethodTipText
Returns the tip text for this property- Returns:
- tip text for this property suitable for displaying in the explorer/experimenter gui
-
getAttributeSelectionMethod
Gets the method used to select attributes for use in the linear regression.- Returns:
- the method to use.
-
setAttributeSelectionMethod
Sets the method used to select attributes for use in the linear regression.- Parameters:
method
- the attribute selection method to use.
-
minimalTipText
Returns the tip text for this property.- Returns:
- tip text for this property suitable for displaying in the explorer/experimenter gui
-
getMinimal
public boolean getMinimal()Returns whether to be more memory conservative or being able to output the model as string.- Returns:
- true if memory conservation is preferred over outputting model description
-
setMinimal
public void setMinimal(boolean value) Sets whether to be more memory conservative or being able to output the model as string.- Parameters:
value
- if true memory will be conserved
-
outputAdditionalStatsTipText
Returns the tip text for this property.- Returns:
- tip text for this property suitable for displaying in the explorer/experimenter gui
-
getOutputAdditionalStats
public boolean getOutputAdditionalStats()Get whether to output additional statistics (such as std. deviation of coefficients and t-statistics- Returns:
- true if additional stats are to be output
-
setOutputAdditionalStats
public void setOutputAdditionalStats(boolean additional) Set whether to output additional statistics (such as std. deviation of coefficients and t-statistics- Parameters:
additional
- true if additional stats are to be output
-
useQRDecompositionTipText
Returns the tip text for this property.- Returns:
- tip text for this property suitable for displaying in the explorer/experimenter gui
-
getUseQRDecomposition
public boolean getUseQRDecomposition()Get whether to use QR decomposition.- Returns:
- true if QR decomposition is to be used
-
setUseQRDecomposition
public void setUseQRDecomposition(boolean useQR) Set whether to use QR decomposition.- Parameters:
useQR
- true if QR decomposition is to be used
-
turnChecksOff
public void turnChecksOff()Turns off checks for missing values, etc. Use with caution. Also turns off scaling. -
turnChecksOn
public void turnChecksOn()Turns on checks for missing values, etc. Also turns on scaling. -
getRevision
Returns the revision string.- Specified by:
getRevision
in interfaceRevisionHandler
- Overrides:
getRevision
in classAbstractClassifier
- Returns:
- the revision
-