Package weka.classifiers.trees.ht
Class ConditionalSufficientStats
java.lang.Object
weka.classifiers.trees.ht.ConditionalSufficientStats
- All Implemented Interfaces:
Serializable
- Direct Known Subclasses:
GaussianConditionalSufficientStats
,NominalConditionalSufficientStats
Records sufficient stats for an attribute
- Version:
- $Revision: 9705 $
- Author:
- Richard Kirkby (rkirkby@cs.waikato.ac.nz), Mark Hall (mhall{[at]}pentaho{[dot]}com)
- See Also:
-
Constructor Summary
-
Method Summary
Modifier and TypeMethodDescriptionabstract SplitCandidate
bestSplit
(SplitMetric splitMetric, Map<String, WeightMass> preSplitDist, String attName) Return the best splitabstract double
probabilityOfAttValConditionedOnClass
(double attVal, String classVal) Return the probability of an attribute value conditioned on a class valueabstract void
Update this stat with the supplied attribute value and class value
-
Constructor Details
-
ConditionalSufficientStats
public ConditionalSufficientStats()
-
-
Method Details
-
update
Update this stat with the supplied attribute value and class value- Parameters:
attVal
- the value of the attributeclassVal
- the class valueweight
- the weight of this observation
-
probabilityOfAttValConditionedOnClass
Return the probability of an attribute value conditioned on a class value- Parameters:
attVal
- the attribute value to compute the conditional probability forclassVal
- the class value- Returns:
- the probability
-
bestSplit
public abstract SplitCandidate bestSplit(SplitMetric splitMetric, Map<String, WeightMass> preSplitDist, String attName) Return the best split- Parameters:
splitMetric
- the split metric to usepreSplitDist
- the distribution of class values prior to splittingattName
- the name of the attribute being considered for splitting- Returns:
- the best split for the attribute
-