Package weka.core.matrix
Class EigenvalueDecomposition
java.lang.Object
weka.core.matrix.EigenvalueDecomposition
- All Implemented Interfaces:
Serializable
,RevisionHandler
Eigenvalues and eigenvectors of a real matrix.
If A is symmetric, then A = V*D*V' where the eigenvalue matrix D is diagonal and the eigenvector matrix V is orthogonal. I.e. A = V.times(D.times(V.transpose())) and V.times(V.transpose()) equals the identity matrix.
If A is not symmetric, then the eigenvalue matrix D is block diagonal with the real eigenvalues in 1-by-1 blocks and any complex eigenvalues, lambda + i*mu, in 2-by-2 blocks, [lambda, mu; -mu, lambda]. The columns of V represent the eigenvectors in the sense that A*V = V*D, i.e. A.times(V) equals V.times(D). The matrix V may be badly conditioned, or even singular, so the validity of the equation A = V*D*inverse(V) depends upon V.cond().
Adapted from the JAMA package.- Version:
- $Revision: 5953 $
- Author:
- The Mathworks and NIST, Fracpete (fracpete at waikato dot ac dot nz)
- See Also:
-
Constructor Summary
ConstructorDescriptionCheck for symmetry, then construct the eigenvalue decomposition -
Method Summary
-
Constructor Details
-
EigenvalueDecomposition
Check for symmetry, then construct the eigenvalue decomposition- Parameters:
Arg
- Square matrix
-
-
Method Details
-
getV
Return the eigenvector matrix- Returns:
- V
-
getRealEigenvalues
public double[] getRealEigenvalues()Return the real parts of the eigenvalues- Returns:
- real(diag(D))
-
getImagEigenvalues
public double[] getImagEigenvalues()Return the imaginary parts of the eigenvalues- Returns:
- imag(diag(D))
-
getD
Return the block diagonal eigenvalue matrix- Returns:
- D
-
getRevision
Returns the revision string.- Specified by:
getRevision
in interfaceRevisionHandler
- Returns:
- the revision
-