Package weka.core.matrix
Class LUDecomposition
java.lang.Object
weka.core.matrix.LUDecomposition
- All Implemented Interfaces:
Serializable
,RevisionHandler
LU Decomposition.
For an m-by-n matrix A with m >= n, the LU decomposition is an m-by-n unit lower triangular matrix L, an n-by-n upper triangular matrix U, and a permutation vector piv of length m so that A(piv,:) = L*U. If m < n, then L is m-by-m and U is m-by-n.
The LU decompostion with pivoting always exists, even if the matrix is singular, so the constructor will never fail. The primary use of the LU decomposition is in the solution of square systems of simultaneous linear equations. This will fail if isNonsingular() returns false.
Adapted from the JAMA package.- Version:
- $Revision: 5953 $
- Author:
- The Mathworks and NIST, Fracpete (fracpete at waikato dot ac dot nz)
- See Also:
-
Constructor Summary
-
Method Summary
Modifier and TypeMethodDescriptiondouble
det()
Determinantdouble[]
Return pivot permutation vector as a one-dimensional double arraygetL()
Return lower triangular factorint[]
getPivot()
Return pivot permutation vectorReturns the revision string.getU()
Return upper triangular factorboolean
Is the matrix nonsingular?Solve A*X = B
-
Constructor Details
-
LUDecomposition
LU Decomposition- Parameters:
A
- Rectangular matrix
-
-
Method Details
-
isNonsingular
public boolean isNonsingular()Is the matrix nonsingular?- Returns:
- true if U, and hence A, is nonsingular.
-
getL
Return lower triangular factor- Returns:
- L
-
getU
Return upper triangular factor- Returns:
- U
-
getPivot
public int[] getPivot()Return pivot permutation vector- Returns:
- piv
-
getDoublePivot
public double[] getDoublePivot()Return pivot permutation vector as a one-dimensional double array- Returns:
- (double) piv
-
det
public double det()Determinant- Returns:
- det(A)
- Throws:
IllegalArgumentException
- Matrix must be square
-
solve
Solve A*X = B- Parameters:
B
- A Matrix with as many rows as A and any number of columns.- Returns:
- X so that L*U*X = B(piv,:)
- Throws:
IllegalArgumentException
- Matrix row dimensions must agree.RuntimeException
- Matrix is singular.
-
getRevision
Returns the revision string.- Specified by:
getRevision
in interfaceRevisionHandler
- Returns:
- the revision
-