Class BMAEstimator
java.lang.Object
weka.classifiers.bayes.net.estimate.BayesNetEstimator
weka.classifiers.bayes.net.estimate.SimpleEstimator
weka.classifiers.bayes.net.estimate.BMAEstimator
- All Implemented Interfaces:
Serializable
,OptionHandler
,RevisionHandler
BMAEstimator estimates conditional probability
tables of a Bayes network using Bayes Model Averaging (BMA).
Valid options are:
-k2 Whether to use K2 prior.
-A <alpha> Initial count (alpha)
- Version:
- $Revision: 10154 $
- Author:
- Remco Bouckaert (rrb@xm.co.nz)
- See Also:
-
Constructor Summary
-
Method Summary
Modifier and TypeMethodDescriptionvoid
estimateCPTs
(BayesNet bayesNet) estimateCPTs estimates the conditional probability tables for the Bayes Net using the network structure.String[]
Gets the current settings of the classifier.Returns the revision string.Returns a string describing this objectvoid
initCPTs reserves space for CPTs and set all counts to zeroboolean
Returns whether K2 prior is usedReturns an enumeration describing the available optionsvoid
setOptions
(String[] options) Parses a given list of options.void
setUseK2Prior
(boolean bUseK2Prior) Sets the UseK2Prior.void
updateClassifier
(BayesNet bayesNet, Instance instance) Updates the classifier with the given instance.Methods inherited from class weka.classifiers.bayes.net.estimate.SimpleEstimator
distributionForInstance
Methods inherited from class weka.classifiers.bayes.net.estimate.BayesNetEstimator
alphaTipText, getAlpha, setAlpha
-
Constructor Details
-
BMAEstimator
public BMAEstimator()
-
-
Method Details
-
globalInfo
Returns a string describing this object- Overrides:
globalInfo
in classSimpleEstimator
- Returns:
- a description of the classifier suitable for displaying in the explorer/experimenter gui
-
estimateCPTs
estimateCPTs estimates the conditional probability tables for the Bayes Net using the network structure.- Overrides:
estimateCPTs
in classSimpleEstimator
- Parameters:
bayesNet
- the bayes net to use- Throws:
Exception
- if an error occurs
-
updateClassifier
Updates the classifier with the given instance.- Overrides:
updateClassifier
in classSimpleEstimator
- Parameters:
bayesNet
- the bayes net to useinstance
- the new training instance to include in the model- Throws:
Exception
- if the instance could not be incorporated in the model.
-
initCPTs
initCPTs reserves space for CPTs and set all counts to zero- Overrides:
initCPTs
in classSimpleEstimator
- Parameters:
bayesNet
- the bayes net to use- Throws:
Exception
- if something goes wrong
-
isUseK2Prior
public boolean isUseK2Prior()Returns whether K2 prior is used- Returns:
- true if K2 prior is used
-
setUseK2Prior
public void setUseK2Prior(boolean bUseK2Prior) Sets the UseK2Prior.- Parameters:
bUseK2Prior
- The bUseK2Prior to set
-
listOptions
Returns an enumeration describing the available options- Specified by:
listOptions
in interfaceOptionHandler
- Overrides:
listOptions
in classBayesNetEstimator
- Returns:
- an enumeration of all the available options
-
setOptions
Parses a given list of options. Valid options are:-k2 Whether to use K2 prior.
-A <alpha> Initial count (alpha)
- Specified by:
setOptions
in interfaceOptionHandler
- Overrides:
setOptions
in classBayesNetEstimator
- Parameters:
options
- the list of options as an array of strings- Throws:
Exception
- if an option is not supported
-
getOptions
Gets the current settings of the classifier.- Specified by:
getOptions
in interfaceOptionHandler
- Overrides:
getOptions
in classBayesNetEstimator
- Returns:
- an array of strings suitable for passing to setOptions
-
getRevision
Returns the revision string.- Specified by:
getRevision
in interfaceRevisionHandler
- Overrides:
getRevision
in classSimpleEstimator
- Returns:
- the revision
-