Uses of Class
weka.core.Instances
Package
Description
-
Uses of Instances in weka.associations
Modifier and TypeMethodDescriptionstatic Instances
Splits the class attribute away.Apriori.getInstancesNoClass()
Gets the instances without the class atrribute.CARuleMiner.getInstancesNoClass()
Gets the instances without the class attributeApriori.getInstancesOnlyClass()
Gets only the class attribute of the instances.CARuleMiner.getInstancesOnlyClass()
Gets the class attribute and its values for all instancesModifier and TypeMethodDescriptionvoid
Apriori.buildAssociations
(Instances instances) Method that generates all large itemsets with a minimum support, and from these all association rules with a minimum confidence.void
Associator.buildAssociations
(Instances data) Generates an associator.void
FilteredAssociator.buildAssociations
(Instances data) Build the associator on the filtered data.void
FPGrowth.buildAssociations
(Instances data) Method that generates all large item sets with a minimum support, and from these all association rules with a minimum metric (i.e.static Instances
Splits the class attribute away.AssociatorEvaluation.evaluate
(Associator associator, Instances data) Evaluates the associator with the given commandline options and returns the evaluation string.Method that mines all class association rules with minimum support and with a minimum confidence.Method for mining class association rules.AprioriItemSet.singletons
(Instances instances, boolean treatZeroAsMissing) Converts the header info of the given set of instances into a set of item sets (singletons).ItemSet.singletons
(Instances instances) Converts the header info of the given set of instances into a set of item sets (singletons).LabeledItemSet.singletons
(Instances instancesNoClass, Instances classes) Converts the header info of the given set of instances into a set of item sets (singletons).final String
Returns the contents of an item set as a string.Returns the contents of an item set as a string.Returns the contents of an item set as a delimited string.static void
ItemSet.upDateCounters
(ArrayList<Object> itemSets, Instances instances) Updates counters for a set of item sets and a set of instances.static void
LabeledItemSet.upDateCounters
(ArrayList<Object> itemSets, Instances instancesNoClass, Instances instancesClass) Updates counter of a specific item setstatic void
ItemSet.upDateCountersTreatZeroAsMissing
(ArrayList<Object> itemSets, Instances instances) Updates counters for a set of item sets and a set of instances.static void
LabeledItemSet.upDateCountersTreatZeroAsMissing
(ArrayList<LabeledItemSet> itemSets, Instances instancesNoClass, Instances instancesClass) Updates counter of a specific item set -
Uses of Instances in weka.attributeSelection
Modifier and TypeMethodDescriptionPrincipalComponents.getFilteredInputFormat()
Return the header of the training data after all filtering - i.e missing values and nominal to binary.AttributeSelection.reduceDimensionality
(Instances in) reduce the dimensionality of a set of instances to include only those attributes chosen by the last run of attribute selection.AttributeTransformer.transformedData
(Instances data) Transform the supplied data set (assumed to be the same format as the training data)PrincipalComponents.transformedData
(Instances data) Gets the transformed training data.AttributeTransformer.transformedHeader()
Returns just the header for the transformed data (ie.PrincipalComponents.transformedHeader()
Returns just the header for the transformed data (ie.Modifier and TypeMethodDescriptionabstract void
ASEvaluation.buildEvaluator
(Instances data) Generates a attribute evaluator.void
CfsSubsetEval.buildEvaluator
(Instances data) Generates a attribute evaluator.void
ClassifierAttributeEval.buildEvaluator
(Instances data) Initializes a ClassifierAttribute attribute evaluator.void
ClassifierSubsetEval.buildEvaluator
(Instances data) Generates a attribute evaluator.void
CorrelationAttributeEval.buildEvaluator
(Instances data) Initializes an information gain attribute evaluator.void
GainRatioAttributeEval.buildEvaluator
(Instances data) Initializes a gain ratio attribute evaluator.void
InfoGainAttributeEval.buildEvaluator
(Instances data) Initializes an information gain attribute evaluator.void
OneRAttributeEval.buildEvaluator
(Instances data) Initializes a OneRAttribute attribute evaluator.void
PrincipalComponents.buildEvaluator
(Instances data) Initializes principal components and performs the analysisvoid
ReliefFAttributeEval.buildEvaluator
(Instances data) Initializes a ReliefF attribute evaluator.void
SymmetricalUncertAttributeEval.buildEvaluator
(Instances data) Initializes a symmetrical uncertainty attribute evaluator.void
WrapperSubsetEval.buildEvaluator
(Instances data) Generates a attribute evaluator.double
ClassifierSubsetEval.evaluateSubset
(BitSet subset, Instances holdOut) Evaluates a subset of attributes with respect to a set of instances.abstract double
HoldOutSubsetEvaluator.evaluateSubset
(BitSet subset, Instances holdOut) Evaluates a subset of attributes with respect to a set of instances.void
PrincipalComponents.initializeAndComputeMatrix
(Instances data) Intializes the evaluator, filters the input data and computes the correlation/covariance matrix.AttributeSelection.reduceDimensionality
(Instances in) reduce the dimensionality of a set of instances to include only those attributes chosen by the last run of attribute selection.abstract int[]
ASSearch.search
(ASEvaluation ASEvaluator, Instances data) Searches the attribute subset/ranking space.int[]
BestFirst.search
(ASEvaluation ASEval, Instances data) Searches the attribute subset space by best first searchint[]
GreedyStepwise.search
(ASEvaluation ASEval, Instances data) Searches the attribute subset space by forward selection.int[]
Ranker.search
(ASEvaluation ASEval, Instances data) Kind of a dummy search algorithm.static String
AttributeSelection.SelectAttributes
(ASEvaluation ASEvaluator, String[] options, Instances train) Perform attribute selection with a particular evaluator and a set of options specifying search method and options for the search method and evaluator.void
AttributeSelection.SelectAttributes
(Instances data) Perform attribute selection on the supplied training instances.void
AttributeSelection.selectAttributesCVSplit
(Instances split) Select attributes for a split of the data.AttributeTransformer.transformedData
(Instances data) Transform the supplied data set (assumed to be the same format as the training data)PrincipalComponents.transformedData
(Instances data) Gets the transformed training data.void
AttributeSelection.updateStatsForModelCVSplit
(Instances split, ASEvaluation evaluator, ASSearch search, int[] attributeSet, boolean doRank) Update the attribute selection stats for a cross-validation fold of the data. -
Uses of Instances in weka.classifiers
Modifier and TypeMethodDescriptionCostMatrix.applyCostMatrix
(Instances data, Random random) Applies the cost matrix to a set of instances.Evaluation.getHeader()
Returns the header of the underlying dataset.Modifier and TypeMethodDescriptionCostMatrix.applyCostMatrix
(Instances data, Random random) Applies the cost matrix to a set of instances.void
Classifier.buildClassifier
(Instances data) Generates a classifier.void
IteratedSingleClassifierEnhancer.buildClassifier
(Instances data) Stump method for building the classifiers.void
ParallelIteratedSingleClassifierEnhancer.buildClassifier
(Instances data) Stump method for building the classifiersvoid
ParallelMultipleClassifiersCombiner.buildClassifier
(Instances data) Stump method for building the classifiersvoid
Evaluation.crossValidateModel
(String classifierString, Instances data, int numFolds, String[] options, Random random) Performs a (stratified if class is nominal) cross-validation for a classifier on a set of instances.void
Evaluation.crossValidateModel
(Classifier classifier, Instances data, int numFolds, Random random) Performs a (stratified if class is nominal) cross-validation for a classifier on a set of instances.void
Evaluation.crossValidateModel
(Classifier classifier, Instances data, int numFolds, Random random, Object... forPredictionsPrinting) Performs a (stratified if class is nominal) cross-validation for a classifier on a set of instances.double[][]
AbstractClassifier.distributionsForInstances
(Instances batch) Batch prediction method.double[]
Evaluation.evaluateModel
(Classifier classifier, Instances data, Object... forPredictionsPrinting) Evaluates the classifier on a given set of instances.void
IterativeClassifier.initializeClassifier
(Instances instances) Initializes an iterative classifier.void
Sets the class prior probabilities.ModifierConstructorDescriptionConstructs a new AggregateableEvaluation objectAggregateableEvaluation
(Instances data, CostMatrix costMatrix) Constructs a new AggregateableEvaluation objectEvaluation
(Instances data) Evaluation
(Instances data, CostMatrix costMatrix) -
Uses of Instances in weka.classifiers.bayes
Modifier and TypeFieldDescriptionBayesNet.m_Instances
The dataset header for the purposes of printing out a semi-intelligible modelModifier and TypeMethodDescriptionNaiveBayes.getHeader()
Return the header that this classifier was trained withModifier and TypeMethodDescriptionvoid
BayesNet.buildClassifier
(Instances instances) Generates the classifier.void
NaiveBayes.buildClassifier
(Instances instances) Generates the classifier.void
NaiveBayesMultinomial.buildClassifier
(Instances instances) Generates the classifier.void
NaiveBayesMultinomialText.buildClassifier
(Instances data) Generates the classifier.void
NaiveBayesMultinomialUpdateable.buildClassifier
(Instances instances) Generates the classifier. -
Uses of Instances in weka.classifiers.bayes.net
Modifier and TypeMethodDescriptionvoid
Add parent to parent set at specific location and update internals (specifically the cardinality of the parent set)void
Add parent to parent set and update internals (specifically the cardinality of the parent set)void
ParentSet.deleteLastParent
(Instances _Instances) Delete last added parent from parent set and update internals (specifically the cardinality of the parent set)int
ParentSet.deleteParent
(int nParent, Instances _Instances) delete node from parent setint
ParentSet.getFreshCardinalityOfParents
(Instances _Instances) returns cardinality of parents after recalculationstatic ADNode
ADNode.makeADTree
(int iNode, ArrayList<Integer> nRecords, Instances instances) create sub treestatic ADNode
ADNode.makeADTree
(Instances instances) create AD tree from set of instancesstatic VaryNode
ADNode.makeVaryNode
(int iNode, ArrayList<Integer> nRecords, Instances instances) create sub treevoid
Assuming a network structure is defined and we want to learn from data, the data set must be put if correct order first and possibly discretized/missing values filled in before proceeding to CPT learning.ModifierConstructorDescriptionEditableBayesNet
(Instances instances) constructor, creates empty network with nodes based on the attributes in a data set -
Uses of Instances in weka.classifiers.bayes.net.search
Modifier and TypeMethodDescriptionvoid
SearchAlgorithm.buildStructure
(BayesNet bayesNet, Instances instances) buildStructure determines the network structure/graph of the network. -
Uses of Instances in weka.classifiers.bayes.net.search.fixed
Modifier and TypeMethodDescriptionvoid
FromFile.buildStructure
(BayesNet bayesNet, Instances instances) void
NaiveBayes.buildStructure
(BayesNet bayesNet, Instances instances) -
Uses of Instances in weka.classifiers.bayes.net.search.global
Modifier and TypeMethodDescriptionvoid
TAN.buildStructure
(BayesNet bayesNet, Instances instances) buildStructure determines the network structure/graph of the network using the maximimum weight spanning tree algorithm of Chow and Liuvoid
search determines the network structure/graph of the network with the K2 algorithm, restricted by its initial structure (which can be an empty graph, or a Naive Bayes graph.void
-
Uses of Instances in weka.classifiers.bayes.net.search.local
Modifier and TypeMethodDescriptionvoid
LocalScoreSearchAlgorithm.buildStructure
(BayesNet bayesNet, Instances instances) buildStructure determines the network structure/graph of the network with the K2 algorithm, restricted by its initial structure (which can be an empty graph, or a Naive Bayes graph.void
TAN.buildStructure
(BayesNet bayesNet, Instances instances) buildStructure determines the network structure/graph of the network using the maximimum weight spanning tree algorithm of Chow and Liuvoid
search determines the network structure/graph of the network with the K2 algorithm, restricted by its initial structure (which can be an empty graph, or a Naive Bayes graph.void
ModifierConstructorDescriptionLocalScoreSearchAlgorithm
(BayesNet bayesNet, Instances instances) constructor -
Uses of Instances in weka.classifiers.evaluation
Modifier and TypeMethodDescriptionCostCurve.getCurve
(ArrayList<Prediction> predictions) Calculates the performance stats for the default class and return results as a set of Instances.CostCurve.getCurve
(ArrayList<Prediction> predictions, int classIndex) Calculates the performance stats for the desired class and return results as a set of Instances.MarginCurve.getCurve
(ArrayList<Prediction> predictions) Calculates the cumulative margin distribution for the set of predictions, returning the result as a set of Instances.ThresholdCurve.getCurve
(ArrayList<Prediction> predictions) Calculates the performance stats for the default class and return results as a set of Instances.ThresholdCurve.getCurve
(ArrayList<Prediction> predictions, int classIndex) Calculates the performance stats for the desired class and return results as a set of Instances.Evaluation.getHeader()
Returns the header of the underlying dataset.Modifier and TypeMethodDescriptionstatic double
RegressionAnalysis.calculateRSquared
(Instances data, double ssr) Returns the R-squared value for a linear regression model, where sum of squared residuals is already calculated.static double
RegressionAnalysis.calculateSSR
(Instances data, Attribute chosen, double slope, double intercept) Returns the sum of squared residuals of the simple linear regression model: y = a + bx.static double[]
RegressionAnalysis.calculateStdErrorOfCoef
(Instances data, boolean[] selected, double ssr, int n, int k) Returns an array of the standard errors of the coefficients in a multiple linear regression.static double[]
RegressionAnalysis.calculateStdErrorOfCoef
(Instances data, Attribute chosen, double slope, double intercept, int df) Returns the standard errors of slope and intercept for a simple linear regression model: y = a + bx.void
Evaluation.crossValidateModel
(String classifierString, Instances data, int numFolds, String[] options, Random random) Performs a (stratified if class is nominal) cross-validation for a classifier on a set of instances.void
Evaluation.crossValidateModel
(Classifier classifier, Instances data, int numFolds, Random random) Performs a (stratified if class is nominal) cross-validation for a classifier on a set of instances.void
Evaluation.crossValidateModel
(Classifier classifier, Instances data, int numFolds, Random random, Object... forPrinting) Performs a (stratified if class is nominal) cross-validation for a classifier on a set of instances.double[]
Evaluation.evaluateModel
(Classifier classifier, Instances data, Object... forPredictionsPrinting) Evaluates the classifier on a given set of instances.EvaluationUtils.getCVPredictions
(Classifier classifier, Instances data, int numFolds) Generate a bunch of predictions ready for processing, by performing a cross-validation on the supplied dataset.static double
ThresholdCurve.getNPointPrecision
(Instances tcurve, int n) Calculates the n point precision result, which is the precision averaged over n evenly spaced (w.r.t recall) samples of the curve.static double
ThresholdCurve.getPRCArea
(Instances tcurve) Calculates the area under the precision-recall curve (AUPRC).static double
ThresholdCurve.getROCArea
(Instances tcurve) Calculates the area under the ROC curve as the Wilcoxon-Mann-Whitney statistic.EvaluationUtils.getTestPredictions
(Classifier classifier, Instances test) Generate a bunch of predictions ready for processing, by performing a evaluation on a test set assuming the classifier is already trained.static int
ThresholdCurve.getThresholdInstance
(Instances tcurve, double threshold) Gets the index of the instance with the closest threshold value to the desired targetEvaluationUtils.getTrainTestPredictions
(Classifier classifier, Instances train, Instances test) Generate a bunch of predictions ready for processing, by performing a evaluation on a test set after training on the given training set.void
Sets the class prior probabilities.ModifierConstructorDescriptionConstructs a new AggregateableEvaluation objectAggregateableEvaluation
(Instances data, CostMatrix costMatrix) Constructs a new AggregateableEvaluation objectEvaluation
(Instances data) Initializes all the counters for the evaluation.Evaluation
(Instances data, CostMatrix costMatrix) Initializes all the counters for the evaluation and also takes a cost matrix as parameter. -
Uses of Instances in weka.classifiers.evaluation.output.prediction
Modifier and TypeMethodDescriptionvoid
AbstractOutput.print
(Classifier classifier, Instances testset) Prints the header, classifications and footer to the buffer.void
AbstractOutput.printClassifications
(Classifier classifier, Instances testset) Prints the classifications to the buffer.void
Sets the header of the dataset. -
Uses of Instances in weka.classifiers.functions
Modifier and TypeMethodDescriptionvoid
GaussianProcesses.buildClassifier
(Instances insts) Method for building the classifier.void
LinearRegression.buildClassifier
(Instances data) Builds a regression model for the given data.void
Logistic.buildClassifier
(Instances train) Builds the classifiervoid
MultilayerPerceptron.buildClassifier
(Instances i) Call this function to build and train a neural network for the training data provided.void
SGD.buildClassifier
(Instances data) Method for building the classifier.void
SGDText.buildClassifier
(Instances data) Method for building the classifier.void
SimpleLinearRegression.buildClassifier
(Instances insts) Builds a simple linear regression model given the supplied training data.void
SimpleLogistic.buildClassifier
(Instances data) Builds the logistic regression using LogitBoost.void
SMO.buildClassifier
(Instances insts) Method for building the classifier.void
SMOreg.buildClassifier
(Instances instances) Method for building the classifier.void
VotedPerceptron.buildClassifier
(Instances insts) Builds the ensemble of perceptrons.void
MultilayerPerceptron.initializeClassifier
(Instances data) Initializes an iterative classifier.Produce a PMML representation of this logistic model -
Uses of Instances in weka.classifiers.functions.supportVector
Modifier and TypeMethodDescriptionvoid
RegOptimizer.buildClassifier
(Instances data) learn SVM parameters from data.void
RegSMO.buildClassifier
(Instances instances) learn SVM parameters from data using Smola's SMO algorithm.void
RegSMOImproved.buildClassifier
(Instances instances) learn SVM parameters from data using Keerthi's SMO algorithm.void
CachedKernel.buildKernel
(Instances data) builds the kernel with the given data.void
Kernel.buildKernel
(Instances data) builds the kernel with the given datavoid
NormalizedPolyKernel.buildKernel
(Instances data) builds the kernel with the given data.void
Puk.buildKernel
(Instances data) builds the kernel with the given data.void
RBFKernel.buildKernel
(Instances data) Builds the kernel.void
StringKernel.buildKernel
(Instances data) builds the kernel with the given data.Evaluates the Kernel with the given commandline options and returns the evaluation string.ModifierConstructorDescriptionNormalizedPolyKernel
(Instances dataset, int cacheSize, double exponent, boolean lowerOrder) Creates a newNormalizedPolyKernel
instance.PolyKernel
(Instances data, int cacheSize, double exponent, boolean lowerOrder) Creates a newPolyKernel
instance.Constructor.Creates a newRBFKernel
instance.StringKernel
(Instances data, int cacheSize, int subsequenceLength, double lambda, boolean debug) creates a new StringKernel object. -
Uses of Instances in weka.classifiers.lazy
Modifier and TypeMethodDescriptionPrunes the list to contain the k nearest neighbors.Modifier and TypeMethodDescriptionvoid
IBk.buildClassifier
(Instances instances) Generates the classifier.void
KStar.buildClassifier
(Instances instances) Generates the classifier.void
LWL.buildClassifier
(Instances instances) Generates the classifier.Prunes the list to contain the k nearest neighbors. -
Uses of Instances in weka.classifiers.lazy.kstar
ModifierConstructorDescriptionKStarNominalAttribute
(Instance test, Instance train, int attrIndex, Instances trainSet, int[][] randClassCol, KStarCache cache) ConstructorKStarNumericAttribute
(Instance test, Instance train, int attrIndex, Instances trainSet, int[][] randClassCols, KStarCache cache) Constructor -
Uses of Instances in weka.classifiers.meta
Modifier and TypeMethodDescriptionvoid
AdaBoostM1.buildClassifier
(Instances data) Method used to build the classifier.void
AdditiveRegression.buildClassifier
(Instances data) Method used to build the classifier.void
AttributeSelectedClassifier.buildClassifier
(Instances data) Build the classifier on the dimensionally reduced data.void
Bagging.buildClassifier
(Instances data) Bagging method.void
ClassificationViaRegression.buildClassifier
(Instances insts) Builds the classifiers.void
CostSensitiveClassifier.buildClassifier
(Instances data) Builds the model of the base learner.void
CVParameterSelection.buildClassifier
(Instances instances) Generates the classifier.void
FilteredClassifier.buildClassifier
(Instances data) Build the classifier on the filtered data.void
IterativeClassifierOptimizer.buildClassifier
(Instances data) Builds the classifier.void
LogitBoost.buildClassifier
(Instances data) Method used to build the classifier.void
MultiClassClassifier.buildClassifier
(Instances insts) Builds the classifiers.void
MultiClassClassifierUpdateable.buildClassifier
(Instances insts) void
MultiScheme.buildClassifier
(Instances data) Buildclassifier selects a classifier from the set of classifiers by minimising error on the training data.void
RandomCommittee.buildClassifier
(Instances data) Builds the committee of randomizable classifiers.void
RandomizableFilteredClassifier.buildClassifier
(Instances data) Build the classifier on the filtered data.void
RandomSubSpace.buildClassifier
(Instances data) builds the classifier.void
RegressionByDiscretization.buildClassifier
(Instances instances) Generates the classifier.void
Stacking.buildClassifier
(Instances data) Builds a classifier using stacking.void
Vote.buildClassifier
(Instances data) Builds all classifiers in the ensemblevoid
WeightedInstancesHandlerWrapper.buildClassifier
(Instances data) builds the classifier.double[][]
AttributeSelectedClassifier.distributionsForInstances
(Instances insts) Batch scoring method.double[][]
Bagging.distributionsForInstances
(Instances insts) Batch scoring method.double[][]
ClassificationViaRegression.distributionsForInstances
(Instances insts) Returns predictions for a whole set of instances.double[][]
CostSensitiveClassifier.distributionsForInstances
(Instances insts) Batch scoring method.double[][]
FilteredClassifier.distributionsForInstances
(Instances insts) Batch scoring method.double[][]
LogitBoost.distributionsForInstances
(Instances insts) Calculates the class membership probabilities for the given test instances.double[][]
RandomCommittee.distributionsForInstances
(Instances insts) Batch scoring method.double[][]
RandomSubSpace.distributionsForInstances
(Instances insts) Batch scoring method.double[][]
Stacking.distributionsForInstances
(Instances instances) Returns class probabilities for all given instances if the class is nominal or corresponding predicted numeric values if the class is numeric.void
Bagging.generatePartition
(Instances data) Builds the classifier to generate a partition.void
FilteredClassifier.generatePartition
(Instances data) Builds the classifier to generate a partition.void
RandomCommittee.generatePartition
(Instances data) Builds the classifier to generate a partition.void
AdaBoostM1.initializeClassifier
(Instances data) Initialize the classifier.void
AdditiveRegression.initializeClassifier
(Instances data) Initialize classifier.void
FilteredClassifier.initializeClassifier
(Instances data) Initializes an iterative classifier.void
LogitBoost.initializeClassifier
(Instances data) Builds the boosted classifiervoid
RandomizableFilteredClassifier.initializeClassifier
(Instances data) Initializes an iterative classifier. -
Uses of Instances in weka.classifiers.misc
Modifier and TypeMethodDescriptionInputMappedClassifier.getModelHeader
(Instances defaultH) Return the instance structure that the encapsulated model was built with.Modifier and TypeMethodDescriptionvoid
InputMappedClassifier.buildClassifier
(Instances data) Build the classifiervoid
SerializedClassifier.buildClassifier
(Instances data) loads only the serialized classifierInputMappedClassifier.getModelHeader
(Instances defaultH) Return the instance structure that the encapsulated model was built with.void
InputMappedClassifier.setModelHeader
(Instances modelHeader) Set the structure of the data used to create the model.void
InputMappedClassifier.setTestStructure
(Instances testStructure) Set the test structure (if known in advance) that we are likely to see. -
Uses of Instances in weka.classifiers.pmml.consumer
Modifier and TypeMethodDescriptionvoid
PMMLClassifier.buildClassifier
(Instances data) Throw an exception - PMML models are pre-built.void
PMMLClassifier.mapToMiningSchema
(Instances dataSet) Map mining schema to incoming instances.ModifierConstructorDescriptionGeneralRegression
(Element model, Instances dataDictionary, MiningSchema miningSchema) Constructs a GeneralRegression classifier.NeuralNetwork
(Element model, Instances dataDictionary, MiningSchema miningSchema) Regression
(Element model, Instances dataDictionary, MiningSchema miningSchema) Constructs a new PMML Regression.RuleSetModel
(Element model, Instances dataDictionary, MiningSchema miningSchema) Constructor for a RuleSetModelSupportVectorMachineModel
(Element model, Instances dataDictionary, MiningSchema miningSchema) Construct a new SupportVectorMachineModel encapsulating the information provided in the PMML document.TreeModel
(Element model, Instances dataDictionary, MiningSchema miningSchema) -
Uses of Instances in weka.classifiers.pmml.producer
Modifier and TypeMethodDescriptionstatic void
AbstractPMMLProducerHelper.addDataDictionary
(Instances trainHeader, PMML pmml) Adds a data dictionary to the supplied PMML object.static String[]
AbstractPMMLProducerHelper.getNameAndValueFromUnsupervisedNominalToBinaryDerivedAttribute
(Instances train, Attribute derived) Extracts the original attribute name and value from the name of a binary indicator attribute created by unsupervised NominalToBinary.static String
LogisticProducerHelper.toPMML
(Instances train, Instances structureAfterFiltering, double[][] par, int numClasses) Produce the PMML for a Logistic classifier -
Uses of Instances in weka.classifiers.rules
Modifier and TypeMethodDescriptionRuleStats.getData()
Get the data of the statsRuleStats.getFiltered
(int index) Get the data after filtering the given rulestatic final Instances[]
Patition the data into 2, first of which has (numFolds-1)/numFolds of the data and the second has 1/numFolds of the datastatic Instances
RuleStats.rmCoveredBySuccessives
(Instances data, ArrayList<Rule> rules, int index) Static utility function to count the data covered by the rules after the given index in the given rules, and then remove them.abstract Instances[]
Implements the splitData function.Implements the splitData function.static final Instances
Stratify the given data into the given number of bags based on the class values.Modifier and TypeMethodDescriptionvoid
DecisionTable.buildClassifier
(Instances data) Generates the classifier.void
JRip.buildClassifier
(Instances instances) Builds Ripper in the order of class frequencies.void
OneR.buildClassifier
(Instances instances) Generates the classifier.void
PART.buildClassifier
(Instances instances) Generates the classifier.void
ZeroR.buildClassifier
(Instances instances) Generates the classifier.void
Removes redundant tests in the rule.void
Count data from the position index in the ruleset assuming that given data are not covered by the rules in position 0...(index-1), and the statistics of these rules are provided.
This procedure is typically useful when a temporary object of RuleStats is constructed in order to efficiently calculate the relative DL of rule in position index, thus all other stuff is not needed.void
Build one rule using the growing dataabstract void
Build this ruleweka.classifiers.rules.OneR.OneRRule
OneR.newNominalRule
(Attribute attr, Instances data, int[] missingValueCounts) Create a rule branching on this nominal attribute.weka.classifiers.rules.OneR.OneRRule
OneR.newNumericRule
(Attribute attr, Instances data, int[] missingValueCounts) Create a rule branching on this numeric attributeweka.classifiers.rules.OneR.OneRRule
Create a rule branching on this attribute.static double
RuleStats.numAllConditions
(Instances data) Compute the number of all possible conditions that could appear in a rule of a given data.static final Instances[]
Patition the data into 2, first of which has (numFolds-1)/numFolds of the data and the second has 1/numFolds of the datavoid
Prune all the possible final sequences of the rule using the pruning data.static Instances
RuleStats.rmCoveredBySuccessives
(Instances data, ArrayList<Rule> rules, int index) Static utility function to count the data covered by the rules after the given index in the given rules, and then remove them.void
Set the data of the stats, overwriting the old one if anyabstract Instances[]
Implements the splitData function.Implements the splitData function.static final Instances
Stratify the given data into the given number of bags based on the class values.Convert a hash entry to a string -
Uses of Instances in weka.classifiers.rules.part
Modifier and TypeMethodDescriptionvoid
MakeDecList.buildClassifier
(Instances data) Builds dec list.void
C45PruneableDecList.buildDecList
(Instances data, boolean leaf) Builds the partial tree without hold out set.void
ClassifierDecList.buildDecList
(Instances data, boolean leaf) Builds the partial tree without hold out set.void
PruneableDecList.buildDecList
(Instances train, Instances test, boolean leaf) Builds the partial tree with hold out setvoid
Method for building a pruned partial tree.void
Method for building a pruned partial tree.final void
Cleanup in order to save memory. -
Uses of Instances in weka.classifiers.trees
Modifier and TypeMethodDescriptionvoid
DecisionStump.buildClassifier
(Instances instances) Generates the classifier.void
HoeffdingTree.buildClassifier
(Instances data) Builds the classifier.void
J48.buildClassifier
(Instances instances) Generates the classifier.void
LMT.buildClassifier
(Instances data) Builds the classifier.void
RandomTree.buildClassifier
(Instances data) Builds classifier.void
REPTree.buildClassifier
(Instances data) Builds classifier.void
J48.generatePartition
(Instances data) Builds the classifier to generate a partition.void
RandomTree.generatePartition
(Instances data) Builds the classifier to generate a partition.void
REPTree.generatePartition
(Instances data) Builds the classifier to generate a partition. -
Uses of Instances in weka.classifiers.trees.ht
ModifierConstructorDescriptionConstruct a new NBNodeNBNodeAdaptive
(Instances header, double nbWeightThreshold) Constructor -
Uses of Instances in weka.classifiers.trees.j48
Modifier and TypeMethodDescriptionClassifierTree.getTrainingData()
Splits the given set of instances into subsets.Modifier and TypeMethodDescriptionfinal void
Distribution.addInstWithUnknown
(Instances source, int attIndex) Adds all instances with unknown values for given attribute, weighted according to frequency of instances in each bag.final void
Adds all instances in given range to given bag.void
BinC45Split.buildClassifier
(Instances trainInstances) Creates a C4.5-type split on the given data.void
C45PruneableClassifierTree.buildClassifier
(Instances data) Method for building a pruneable classifier tree.void
C45Split.buildClassifier
(Instances trainInstances) Creates a C4.5-type split on the given data.abstract void
ClassifierSplitModel.buildClassifier
(Instances instances) Builds the classifier split model for the given set of instances.void
ClassifierTree.buildClassifier
(Instances data) Method for building a classifier tree.void
NBTreeClassifierTree.buildClassifier
(Instances data) Method for building a naive bayes classifier treefinal void
NBTreeNoSplit.buildClassifier
(Instances instances) Build the no-split nodevoid
NBTreeSplit.buildClassifier
(Instances trainInstances) Creates a NBTree-type split on the given data.final void
NoSplit.buildClassifier
(Instances instances) Creates a "no-split"-split for a given set of instances.void
PruneableClassifierTree.buildClassifier
(Instances data) Method for building a pruneable classifier tree.void
Builds the tree structure.void
Builds the tree structure with hold out setfinal void
Cleanup in order to save memory.static double
NBTreeNoSplit.crossValidate
(NaiveBayesUpdateable fullModel, Instances trainingSet, Random r) Utility method for fast 5-fold cross validation of a naive bayes modelfinal void
Deletes all instances in given range from given bag.final String
Prints label for subset index of instances (eg class).final String
Prints the split model.final String
Prints left side of condition.final String
Prints left side of condition..abstract String
Prints left side of condition satisfied by instances.final String
Does nothing because no condition has to be satisfied.final String
Prints left side of condition..final String
Does nothing because no condition has to be satisfied.final double[][]
C45Split.minsAndMaxs
(Instances data, double[][] minsAndMaxs, int index) Returns the minsAndMaxs of the index.th subset.void
BinC45Split.resetDistribution
(Instances data) Sets distribution associated with model.void
C45Split.resetDistribution
(Instances data) Sets distribution associated with model.void
ClassifierSplitModel.resetDistribution
(Instances data) Sets distribution associated with model.final String
Prints the condition satisfied by instances in a subset.final String
Prints the condition satisfied by instances in a subset.abstract String
Prints left side of condition satisfied by instances in subset index.final String
Does nothing because no condition has to be satisfied.final String
Prints the condition satisfied by instances in a subset.final String
Does nothing because no condition has to be satisfied.final ClassifierSplitModel
BinC45ModelSelection.selectModel
(Instances data) Selects C4.5-type split for the given dataset.final ClassifierSplitModel
BinC45ModelSelection.selectModel
(Instances train, Instances test) Selects C4.5-type split for the given dataset.C45ModelSelection.selectModel
(Instances data) Selects C4.5-type split for the given dataset.final ClassifierSplitModel
C45ModelSelection.selectModel
(Instances train, Instances test) Selects C4.5-type split for the given dataset.abstract ClassifierSplitModel
ModelSelection.selectModel
(Instances data) Selects a model for the given dataset.ModelSelection.selectModel
(Instances train, Instances test) Selects a model for the given train data using the given test datafinal ClassifierSplitModel
NBTreeModelSelection.selectModel
(Instances data) Selects NBTree-type split for the given dataset.final ClassifierSplitModel
NBTreeModelSelection.selectModel
(Instances train, Instances test) Selects NBTree-type split for the given dataset.final void
BinC45Split.setSplitPoint
(Instances allInstances) Sets split point to greatest value in given data smaller or equal to old split point.final void
C45Split.setSplitPoint
(Instances allInstances) Sets split point to greatest value in given data smaller or equal to old split point.final void
Distribution.shiftRange
(int from, int to, Instances source, int startIndex, int lastPlusOne) Shifts all instances in given range from one bag to another one.final String
ClassifierSplitModel.sourceClass
(int index, Instances data) final String
BinC45Split.sourceExpression
(int index, Instances data) Returns a string containing java source code equivalent to the test made at this node.final String
C45Split.sourceExpression
(int index, Instances data) Returns a string containing java source code equivalent to the test made at this node.abstract String
ClassifierSplitModel.sourceExpression
(int index, Instances data) final String
NBTreeNoSplit.sourceExpression
(int index, Instances data) Returns a string containing java source code equivalent to the test made at this node.final String
NBTreeSplit.sourceExpression
(int index, Instances data) Returns a string containing java source code equivalent to the test made at this node.final String
NoSplit.sourceExpression
(int index, Instances data) Returns a string containing java source code equivalent to the test made at this node.Splits the given set of instances into subsets.ModifierConstructorDescriptionBinC45ModelSelection
(int minNoObj, Instances allData, boolean useMDLcorrection, boolean doNotMakeSplitPointActualValue) Initializes the split selection method with the given parameters.C45ModelSelection
(int minNoObj, Instances allData, boolean useMDLcorrection, boolean doNotMakeSplitPointActualValue) Initializes the split selection method with the given parameters.Distribution
(Instances source) Creates a distribution with only one bag according to instances in source.Distribution
(Instances source, ClassifierSplitModel modelToUse) Creates a distribution according to given instances and split model.NBTreeModelSelection
(int minNoObj, Instances allData) Initializes the split selection method with the given parameters. -
Uses of Instances in weka.classifiers.trees.lmt
Modifier and TypeMethodDescriptionvoid
LMTNode.buildClassifier
(Instances data) Method for building a logistic model tree (only called for the root node).void
LogisticBase.buildClassifier
(Instances data) Builds the logistic regression model usiing LogitBoost.void
ResidualSplit.buildClassifier
(Instances data) Method not in usevoid
ResidualSplit.buildClassifier
(Instances data, double[][] dataZs, double[][] dataWs) Builds the split.void
SimpleLinearRegression.buildClassifier
(Instances insts) Builds a simple linear regression model given the supplied training data.void
LMTNode.buildTree
(Instances data, SimpleLinearRegression[][] higherRegressions, double totalInstanceWeight, double higherNumParameters, Instances numericDataHeader) Method for building the tree structure.final String
Returns name of splitting attribute (left side of condition).int
Method for performing one fold in the cross-validation of the cost-complexity parameter.final String
Prints the condition satisfied by instances in a subset.final ClassifierSplitModel
ResidualModelSelection.selectModel
(Instances train) Method not in usefinal ClassifierSplitModel
ResidualModelSelection.selectModel
(Instances data, double[][] dataZs, double[][] dataWs) Selects split based on residuals for the given dataset.final ClassifierSplitModel
ResidualModelSelection.selectModel
(Instances train, Instances test) Method not in usefinal String
ResidualSplit.sourceExpression
(int index, Instances data) Method not in use -
Uses of Instances in weka.classifiers.trees.m5
Modifier and TypeMethodDescriptionRule.notCoveredInstances()
Get the instances not covered by this ruleModifier and TypeMethodDescriptionfinal void
Finds the best splitting point for an attribute in the instancesvoid
Finds the best splitting point for an attribute in the instancesfinal void
Finds the best splitting point for an attribute in the instancesvoid
M5Base.buildClassifier
(Instances data) Generates the classifier.void
PreConstructedLinearModel.buildClassifier
(Instances instances) Builds the classifier.void
Rule.buildClassifier
(Instances data) Generates a single rule or m5 model tree.void
RuleNode.buildClassifier
(Instances data) Build this node (find an attribute and split point)final String
Converts the spliting information to stringModifierConstructorDescriptionConstructs an Impurity object containing the impurity values of partitioning the instances using an attributeConstructs an object which stores some statistics of the instances such as sum, squared sum, variance, standard deviation -
Uses of Instances in weka.clusterers
Modifier and TypeMethodDescriptionCanopy.getCanopies()
Get the canopies (cluster centers).FarthestFirst.getClusterCentroids()
Get the centroids found by FarthestFirstSimpleKMeans.getClusterCentroids()
Gets the the cluster centroids.SimpleKMeans.getClusterStandardDevs()
Gets the standard deviations of the numeric attributes in each cluster.Modifier and TypeMethodDescriptionabstract void
AbstractClusterer.buildClusterer
(Instances data) Generates a clusterer.void
Canopy.buildClusterer
(Instances data) void
Clusterer.buildClusterer
(Instances data) Generates a clusterer.void
Cobweb.buildClusterer
(Instances data) Builds the clusterer.void
EM.buildClusterer
(Instances data) Generates a clusterer.void
FarthestFirst.buildClusterer
(Instances data) Generates a clusterer.void
FilteredClusterer.buildClusterer
(Instances data) Build the clusterer on the filtered data.void
HierarchicalClusterer.buildClusterer
(Instances data) void
MakeDensityBasedClusterer.buildClusterer
(Instances data) Builds a clusterer for a set of instances.void
SimpleKMeans.buildClusterer
(Instances data) Generates a clusterer.static String
ClusterEvaluation.crossValidateModel
(String clustererString, Instances data, int numFolds, String[] options, Random random) Performs a cross-validation for a DensityBasedClusterer clusterer on a set of instances.static double
ClusterEvaluation.crossValidateModel
(DensityBasedClusterer clusterer, Instances data, int numFolds, Random random) Perform a cross-validation for DensityBasedClusterer on a set of instances.void
ClusterEvaluation.evaluateClusterer
(Instances test) Evaluate the clusterer on a set of instances.void
ClusterEvaluation.evaluateClusterer
(Instances test, String testFileName) Evaluate the clusterer on a set of instances.void
ClusterEvaluation.evaluateClusterer
(Instances test, String testFileName, boolean outputModel) Evaluate the clusterer on a set of instances.void
Canopy.initializeDistanceFunction
(Instances init) Initialize the distance function (i.e set min/max values for numeric attributes) with the supplied instances.static String
Canopy.printCanopyAssignments
(Instances dataPoints, List<long[]> canopyAssignments) Print the supplied instances and their canopiesvoid
Canopy.setCanopies
(Instances canopies) Set the canopies to use (replaces any learned by this clusterer already) -
Uses of Instances in weka.core
Modifier and TypeMethodDescriptionAbstractInstance.dataset()
Returns the dataset this instance has access to.Instance.dataset()
Returns the dataset this instance has access to.TestInstances.generate()
Generates a new datasetgenerates a new dataset.AttributeLocator.getData()
returns the underlying dataTestInstances.getData()
returns the current dataset, can be nullDictionaryBuilder.getInputFormat()
Gets the currently set input formatDistanceFunction.getInstances()
returns the instances currently set.FilteredDistance.getInstances()
returns the instances currently set.NormalizableDistance.getInstances()
returns the instances currently set.TestInstances.getRelationalClassFormat()
returns the current strcuture of the relational class attribute, can be nullTestInstances.getRelationalFormat
(int index) returns the format for the specified relational attribute, can be nullDictionaryBuilder.getVectorizedFormat()
Get the output formatstatic Instances
Instances.mergeInstances
(Instances first, Instances second) Merges two sets of Instances together.Provides a hook for derived classes to further modify the data.final Instances
Attribute.relation()
Returns the header info for a relation-valued attribute, null if the attribute is not relation-valued.final Instances
Attribute.relation
(int valIndex) Returns a value of a relation-valued attribute.final Instances
AbstractInstance.relationalValue
(int attIndex) Returns the relational value of a relational attribute.final Instances
AbstractInstance.relationalValue
(Attribute att) Returns the relational value of a relational attribute.Instance.relationalValue
(int attIndex) Returns the relational value of a relational attribute.Instance.relationalValue
(Attribute att) Returns the relational value of a relational attribute.Creates a new dataset of the same size as this dataset using random sampling with replacement.static Instances
ResampleUtils.resampleWithWeightIfNecessary
(Instances insts, Random rand) Resamples the dataset usingresampleWithWeights(Random)
if there are any instance weights other than 1.0 set.Instances.resampleWithWeights
(Random random) Creates a new dataset of the same size as this dataset using random sampling with replacement according to the current instance weights.Instances.resampleWithWeights
(Random random, boolean representUsingWeights) Creates a new dataset of the same size as this dataset using random sampling with replacement according to the current instance weights.Instances.resampleWithWeights
(Random random, boolean[] sampled) Creates a new dataset of the same size as this dataset using random sampling with replacement according to the current instance weights.Instances.resampleWithWeights
(Random random, boolean[] sampled, boolean representUsingWeights) Creates a new dataset of the same size as this dataset using random sampling with replacement according to the current instance weights.Instances.resampleWithWeights
(Random random, boolean[] sampled, boolean representUsingWeights, double sampleSize) Creates a new dataset from this dataset using random sampling with replacement according to current instance weights.Instances.resampleWithWeights
(Random random, double[] weights) Creates a new dataset of the same size as this dataset using random sampling with replacement according to the given weight vector.Instances.resampleWithWeights
(Random random, double[] weights, boolean[] sampled) Creates a new dataset of the same size as this dataset using random sampling with replacement according to the given weight vector.Instances.resampleWithWeights
(Random random, double[] weights, boolean[] sampled, boolean representUsingWeights) Creates a new dataset of the same size as this dataset using random sampling with replacement according to the given weight vector.Instances.resampleWithWeights
(Random random, double[] weights, boolean[] sampled, boolean representUsingWeights, double sampleSize) Creates a new dataset from this dataset using random sampling with replacement according to the given weight vector.Instances.stringFreeStructure()
Create a copy of the structure.Instances.testCV
(int numFolds, int numFold) Creates the test set for one fold of a cross-validation on the dataset.Instances.trainCV
(int numFolds, int numFold) Creates the training set for one fold of a cross-validation on the dataset.Creates the training set for one fold of a cross-validation on the dataset.DictionaryBuilder.vectorizeBatch
(Instances batch, boolean setAvgDocLength) Convert a batch of instancesModifier and TypeMethodDescriptionint
Attribute.addRelation
(Instances value) Adds a relation to a relation-valued attribute.int
EuclideanDistance.closestPoint
(Instance instance, Instances allPoints, int[] pointList) Returns the index of the closest point to the current instance.static Range
Utils.configureRangeFromRangeStringOrAttributeNameList
(Instances instanceInfo, String rangeString) Returns a configured Range object given a 1-based range index string (such as 1-20,35,last) or a comma-separated list of attribute names.static void
RelationalLocator.copyRelationalValues
(Instance instance, boolean instSrcCompat, Instances srcDataset, AttributeLocator srcLoc, Instances destDataset, AttributeLocator destLoc) Takes relational values referenced by an Instance and copies them from a source dataset to a destination dataset.static void
RelationalLocator.copyRelationalValues
(Instance inst, Instances destDataset, AttributeLocator strAtts) Copies relational values contained in the instance copied to a new dataset.static void
StringLocator.copyStringValues
(Instance instance, boolean instSrcCompat, Instances srcDataset, AttributeLocator srcLoc, Instances destDataset, AttributeLocator destLoc) Takes string values referenced by an Instance and copies them from a source dataset to a destination dataset.static void
StringLocator.copyStringValues
(Instance inst, Instances destDataset, AttributeLocator strAtts) Copies string values contained in the instance copied to a new dataset.double[][]
BatchPredictor.distributionsForInstances
(Instances insts) Batch scoring methodboolean
Instances.equalHeaders
(Instances dataset) Checks if two headers are equivalent.Instances.equalHeadersMsg
(Instances dataset) Checks if two headers are equivalent.static Capabilities
Capabilities.forInstances
(Instances data) returns a Capabilities object specific for this data.static Capabilities
Capabilities.forInstances
(Instances data, boolean multi) returns a Capabilities object specific for this data.void
PartitionGenerator.generatePartition
(Instances data) Builds the classifier to generate a partition.AlgVector.getAsInstance
(Instances model, Random random) Gets the elements of the vector as an instance.static boolean
ResampleUtils.hasInstanceWeights
(Instances insts) Checks whether there are any instance weights other than 1.0 set.static Instances
Instances.mergeInstances
(Instances first, Instances second) Merges two sets of Instances together.Provides a hook for derived classes to further modify the data.static Instances
ResampleUtils.resampleWithWeightIfNecessary
(Instances insts, Random rand) Resamples the dataset usingresampleWithWeights(Random)
if there are any instance weights other than 1.0 set.final void
AbstractInstance.setDataset
(Instances instances) Sets the reference to the dataset.void
Instance.setDataset
(Instances instances) Sets the reference to the dataset.void
DistanceFunction.setInstances
(Instances insts) Sets the instances.void
FilteredDistance.setInstances
(Instances insts) Sets the instances.void
NormalizableDistance.setInstances
(Instances insts) Sets the instances.void
TestInstances.setRelationalClassFormat
(Instances value) sets the structure for the relational class attributevoid
TestInstances.setRelationalFormat
(int index, Instances value) sets the structure for the bags for the relational attributevoid
boolean
Tests the given data, whether it can be processed by the handler, given its capabilities.boolean
Tests a certain range of attributes of the given data, whether it can be processed by the handler, given its capabilities.void
Capabilities.testWithFail
(Instances data) tests the given data by calling the test(Instances) method and throws an exception if the test fails.void
Capabilities.testWithFail
(Instances data, int fromIndex, int toIndex) tests the given data by calling the test(Instances,int,int) method and throws an exception if the test fails.DictionaryBuilder.vectorizeBatch
(Instances batch, boolean setAvgDocLength) Convert a batch of instancesModifierConstructorDescriptionConstructs a vector using a given data format.Constructor for relation-valued attributes.Constructor for a relation-valued attribute with a particular index.Attribute
(String attributeName, Instances header, ProtectedProperties metadata) Constructor for relation-valued attributes.AttributeLocator
(Instances data, int type) Initializes the AttributeLocator with the given data for the specified type of attribute.AttributeLocator
(Instances data, int type, int[] indices) initializes the AttributeLocator with the given data for the specified type of attribute.AttributeLocator
(Instances data, int type, int fromIndex, int toIndex) Initializes the AttributeLocator with the given data for the specified type of attribute.ChebyshevDistance
(Instances data) Constructs an Chebyshev Distance object and automatically initializes the ranges.EuclideanDistance
(Instances data) Constructs an Euclidean Distance object and automatically initializes the ranges.Constructor copying all instances and references to the header information from the given set of instances.Constructor creating an empty set of instances.Creates a new set of instances by copying a subset of another set.ManhattanDistance
(Instances data) Constructs an Manhattan Distance object and automatically initializes the ranges.MinkowskiDistance
(Instances data) Constructs an Minkowski Distance object and automatically initializes the ranges.Initializes the distance function and automatically initializes the ranges.RelationalAttributeInfo
(Instances header) Constructs the information object based on the given parameter.RelationalLocator
(Instances data) Initializes the RelationalLocator with the given data.RelationalLocator
(Instances data, int[] indices) Initializes the RelationalLocator with the given data.RelationalLocator
(Instances data, int fromIndex, int toIndex) Initializes the RelationalLocator with the given data.StringLocator
(Instances data) initializes the StringLocator with the given dataStringLocator
(Instances data, int[] indices) Initializes the AttributeLocator with the given data.StringLocator
(Instances data, int fromIndex, int toIndex) Initializes the StringLocator with the given data. -
Uses of Instances in weka.core.converters
Modifier and TypeMethodDescriptionArffLoader.ArffReader.getData()
Returns the data that was readabstract Instances
AbstractLoader.getDataSet()
ArffLoader.getDataSet()
Return the full data set.C45Loader.getDataSet()
Return the full data set.ConverterUtils.DataSource.getDataSet()
returns the full dataset, can be null in case of an error.ConverterUtils.DataSource.getDataSet
(int classIndex) returns the full dataset with the specified class index set, can be null in case of an error.CSVLoader.getDataSet()
DatabaseLoader.getDataSet()
Return the full data set in batch mode (header and all intances at once).JSONLoader.getDataSet()
Return the full data set.LibSVMLoader.getDataSet()
Return the full data set.Loader.getDataSet()
Return the full data set.MatlabLoader.getDataSet()
Return the full data set.SerializedInstancesLoader.getDataSet()
Return the full data set.SVMLightLoader.getDataSet()
Return the full data set.TextDirectoryLoader.getDataSet()
Return the full data set.XRFFLoader.getDataSet()
Return the full data set.AbstractSaver.getInstances()
Gets instances that should be stored.abstract Instances
AbstractLoader.getStructure()
ArffLoader.ArffReader.getStructure()
Returns the header formatArffLoader.getStructure()
Determines and returns (if possible) the structure (internally the header) of the data set as an empty set of instances.C45Loader.getStructure()
Determines and returns (if possible) the structure (internally the header) of the data set as an empty set of instances.ConverterUtils.DataSource.getStructure()
returns the structure of the data.ConverterUtils.DataSource.getStructure
(int classIndex) returns the structure of the data, with the defined class index.CSVLoader.getStructure()
DatabaseLoader.getStructure()
Determines and returns (if possible) the structure (internally the header) of the data set as an empty set of instances.JSONLoader.getStructure()
Determines and returns (if possible) the structure (internally the header) of the data set as an empty set of instances.LibSVMLoader.getStructure()
Determines and returns (if possible) the structure (internally the header) of the data set as an empty set of instances.Loader.getStructure()
Determines and returns (if possible) the structure (internally the header) of the data set as an empty set of instances.MatlabLoader.getStructure()
Determines and returns (if possible) the structure (internally the header) of the data set as an empty set of instances.SerializedInstancesLoader.getStructure()
Determines and returns (if possible) the structure (internally the header) of the data set as an empty set of instances.SVMLightLoader.getStructure()
Determines and returns (if possible) the structure (internally the header) of the data set as an empty set of instances.TextDirectoryLoader.getStructure()
Determines and returns (if possible) the structure (internally the header) of the data set as an empty set of instances.XRFFLoader.getStructure()
Determines and returns (if possible) the structure (internally the header) of the data set as an empty set of instances.static Instances
ConverterUtils.DataSource.read
(InputStream stream) convencience method for loading a dataset in batch mode from a stream.static Instances
convencience method for loading a dataset in batch mode.static Instances
convencience method for loading a dataset in batch mode.Modifier and TypeMethodDescriptionabstract Instance
AbstractLoader.getNextInstance
(Instances structure) ArffLoader.getNextInstance
(Instances structure) Read the data set incrementally---get the next instance in the data set or returns null if there are no more instances to get.C45Loader.getNextInstance
(Instances structure) Read the data set incrementally---get the next instance in the data set or returns null if there are no more instances to get.CSVLoader.getNextInstance
(Instances structure) DatabaseLoader.getNextInstance
(Instances structure) Read the data set incrementally---get the next instance in the data set or returns null if there are no more instances to get.JSONLoader.getNextInstance
(Instances structure) JSONLoader is unable to process a data set incrementally.LibSVMLoader.getNextInstance
(Instances structure) LibSVmLoader is unable to process a data set incrementally.Loader.getNextInstance
(Instances structure) Read the data set incrementally---get the next instance in the data set or returns null if there are no more instances to get.MatlabLoader.getNextInstance
(Instances structure) MatlabLoader is unable to process a data set incrementally.SerializedInstancesLoader.getNextInstance
(Instances structure) Read the data set incrementally---get the next instance in the data set or returns null if there are no more instances to get.SVMLightLoader.getNextInstance
(Instances structure) SVMLightLoader is unable to process a data set incrementally.TextDirectoryLoader.getNextInstance
(Instances structure) Process input directories/files incrementally.XRFFLoader.getNextInstance
(Instances structure) XRFFLoader is unable to process a data set incrementally.boolean
ConverterUtils.DataSource.hasMoreElements
(Instances structure) returns whether there are more Instance objects in the data.ConverterUtils.DataSource.nextElement
(Instances dataset) returns the next element and sets the specified dataset, null if none available.ArffLoader.ArffReader.readInstance
(Instances structure) Reads a single instance using the tokenizer and returns it.ArffLoader.ArffReader.readInstance
(Instances structure, boolean flag) Reads a single instance using the tokenizer and returns it.void
AbstractSaver.setInstances
(Instances instances) Sets instances that should be stored.void
JSONSaver.setInstances
(Instances instances) Sets instances that should be stored.void
LibSVMSaver.setInstances
(Instances instances) Sets instances that should be stored.void
Saver.setInstances
(Instances instances) Sets the instances to be savedvoid
SVMLightSaver.setInstances
(Instances instances) Sets instances that should be stored.void
XRFFSaver.setInstances
(Instances instances) Sets instances that should be stored.int
AbstractSaver.setStructure
(Instances headerInfo) Sets the strcuture of the instances for the first step of incremental saving.static void
ConverterUtils.DataSink.write
(OutputStream stream, Instances data) writes the data to the given stream (always in ARFF format).static void
writes the data to the given file.static void
writes the data via the given saver.void
writes the given data either via the saver or to the defined output stream (depending on the constructor).ModifierConstructorDescriptionArffReader
(Reader reader, Instances template, int lines, int capacity, boolean batch, String... fieldSepAndEnclosures) Initializes the reader without reading the header according to the specified template.ArffReader
(Reader reader, Instances template, int lines, int capacity, String... fieldSepAndEnclosures) Initializes the reader without reading the header according to the specified template.ArffReader
(Reader reader, Instances template, int lines, String... fieldSepAndEnclosures) Reads the data without header according to the specified template.DataSource
(Instances inst) Initializes the datasource with the given dataset. -
Uses of Instances in weka.core.expressionlanguage.weka
ModifierConstructorDescriptionInstancesHelper
(Instances dataset) Constructs anInstancesHelper
for the given dataset.InstancesHelper
(Instances dataset, boolean retainData) Constructs anInstancesHelper
for the given dataset. -
Uses of Instances in weka.core.json
Modifier and TypeMethodDescriptionstatic Instances
Turns a JSON object, if possible, into an Instances object (only header).static Instances
JSONInstances.toInstances
(JSONNode json) Turns a JSON object, if possible, into an Instances object. -
Uses of Instances in weka.core.neighboursearch
Modifier and TypeMethodDescriptionNearestNeighbourSearch.getInstances()
returns the instances currently set.BallTree.kNearestNeighbours
(Instance target, int k) Returns k nearest instances in the current neighbourhood to the supplied instance.CoverTree.kNearestNeighbours
(Instance target, int k) Returns k-NNs of a given target instance, from among the previously supplied training instances (supplied through setInstances method) P.S.: May return more than k-NNs if more one instances have the same distance to the target as the kth NN.FilteredNeighbourSearch.kNearestNeighbours
(Instance target, int k) Returns the nearest neighbours for the given instance based on distance measured in the filtered space.KDTree.kNearestNeighbours
(Instance target, int k) Returns the k nearest neighbours of the supplied instance.LinearNNSearch.kNearestNeighbours
(Instance target, int kNN) Returns k nearest instances in the current neighbourhood to the supplied instance.abstract Instances
NearestNeighbourSearch.kNearestNeighbours
(Instance target, int k) Returns k nearest instances in the current neighbourhood to the supplied instance.Modifier and TypeMethodDescriptionvoid
KDTree.assignSubToCenters
(KDTreeNode node, Instances centers, int[] centList, int[] assignments) Assigns instances of this node to center.void
KDTree.centerInstances
(Instances centers, int[] assignments, double pc) Assigns instances to centers using KDTree.void
BallTree.setInstances
(Instances insts) Builds the BallTree based on the given set of instances.void
CoverTree.setInstances
(Instances instances) Builds the Cover Tree on the given set of instances.void
FilteredNeighbourSearch.setInstances
(Instances data) Sets the instances to build the filtering model from.void
KDTree.setInstances
(Instances instances) Builds the KDTree on the given set of instances.void
LinearNNSearch.setInstances
(Instances insts) Sets the instances comprising the current neighbourhood.void
NearestNeighbourSearch.setInstances
(Instances insts) Sets the instances.ModifierConstructorDescriptionCreates a new instance of BallTree.Creates a new instance of KDTree.LinearNNSearch
(Instances insts) Constructor that uses the supplied set of instances.NearestNeighbourSearch
(Instances insts) Constructor. -
Uses of Instances in weka.core.neighboursearch.balltrees
Modifier and TypeMethodDescriptionstatic Instance
BallNode.calcCentroidPivot
(int[] instList, Instances insts) Calculates the centroid pivot of a node.static Instance
BallNode.calcCentroidPivot
(int start, int end, int[] instList, Instances insts) Calculates the centroid pivot of a node.static Instance
Calculates the centroid pivot of a node based on its two child nodes (if merging two nodes).BottomUpConstructor.calcPivot
(weka.core.neighboursearch.balltrees.BottomUpConstructor.TempNode node1, weka.core.neighboursearch.balltrees.BottomUpConstructor.TempNode node2, Instances insts) Calculates the centroid pivot of a node based on its two child nodes.MiddleOutConstructor.calcPivot
(weka.core.neighboursearch.balltrees.MiddleOutConstructor.MyIdxList list1, weka.core.neighboursearch.balltrees.MiddleOutConstructor.MyIdxList list2, Instances insts) Calculates the centroid pivot of a node based on the list of points that it contains (tbe two lists of its children are provided).MiddleOutConstructor.calcPivot
(weka.core.neighboursearch.balltrees.MiddleOutConstructor.TempNode node1, weka.core.neighboursearch.balltrees.MiddleOutConstructor.TempNode node2, Instances insts) /** Calculates the centroid pivot of a node based on its two child nodes (if merging two nodes).static double
BallNode.calcRadius
(int[] instList, Instances insts, Instance pivot, DistanceFunction distanceFunction) Calculates the radius of node.static double
BallNode.calcRadius
(int start, int end, int[] instList, Instances insts, Instance pivot, DistanceFunction distanceFunction) Calculates the radius of a node.double
MiddleOutConstructor.calcRadius
(weka.core.neighboursearch.balltrees.MiddleOutConstructor.MyIdxList list1, weka.core.neighboursearch.balltrees.MiddleOutConstructor.MyIdxList list2, Instance pivot, Instances insts) Calculates the radius of a node based on the list of points that it contains (the two lists of its children are provided).void
BallSplitter.setInstances
(Instances inst) Sets the training instances on which the tree is (or is to be) built.void
BallTreeConstructor.setInstances
(Instances inst) Sets the instances on which the tree is to be built.void
MiddleOutConstructor.setInstances
(Instances insts) Sets the instances on which the tree is to be built.ModifierConstructorDescriptionBallSplitter
(int[] instList, Instances insts, EuclideanDistance e) Creates a new instance of BallSplitter.MedianDistanceFromArbitraryPoint
(int[] instList, Instances insts, EuclideanDistance e) Constructor.MedianOfWidestDimension
(int[] instList, Instances insts, EuclideanDistance e) Constructor.PointsClosestToFurthestChildren
(int[] instList, Instances insts, EuclideanDistance e) Constructor. -
Uses of Instances in weka.core.neighboursearch.kdtrees
Modifier and TypeMethodDescriptionvoid
KDTreeNodeSplitter.setInstances
(Instances inst) Sets the training instances on which the tree is (or is to be) built.ModifierConstructorDescriptionKDTreeNodeSplitter
(int[] instList, Instances insts, EuclideanDistance e) Creates a new instance of KDTreeNodeSplitter. -
Uses of Instances in weka.core.pmml
Modifier and TypeMethodDescriptionMiningSchema.getFieldsAsInstances()
Get the all the fields (both mining schema and derived) as Instances.MiningSchema.getMiningSchemaAsInstances()
Get the mining schema fields as an Instances object.Modifier and TypeMethodDescriptionstatic String
PMMLFactory.applyClassifier
(PMMLModel model, Instances test) void
DerivedFieldMetaInfo.setFieldDefs
(Instances fields) Upadate the field definitions for this derived fieldProduce a PMML representationModifierConstructorDescriptionMappingInfo
(Instances dataSet, MiningSchema miningSchema, Logger log) MiningSchema
(Element model, Instances dataDictionary, weka.core.pmml.TransformationDictionary transDict) Constructor for MiningSchema. -
Uses of Instances in weka.core.xml
Modifier and TypeMethodDescriptionXMLInstances.getInstances()
returns the current instances, either the ones that were set or the ones that were generated from the XML structure.Modifier and TypeMethodDescriptionvoid
XMLInstances.setInstances
(Instances data) builds up the XML structure based on the given dataModifierConstructorDescriptionXMLInstances
(Instances data) generates the XML structure based on the given data -
Uses of Instances in weka.datagenerators
Modifier and TypeMethodDescriptionDataGenerator.defineDataFormat()
Constructs the Instances object representing the format of the generated data.abstract Instances
DataGenerator.generateExamples()
Generates all examples of the dataset.DataGenerator.getDatasetFormat()
Gets the format of the dataset that is to be generated.Modifier and TypeMethodDescriptionvoid
DataGenerator.setDatasetFormat
(Instances newFormat) Sets the format of the dataset that is to be generated. -
Uses of Instances in weka.datagenerators.classifiers.classification
Modifier and TypeMethodDescriptionAgrawal.defineDataFormat()
Initializes the format for the dataset produced.BayesNet.defineDataFormat()
Initializes the format for the dataset produced.LED24.defineDataFormat()
Initializes the format for the dataset produced.RandomRBF.defineDataFormat()
Initializes the format for the dataset produced.RDG1.defineDataFormat()
Initializes the format for the dataset produced.Agrawal.generateExamples()
Generates all examples of the dataset.BayesNet.generateExamples()
Generates all examples of the dataset.LED24.generateExamples()
Generates all examples of the dataset.RandomRBF.generateExamples()
Generates all examples of the dataset.RDG1.generateExamples()
Generate all examples of the dataset.RDG1.generateExamples
(int num, Random random, Instances format) Generate all examples of the dataset.Modifier and TypeMethodDescriptionRDG1.generateExamples
(int num, Random random, Instances format) Generate all examples of the dataset. -
Uses of Instances in weka.datagenerators.classifiers.regression
Modifier and TypeMethodDescriptionExpression.defineDataFormat()
Initializes the format for the dataset produced.MexicanHat.defineDataFormat()
Initializes the format for the dataset produced.Expression.generateExamples()
Generates all examples of the dataset.MexicanHat.generateExamples()
Generates all examples of the dataset. -
Uses of Instances in weka.datagenerators.clusterers
Modifier and TypeMethodDescriptionBIRCHCluster.defineDataFormat()
Initializes the format for the dataset produced.SubspaceCluster.defineDataFormat()
Initializes the format for the dataset produced.BIRCHCluster.generateExamples()
Generate all examples of the dataset.BIRCHCluster.generateExamples
(Random random, Instances format) Generate all examples of the dataset.SubspaceCluster.generateExamples()
Generate all examples of the dataset.Modifier and TypeMethodDescriptionBIRCHCluster.generateExamples
(Random random, Instances format) Generate all examples of the dataset. -
Uses of Instances in weka.estimators
Modifier and TypeMethodDescriptionstatic Instances
EstimatorUtils.getInstancesFromClass
(Instances data, int classIndex, double classValue) Returns a dataset that contains of all instances of a certain class value.static Instances
EstimatorUtils.getInstancesFromValue
(Instances data, int index, double v) Returns a dataset that contains of all instances of a certain value for the given attribute.Modifier and TypeMethodDescriptionvoid
Initialize the estimator with a new dataset.void
Initialize the estimator with all values of one attribute of a dataset.void
Initialize the estimator using only the instances of one class.void
Estimator.addValues
(Instances data, int attrIndex, int classIndex, int classValue, double min, double max) Initialize the estimator using only the instances of one class.static void
Estimator.buildEstimator
(Estimator est, Instances instances, int attrIndex, int classIndex, int classValueIndex, boolean isIncremental) static double
EstimatorUtils.findMinDistance
(Instances inst, int attrIndex) Find the minimum distance between values.static Instances
EstimatorUtils.getInstancesFromClass
(Instances data, int classIndex, double classValue) Returns a dataset that contains of all instances of a certain class value.EstimatorUtils.getInstancesFromClass
(Instances data, int attrIndex, int classIndex, double classValue, Instances workData) Returns a dataset that contains all instances of a certain class value.static Instances
EstimatorUtils.getInstancesFromValue
(Instances data, int index, double v) Returns a dataset that contains of all instances of a certain value for the given attribute.static int
Find the minimum and the maximum of the attribute and return it in the last parameter..static int
Find the minimum and the maximum of the attribute and return it in the last parameter.void
Estimator.testCapabilities
(Instances data, int attrIndex) Test if the estimator can handle the data. -
Uses of Instances in weka.experiment
Modifier and TypeMethodDescriptionPairedTTester.getInstances()
Get the value of Instances.Tester.getInstances()
Get the value of Instances.InstanceQuery.retrieveInstances()
Makes a database query using the query set through the -Q option to convert a table into a set of instancesInstanceQuery.retrieveInstances
(String query) Makes a database query to convert a table into a set of instancesstatic Instances
InstanceQuery.retrieveInstances
(InstanceQueryAdapter adapter, ResultSet rs) Modifier and TypeMethodDescriptionObject[]
Gets the results for the supplied train and test datasets.Object[]
Gets the results for the supplied train and test datasets.Object[]
Gets the results for the supplied train and test datasets.Object[]
Gets the results for the supplied train and test datasets.Object[]
Gets the results for the supplied train and test datasets.void
AveragingResultProducer.setInstances
(Instances instances) Sets the dataset that results will be obtained for.void
CrossValidationResultProducer.setInstances
(Instances instances) Sets the dataset that results will be obtained for.void
DatabaseResultProducer.setInstances
(Instances instances) Sets the dataset that results will be obtained for.void
ExplicitTestsetResultProducer.setInstances
(Instances instances) Sets the dataset that results will be obtained for.void
LearningRateResultProducer.setInstances
(Instances instances) Sets the dataset that results will be obtained for.void
PairedTTester.setInstances
(Instances newInstances) Set the value of Instances.void
RandomSplitResultProducer.setInstances
(Instances instances) Sets the dataset that results will be obtained for.void
ResultProducer.setInstances
(Instances instances) Sets the dataset that results will be obtained for.void
Tester.setInstances
(Instances newInstances) Set the value of Instances. -
Uses of Instances in weka.filters
Modifier and TypeMethodDescriptionFilter.getCopyOfInputFormat()
Gets a copy of just the structure of the input format instances.Filter.getOutputFormat()
Gets the format of the output instances.static Instances
Filters an entire set of instances through a filter and returns the new set.Modifier and TypeMethodDescriptionFilter.getCapabilities
(Instances data) Returns the Capabilities of this filter, customized based on the data.boolean
A version of the input(Instance) method that enables input of a whole dataset represented as an Instances object into the filter.boolean
AllFilter.setInputFormat
(Instances instanceInfo) Sets the format of the input instances.boolean
Filter.setInputFormat
(Instances instanceInfo) Sets the format of the input instances.boolean
RenameRelation.setInputFormat
(Instances instanceInfo) Sets the format of the input instances.boolean
SimpleFilter.setInputFormat
(Instances instanceInfo) Sets the format of the input instances.Returns a string that describes the filter as source.Returns a string that describes the filter as source.static Instances
Filters an entire set of instances through a filter and returns the new set.static String
Filter.wekaStaticWrapper
(Sourcable filter, String className, Instances input, Instances output) generates source code from the filter -
Uses of Instances in weka.filters.supervised.attribute
Modifier and TypeMethodDescriptionboolean
ClassOrder.setInputFormat
(Instances instanceInfo) Sets the format of the input instances.boolean
Discretize.setInputFormat
(Instances instanceInfo) Sets the format of the input instances.boolean
NominalToBinary.setInputFormat
(Instances instanceInfo) Sets the format of the input instances.boolean
PartitionMembership.setInputFormat
(Instances instanceInfo) Sets the format of the input instances. -
Uses of Instances in weka.filters.supervised.instance
Modifier and TypeMethodDescriptionboolean
Resample.setInputFormat
(Instances instanceInfo) Sets the format of the input instances.boolean
SpreadSubsample.setInputFormat
(Instances instanceInfo) Sets the format of the input instances.boolean
StratifiedRemoveFolds.setInputFormat
(Instances instanceInfo) Sets the format of the input instances. -
Uses of Instances in weka.filters.unsupervised.attribute
Modifier and TypeMethodDescriptionPotentialClassIgnorer.getOutputFormat()
Gets the format of the output instances.Modifier and TypeMethodDescriptionvoid
add noise to the dataset a given percentage of the instances are changed in the way that a set of instances are randomly selected using seed.AddCluster.getCapabilities
(Instances data) Returns the Capabilities of this filter, makes sure that the class is never set (for the clusterer).ClusterMembership.getCapabilities
(Instances data) Returns the Capabilities of this filter, makes sure that the class is never set (for the clusterer).void
KernelFilter.initFilter
(Instances instances) initializes the filter with the given dataset, i.e., the kernel gets built.boolean
AbstractTimeSeries.setInputFormat
(Instances instanceInfo) Sets the format of the input instances.boolean
Add.setInputFormat
(Instances instanceInfo) Sets the format of the input instances.boolean
AddCluster.setInputFormat
(Instances instanceInfo) Sets the format of the input instances.boolean
AddExpression.setInputFormat
(Instances instanceInfo) Sets the format of the input instances.boolean
AddID.setInputFormat
(Instances instanceInfo) Sets the format of the input instances.boolean
AddNoise.setInputFormat
(Instances instanceInfo) Sets the format of the input instances.boolean
AddUserFields.setInputFormat
(Instances instanceInfo) Sets the format of the input instances.boolean
AddValues.setInputFormat
(Instances instanceInfo) Sets the format of the input instances.boolean
Center.setInputFormat
(Instances instanceInfo) Sets the format of the input instances.boolean
ChangeDateFormat.setInputFormat
(Instances instanceInfo) Sets the format of the input instances.boolean
ClusterMembership.setInputFormat
(Instances instanceInfo) Sets the format of the input instances.boolean
Copy.setInputFormat
(Instances instanceInfo) Sets the format of the input instances.boolean
Discretize.setInputFormat
(Instances instanceInfo) Sets the format of the input instances.boolean
FirstOrder.setInputFormat
(Instances instanceInfo) Sets the format of the input instances.boolean
MakeIndicator.setInputFormat
(Instances instanceInfo) Sets the format of the input instances.boolean
MathExpression.setInputFormat
(Instances instanceInfo) Sets the format of the input instances.boolean
MergeManyValues.setInputFormat
(Instances instanceInfo) Sets the format of the input instances.boolean
MergeTwoValues.setInputFormat
(Instances instanceInfo) Sets the format of the input instances.boolean
NominalToBinary.setInputFormat
(Instances instanceInfo) Sets the format of the input instances.boolean
NominalToString.setInputFormat
(Instances instanceInfo) Sets the format of the input instances.boolean
Normalize.setInputFormat
(Instances instanceInfo) Sets the format of the input instances.boolean
NumericToBinary.setInputFormat
(Instances instanceInfo) Sets the format of the input instances.boolean
NumericTransform.setInputFormat
(Instances instanceInfo) Sets the format of the input instances.boolean
Obfuscate.setInputFormat
(Instances instanceInfo) Sets the format of the input instances.boolean
OrdinalToNumeric.setInputFormat
(Instances instancesInfo) Sets the format of the input instances.boolean
PKIDiscretize.setInputFormat
(Instances instanceInfo) Sets the format of the input instances.boolean
PotentialClassIgnorer.setInputFormat
(Instances instanceInfo) Sets the format of the input instances.boolean
PrincipalComponents.setInputFormat
(Instances instanceInfo) Sets the format of the input instances.boolean
RandomProjection.setInputFormat
(Instances instanceInfo) Sets the format of the input instances.boolean
Remove.setInputFormat
(Instances instanceInfo) Sets the format of the input instances.boolean
RemoveType.setInputFormat
(Instances instanceInfo) Sets the format of the input instances.boolean
RemoveUseless.setInputFormat
(Instances instanceInfo) Sets the format of the input instances.boolean
RenameNominalValues.setInputFormat
(Instances instanceInfo) Sets the format of the input instances.boolean
Reorder.setInputFormat
(Instances instanceInfo) Sets the format of the input instances.boolean
ReplaceMissingValues.setInputFormat
(Instances instanceInfo) Sets the format of the input instances.boolean
ReplaceMissingWithUserConstant.setInputFormat
(Instances instanceInfo) boolean
Standardize.setInputFormat
(Instances instanceInfo) Sets the format of the input instances.boolean
StringToNominal.setInputFormat
(Instances instanceInfo) Sets the format of the input instances.boolean
StringToWordVector.setInputFormat
(Instances instanceInfo) Sets the format of the input instances.boolean
SwapValues.setInputFormat
(Instances instanceInfo) Sets the format of the input instances.boolean
TimeSeriesDelta.setInputFormat
(Instances instanceInfo) Sets the format of the input instances.boolean
TimeSeriesTranslate.setInputFormat
(Instances instanceInfo) Sets the format of the input instances.Returns a string that describes the filter as source.Returns a string that describes the filter as source.Returns a string that describes the filter as source.Returns a string that describes the filter as source. -
Uses of Instances in weka.filters.unsupervised.instance
Modifier and TypeMethodDescriptionvoid
RemoveFrequentValues.determineValues
(Instances inst) determines the values to retain, it is always at least 1 and up to the maximum number of distinct valuesboolean
NonSparseToSparse.setInputFormat
(Instances instanceInfo) Sets the format of the input instances.boolean
Randomize.setInputFormat
(Instances instanceInfo) Sets the format of the input instances.boolean
RemoveFolds.setInputFormat
(Instances instanceInfo) Sets the format of the input instances.boolean
RemoveFrequentValues.setInputFormat
(Instances instanceInfo) Sets the format of the input instances.boolean
RemoveMisclassified.setInputFormat
(Instances instanceInfo) Sets the format of the input instances.boolean
RemovePercentage.setInputFormat
(Instances instanceInfo) Sets the format of the input instances.boolean
RemoveRange.setInputFormat
(Instances instanceInfo) Sets the format of the input instances.boolean
RemoveWithValues.setInputFormat
(Instances instanceInfo) Sets the format of the input instances.boolean
Resample.setInputFormat
(Instances instanceInfo) Sets the format of the input instances.boolean
ReservoirSample.setInputFormat
(Instances instanceInfo) Sets the format of the input instances.boolean
SparseToNonSparse.setInputFormat
(Instances instanceInfo) Sets the format of the input instances. -
Uses of Instances in weka.gui
Modifier and TypeMethodDescriptionSetInstancesPanel.getInstances()
Gets the set of instances currently held by the panel.ViewerDialog.getInstances()
returns the currently displayed instancesModifier and TypeMethodDescriptionvoid
AbstractPerspective.setInstances
(Instances instances) Set instances (if this perspective can use them)void
AttributeListPanel.setInstances
(Instances newInstances) Sets the instances who's attribute names will be displayed.void
AttributeSelectionPanel.setInstances
(Instances newInstances) Sets the instances who's attribute names will be displayed.void
AttributeSummaryPanel.setInstances
(Instances inst) Tells the panel to use a new set of instances.void
AttributeVisualizationPanel.setInstances
(Instances newins) Sets the instances for usevoid
InstancesSummaryPanel.setInstances
(Instances inst) Tells the panel to use a new set of instances.void
Perspective.setInstances
(Instances instances) Set instances (if this perspective can use them)void
SetInstancesPanel.setInstances
(Instances i) Updates the set of instances that is currently held by the panel.void
SetInstancesPanel.setInstances
(Instances i, boolean showZeroInstancesAsUnknown) Updates the set of instances that is currently held by the panel.void
SimpleCLIPanel.setInstances
(Instances instances) void
ViewerDialog.setInstances
(Instances inst) sets the instances to displayint
ViewerDialog.showDialog
(Instances inst) Pops up the modal dialog and waits for Cancel or OK. -
Uses of Instances in weka.gui.arffviewer
Modifier and TypeMethodDescriptionArffPanel.getInstances()
returns the instances of the panel, if none then NULLArffSortedTableModel.getInstances()
returns the dataArffTableModel.getInstances()
returns the dataModifier and TypeMethodDescriptionvoid
ArffPanel.setInstances
(Instances data) displays the given instances, i.e.void
ArffSortedTableModel.setInstances
(Instances data) sets the datavoid
ArffTableModel.setInstances
(Instances data) sets the dataModifierConstructorDescriptioninitializes the panel with the given datainitializes the sorter w/o a model, but uses the given data to create a model from thatArffTableModel
(Instances data) initializes the model with the given data -
Uses of Instances in weka.gui.beans
Modifier and TypeMethodDescriptionClassAssigner.getConnectedFormat()
Returns the structure of the incoming instances (if any)ClassValuePicker.getConnectedFormat()
Returns the structure of the incoming instances (if any)FlowByExpression.getConnectedFormat()
Returns the structure of the incoming instances (if any)Sorter.getConnectedFormat()
Returns the structure of the incoming instances (if any)DataSetEvent.getDataSet()
Return the instances of the data setSubstringLabelerRules.getInputStructure()
Get the input structureSubstringLabelerRules.getOutputStructure()
Get the output structureAssociator.getStructure
(String eventName) Get the structure of the output encapsulated in the named event.ClassAssigner.getStructure
(String eventName) Get the structure of the output encapsulated in the named event.ClassValuePicker.getStructure
(String eventName) CrossValidationFoldMaker.getStructure
(String eventName) Get the structure of the output encapsulated in the named event.FlowByExpression.getStructure
(String eventName) Get the structure of the output encapsulated in the named event.IncrementalClassifierEvent.getStructure()
Get the instances structure (may be null if this is not a NEW_BATCH event)InstanceEvent.getStructure()
Get the instances structure (may be null if this is not a FORMAT_AVAILABLE event)Join.getStructure
(String eventName) Get the output instances structure given an input event typeLoader.getStructure
(String eventName) Get the structure of the output encapsulated in the named event.Sorter.getStructure
(String eventName) Get the structure of the output encapsulated in the named event.StructureProducer.getStructure
(String eventName) Get the structure of the output encapsulated in the named event.TestSetMaker.getStructure
(String eventName) Get the structure of the output encapsulated in the named event.TrainingSetMaker.getStructure
(String eventName) Get the structure of the output encapsulated in the named event.TrainTestSplitMaker.getStructure
(String eventName) Get the structure of the output encapsulated in the named event.TestSetEvent.getTestSet()
Get the test set instancesTrainingSetEvent.getTrainingSet()
Get the training instancesModifier and TypeMethodDescriptionvoid
SubstringLabelerRules.SubstringLabelerMatchRule.init
(Environment env, Instances structure) Initialize this match rule by substituting any environment variables in the attributes, match and label strings.void
SubstringReplacerRules.SubstringReplacerMatchRule.init
(Environment env, Instances structure) Initialize this match replace rule by substituting any environment variables in the attributes, match and replace strings.SubstringLabelerRules.matchRulesFromInternal
(String matchDetails, Instances inputStructure, String statusMessagePrefix, Logger log, Environment env) Get a list of match rules from an internally encoded match specificationSubstringReplacerRules.matchRulesFromInternal
(String matchReplaceDetails, Instances inputStructure, String statusMessagePrefix, Logger log, Environment env) Get a list of match rules from an internally encoded match specificationstatic void
SerializedModelSaver.saveBinary
(File saveTo, Object model, Instances header) Save a model in binary form.static void
Save a model in KOML deep object serialized XML form.static void
SerializedModelSaver.saveXStream
(File saveTo, Object model, Instances header) Save a model in XStream deep object serialized XML form.void
AttributeSummarizer.setInstances
(Instances inst) Set instances for this bean.void
DataVisualizer.setInstances
(Instances inst) Set instances for this bean.void
KnowledgeFlowApp.KFPerspective.setInstances
(Instances insts) Set instances (if the perspective accepts them)void
KnowledgeFlowApp.MainKFPerspective.setInstances
(Instances insts) void
ScatterPlotMatrix.setInstances
(Instances inst) Set instances for this bean.void
SQLViewerPerspective.setInstances
(Instances insts) Set instances (if the perspective accepts them)void
IncrementalClassifierEvent.setStructure
(Instances structure) Set the instances structurevoid
InstanceEvent.setStructure
(Instances structure) Set the instances structureModifier and TypeMethodDescriptionOffscreenChartRenderer.renderHistogram
(int width, int height, List<Instances> series, String attsToPlot, List<String> optionalArgs) Render histogram(s) (numeric attribute) or bar chart(s) (nominal attribute).WekaOffscreenChartRenderer.renderHistogram
(int width, int height, List<Instances> series, String attToPlot, List<String> optionalArgs) Render histogram(s) (numeric attribute) or pie chart (nominal attribute).OffscreenChartRenderer.renderXYLineChart
(int width, int height, List<Instances> series, String xAxis, String yAxis, List<String> optionalArgs) Render an XY line chartWekaOffscreenChartRenderer.renderXYLineChart
(int width, int height, List<Instances> series, String xAxis, String yAxis, List<String> optionalArgs) Render an XY line chartOffscreenChartRenderer.renderXYScatterPlot
(int width, int height, List<Instances> series, String xAxis, String yAxis, List<String> optionalArgs) Render an XY scatter plotWekaOffscreenChartRenderer.renderXYScatterPlot
(int width, int height, List<Instances> series, String xAxis, String yAxis, List<String> optionalArgs) Render an XY scatter plotModifierConstructorDescriptionDataSetEvent
(Object source, Instances dataSet) IncrementalClassifierEvent
(Object source, Classifier scheme, Instances structure) Creates a new incremental classifier event that encapsulates header information and classifier.InstanceEvent
(Object source, Instances structure) Creates a newInstanceEvent
instance which encapsulates header information only.SubstringLabelerRules
(String matchDetails, String newAttName, boolean consumeNonMatching, boolean nominalBinary, Instances inputStructure, String statusMessagePrefix, Logger log, Environment env) ConstructorSubstringLabelerRules
(String matchDetails, String newAttName, Instances inputStructure) Constructor.SubstringReplacerRules
(String matchDetails, Instances inputStructure) Constructor.SubstringReplacerRules
(String matchDetails, Instances inputStructure, String statusMessagePrefix, Logger log, Environment env) ConstructorTestSetEvent
(Object source, Instances testSet) Creates a newTestSetEvent
TestSetEvent
(Object source, Instances testSet, int setNum, int maxSetNum) Creates a newTestSetEvent
TestSetEvent
(Object source, Instances testSet, int runNum, int maxRunNum, int setNum, int maxSetNum) Creates a newTestSetEvent
TrainingSetEvent
(Object source, Instances trainSet) Creates a newTrainingSetEvent
TrainingSetEvent
(Object source, Instances trainSet, int setNum, int maxSetNum) Creates a newTrainingSetEvent
TrainingSetEvent
(Object source, Instances trainSet, int runNum, int maxRunNum, int setNum, int maxSetNum) Creates a newTrainingSetEvent
-
Uses of Instances in weka.gui.boundaryvisualizer
Modifier and TypeMethodDescriptionvoid
DataGenerator.buildGenerator
(Instances inputInstances) Build the data generatorvoid
KDDataGenerator.buildGenerator
(Instances inputInstances) Initialize the generator using the supplied instancesstatic void
BoundaryVisualizer.createNewVisualizerWindow
(Classifier classifier, Instances instances) Creates a new GUI window with all of the BoundaryVisualizer trappings,void
BoundaryVisualizer.setInstances
(Instances inst) Set the training instancesvoid
RemoteBoundaryVisualizerSubTask.setInstances
(Instances i) Set the training datavoid
BoundaryPanel.setTrainingData
(Instances trainingData) Set the training data to use -
Uses of Instances in weka.gui.experiment
Modifier and TypeMethodDescriptionvoid
ResultsPanel.setInstances
(Instances newInstances) Sets up the panel with a new set of instances, attempting to guess the correct settings for various columns. -
Uses of Instances in weka.gui.explorer
Modifier and TypeMethodDescriptionAbstractPlotInstances.getInstances()
Returns the training data.ClassifierPanel.getInstances()
Get the current set of instancesDataGeneratorPanel.getInstances()
returns the generated instances, null if the process was cancelled.PreprocessPanel.getInstances()
Gets the working set of instances.AbstractPlotInstances.getPlotInstances()
Returns the generated plot instances.Modifier and TypeMethodDescriptionvoid
ClassifierErrorsPlotInstances.process
(Instances batch, double[][] predictions, Evaluation eval) void
ClassifierPanel.saveClassifier
(String name, Classifier classifier, Instances trainHeader) Saves the currently selected classifier.void
PreprocessPanel.saveInstancesToFile
(AbstractFileSaver saver, Instances inst) saves the data with the specified savervoid
AbstractPlotInstances.setInstances
(Instances value) Sets the instances that are the basis for the plot instances.void
AssociationsPanel.setInstances
(Instances inst) Tells the panel to use a new set of instances.void
AttributeSelectionPanel.setInstances
(Instances inst) Tells the panel to use a new set of instances.void
ClassifierPanel.setInstances
(Instances inst) Tells the panel to use a new set of instances.void
ClustererPanel.setInstances
(Instances inst) Tells the panel to use a new set of instances.void
Explorer.ExplorerPanel.setInstances
(Instances inst) Tells the panel to use a new set of instances.void
PreprocessPanel.setInstances
(Instances inst) Tells the panel to use a new base set of instances.void
VisualizePanel.setInstances
(Instances instances) static Evaluation
ClassifierPanel.setupEval
(Evaluation eval, Classifier classifier, Instances inst, CostMatrix costMatrix, ClassifierErrorsPlotInstances plotInstances, AbstractOutput classificationOutput, boolean onlySetPriors) Configures an evaluation object with respect to a classifier, cost matrix, output and plotting.static Evaluation
ClassifierPanel.setupEval
(Evaluation eval, Classifier classifier, Instances inst, CostMatrix costMatrix, ClassifierErrorsPlotInstances plotInstances, AbstractOutput classificationOutput, boolean onlySetPriors, boolean collectPredictions) Configures an evaluation object with respect to a classifier, cost matrix, output and plotting. -
Uses of Instances in weka.gui.knowledgeflow
Modifier and TypeMethodDescriptionvoid
AttributeSummaryPerspective.setInstances
(Instances instances) Set the instances to visualizevoid
AttributeSummaryPerspective.setInstances
(Instances instances, Settings settings) Set the instances to visualizevoid
MainKFPerspective.setInstances
(Instances instances) Set instances (if this perspective can use them)void
ScatterPlotMatrixPerspective.setInstances
(Instances instances) Set the instances to use -
Uses of Instances in weka.gui.streams
Modifier and TypeMethodDescriptionInstanceJoiner.outputFormat()
Gets the format of the output instances.InstanceLoader.outputFormat()
InstanceProducer.outputFormat()
Modifier and TypeMethodDescriptionvoid
InstanceCounter.inputFormat
(Instances instanceInfo) boolean
InstanceJoiner.inputFormat
(Instances instanceInfo) Sets the format of the input instances.void
InstanceSavePanel.inputFormat
(Instances instanceInfo) void
InstanceTable.inputFormat
(Instances instanceInfo) void
InstanceViewer.inputFormat
(Instances instanceInfo) -
Uses of Instances in weka.gui.treevisualizer
Modifier and TypeMethodDescriptionNode.getInstances()
This will return the Instances object related to this node. -
Uses of Instances in weka.gui.visualize
Modifier and TypeMethodDescriptionVisualizePanel.getInstances()
Get the master plot's instancesVisualizePanelEvent.getInstances1()
VisualizePanelEvent.getInstances2()
PlotData2D.getPlotInstances()
Returns the instances for this plotModifier and TypeMethodDescriptionInstanceInfo.getInfoData()
Returns the underlying data.InstanceInfoFrame.getInfoData()
Returns the underlying data.Modifier and TypeMethodDescriptionvoid
AttributePanel.setInstances
(Instances ins) This sets the instances to be drawn into the attribute panelvoid
ClassPanel.setInstances
(Instances insts) Set the instances.void
MatrixPanel.setInstances
(Instances newInst) This method changes the Instances object of this class to a new one.void
Plot2D.setInstances
(Instances inst) Sets the master plot from a set of instancesvoid
VisualizePanel.setInstances
(Instances inst) Tells the panel to use a new set of instances.void
ThresholdVisualizePanel.setUpComboBoxes
(Instances inst) This overloads VisualizePanel's setUpComboBoxes to add ActionListeners to watch for when the X/Y Axis comboboxes are changed.void
VisualizePanel.setUpComboBoxes
(Instances inst) initializes the comboboxes based on the dataModifier and TypeMethodDescriptionvoid
InstanceInfo.setInfoData
(Vector<Instances> data) Sets the underlying data.void
InstanceInfoFrame.setInfoData
(Vector<Instances> data) Sets the underlying data.ModifierConstructorDescriptionPlotData2D
(Instances insts) Construct a new PlotData2D using the supplied instancesThis constructor creates the event with all the parameters set. -
Uses of Instances in weka.gui.visualize.plugins
Modifier and TypeMethodDescriptionErrorVisualizePlugin.getVisualizeMenuItem
(Instances predInst) Get a JMenu or JMenuItem which contain action listeners that perform the visualization of the classifier errors. -
Uses of Instances in weka.knowledgeflow
Modifier and TypeMethodDescriptionStepManager.getIncomingStructureForConnectionType
(String connectionName) Attempt to retrieve the structure (as a header-only set of instances) for the named incoming connection type.StepManager.getIncomingStructureForConnectionType
(String connectionName, Environment env) Attempt to retrieve the structure (as a header-only set of instances) for the named incoming connection type.StepManagerImpl.getIncomingStructureForConnectionType
(String connectionName) Attempt to get the incoming structure (as a header-only set of instances) for the named incoming connection type.StepManagerImpl.getIncomingStructureForConnectionType
(String connectionName, Environment env) Attempt to retrieve the structure (as a header-only set of instances) for the named incoming connection type.StepManager.getIncomingStructureFromStep
(StepManager sourceStep, String connectionName) Attempt to get the incoming structure (as a header-only set of instances) from the given managed step for the given connection type.StepManagerImpl.getIncomingStructureFromStep
(StepManager sourceStep, String connectionName) Attempt to get the incoming structure (as a header-only set of instances) from the given managed step for the given connection type. -
Uses of Instances in weka.knowledgeflow.steps
Modifier and TypeMethodDescriptionJoin.getFirstInputStructure()
Get the Instances structure being produced by the first inputMemoryBasedDataSource.getInstances()
Get the data to output from this stepJoin.getSecondInputStructure()
Get the Instances structure being produced by the second inputAppender.outputStructureForConnectionType
(String connectionName) If possible, get the output structure for the named connection type as a header-only set of instances.Associator.outputStructureForConnectionType
(String connectionName) If possible, get the output structure for the named connection type as a header-only set of instances.BaseStep.outputStructureForConnectionType
(String connectionName) If possible, get the output structure for the named connection type as a header-only set of instances.BaseStep.outputStructureForConnectionType
(String connectionName, Environment env) If possible, get the output structure for the named connection type as a header-only set of instances.ClassAssigner.outputStructureForConnectionType
(String connectionName) Return the structure of data output by this step for a given incoming connection typeClassValuePicker.outputStructureForConnectionType
(String connectionName) If possible, get the output structure for the named connection type as a header-only set of instances.CrossValidationFoldMaker.outputStructureForConnectionType
(String connectionName) If possible, get the output structure for the named connection type as a header-only set of instances.DataGenerator.outputStructureForConnectionType
(String connectionName) If possible, get the output structure for the named connection type as a header-only set of instances.DataGrid.outputStructureForConnectionType
(String connectionName) If possible, get the output structure for the named connection type as a header-only set of instances.ExecuteProcess.outputStructureForConnectionType
(String connectionName) Get, if possible, the outgoing instance structure for the supplied incoming connection typeFilter.outputStructureForConnectionType
(String connectionName) If possible, get the output structure for the named connection type as a header-only set of instances.FlowByExpression.outputStructureForConnectionType
(String connectionName) If possible, get the output structure for the named connection type as a header-only set of instances.InstanceStreamToBatchMaker.outputStructureForConnectionType
(String connectionName) If possible, get the output structure for the named connection type as a header-only set of instances.Loader.outputStructureForConnectionType
(String connectionName, Environment env) If possible, get the output structure for the named connection type as a header-only set of instances.SetVariables.outputStructureForConnectionType
(String connectionName) Step.outputStructureForConnectionType
(String connectionName) If possible, get the output structure for the named connection type as a header-only set of instances.Step.outputStructureForConnectionType
(String connectionName, Environment env) If possible, get the output structure for the named connection type as a header-only set of instances.SubstringLabeler.outputStructureForConnectionType
(String connectionName) If possible, get the output structure for the named connection type as a header-only set of instances.SubstringReplacer.outputStructureForConnectionType
(String connectionName) If possible, get the output structure for the named connection type as a header-only set of instances.TestSetMaker.outputStructureForConnectionType
(String connectionName) If possible, get the output structure for the named connection type as a header-only set of instances.TrainingSetMaker.outputStructureForConnectionType
(String connectionName) If possible, get the output structure for the named connection type as a header-only set of instances.TrainTestSplitMaker.outputStructureForConnectionType
(String connectionName) If possible, get the output structure for the named connection type as a header-only set of instances.Modifier and TypeMethodDescriptionvoid
FlowByExpression.BracketNode.init
(Instances structure, Environment env) void
FlowByExpression.ExpressionClause.init
(Instances structure, Environment env) void
FlowByExpression.ExpressionNode.init
(Instances structure, Environment env) Initialize the nodevoid
Sorter.SortRule.init
(Environment env, Instances structure) Initialize the rulevoid
BoundaryPlotter.plotTrainingData
(Instances trainingData) void
MemoryBasedDataSource.setInstances
(Instances instances) Set the data to output from this step