Class SimpleEstimator
java.lang.Object
weka.classifiers.bayes.net.estimate.BayesNetEstimator
weka.classifiers.bayes.net.estimate.SimpleEstimator
- All Implemented Interfaces:
Serializable,OptionHandler,RevisionHandler
- Direct Known Subclasses:
BMAEstimator
SimpleEstimator is used for estimating the
conditional probability tables of a Bayes network once the structure has been
learned. Estimates probabilities directly from data.
Valid options are:
-A <alpha> Initial count (alpha)
- Version:
- $Revision: 11325 $
- Author:
- Remco Bouckaert (rrb@xm.co.nz)
- See Also:
-
Constructor Summary
Constructors -
Method Summary
Modifier and TypeMethodDescriptiondouble[]distributionForInstance(BayesNet bayesNet, Instance instance) Calculates the class membership probabilities for the given test instance.voidestimateCPTs(BayesNet bayesNet) estimateCPTs estimates the conditional probability tables for the Bayes Net using the network structure.Returns the revision string.Returns a string describing this objectvoidinitCPTs reserves space for CPTs and set all counts to zerovoidupdateClassifier(BayesNet bayesNet, Instance instance) Updates the classifier with the given instance.Methods inherited from class weka.classifiers.bayes.net.estimate.BayesNetEstimator
alphaTipText, getAlpha, getOptions, listOptions, setAlpha, setOptions
-
Constructor Details
-
SimpleEstimator
public SimpleEstimator()
-
-
Method Details
-
globalInfo
Returns a string describing this object- Overrides:
globalInfoin classBayesNetEstimator- Returns:
- a description of the classifier suitable for displaying in the explorer/experimenter gui
-
estimateCPTs
estimateCPTs estimates the conditional probability tables for the Bayes Net using the network structure.- Overrides:
estimateCPTsin classBayesNetEstimator- Parameters:
bayesNet- the bayes net to use- Throws:
Exception- if something goes wrong
-
updateClassifier
Updates the classifier with the given instance.- Overrides:
updateClassifierin classBayesNetEstimator- Parameters:
bayesNet- the bayes net to useinstance- the new training instance to include in the model- Throws:
Exception- if the instance could not be incorporated in the model.
-
initCPTs
initCPTs reserves space for CPTs and set all counts to zero- Overrides:
initCPTsin classBayesNetEstimator- Parameters:
bayesNet- the bayes net to use- Throws:
Exception- if something goes wrong
-
distributionForInstance
Calculates the class membership probabilities for the given test instance.- Overrides:
distributionForInstancein classBayesNetEstimator- Parameters:
bayesNet- the bayes net to useinstance- the instance to be classified- Returns:
- predicted class probability distribution
- Throws:
Exception- if there is a problem generating the prediction
-
getRevision
Returns the revision string.- Specified by:
getRevisionin interfaceRevisionHandler- Overrides:
getRevisionin classBayesNetEstimator- Returns:
- the revision
-