Class InfoGainSplitCrit

All Implemented Interfaces:
Serializable, RevisionHandler

public final class InfoGainSplitCrit extends EntropyBasedSplitCrit
Class for computing the information gain for a given distribution.
Version:
$Revision: 10169 $
Author:
Eibe Frank (eibe@cs.waikato.ac.nz)
See Also:
  • Constructor Details

    • InfoGainSplitCrit

      public InfoGainSplitCrit()
  • Method Details

    • splitCritValue

      public final double splitCritValue(Distribution bags)
      This method is a straightforward implementation of the information gain criterion for the given distribution.
      Overrides:
      splitCritValue in class SplitCriterion
      Returns:
      value of splitting criterion. 0 by default
    • splitCritValue

      public final double splitCritValue(Distribution bags, double totalNoInst)
      This method computes the information gain in the same way C4.5 does.
      Parameters:
      bags - the distribution
      totalNoInst - weight of ALL instances (including the ones with missing values).
    • splitCritValue

      public final double splitCritValue(Distribution bags, double totalNoInst, double oldEnt)
      This method computes the information gain in the same way C4.5 does.
      Parameters:
      bags - the distribution
      totalNoInst - weight of ALL instances
      oldEnt - entropy with respect to "no-split"-model.
    • getRevision

      public String getRevision()
      Returns the revision string.
      Returns:
      the revision