Uses of Class
weka.core.Instances
Packages that use Instances
Package
Description
-
Uses of Instances in weka.associations
Methods in weka.associations that return InstancesModifier and TypeMethodDescriptionstatic InstancesSplits the class attribute away.Apriori.getInstancesNoClass()Gets the instances without the class atrribute.CARuleMiner.getInstancesNoClass()Gets the instances without the class attributeApriori.getInstancesOnlyClass()Gets only the class attribute of the instances.CARuleMiner.getInstancesOnlyClass()Gets the class attribute and its values for all instancesMethods in weka.associations with parameters of type InstancesModifier and TypeMethodDescriptionvoidApriori.buildAssociations(Instances instances) Method that generates all large itemsets with a minimum support, and from these all association rules with a minimum confidence.voidAssociator.buildAssociations(Instances data) Generates an associator.voidFilteredAssociator.buildAssociations(Instances data) Build the associator on the filtered data.voidFPGrowth.buildAssociations(Instances data) Method that generates all large item sets with a minimum support, and from these all association rules with a minimum metric (i.e.static InstancesSplits the class attribute away.AssociatorEvaluation.evaluate(Associator associator, Instances data) Evaluates the associator with the given commandline options and returns the evaluation string.Method that mines all class association rules with minimum support and with a minimum confidence.Method for mining class association rules.AprioriItemSet.singletons(Instances instances, boolean treatZeroAsMissing) Converts the header info of the given set of instances into a set of item sets (singletons).ItemSet.singletons(Instances instances) Converts the header info of the given set of instances into a set of item sets (singletons).LabeledItemSet.singletons(Instances instancesNoClass, Instances classes) Converts the header info of the given set of instances into a set of item sets (singletons).final StringReturns the contents of an item set as a string.Returns the contents of an item set as a string.Returns the contents of an item set as a delimited string.static voidItemSet.upDateCounters(ArrayList<Object> itemSets, Instances instances) Updates counters for a set of item sets and a set of instances.static voidLabeledItemSet.upDateCounters(ArrayList<Object> itemSets, Instances instancesNoClass, Instances instancesClass) Updates counter of a specific item setstatic voidItemSet.upDateCountersTreatZeroAsMissing(ArrayList<Object> itemSets, Instances instances) Updates counters for a set of item sets and a set of instances.static voidLabeledItemSet.upDateCountersTreatZeroAsMissing(ArrayList<LabeledItemSet> itemSets, Instances instancesNoClass, Instances instancesClass) Updates counter of a specific item set -
Uses of Instances in weka.attributeSelection
Methods in weka.attributeSelection that return InstancesModifier and TypeMethodDescriptionPrincipalComponents.getFilteredInputFormat()Return the header of the training data after all filtering - i.e missing values and nominal to binary.AttributeSelection.reduceDimensionality(Instances in) reduce the dimensionality of a set of instances to include only those attributes chosen by the last run of attribute selection.AttributeTransformer.transformedData(Instances data) Transform the supplied data set (assumed to be the same format as the training data)PrincipalComponents.transformedData(Instances data) Gets the transformed training data.AttributeTransformer.transformedHeader()Returns just the header for the transformed data (ie.PrincipalComponents.transformedHeader()Returns just the header for the transformed data (ie.Methods in weka.attributeSelection with parameters of type InstancesModifier and TypeMethodDescriptionabstract voidASEvaluation.buildEvaluator(Instances data) Generates a attribute evaluator.voidCfsSubsetEval.buildEvaluator(Instances data) Generates a attribute evaluator.voidClassifierAttributeEval.buildEvaluator(Instances data) Initializes a ClassifierAttribute attribute evaluator.voidClassifierSubsetEval.buildEvaluator(Instances data) Generates a attribute evaluator.voidCorrelationAttributeEval.buildEvaluator(Instances data) Initializes an information gain attribute evaluator.voidGainRatioAttributeEval.buildEvaluator(Instances data) Initializes a gain ratio attribute evaluator.voidInfoGainAttributeEval.buildEvaluator(Instances data) Initializes an information gain attribute evaluator.voidOneRAttributeEval.buildEvaluator(Instances data) Initializes a OneRAttribute attribute evaluator.voidPrincipalComponents.buildEvaluator(Instances data) Initializes principal components and performs the analysisvoidReliefFAttributeEval.buildEvaluator(Instances data) Initializes a ReliefF attribute evaluator.voidSymmetricalUncertAttributeEval.buildEvaluator(Instances data) Initializes a symmetrical uncertainty attribute evaluator.voidWrapperSubsetEval.buildEvaluator(Instances data) Generates a attribute evaluator.doubleClassifierSubsetEval.evaluateSubset(BitSet subset, Instances holdOut) Evaluates a subset of attributes with respect to a set of instances.abstract doubleHoldOutSubsetEvaluator.evaluateSubset(BitSet subset, Instances holdOut) Evaluates a subset of attributes with respect to a set of instances.voidPrincipalComponents.initializeAndComputeMatrix(Instances data) Intializes the evaluator, filters the input data and computes the correlation/covariance matrix.AttributeSelection.reduceDimensionality(Instances in) reduce the dimensionality of a set of instances to include only those attributes chosen by the last run of attribute selection.abstract int[]ASSearch.search(ASEvaluation ASEvaluator, Instances data) Searches the attribute subset/ranking space.int[]BestFirst.search(ASEvaluation ASEval, Instances data) Searches the attribute subset space by best first searchint[]GreedyStepwise.search(ASEvaluation ASEval, Instances data) Searches the attribute subset space by forward selection.int[]Ranker.search(ASEvaluation ASEval, Instances data) Kind of a dummy search algorithm.static StringAttributeSelection.SelectAttributes(ASEvaluation ASEvaluator, String[] options, Instances train) Perform attribute selection with a particular evaluator and a set of options specifying search method and options for the search method and evaluator.voidAttributeSelection.SelectAttributes(Instances data) Perform attribute selection on the supplied training instances.voidAttributeSelection.selectAttributesCVSplit(Instances split) Select attributes for a split of the data.AttributeTransformer.transformedData(Instances data) Transform the supplied data set (assumed to be the same format as the training data)PrincipalComponents.transformedData(Instances data) Gets the transformed training data.voidAttributeSelection.updateStatsForModelCVSplit(Instances split, ASEvaluation evaluator, ASSearch search, int[] attributeSet, boolean doRank) Update the attribute selection stats for a cross-validation fold of the data. -
Uses of Instances in weka.classifiers
Methods in weka.classifiers that return InstancesModifier and TypeMethodDescriptionCostMatrix.applyCostMatrix(Instances data, Random random) Applies the cost matrix to a set of instances.Evaluation.getHeader()Returns the header of the underlying dataset.Methods in weka.classifiers with parameters of type InstancesModifier and TypeMethodDescriptionCostMatrix.applyCostMatrix(Instances data, Random random) Applies the cost matrix to a set of instances.voidClassifier.buildClassifier(Instances data) Generates a classifier.voidIteratedSingleClassifierEnhancer.buildClassifier(Instances data) Stump method for building the classifiers.voidParallelIteratedSingleClassifierEnhancer.buildClassifier(Instances data) Stump method for building the classifiersvoidParallelMultipleClassifiersCombiner.buildClassifier(Instances data) Stump method for building the classifiersvoidEvaluation.crossValidateModel(String classifierString, Instances data, int numFolds, String[] options, Random random) Performs a (stratified if class is nominal) cross-validation for a classifier on a set of instances.voidEvaluation.crossValidateModel(Classifier classifier, Instances data, int numFolds, Random random) Performs a (stratified if class is nominal) cross-validation for a classifier on a set of instances.voidEvaluation.crossValidateModel(Classifier classifier, Instances data, int numFolds, Random random, Object... forPredictionsPrinting) Performs a (stratified if class is nominal) cross-validation for a classifier on a set of instances.double[][]AbstractClassifier.distributionsForInstances(Instances batch) Batch prediction method.double[]Evaluation.evaluateModel(Classifier classifier, Instances data, Object... forPredictionsPrinting) Evaluates the classifier on a given set of instances.voidIterativeClassifier.initializeClassifier(Instances instances) Initializes an iterative classifier.voidSets the class prior probabilities.Constructors in weka.classifiers with parameters of type InstancesModifierConstructorDescriptionConstructs a new AggregateableEvaluation objectAggregateableEvaluation(Instances data, CostMatrix costMatrix) Constructs a new AggregateableEvaluation objectEvaluation(Instances data) Evaluation(Instances data, CostMatrix costMatrix) -
Uses of Instances in weka.classifiers.bayes
Fields in weka.classifiers.bayes declared as InstancesModifier and TypeFieldDescriptionBayesNet.m_InstancesThe dataset header for the purposes of printing out a semi-intelligible modelMethods in weka.classifiers.bayes that return InstancesModifier and TypeMethodDescriptionNaiveBayes.getHeader()Return the header that this classifier was trained withMethods in weka.classifiers.bayes with parameters of type InstancesModifier and TypeMethodDescriptionvoidBayesNet.buildClassifier(Instances instances) Generates the classifier.voidNaiveBayes.buildClassifier(Instances instances) Generates the classifier.voidNaiveBayesMultinomial.buildClassifier(Instances instances) Generates the classifier.voidNaiveBayesMultinomialText.buildClassifier(Instances data) Generates the classifier.voidNaiveBayesMultinomialUpdateable.buildClassifier(Instances instances) Generates the classifier. -
Uses of Instances in weka.classifiers.bayes.net
Methods in weka.classifiers.bayes.net with parameters of type InstancesModifier and TypeMethodDescriptionvoidAdd parent to parent set at specific location and update internals (specifically the cardinality of the parent set)voidAdd parent to parent set and update internals (specifically the cardinality of the parent set)voidParentSet.deleteLastParent(Instances _Instances) Delete last added parent from parent set and update internals (specifically the cardinality of the parent set)intParentSet.deleteParent(int nParent, Instances _Instances) delete node from parent setintParentSet.getFreshCardinalityOfParents(Instances _Instances) returns cardinality of parents after recalculationstatic ADNodeADNode.makeADTree(int iNode, ArrayList<Integer> nRecords, Instances instances) create sub treestatic ADNodeADNode.makeADTree(Instances instances) create AD tree from set of instancesstatic VaryNodeADNode.makeVaryNode(int iNode, ArrayList<Integer> nRecords, Instances instances) create sub treevoidAssuming a network structure is defined and we want to learn from data, the data set must be put if correct order first and possibly discretized/missing values filled in before proceeding to CPT learning.Constructors in weka.classifiers.bayes.net with parameters of type InstancesModifierConstructorDescriptionEditableBayesNet(Instances instances) constructor, creates empty network with nodes based on the attributes in a data set -
Uses of Instances in weka.classifiers.bayes.net.search
Methods in weka.classifiers.bayes.net.search with parameters of type InstancesModifier and TypeMethodDescriptionvoidSearchAlgorithm.buildStructure(BayesNet bayesNet, Instances instances) buildStructure determines the network structure/graph of the network. -
Uses of Instances in weka.classifiers.bayes.net.search.fixed
Methods in weka.classifiers.bayes.net.search.fixed with parameters of type InstancesModifier and TypeMethodDescriptionvoidFromFile.buildStructure(BayesNet bayesNet, Instances instances) voidNaiveBayes.buildStructure(BayesNet bayesNet, Instances instances) -
Uses of Instances in weka.classifiers.bayes.net.search.global
Methods in weka.classifiers.bayes.net.search.global with parameters of type InstancesModifier and TypeMethodDescriptionvoidTAN.buildStructure(BayesNet bayesNet, Instances instances) buildStructure determines the network structure/graph of the network using the maximimum weight spanning tree algorithm of Chow and Liuvoidsearch determines the network structure/graph of the network with the K2 algorithm, restricted by its initial structure (which can be an empty graph, or a Naive Bayes graph.void -
Uses of Instances in weka.classifiers.bayes.net.search.local
Methods in weka.classifiers.bayes.net.search.local with parameters of type InstancesModifier and TypeMethodDescriptionvoidLocalScoreSearchAlgorithm.buildStructure(BayesNet bayesNet, Instances instances) buildStructure determines the network structure/graph of the network with the K2 algorithm, restricted by its initial structure (which can be an empty graph, or a Naive Bayes graph.voidTAN.buildStructure(BayesNet bayesNet, Instances instances) buildStructure determines the network structure/graph of the network using the maximimum weight spanning tree algorithm of Chow and Liuvoidsearch determines the network structure/graph of the network with the K2 algorithm, restricted by its initial structure (which can be an empty graph, or a Naive Bayes graph.voidConstructors in weka.classifiers.bayes.net.search.local with parameters of type InstancesModifierConstructorDescriptionLocalScoreSearchAlgorithm(BayesNet bayesNet, Instances instances) constructor -
Uses of Instances in weka.classifiers.evaluation
Methods in weka.classifiers.evaluation that return InstancesModifier and TypeMethodDescriptionCostCurve.getCurve(ArrayList<Prediction> predictions) Calculates the performance stats for the default class and return results as a set of Instances.CostCurve.getCurve(ArrayList<Prediction> predictions, int classIndex) Calculates the performance stats for the desired class and return results as a set of Instances.MarginCurve.getCurve(ArrayList<Prediction> predictions) Calculates the cumulative margin distribution for the set of predictions, returning the result as a set of Instances.ThresholdCurve.getCurve(ArrayList<Prediction> predictions) Calculates the performance stats for the default class and return results as a set of Instances.ThresholdCurve.getCurve(ArrayList<Prediction> predictions, int classIndex) Calculates the performance stats for the desired class and return results as a set of Instances.Evaluation.getHeader()Returns the header of the underlying dataset.Methods in weka.classifiers.evaluation with parameters of type InstancesModifier and TypeMethodDescriptionstatic doubleRegressionAnalysis.calculateRSquared(Instances data, double ssr) Returns the R-squared value for a linear regression model, where sum of squared residuals is already calculated.static doubleRegressionAnalysis.calculateSSR(Instances data, Attribute chosen, double slope, double intercept) Returns the sum of squared residuals of the simple linear regression model: y = a + bx.static double[]RegressionAnalysis.calculateStdErrorOfCoef(Instances data, boolean[] selected, double ssr, int n, int k) Returns an array of the standard errors of the coefficients in a multiple linear regression.static double[]RegressionAnalysis.calculateStdErrorOfCoef(Instances data, Attribute chosen, double slope, double intercept, int df) Returns the standard errors of slope and intercept for a simple linear regression model: y = a + bx.voidEvaluation.crossValidateModel(String classifierString, Instances data, int numFolds, String[] options, Random random) Performs a (stratified if class is nominal) cross-validation for a classifier on a set of instances.voidEvaluation.crossValidateModel(Classifier classifier, Instances data, int numFolds, Random random) Performs a (stratified if class is nominal) cross-validation for a classifier on a set of instances.voidEvaluation.crossValidateModel(Classifier classifier, Instances data, int numFolds, Random random, Object... forPrinting) Performs a (stratified if class is nominal) cross-validation for a classifier on a set of instances.double[]Evaluation.evaluateModel(Classifier classifier, Instances data, Object... forPredictionsPrinting) Evaluates the classifier on a given set of instances.EvaluationUtils.getCVPredictions(Classifier classifier, Instances data, int numFolds) Generate a bunch of predictions ready for processing, by performing a cross-validation on the supplied dataset.static doubleThresholdCurve.getNPointPrecision(Instances tcurve, int n) Calculates the n point precision result, which is the precision averaged over n evenly spaced (w.r.t recall) samples of the curve.static doubleThresholdCurve.getPRCArea(Instances tcurve) Calculates the area under the precision-recall curve (AUPRC).static doubleThresholdCurve.getROCArea(Instances tcurve) Calculates the area under the ROC curve as the Wilcoxon-Mann-Whitney statistic.EvaluationUtils.getTestPredictions(Classifier classifier, Instances test) Generate a bunch of predictions ready for processing, by performing a evaluation on a test set assuming the classifier is already trained.static intThresholdCurve.getThresholdInstance(Instances tcurve, double threshold) Gets the index of the instance with the closest threshold value to the desired targetEvaluationUtils.getTrainTestPredictions(Classifier classifier, Instances train, Instances test) Generate a bunch of predictions ready for processing, by performing a evaluation on a test set after training on the given training set.voidSets the class prior probabilities.Constructors in weka.classifiers.evaluation with parameters of type InstancesModifierConstructorDescriptionConstructs a new AggregateableEvaluation objectAggregateableEvaluation(Instances data, CostMatrix costMatrix) Constructs a new AggregateableEvaluation objectEvaluation(Instances data) Initializes all the counters for the evaluation.Evaluation(Instances data, CostMatrix costMatrix) Initializes all the counters for the evaluation and also takes a cost matrix as parameter. -
Uses of Instances in weka.classifiers.evaluation.output.prediction
Methods in weka.classifiers.evaluation.output.prediction that return InstancesMethods in weka.classifiers.evaluation.output.prediction with parameters of type InstancesModifier and TypeMethodDescriptionvoidAbstractOutput.print(Classifier classifier, Instances testset) Prints the header, classifications and footer to the buffer.voidAbstractOutput.printClassifications(Classifier classifier, Instances testset) Prints the classifications to the buffer.voidSets the header of the dataset. -
Uses of Instances in weka.classifiers.functions
Methods in weka.classifiers.functions with parameters of type InstancesModifier and TypeMethodDescriptionvoidGaussianProcesses.buildClassifier(Instances insts) Method for building the classifier.voidLinearRegression.buildClassifier(Instances data) Builds a regression model for the given data.voidLogistic.buildClassifier(Instances train) Builds the classifiervoidMultilayerPerceptron.buildClassifier(Instances i) Call this function to build and train a neural network for the training data provided.voidSGD.buildClassifier(Instances data) Method for building the classifier.voidSGDText.buildClassifier(Instances data) Method for building the classifier.voidSimpleLinearRegression.buildClassifier(Instances insts) Builds a simple linear regression model given the supplied training data.voidSimpleLogistic.buildClassifier(Instances data) Builds the logistic regression using LogitBoost.voidSMO.buildClassifier(Instances insts) Method for building the classifier.voidSMOreg.buildClassifier(Instances instances) Method for building the classifier.voidVotedPerceptron.buildClassifier(Instances insts) Builds the ensemble of perceptrons.voidMultilayerPerceptron.initializeClassifier(Instances data) Initializes an iterative classifier.Produce a PMML representation of this logistic model -
Uses of Instances in weka.classifiers.functions.supportVector
Methods in weka.classifiers.functions.supportVector with parameters of type InstancesModifier and TypeMethodDescriptionvoidRegOptimizer.buildClassifier(Instances data) learn SVM parameters from data.voidRegSMO.buildClassifier(Instances instances) learn SVM parameters from data using Smola's SMO algorithm.voidRegSMOImproved.buildClassifier(Instances instances) learn SVM parameters from data using Keerthi's SMO algorithm.voidCachedKernel.buildKernel(Instances data) builds the kernel with the given data.voidKernel.buildKernel(Instances data) builds the kernel with the given datavoidNormalizedPolyKernel.buildKernel(Instances data) builds the kernel with the given data.voidPuk.buildKernel(Instances data) builds the kernel with the given data.voidRBFKernel.buildKernel(Instances data) Builds the kernel.voidStringKernel.buildKernel(Instances data) builds the kernel with the given data.Evaluates the Kernel with the given commandline options and returns the evaluation string.Constructors in weka.classifiers.functions.supportVector with parameters of type InstancesModifierConstructorDescriptionNormalizedPolyKernel(Instances dataset, int cacheSize, double exponent, boolean lowerOrder) Creates a newNormalizedPolyKernelinstance.PolyKernel(Instances data, int cacheSize, double exponent, boolean lowerOrder) Creates a newPolyKernelinstance.Constructor.Creates a newRBFKernelinstance.StringKernel(Instances data, int cacheSize, int subsequenceLength, double lambda, boolean debug) creates a new StringKernel object. -
Uses of Instances in weka.classifiers.lazy
Methods in weka.classifiers.lazy that return InstancesModifier and TypeMethodDescriptionPrunes the list to contain the k nearest neighbors.Methods in weka.classifiers.lazy with parameters of type InstancesModifier and TypeMethodDescriptionvoidIBk.buildClassifier(Instances instances) Generates the classifier.voidKStar.buildClassifier(Instances instances) Generates the classifier.voidLWL.buildClassifier(Instances instances) Generates the classifier.Prunes the list to contain the k nearest neighbors. -
Uses of Instances in weka.classifiers.lazy.kstar
Constructors in weka.classifiers.lazy.kstar with parameters of type InstancesModifierConstructorDescriptionKStarNominalAttribute(Instance test, Instance train, int attrIndex, Instances trainSet, int[][] randClassCol, KStarCache cache) ConstructorKStarNumericAttribute(Instance test, Instance train, int attrIndex, Instances trainSet, int[][] randClassCols, KStarCache cache) Constructor -
Uses of Instances in weka.classifiers.meta
Methods in weka.classifiers.meta with parameters of type InstancesModifier and TypeMethodDescriptionvoidAdaBoostM1.buildClassifier(Instances data) Method used to build the classifier.voidAdditiveRegression.buildClassifier(Instances data) Method used to build the classifier.voidAttributeSelectedClassifier.buildClassifier(Instances data) Build the classifier on the dimensionally reduced data.voidBagging.buildClassifier(Instances data) Bagging method.voidClassificationViaRegression.buildClassifier(Instances insts) Builds the classifiers.voidCostSensitiveClassifier.buildClassifier(Instances data) Builds the model of the base learner.voidCVParameterSelection.buildClassifier(Instances instances) Generates the classifier.voidFilteredClassifier.buildClassifier(Instances data) Build the classifier on the filtered data.voidIterativeClassifierOptimizer.buildClassifier(Instances data) Builds the classifier.voidLogitBoost.buildClassifier(Instances data) Method used to build the classifier.voidMultiClassClassifier.buildClassifier(Instances insts) Builds the classifiers.voidMultiClassClassifierUpdateable.buildClassifier(Instances insts) voidMultiScheme.buildClassifier(Instances data) Buildclassifier selects a classifier from the set of classifiers by minimising error on the training data.voidRandomCommittee.buildClassifier(Instances data) Builds the committee of randomizable classifiers.voidRandomizableFilteredClassifier.buildClassifier(Instances data) Build the classifier on the filtered data.voidRandomSubSpace.buildClassifier(Instances data) builds the classifier.voidRegressionByDiscretization.buildClassifier(Instances instances) Generates the classifier.voidStacking.buildClassifier(Instances data) Builds a classifier using stacking.voidVote.buildClassifier(Instances data) Builds all classifiers in the ensemblevoidWeightedInstancesHandlerWrapper.buildClassifier(Instances data) builds the classifier.double[][]AttributeSelectedClassifier.distributionsForInstances(Instances insts) Batch scoring method.double[][]Bagging.distributionsForInstances(Instances insts) Batch scoring method.double[][]ClassificationViaRegression.distributionsForInstances(Instances insts) Returns predictions for a whole set of instances.double[][]CostSensitiveClassifier.distributionsForInstances(Instances insts) Batch scoring method.double[][]FilteredClassifier.distributionsForInstances(Instances insts) Batch scoring method.double[][]LogitBoost.distributionsForInstances(Instances insts) Calculates the class membership probabilities for the given test instances.double[][]RandomCommittee.distributionsForInstances(Instances insts) Batch scoring method.double[][]RandomSubSpace.distributionsForInstances(Instances insts) Batch scoring method.double[][]Stacking.distributionsForInstances(Instances instances) Returns class probabilities for all given instances if the class is nominal or corresponding predicted numeric values if the class is numeric.voidBagging.generatePartition(Instances data) Builds the classifier to generate a partition.voidFilteredClassifier.generatePartition(Instances data) Builds the classifier to generate a partition.voidRandomCommittee.generatePartition(Instances data) Builds the classifier to generate a partition.voidAdaBoostM1.initializeClassifier(Instances data) Initialize the classifier.voidAdditiveRegression.initializeClassifier(Instances data) Initialize classifier.voidFilteredClassifier.initializeClassifier(Instances data) Initializes an iterative classifier.voidLogitBoost.initializeClassifier(Instances data) Builds the boosted classifiervoidRandomizableFilteredClassifier.initializeClassifier(Instances data) Initializes an iterative classifier. -
Uses of Instances in weka.classifiers.misc
Methods in weka.classifiers.misc that return InstancesModifier and TypeMethodDescriptionInputMappedClassifier.getModelHeader(Instances defaultH) Return the instance structure that the encapsulated model was built with.Methods in weka.classifiers.misc with parameters of type InstancesModifier and TypeMethodDescriptionvoidInputMappedClassifier.buildClassifier(Instances data) Build the classifiervoidSerializedClassifier.buildClassifier(Instances data) loads only the serialized classifierInputMappedClassifier.getModelHeader(Instances defaultH) Return the instance structure that the encapsulated model was built with.voidInputMappedClassifier.setModelHeader(Instances modelHeader) Set the structure of the data used to create the model.voidInputMappedClassifier.setTestStructure(Instances testStructure) Set the test structure (if known in advance) that we are likely to see. -
Uses of Instances in weka.classifiers.pmml.consumer
Methods in weka.classifiers.pmml.consumer that return InstancesMethods in weka.classifiers.pmml.consumer with parameters of type InstancesModifier and TypeMethodDescriptionvoidPMMLClassifier.buildClassifier(Instances data) Throw an exception - PMML models are pre-built.voidPMMLClassifier.mapToMiningSchema(Instances dataSet) Map mining schema to incoming instances.Constructors in weka.classifiers.pmml.consumer with parameters of type InstancesModifierConstructorDescriptionGeneralRegression(Element model, Instances dataDictionary, MiningSchema miningSchema) Constructs a GeneralRegression classifier.NeuralNetwork(Element model, Instances dataDictionary, MiningSchema miningSchema) Regression(Element model, Instances dataDictionary, MiningSchema miningSchema) Constructs a new PMML Regression.RuleSetModel(Element model, Instances dataDictionary, MiningSchema miningSchema) Constructor for a RuleSetModelSupportVectorMachineModel(Element model, Instances dataDictionary, MiningSchema miningSchema) Construct a new SupportVectorMachineModel encapsulating the information provided in the PMML document.TreeModel(Element model, Instances dataDictionary, MiningSchema miningSchema) -
Uses of Instances in weka.classifiers.pmml.producer
Methods in weka.classifiers.pmml.producer with parameters of type InstancesModifier and TypeMethodDescriptionstatic voidAbstractPMMLProducerHelper.addDataDictionary(Instances trainHeader, PMML pmml) Adds a data dictionary to the supplied PMML object.static String[]AbstractPMMLProducerHelper.getNameAndValueFromUnsupervisedNominalToBinaryDerivedAttribute(Instances train, Attribute derived) Extracts the original attribute name and value from the name of a binary indicator attribute created by unsupervised NominalToBinary.static StringLogisticProducerHelper.toPMML(Instances train, Instances structureAfterFiltering, double[][] par, int numClasses) Produce the PMML for a Logistic classifier -
Uses of Instances in weka.classifiers.rules
Methods in weka.classifiers.rules that return InstancesModifier and TypeMethodDescriptionRuleStats.getData()Get the data of the statsRuleStats.getFiltered(int index) Get the data after filtering the given rulestatic final Instances[]Patition the data into 2, first of which has (numFolds-1)/numFolds of the data and the second has 1/numFolds of the datastatic InstancesRuleStats.rmCoveredBySuccessives(Instances data, ArrayList<Rule> rules, int index) Static utility function to count the data covered by the rules after the given index in the given rules, and then remove them.abstract Instances[]Implements the splitData function.Implements the splitData function.static final InstancesStratify the given data into the given number of bags based on the class values.Methods in weka.classifiers.rules with parameters of type InstancesModifier and TypeMethodDescriptionvoidDecisionTable.buildClassifier(Instances data) Generates the classifier.voidJRip.buildClassifier(Instances instances) Builds Ripper in the order of class frequencies.voidOneR.buildClassifier(Instances instances) Generates the classifier.voidPART.buildClassifier(Instances instances) Generates the classifier.voidZeroR.buildClassifier(Instances instances) Generates the classifier.voidRemoves redundant tests in the rule.voidCount data from the position index in the ruleset assuming that given data are not covered by the rules in position 0...(index-1), and the statistics of these rules are provided.
This procedure is typically useful when a temporary object of RuleStats is constructed in order to efficiently calculate the relative DL of rule in position index, thus all other stuff is not needed.voidBuild one rule using the growing dataabstract voidBuild this ruleweka.classifiers.rules.OneR.OneRRuleOneR.newNominalRule(Attribute attr, Instances data, int[] missingValueCounts) Create a rule branching on this nominal attribute.weka.classifiers.rules.OneR.OneRRuleOneR.newNumericRule(Attribute attr, Instances data, int[] missingValueCounts) Create a rule branching on this numeric attributeweka.classifiers.rules.OneR.OneRRuleCreate a rule branching on this attribute.static doubleRuleStats.numAllConditions(Instances data) Compute the number of all possible conditions that could appear in a rule of a given data.static final Instances[]Patition the data into 2, first of which has (numFolds-1)/numFolds of the data and the second has 1/numFolds of the datavoidPrune all the possible final sequences of the rule using the pruning data.static InstancesRuleStats.rmCoveredBySuccessives(Instances data, ArrayList<Rule> rules, int index) Static utility function to count the data covered by the rules after the given index in the given rules, and then remove them.voidSet the data of the stats, overwriting the old one if anyabstract Instances[]Implements the splitData function.Implements the splitData function.static final InstancesStratify the given data into the given number of bags based on the class values.Convert a hash entry to a stringConstructors in weka.classifiers.rules with parameters of type Instances -
Uses of Instances in weka.classifiers.rules.part
Methods in weka.classifiers.rules.part with parameters of type InstancesModifier and TypeMethodDescriptionvoidMakeDecList.buildClassifier(Instances data) Builds dec list.voidC45PruneableDecList.buildDecList(Instances data, boolean leaf) Builds the partial tree without hold out set.voidClassifierDecList.buildDecList(Instances data, boolean leaf) Builds the partial tree without hold out set.voidPruneableDecList.buildDecList(Instances train, Instances test, boolean leaf) Builds the partial tree with hold out setvoidMethod for building a pruned partial tree.voidMethod for building a pruned partial tree.final voidCleanup in order to save memory. -
Uses of Instances in weka.classifiers.trees
Methods in weka.classifiers.trees with parameters of type InstancesModifier and TypeMethodDescriptionvoidDecisionStump.buildClassifier(Instances instances) Generates the classifier.voidHoeffdingTree.buildClassifier(Instances data) Builds the classifier.voidJ48.buildClassifier(Instances instances) Generates the classifier.voidLMT.buildClassifier(Instances data) Builds the classifier.voidRandomTree.buildClassifier(Instances data) Builds classifier.voidREPTree.buildClassifier(Instances data) Builds classifier.voidJ48.generatePartition(Instances data) Builds the classifier to generate a partition.voidRandomTree.generatePartition(Instances data) Builds the classifier to generate a partition.voidREPTree.generatePartition(Instances data) Builds the classifier to generate a partition. -
Uses of Instances in weka.classifiers.trees.ht
Constructors in weka.classifiers.trees.ht with parameters of type InstancesModifierConstructorDescriptionConstruct a new NBNodeNBNodeAdaptive(Instances header, double nbWeightThreshold) Constructor -
Uses of Instances in weka.classifiers.trees.j48
Methods in weka.classifiers.trees.j48 that return InstancesModifier and TypeMethodDescriptionClassifierTree.getTrainingData()Splits the given set of instances into subsets.Methods in weka.classifiers.trees.j48 with parameters of type InstancesModifier and TypeMethodDescriptionfinal voidDistribution.addInstWithUnknown(Instances source, int attIndex) Adds all instances with unknown values for given attribute, weighted according to frequency of instances in each bag.final voidAdds all instances in given range to given bag.voidBinC45Split.buildClassifier(Instances trainInstances) Creates a C4.5-type split on the given data.voidC45PruneableClassifierTree.buildClassifier(Instances data) Method for building a pruneable classifier tree.voidC45Split.buildClassifier(Instances trainInstances) Creates a C4.5-type split on the given data.abstract voidClassifierSplitModel.buildClassifier(Instances instances) Builds the classifier split model for the given set of instances.voidClassifierTree.buildClassifier(Instances data) Method for building a classifier tree.voidNBTreeClassifierTree.buildClassifier(Instances data) Method for building a naive bayes classifier treefinal voidNBTreeNoSplit.buildClassifier(Instances instances) Build the no-split nodevoidNBTreeSplit.buildClassifier(Instances trainInstances) Creates a NBTree-type split on the given data.final voidNoSplit.buildClassifier(Instances instances) Creates a "no-split"-split for a given set of instances.voidPruneableClassifierTree.buildClassifier(Instances data) Method for building a pruneable classifier tree.voidBuilds the tree structure.voidBuilds the tree structure with hold out setfinal voidCleanup in order to save memory.static doubleNBTreeNoSplit.crossValidate(NaiveBayesUpdateable fullModel, Instances trainingSet, Random r) Utility method for fast 5-fold cross validation of a naive bayes modelfinal voidDeletes all instances in given range from given bag.final StringPrints label for subset index of instances (eg class).final StringPrints the split model.final StringPrints left side of condition.final StringPrints left side of condition..abstract StringPrints left side of condition satisfied by instances.final StringDoes nothing because no condition has to be satisfied.final StringPrints left side of condition..final StringDoes nothing because no condition has to be satisfied.final double[][]C45Split.minsAndMaxs(Instances data, double[][] minsAndMaxs, int index) Returns the minsAndMaxs of the index.th subset.voidBinC45Split.resetDistribution(Instances data) Sets distribution associated with model.voidC45Split.resetDistribution(Instances data) Sets distribution associated with model.voidClassifierSplitModel.resetDistribution(Instances data) Sets distribution associated with model.final StringPrints the condition satisfied by instances in a subset.final StringPrints the condition satisfied by instances in a subset.abstract StringPrints left side of condition satisfied by instances in subset index.final StringDoes nothing because no condition has to be satisfied.final StringPrints the condition satisfied by instances in a subset.final StringDoes nothing because no condition has to be satisfied.final ClassifierSplitModelBinC45ModelSelection.selectModel(Instances data) Selects C4.5-type split for the given dataset.final ClassifierSplitModelBinC45ModelSelection.selectModel(Instances train, Instances test) Selects C4.5-type split for the given dataset.C45ModelSelection.selectModel(Instances data) Selects C4.5-type split for the given dataset.final ClassifierSplitModelC45ModelSelection.selectModel(Instances train, Instances test) Selects C4.5-type split for the given dataset.abstract ClassifierSplitModelModelSelection.selectModel(Instances data) Selects a model for the given dataset.ModelSelection.selectModel(Instances train, Instances test) Selects a model for the given train data using the given test datafinal ClassifierSplitModelNBTreeModelSelection.selectModel(Instances data) Selects NBTree-type split for the given dataset.final ClassifierSplitModelNBTreeModelSelection.selectModel(Instances train, Instances test) Selects NBTree-type split for the given dataset.final voidBinC45Split.setSplitPoint(Instances allInstances) Sets split point to greatest value in given data smaller or equal to old split point.final voidC45Split.setSplitPoint(Instances allInstances) Sets split point to greatest value in given data smaller or equal to old split point.final voidDistribution.shiftRange(int from, int to, Instances source, int startIndex, int lastPlusOne) Shifts all instances in given range from one bag to another one.final StringClassifierSplitModel.sourceClass(int index, Instances data) final StringBinC45Split.sourceExpression(int index, Instances data) Returns a string containing java source code equivalent to the test made at this node.final StringC45Split.sourceExpression(int index, Instances data) Returns a string containing java source code equivalent to the test made at this node.abstract StringClassifierSplitModel.sourceExpression(int index, Instances data) final StringNBTreeNoSplit.sourceExpression(int index, Instances data) Returns a string containing java source code equivalent to the test made at this node.final StringNBTreeSplit.sourceExpression(int index, Instances data) Returns a string containing java source code equivalent to the test made at this node.final StringNoSplit.sourceExpression(int index, Instances data) Returns a string containing java source code equivalent to the test made at this node.Splits the given set of instances into subsets.Constructors in weka.classifiers.trees.j48 with parameters of type InstancesModifierConstructorDescriptionBinC45ModelSelection(int minNoObj, Instances allData, boolean useMDLcorrection, boolean doNotMakeSplitPointActualValue) Initializes the split selection method with the given parameters.C45ModelSelection(int minNoObj, Instances allData, boolean useMDLcorrection, boolean doNotMakeSplitPointActualValue) Initializes the split selection method with the given parameters.Distribution(Instances source) Creates a distribution with only one bag according to instances in source.Distribution(Instances source, ClassifierSplitModel modelToUse) Creates a distribution according to given instances and split model.NBTreeModelSelection(int minNoObj, Instances allData) Initializes the split selection method with the given parameters. -
Uses of Instances in weka.classifiers.trees.lmt
Methods in weka.classifiers.trees.lmt with parameters of type InstancesModifier and TypeMethodDescriptionvoidLMTNode.buildClassifier(Instances data) Method for building a logistic model tree (only called for the root node).voidLogisticBase.buildClassifier(Instances data) Builds the logistic regression model usiing LogitBoost.voidResidualSplit.buildClassifier(Instances data) Method not in usevoidResidualSplit.buildClassifier(Instances data, double[][] dataZs, double[][] dataWs) Builds the split.voidSimpleLinearRegression.buildClassifier(Instances insts) Builds a simple linear regression model given the supplied training data.voidLMTNode.buildTree(Instances data, SimpleLinearRegression[][] higherRegressions, double totalInstanceWeight, double higherNumParameters, Instances numericDataHeader) Method for building the tree structure.final StringReturns name of splitting attribute (left side of condition).intMethod for performing one fold in the cross-validation of the cost-complexity parameter.final StringPrints the condition satisfied by instances in a subset.final ClassifierSplitModelResidualModelSelection.selectModel(Instances train) Method not in usefinal ClassifierSplitModelResidualModelSelection.selectModel(Instances data, double[][] dataZs, double[][] dataWs) Selects split based on residuals for the given dataset.final ClassifierSplitModelResidualModelSelection.selectModel(Instances train, Instances test) Method not in usefinal StringResidualSplit.sourceExpression(int index, Instances data) Method not in use -
Uses of Instances in weka.classifiers.trees.m5
Methods in weka.classifiers.trees.m5 that return InstancesModifier and TypeMethodDescriptionRule.notCoveredInstances()Get the instances not covered by this ruleMethods in weka.classifiers.trees.m5 with parameters of type InstancesModifier and TypeMethodDescriptionfinal voidFinds the best splitting point for an attribute in the instancesvoidFinds the best splitting point for an attribute in the instancesfinal voidFinds the best splitting point for an attribute in the instancesvoidM5Base.buildClassifier(Instances data) Generates the classifier.voidPreConstructedLinearModel.buildClassifier(Instances instances) Builds the classifier.voidRule.buildClassifier(Instances data) Generates a single rule or m5 model tree.voidRuleNode.buildClassifier(Instances data) Build this node (find an attribute and split point)final StringConverts the spliting information to stringConstructors in weka.classifiers.trees.m5 with parameters of type InstancesModifierConstructorDescriptionConstructs an Impurity object containing the impurity values of partitioning the instances using an attributeConstructs an object which stores some statistics of the instances such as sum, squared sum, variance, standard deviation -
Uses of Instances in weka.clusterers
Methods in weka.clusterers that return InstancesModifier and TypeMethodDescriptionCanopy.getCanopies()Get the canopies (cluster centers).FarthestFirst.getClusterCentroids()Get the centroids found by FarthestFirstSimpleKMeans.getClusterCentroids()Gets the the cluster centroids.SimpleKMeans.getClusterStandardDevs()Gets the standard deviations of the numeric attributes in each cluster.Methods in weka.clusterers with parameters of type InstancesModifier and TypeMethodDescriptionabstract voidAbstractClusterer.buildClusterer(Instances data) Generates a clusterer.voidCanopy.buildClusterer(Instances data) voidClusterer.buildClusterer(Instances data) Generates a clusterer.voidCobweb.buildClusterer(Instances data) Builds the clusterer.voidEM.buildClusterer(Instances data) Generates a clusterer.voidFarthestFirst.buildClusterer(Instances data) Generates a clusterer.voidFilteredClusterer.buildClusterer(Instances data) Build the clusterer on the filtered data.voidHierarchicalClusterer.buildClusterer(Instances data) voidMakeDensityBasedClusterer.buildClusterer(Instances data) Builds a clusterer for a set of instances.voidSimpleKMeans.buildClusterer(Instances data) Generates a clusterer.static StringClusterEvaluation.crossValidateModel(String clustererString, Instances data, int numFolds, String[] options, Random random) Performs a cross-validation for a DensityBasedClusterer clusterer on a set of instances.static doubleClusterEvaluation.crossValidateModel(DensityBasedClusterer clusterer, Instances data, int numFolds, Random random) Perform a cross-validation for DensityBasedClusterer on a set of instances.voidClusterEvaluation.evaluateClusterer(Instances test) Evaluate the clusterer on a set of instances.voidClusterEvaluation.evaluateClusterer(Instances test, String testFileName) Evaluate the clusterer on a set of instances.voidClusterEvaluation.evaluateClusterer(Instances test, String testFileName, boolean outputModel) Evaluate the clusterer on a set of instances.voidCanopy.initializeDistanceFunction(Instances init) Initialize the distance function (i.e set min/max values for numeric attributes) with the supplied instances.static StringCanopy.printCanopyAssignments(Instances dataPoints, List<long[]> canopyAssignments) Print the supplied instances and their canopiesvoidCanopy.setCanopies(Instances canopies) Set the canopies to use (replaces any learned by this clusterer already) -
Uses of Instances in weka.core
Modifier and TypeMethodDescriptionAbstractInstance.dataset()Returns the dataset this instance has access to.Instance.dataset()Returns the dataset this instance has access to.TestInstances.generate()Generates a new datasetgenerates a new dataset.AttributeLocator.getData()returns the underlying dataTestInstances.getData()returns the current dataset, can be nullDictionaryBuilder.getInputFormat()Gets the currently set input formatDistanceFunction.getInstances()returns the instances currently set.FilteredDistance.getInstances()returns the instances currently set.NormalizableDistance.getInstances()returns the instances currently set.TestInstances.getRelationalClassFormat()returns the current strcuture of the relational class attribute, can be nullTestInstances.getRelationalFormat(int index) returns the format for the specified relational attribute, can be nullDictionaryBuilder.getVectorizedFormat()Get the output formatstatic InstancesInstances.mergeInstances(Instances first, Instances second) Merges two sets of Instances together.Provides a hook for derived classes to further modify the data.final InstancesAttribute.relation()Returns the header info for a relation-valued attribute, null if the attribute is not relation-valued.final InstancesAttribute.relation(int valIndex) Returns a value of a relation-valued attribute.final InstancesAbstractInstance.relationalValue(int attIndex) Returns the relational value of a relational attribute.final InstancesAbstractInstance.relationalValue(Attribute att) Returns the relational value of a relational attribute.Instance.relationalValue(int attIndex) Returns the relational value of a relational attribute.Instance.relationalValue(Attribute att) Returns the relational value of a relational attribute.Creates a new dataset of the same size as this dataset using random sampling with replacement.static InstancesResampleUtils.resampleWithWeightIfNecessary(Instances insts, Random rand) Resamples the dataset usingresampleWithWeights(Random)if there are any instance weights other than 1.0 set.Instances.resampleWithWeights(Random random) Creates a new dataset of the same size as this dataset using random sampling with replacement according to the current instance weights.Instances.resampleWithWeights(Random random, boolean representUsingWeights) Creates a new dataset of the same size as this dataset using random sampling with replacement according to the current instance weights.Instances.resampleWithWeights(Random random, boolean[] sampled) Creates a new dataset of the same size as this dataset using random sampling with replacement according to the current instance weights.Instances.resampleWithWeights(Random random, boolean[] sampled, boolean representUsingWeights) Creates a new dataset of the same size as this dataset using random sampling with replacement according to the current instance weights.Instances.resampleWithWeights(Random random, boolean[] sampled, boolean representUsingWeights, double sampleSize) Creates a new dataset from this dataset using random sampling with replacement according to current instance weights.Instances.resampleWithWeights(Random random, double[] weights) Creates a new dataset of the same size as this dataset using random sampling with replacement according to the given weight vector.Instances.resampleWithWeights(Random random, double[] weights, boolean[] sampled) Creates a new dataset of the same size as this dataset using random sampling with replacement according to the given weight vector.Instances.resampleWithWeights(Random random, double[] weights, boolean[] sampled, boolean representUsingWeights) Creates a new dataset of the same size as this dataset using random sampling with replacement according to the given weight vector.Instances.resampleWithWeights(Random random, double[] weights, boolean[] sampled, boolean representUsingWeights, double sampleSize) Creates a new dataset from this dataset using random sampling with replacement according to the given weight vector.Instances.stringFreeStructure()Create a copy of the structure.Instances.testCV(int numFolds, int numFold) Creates the test set for one fold of a cross-validation on the dataset.Instances.trainCV(int numFolds, int numFold) Creates the training set for one fold of a cross-validation on the dataset.Creates the training set for one fold of a cross-validation on the dataset.DictionaryBuilder.vectorizeBatch(Instances batch, boolean setAvgDocLength) Convert a batch of instancesModifier and TypeMethodDescriptionintAttribute.addRelation(Instances value) Adds a relation to a relation-valued attribute.intEuclideanDistance.closestPoint(Instance instance, Instances allPoints, int[] pointList) Returns the index of the closest point to the current instance.static RangeUtils.configureRangeFromRangeStringOrAttributeNameList(Instances instanceInfo, String rangeString) Returns a configured Range object given a 1-based range index string (such as 1-20,35,last) or a comma-separated list of attribute names.static voidRelationalLocator.copyRelationalValues(Instance instance, boolean instSrcCompat, Instances srcDataset, AttributeLocator srcLoc, Instances destDataset, AttributeLocator destLoc) Takes relational values referenced by an Instance and copies them from a source dataset to a destination dataset.static voidRelationalLocator.copyRelationalValues(Instance inst, Instances destDataset, AttributeLocator strAtts) Copies relational values contained in the instance copied to a new dataset.static voidStringLocator.copyStringValues(Instance instance, boolean instSrcCompat, Instances srcDataset, AttributeLocator srcLoc, Instances destDataset, AttributeLocator destLoc) Takes string values referenced by an Instance and copies them from a source dataset to a destination dataset.static voidStringLocator.copyStringValues(Instance inst, Instances destDataset, AttributeLocator strAtts) Copies string values contained in the instance copied to a new dataset.double[][]BatchPredictor.distributionsForInstances(Instances insts) Batch scoring methodbooleanInstances.equalHeaders(Instances dataset) Checks if two headers are equivalent.Instances.equalHeadersMsg(Instances dataset) Checks if two headers are equivalent.static CapabilitiesCapabilities.forInstances(Instances data) returns a Capabilities object specific for this data.static CapabilitiesCapabilities.forInstances(Instances data, boolean multi) returns a Capabilities object specific for this data.voidPartitionGenerator.generatePartition(Instances data) Builds the classifier to generate a partition.AlgVector.getAsInstance(Instances model, Random random) Gets the elements of the vector as an instance.static booleanResampleUtils.hasInstanceWeights(Instances insts) Checks whether there are any instance weights other than 1.0 set.static InstancesInstances.mergeInstances(Instances first, Instances second) Merges two sets of Instances together.Provides a hook for derived classes to further modify the data.static InstancesResampleUtils.resampleWithWeightIfNecessary(Instances insts, Random rand) Resamples the dataset usingresampleWithWeights(Random)if there are any instance weights other than 1.0 set.final voidAbstractInstance.setDataset(Instances instances) Sets the reference to the dataset.voidInstance.setDataset(Instances instances) Sets the reference to the dataset.voidDistanceFunction.setInstances(Instances insts) Sets the instances.voidFilteredDistance.setInstances(Instances insts) Sets the instances.voidNormalizableDistance.setInstances(Instances insts) Sets the instances.voidTestInstances.setRelationalClassFormat(Instances value) sets the structure for the relational class attributevoidTestInstances.setRelationalFormat(int index, Instances value) sets the structure for the bags for the relational attributevoidbooleanTests the given data, whether it can be processed by the handler, given its capabilities.booleanTests a certain range of attributes of the given data, whether it can be processed by the handler, given its capabilities.voidCapabilities.testWithFail(Instances data) tests the given data by calling the test(Instances) method and throws an exception if the test fails.voidCapabilities.testWithFail(Instances data, int fromIndex, int toIndex) tests the given data by calling the test(Instances,int,int) method and throws an exception if the test fails.DictionaryBuilder.vectorizeBatch(Instances batch, boolean setAvgDocLength) Convert a batch of instancesModifierConstructorDescriptionConstructs a vector using a given data format.Constructor for relation-valued attributes.Constructor for a relation-valued attribute with a particular index.Attribute(String attributeName, Instances header, ProtectedProperties metadata) Constructor for relation-valued attributes.AttributeLocator(Instances data, int type) Initializes the AttributeLocator with the given data for the specified type of attribute.AttributeLocator(Instances data, int type, int[] indices) initializes the AttributeLocator with the given data for the specified type of attribute.AttributeLocator(Instances data, int type, int fromIndex, int toIndex) Initializes the AttributeLocator with the given data for the specified type of attribute.ChebyshevDistance(Instances data) Constructs an Chebyshev Distance object and automatically initializes the ranges.EuclideanDistance(Instances data) Constructs an Euclidean Distance object and automatically initializes the ranges.Constructor copying all instances and references to the header information from the given set of instances.Constructor creating an empty set of instances.Creates a new set of instances by copying a subset of another set.ManhattanDistance(Instances data) Constructs an Manhattan Distance object and automatically initializes the ranges.MinkowskiDistance(Instances data) Constructs an Minkowski Distance object and automatically initializes the ranges.Initializes the distance function and automatically initializes the ranges.RelationalAttributeInfo(Instances header) Constructs the information object based on the given parameter.RelationalLocator(Instances data) Initializes the RelationalLocator with the given data.RelationalLocator(Instances data, int[] indices) Initializes the RelationalLocator with the given data.RelationalLocator(Instances data, int fromIndex, int toIndex) Initializes the RelationalLocator with the given data.StringLocator(Instances data) initializes the StringLocator with the given dataStringLocator(Instances data, int[] indices) Initializes the AttributeLocator with the given data.StringLocator(Instances data, int fromIndex, int toIndex) Initializes the StringLocator with the given data. -
Uses of Instances in weka.core.converters
Methods in weka.core.converters that return InstancesModifier and TypeMethodDescriptionArffLoader.ArffReader.getData()Returns the data that was readabstract InstancesAbstractLoader.getDataSet()ArffLoader.getDataSet()Return the full data set.C45Loader.getDataSet()Return the full data set.ConverterUtils.DataSource.getDataSet()returns the full dataset, can be null in case of an error.ConverterUtils.DataSource.getDataSet(int classIndex) returns the full dataset with the specified class index set, can be null in case of an error.CSVLoader.getDataSet()DatabaseLoader.getDataSet()Return the full data set in batch mode (header and all intances at once).JSONLoader.getDataSet()Return the full data set.LibSVMLoader.getDataSet()Return the full data set.Loader.getDataSet()Return the full data set.MatlabLoader.getDataSet()Return the full data set.SerializedInstancesLoader.getDataSet()Return the full data set.SVMLightLoader.getDataSet()Return the full data set.TextDirectoryLoader.getDataSet()Return the full data set.XRFFLoader.getDataSet()Return the full data set.AbstractSaver.getInstances()Gets instances that should be stored.abstract InstancesAbstractLoader.getStructure()ArffLoader.ArffReader.getStructure()Returns the header formatArffLoader.getStructure()Determines and returns (if possible) the structure (internally the header) of the data set as an empty set of instances.C45Loader.getStructure()Determines and returns (if possible) the structure (internally the header) of the data set as an empty set of instances.ConverterUtils.DataSource.getStructure()returns the structure of the data.ConverterUtils.DataSource.getStructure(int classIndex) returns the structure of the data, with the defined class index.CSVLoader.getStructure()DatabaseLoader.getStructure()Determines and returns (if possible) the structure (internally the header) of the data set as an empty set of instances.JSONLoader.getStructure()Determines and returns (if possible) the structure (internally the header) of the data set as an empty set of instances.LibSVMLoader.getStructure()Determines and returns (if possible) the structure (internally the header) of the data set as an empty set of instances.Loader.getStructure()Determines and returns (if possible) the structure (internally the header) of the data set as an empty set of instances.MatlabLoader.getStructure()Determines and returns (if possible) the structure (internally the header) of the data set as an empty set of instances.SerializedInstancesLoader.getStructure()Determines and returns (if possible) the structure (internally the header) of the data set as an empty set of instances.SVMLightLoader.getStructure()Determines and returns (if possible) the structure (internally the header) of the data set as an empty set of instances.TextDirectoryLoader.getStructure()Determines and returns (if possible) the structure (internally the header) of the data set as an empty set of instances.XRFFLoader.getStructure()Determines and returns (if possible) the structure (internally the header) of the data set as an empty set of instances.static InstancesConverterUtils.DataSource.read(InputStream stream) convencience method for loading a dataset in batch mode from a stream.static Instancesconvencience method for loading a dataset in batch mode.static Instancesconvencience method for loading a dataset in batch mode.Methods in weka.core.converters with parameters of type InstancesModifier and TypeMethodDescriptionabstract InstanceAbstractLoader.getNextInstance(Instances structure) ArffLoader.getNextInstance(Instances structure) Read the data set incrementally---get the next instance in the data set or returns null if there are no more instances to get.C45Loader.getNextInstance(Instances structure) Read the data set incrementally---get the next instance in the data set or returns null if there are no more instances to get.CSVLoader.getNextInstance(Instances structure) DatabaseLoader.getNextInstance(Instances structure) Read the data set incrementally---get the next instance in the data set or returns null if there are no more instances to get.JSONLoader.getNextInstance(Instances structure) JSONLoader is unable to process a data set incrementally.LibSVMLoader.getNextInstance(Instances structure) LibSVmLoader is unable to process a data set incrementally.Loader.getNextInstance(Instances structure) Read the data set incrementally---get the next instance in the data set or returns null if there are no more instances to get.MatlabLoader.getNextInstance(Instances structure) MatlabLoader is unable to process a data set incrementally.SerializedInstancesLoader.getNextInstance(Instances structure) Read the data set incrementally---get the next instance in the data set or returns null if there are no more instances to get.SVMLightLoader.getNextInstance(Instances structure) SVMLightLoader is unable to process a data set incrementally.TextDirectoryLoader.getNextInstance(Instances structure) Process input directories/files incrementally.XRFFLoader.getNextInstance(Instances structure) XRFFLoader is unable to process a data set incrementally.booleanConverterUtils.DataSource.hasMoreElements(Instances structure) returns whether there are more Instance objects in the data.ConverterUtils.DataSource.nextElement(Instances dataset) returns the next element and sets the specified dataset, null if none available.ArffLoader.ArffReader.readInstance(Instances structure) Reads a single instance using the tokenizer and returns it.ArffLoader.ArffReader.readInstance(Instances structure, boolean flag) Reads a single instance using the tokenizer and returns it.voidAbstractSaver.setInstances(Instances instances) Sets instances that should be stored.voidJSONSaver.setInstances(Instances instances) Sets instances that should be stored.voidLibSVMSaver.setInstances(Instances instances) Sets instances that should be stored.voidSaver.setInstances(Instances instances) Sets the instances to be savedvoidSVMLightSaver.setInstances(Instances instances) Sets instances that should be stored.voidXRFFSaver.setInstances(Instances instances) Sets instances that should be stored.intAbstractSaver.setStructure(Instances headerInfo) Sets the strcuture of the instances for the first step of incremental saving.static voidConverterUtils.DataSink.write(OutputStream stream, Instances data) writes the data to the given stream (always in ARFF format).static voidwrites the data to the given file.static voidwrites the data via the given saver.voidwrites the given data either via the saver or to the defined output stream (depending on the constructor).Constructors in weka.core.converters with parameters of type InstancesModifierConstructorDescriptionArffReader(Reader reader, Instances template, int lines, int capacity, boolean batch, String... fieldSepAndEnclosures) Initializes the reader without reading the header according to the specified template.ArffReader(Reader reader, Instances template, int lines, int capacity, String... fieldSepAndEnclosures) Initializes the reader without reading the header according to the specified template.ArffReader(Reader reader, Instances template, int lines, String... fieldSepAndEnclosures) Reads the data without header according to the specified template.DataSource(Instances inst) Initializes the datasource with the given dataset. -
Uses of Instances in weka.core.expressionlanguage.weka
Constructors in weka.core.expressionlanguage.weka with parameters of type InstancesModifierConstructorDescriptionInstancesHelper(Instances dataset) Constructs anInstancesHelperfor the given dataset.InstancesHelper(Instances dataset, boolean retainData) Constructs anInstancesHelperfor the given dataset. -
Uses of Instances in weka.core.json
Methods in weka.core.json that return InstancesModifier and TypeMethodDescriptionstatic InstancesTurns a JSON object, if possible, into an Instances object (only header).static InstancesJSONInstances.toInstances(JSONNode json) Turns a JSON object, if possible, into an Instances object.Methods in weka.core.json with parameters of type Instances -
Uses of Instances in weka.core.neighboursearch
Methods in weka.core.neighboursearch that return InstancesModifier and TypeMethodDescriptionNearestNeighbourSearch.getInstances()returns the instances currently set.BallTree.kNearestNeighbours(Instance target, int k) Returns k nearest instances in the current neighbourhood to the supplied instance.CoverTree.kNearestNeighbours(Instance target, int k) Returns k-NNs of a given target instance, from among the previously supplied training instances (supplied through setInstances method) P.S.: May return more than k-NNs if more one instances have the same distance to the target as the kth NN.FilteredNeighbourSearch.kNearestNeighbours(Instance target, int k) Returns the nearest neighbours for the given instance based on distance measured in the filtered space.KDTree.kNearestNeighbours(Instance target, int k) Returns the k nearest neighbours of the supplied instance.LinearNNSearch.kNearestNeighbours(Instance target, int kNN) Returns k nearest instances in the current neighbourhood to the supplied instance.abstract InstancesNearestNeighbourSearch.kNearestNeighbours(Instance target, int k) Returns k nearest instances in the current neighbourhood to the supplied instance.Methods in weka.core.neighboursearch with parameters of type InstancesModifier and TypeMethodDescriptionvoidKDTree.assignSubToCenters(KDTreeNode node, Instances centers, int[] centList, int[] assignments) Assigns instances of this node to center.voidKDTree.centerInstances(Instances centers, int[] assignments, double pc) Assigns instances to centers using KDTree.voidBallTree.setInstances(Instances insts) Builds the BallTree based on the given set of instances.voidCoverTree.setInstances(Instances instances) Builds the Cover Tree on the given set of instances.voidFilteredNeighbourSearch.setInstances(Instances data) Sets the instances to build the filtering model from.voidKDTree.setInstances(Instances instances) Builds the KDTree on the given set of instances.voidLinearNNSearch.setInstances(Instances insts) Sets the instances comprising the current neighbourhood.voidNearestNeighbourSearch.setInstances(Instances insts) Sets the instances.Constructors in weka.core.neighboursearch with parameters of type InstancesModifierConstructorDescriptionCreates a new instance of BallTree.Creates a new instance of KDTree.LinearNNSearch(Instances insts) Constructor that uses the supplied set of instances.NearestNeighbourSearch(Instances insts) Constructor. -
Uses of Instances in weka.core.neighboursearch.balltrees
Methods in weka.core.neighboursearch.balltrees with parameters of type InstancesModifier and TypeMethodDescriptionstatic InstanceBallNode.calcCentroidPivot(int[] instList, Instances insts) Calculates the centroid pivot of a node.static InstanceBallNode.calcCentroidPivot(int start, int end, int[] instList, Instances insts) Calculates the centroid pivot of a node.static InstanceCalculates the centroid pivot of a node based on its two child nodes (if merging two nodes).BottomUpConstructor.calcPivot(weka.core.neighboursearch.balltrees.BottomUpConstructor.TempNode node1, weka.core.neighboursearch.balltrees.BottomUpConstructor.TempNode node2, Instances insts) Calculates the centroid pivot of a node based on its two child nodes.MiddleOutConstructor.calcPivot(weka.core.neighboursearch.balltrees.MiddleOutConstructor.MyIdxList list1, weka.core.neighboursearch.balltrees.MiddleOutConstructor.MyIdxList list2, Instances insts) Calculates the centroid pivot of a node based on the list of points that it contains (tbe two lists of its children are provided).MiddleOutConstructor.calcPivot(weka.core.neighboursearch.balltrees.MiddleOutConstructor.TempNode node1, weka.core.neighboursearch.balltrees.MiddleOutConstructor.TempNode node2, Instances insts) /** Calculates the centroid pivot of a node based on its two child nodes (if merging two nodes).static doubleBallNode.calcRadius(int[] instList, Instances insts, Instance pivot, DistanceFunction distanceFunction) Calculates the radius of node.static doubleBallNode.calcRadius(int start, int end, int[] instList, Instances insts, Instance pivot, DistanceFunction distanceFunction) Calculates the radius of a node.doubleMiddleOutConstructor.calcRadius(weka.core.neighboursearch.balltrees.MiddleOutConstructor.MyIdxList list1, weka.core.neighboursearch.balltrees.MiddleOutConstructor.MyIdxList list2, Instance pivot, Instances insts) Calculates the radius of a node based on the list of points that it contains (the two lists of its children are provided).voidBallSplitter.setInstances(Instances inst) Sets the training instances on which the tree is (or is to be) built.voidBallTreeConstructor.setInstances(Instances inst) Sets the instances on which the tree is to be built.voidMiddleOutConstructor.setInstances(Instances insts) Sets the instances on which the tree is to be built.Constructors in weka.core.neighboursearch.balltrees with parameters of type InstancesModifierConstructorDescriptionBallSplitter(int[] instList, Instances insts, EuclideanDistance e) Creates a new instance of BallSplitter.MedianDistanceFromArbitraryPoint(int[] instList, Instances insts, EuclideanDistance e) Constructor.MedianOfWidestDimension(int[] instList, Instances insts, EuclideanDistance e) Constructor.PointsClosestToFurthestChildren(int[] instList, Instances insts, EuclideanDistance e) Constructor. -
Uses of Instances in weka.core.neighboursearch.kdtrees
Methods in weka.core.neighboursearch.kdtrees with parameters of type InstancesModifier and TypeMethodDescriptionvoidKDTreeNodeSplitter.setInstances(Instances inst) Sets the training instances on which the tree is (or is to be) built.Constructors in weka.core.neighboursearch.kdtrees with parameters of type InstancesModifierConstructorDescriptionKDTreeNodeSplitter(int[] instList, Instances insts, EuclideanDistance e) Creates a new instance of KDTreeNodeSplitter. -
Uses of Instances in weka.core.pmml
Methods in weka.core.pmml that return InstancesModifier and TypeMethodDescriptionMiningSchema.getFieldsAsInstances()Get the all the fields (both mining schema and derived) as Instances.MiningSchema.getMiningSchemaAsInstances()Get the mining schema fields as an Instances object.Methods in weka.core.pmml with parameters of type InstancesModifier and TypeMethodDescriptionstatic StringPMMLFactory.applyClassifier(PMMLModel model, Instances test) voidDerivedFieldMetaInfo.setFieldDefs(Instances fields) Upadate the field definitions for this derived fieldProduce a PMML representationConstructors in weka.core.pmml with parameters of type InstancesModifierConstructorDescriptionMappingInfo(Instances dataSet, MiningSchema miningSchema, Logger log) MiningSchema(Element model, Instances dataDictionary, weka.core.pmml.TransformationDictionary transDict) Constructor for MiningSchema. -
Uses of Instances in weka.core.xml
Methods in weka.core.xml that return InstancesModifier and TypeMethodDescriptionXMLInstances.getInstances()returns the current instances, either the ones that were set or the ones that were generated from the XML structure.Methods in weka.core.xml with parameters of type InstancesModifier and TypeMethodDescriptionvoidXMLInstances.setInstances(Instances data) builds up the XML structure based on the given dataConstructors in weka.core.xml with parameters of type InstancesModifierConstructorDescriptionXMLInstances(Instances data) generates the XML structure based on the given data -
Uses of Instances in weka.datagenerators
Methods in weka.datagenerators that return InstancesModifier and TypeMethodDescriptionDataGenerator.defineDataFormat()Constructs the Instances object representing the format of the generated data.abstract InstancesDataGenerator.generateExamples()Generates all examples of the dataset.DataGenerator.getDatasetFormat()Gets the format of the dataset that is to be generated.Methods in weka.datagenerators with parameters of type InstancesModifier and TypeMethodDescriptionvoidDataGenerator.setDatasetFormat(Instances newFormat) Sets the format of the dataset that is to be generated.Constructors in weka.datagenerators with parameters of type Instances -
Uses of Instances in weka.datagenerators.classifiers.classification
Methods in weka.datagenerators.classifiers.classification that return InstancesModifier and TypeMethodDescriptionAgrawal.defineDataFormat()Initializes the format for the dataset produced.BayesNet.defineDataFormat()Initializes the format for the dataset produced.LED24.defineDataFormat()Initializes the format for the dataset produced.RandomRBF.defineDataFormat()Initializes the format for the dataset produced.RDG1.defineDataFormat()Initializes the format for the dataset produced.Agrawal.generateExamples()Generates all examples of the dataset.BayesNet.generateExamples()Generates all examples of the dataset.LED24.generateExamples()Generates all examples of the dataset.RandomRBF.generateExamples()Generates all examples of the dataset.RDG1.generateExamples()Generate all examples of the dataset.RDG1.generateExamples(int num, Random random, Instances format) Generate all examples of the dataset.Methods in weka.datagenerators.classifiers.classification with parameters of type InstancesModifier and TypeMethodDescriptionRDG1.generateExamples(int num, Random random, Instances format) Generate all examples of the dataset. -
Uses of Instances in weka.datagenerators.classifiers.regression
Methods in weka.datagenerators.classifiers.regression that return InstancesModifier and TypeMethodDescriptionExpression.defineDataFormat()Initializes the format for the dataset produced.MexicanHat.defineDataFormat()Initializes the format for the dataset produced.Expression.generateExamples()Generates all examples of the dataset.MexicanHat.generateExamples()Generates all examples of the dataset. -
Uses of Instances in weka.datagenerators.clusterers
Methods in weka.datagenerators.clusterers that return InstancesModifier and TypeMethodDescriptionBIRCHCluster.defineDataFormat()Initializes the format for the dataset produced.SubspaceCluster.defineDataFormat()Initializes the format for the dataset produced.BIRCHCluster.generateExamples()Generate all examples of the dataset.BIRCHCluster.generateExamples(Random random, Instances format) Generate all examples of the dataset.SubspaceCluster.generateExamples()Generate all examples of the dataset.Methods in weka.datagenerators.clusterers with parameters of type InstancesModifier and TypeMethodDescriptionBIRCHCluster.generateExamples(Random random, Instances format) Generate all examples of the dataset. -
Uses of Instances in weka.estimators
Methods in weka.estimators that return InstancesModifier and TypeMethodDescriptionstatic InstancesEstimatorUtils.getInstancesFromClass(Instances data, int classIndex, double classValue) Returns a dataset that contains of all instances of a certain class value.static InstancesEstimatorUtils.getInstancesFromValue(Instances data, int index, double v) Returns a dataset that contains of all instances of a certain value for the given attribute.Methods in weka.estimators with parameters of type InstancesModifier and TypeMethodDescriptionvoidInitialize the estimator with a new dataset.voidInitialize the estimator with all values of one attribute of a dataset.voidInitialize the estimator using only the instances of one class.voidEstimator.addValues(Instances data, int attrIndex, int classIndex, int classValue, double min, double max) Initialize the estimator using only the instances of one class.static voidEstimator.buildEstimator(Estimator est, Instances instances, int attrIndex, int classIndex, int classValueIndex, boolean isIncremental) static doubleEstimatorUtils.findMinDistance(Instances inst, int attrIndex) Find the minimum distance between values.static InstancesEstimatorUtils.getInstancesFromClass(Instances data, int classIndex, double classValue) Returns a dataset that contains of all instances of a certain class value.EstimatorUtils.getInstancesFromClass(Instances data, int attrIndex, int classIndex, double classValue, Instances workData) Returns a dataset that contains all instances of a certain class value.static InstancesEstimatorUtils.getInstancesFromValue(Instances data, int index, double v) Returns a dataset that contains of all instances of a certain value for the given attribute.static intFind the minimum and the maximum of the attribute and return it in the last parameter..static intFind the minimum and the maximum of the attribute and return it in the last parameter.voidEstimator.testCapabilities(Instances data, int attrIndex) Test if the estimator can handle the data. -
Uses of Instances in weka.experiment
Methods in weka.experiment that return InstancesModifier and TypeMethodDescriptionPairedTTester.getInstances()Get the value of Instances.Tester.getInstances()Get the value of Instances.InstanceQuery.retrieveInstances()Makes a database query using the query set through the -Q option to convert a table into a set of instancesInstanceQuery.retrieveInstances(String query) Makes a database query to convert a table into a set of instancesstatic InstancesInstanceQuery.retrieveInstances(InstanceQueryAdapter adapter, ResultSet rs) Methods in weka.experiment with parameters of type InstancesModifier and TypeMethodDescriptionObject[]Gets the results for the supplied train and test datasets.Object[]Gets the results for the supplied train and test datasets.Object[]Gets the results for the supplied train and test datasets.Object[]Gets the results for the supplied train and test datasets.Object[]Gets the results for the supplied train and test datasets.voidAveragingResultProducer.setInstances(Instances instances) Sets the dataset that results will be obtained for.voidCrossValidationResultProducer.setInstances(Instances instances) Sets the dataset that results will be obtained for.voidDatabaseResultProducer.setInstances(Instances instances) Sets the dataset that results will be obtained for.voidExplicitTestsetResultProducer.setInstances(Instances instances) Sets the dataset that results will be obtained for.voidLearningRateResultProducer.setInstances(Instances instances) Sets the dataset that results will be obtained for.voidPairedTTester.setInstances(Instances newInstances) Set the value of Instances.voidRandomSplitResultProducer.setInstances(Instances instances) Sets the dataset that results will be obtained for.voidResultProducer.setInstances(Instances instances) Sets the dataset that results will be obtained for.voidTester.setInstances(Instances newInstances) Set the value of Instances. -
Uses of Instances in weka.filters
Methods in weka.filters that return InstancesModifier and TypeMethodDescriptionFilter.getCopyOfInputFormat()Gets a copy of just the structure of the input format instances.Filter.getOutputFormat()Gets the format of the output instances.static InstancesFilters an entire set of instances through a filter and returns the new set.Methods in weka.filters with parameters of type InstancesModifier and TypeMethodDescriptionFilter.getCapabilities(Instances data) Returns the Capabilities of this filter, customized based on the data.booleanA version of the input(Instance) method that enables input of a whole dataset represented as an Instances object into the filter.booleanAllFilter.setInputFormat(Instances instanceInfo) Sets the format of the input instances.booleanFilter.setInputFormat(Instances instanceInfo) Sets the format of the input instances.booleanRenameRelation.setInputFormat(Instances instanceInfo) Sets the format of the input instances.booleanSimpleFilter.setInputFormat(Instances instanceInfo) Sets the format of the input instances.Returns a string that describes the filter as source.Returns a string that describes the filter as source.static InstancesFilters an entire set of instances through a filter and returns the new set.static StringFilter.wekaStaticWrapper(Sourcable filter, String className, Instances input, Instances output) generates source code from the filter -
Uses of Instances in weka.filters.supervised.attribute
Methods in weka.filters.supervised.attribute with parameters of type InstancesModifier and TypeMethodDescriptionbooleanClassOrder.setInputFormat(Instances instanceInfo) Sets the format of the input instances.booleanDiscretize.setInputFormat(Instances instanceInfo) Sets the format of the input instances.booleanNominalToBinary.setInputFormat(Instances instanceInfo) Sets the format of the input instances.booleanPartitionMembership.setInputFormat(Instances instanceInfo) Sets the format of the input instances. -
Uses of Instances in weka.filters.supervised.instance
Methods in weka.filters.supervised.instance with parameters of type InstancesModifier and TypeMethodDescriptionbooleanResample.setInputFormat(Instances instanceInfo) Sets the format of the input instances.booleanSpreadSubsample.setInputFormat(Instances instanceInfo) Sets the format of the input instances.booleanStratifiedRemoveFolds.setInputFormat(Instances instanceInfo) Sets the format of the input instances. -
Uses of Instances in weka.filters.unsupervised.attribute
Methods in weka.filters.unsupervised.attribute that return InstancesModifier and TypeMethodDescriptionPotentialClassIgnorer.getOutputFormat()Gets the format of the output instances.Methods in weka.filters.unsupervised.attribute with parameters of type InstancesModifier and TypeMethodDescriptionvoidadd noise to the dataset a given percentage of the instances are changed in the way that a set of instances are randomly selected using seed.AddCluster.getCapabilities(Instances data) Returns the Capabilities of this filter, makes sure that the class is never set (for the clusterer).ClusterMembership.getCapabilities(Instances data) Returns the Capabilities of this filter, makes sure that the class is never set (for the clusterer).voidKernelFilter.initFilter(Instances instances) initializes the filter with the given dataset, i.e., the kernel gets built.booleanAbstractTimeSeries.setInputFormat(Instances instanceInfo) Sets the format of the input instances.booleanAdd.setInputFormat(Instances instanceInfo) Sets the format of the input instances.booleanAddCluster.setInputFormat(Instances instanceInfo) Sets the format of the input instances.booleanAddExpression.setInputFormat(Instances instanceInfo) Sets the format of the input instances.booleanAddID.setInputFormat(Instances instanceInfo) Sets the format of the input instances.booleanAddNoise.setInputFormat(Instances instanceInfo) Sets the format of the input instances.booleanAddUserFields.setInputFormat(Instances instanceInfo) Sets the format of the input instances.booleanAddValues.setInputFormat(Instances instanceInfo) Sets the format of the input instances.booleanCenter.setInputFormat(Instances instanceInfo) Sets the format of the input instances.booleanChangeDateFormat.setInputFormat(Instances instanceInfo) Sets the format of the input instances.booleanClusterMembership.setInputFormat(Instances instanceInfo) Sets the format of the input instances.booleanCopy.setInputFormat(Instances instanceInfo) Sets the format of the input instances.booleanDiscretize.setInputFormat(Instances instanceInfo) Sets the format of the input instances.booleanFirstOrder.setInputFormat(Instances instanceInfo) Sets the format of the input instances.booleanMakeIndicator.setInputFormat(Instances instanceInfo) Sets the format of the input instances.booleanMathExpression.setInputFormat(Instances instanceInfo) Sets the format of the input instances.booleanMergeManyValues.setInputFormat(Instances instanceInfo) Sets the format of the input instances.booleanMergeTwoValues.setInputFormat(Instances instanceInfo) Sets the format of the input instances.booleanNominalToBinary.setInputFormat(Instances instanceInfo) Sets the format of the input instances.booleanNominalToString.setInputFormat(Instances instanceInfo) Sets the format of the input instances.booleanNormalize.setInputFormat(Instances instanceInfo) Sets the format of the input instances.booleanNumericToBinary.setInputFormat(Instances instanceInfo) Sets the format of the input instances.booleanNumericTransform.setInputFormat(Instances instanceInfo) Sets the format of the input instances.booleanObfuscate.setInputFormat(Instances instanceInfo) Sets the format of the input instances.booleanOrdinalToNumeric.setInputFormat(Instances instancesInfo) Sets the format of the input instances.booleanPKIDiscretize.setInputFormat(Instances instanceInfo) Sets the format of the input instances.booleanPotentialClassIgnorer.setInputFormat(Instances instanceInfo) Sets the format of the input instances.booleanPrincipalComponents.setInputFormat(Instances instanceInfo) Sets the format of the input instances.booleanRandomProjection.setInputFormat(Instances instanceInfo) Sets the format of the input instances.booleanRemove.setInputFormat(Instances instanceInfo) Sets the format of the input instances.booleanRemoveType.setInputFormat(Instances instanceInfo) Sets the format of the input instances.booleanRemoveUseless.setInputFormat(Instances instanceInfo) Sets the format of the input instances.booleanRenameNominalValues.setInputFormat(Instances instanceInfo) Sets the format of the input instances.booleanReorder.setInputFormat(Instances instanceInfo) Sets the format of the input instances.booleanReplaceMissingValues.setInputFormat(Instances instanceInfo) Sets the format of the input instances.booleanReplaceMissingWithUserConstant.setInputFormat(Instances instanceInfo) booleanStandardize.setInputFormat(Instances instanceInfo) Sets the format of the input instances.booleanStringToNominal.setInputFormat(Instances instanceInfo) Sets the format of the input instances.booleanStringToWordVector.setInputFormat(Instances instanceInfo) Sets the format of the input instances.booleanSwapValues.setInputFormat(Instances instanceInfo) Sets the format of the input instances.booleanTimeSeriesDelta.setInputFormat(Instances instanceInfo) Sets the format of the input instances.booleanTimeSeriesTranslate.setInputFormat(Instances instanceInfo) Sets the format of the input instances.Returns a string that describes the filter as source.Returns a string that describes the filter as source.Returns a string that describes the filter as source.Returns a string that describes the filter as source. -
Uses of Instances in weka.filters.unsupervised.instance
Methods in weka.filters.unsupervised.instance with parameters of type InstancesModifier and TypeMethodDescriptionvoidRemoveFrequentValues.determineValues(Instances inst) determines the values to retain, it is always at least 1 and up to the maximum number of distinct valuesbooleanNonSparseToSparse.setInputFormat(Instances instanceInfo) Sets the format of the input instances.booleanRandomize.setInputFormat(Instances instanceInfo) Sets the format of the input instances.booleanRemoveFolds.setInputFormat(Instances instanceInfo) Sets the format of the input instances.booleanRemoveFrequentValues.setInputFormat(Instances instanceInfo) Sets the format of the input instances.booleanRemoveMisclassified.setInputFormat(Instances instanceInfo) Sets the format of the input instances.booleanRemovePercentage.setInputFormat(Instances instanceInfo) Sets the format of the input instances.booleanRemoveRange.setInputFormat(Instances instanceInfo) Sets the format of the input instances.booleanRemoveWithValues.setInputFormat(Instances instanceInfo) Sets the format of the input instances.booleanResample.setInputFormat(Instances instanceInfo) Sets the format of the input instances.booleanReservoirSample.setInputFormat(Instances instanceInfo) Sets the format of the input instances.booleanSparseToNonSparse.setInputFormat(Instances instanceInfo) Sets the format of the input instances. -
Uses of Instances in weka.gui
Modifier and TypeMethodDescriptionSetInstancesPanel.getInstances()Gets the set of instances currently held by the panel.ViewerDialog.getInstances()returns the currently displayed instancesModifier and TypeMethodDescriptionvoidAbstractPerspective.setInstances(Instances instances) Set instances (if this perspective can use them)voidAttributeListPanel.setInstances(Instances newInstances) Sets the instances who's attribute names will be displayed.voidAttributeSelectionPanel.setInstances(Instances newInstances) Sets the instances who's attribute names will be displayed.voidAttributeSummaryPanel.setInstances(Instances inst) Tells the panel to use a new set of instances.voidAttributeVisualizationPanel.setInstances(Instances newins) Sets the instances for usevoidInstancesSummaryPanel.setInstances(Instances inst) Tells the panel to use a new set of instances.voidPerspective.setInstances(Instances instances) Set instances (if this perspective can use them)voidSetInstancesPanel.setInstances(Instances i) Updates the set of instances that is currently held by the panel.voidSetInstancesPanel.setInstances(Instances i, boolean showZeroInstancesAsUnknown) Updates the set of instances that is currently held by the panel.voidSimpleCLIPanel.setInstances(Instances instances) voidViewerDialog.setInstances(Instances inst) sets the instances to displayintViewerDialog.showDialog(Instances inst) Pops up the modal dialog and waits for Cancel or OK. -
Uses of Instances in weka.gui.arffviewer
Methods in weka.gui.arffviewer that return InstancesModifier and TypeMethodDescriptionArffPanel.getInstances()returns the instances of the panel, if none then NULLArffSortedTableModel.getInstances()returns the dataArffTableModel.getInstances()returns the dataMethods in weka.gui.arffviewer with parameters of type InstancesModifier and TypeMethodDescriptionvoidArffPanel.setInstances(Instances data) displays the given instances, i.e.voidArffSortedTableModel.setInstances(Instances data) sets the datavoidArffTableModel.setInstances(Instances data) sets the dataConstructors in weka.gui.arffviewer with parameters of type InstancesModifierConstructorDescriptioninitializes the panel with the given datainitializes the sorter w/o a model, but uses the given data to create a model from thatArffTableModel(Instances data) initializes the model with the given data -
Uses of Instances in weka.gui.beans
Methods in weka.gui.beans that return InstancesModifier and TypeMethodDescriptionClassAssigner.getConnectedFormat()Returns the structure of the incoming instances (if any)ClassValuePicker.getConnectedFormat()Returns the structure of the incoming instances (if any)FlowByExpression.getConnectedFormat()Returns the structure of the incoming instances (if any)Sorter.getConnectedFormat()Returns the structure of the incoming instances (if any)DataSetEvent.getDataSet()Return the instances of the data setSubstringLabelerRules.getInputStructure()Get the input structureSubstringLabelerRules.getOutputStructure()Get the output structureAssociator.getStructure(String eventName) Get the structure of the output encapsulated in the named event.ClassAssigner.getStructure(String eventName) Get the structure of the output encapsulated in the named event.ClassValuePicker.getStructure(String eventName) CrossValidationFoldMaker.getStructure(String eventName) Get the structure of the output encapsulated in the named event.FlowByExpression.getStructure(String eventName) Get the structure of the output encapsulated in the named event.IncrementalClassifierEvent.getStructure()Get the instances structure (may be null if this is not a NEW_BATCH event)InstanceEvent.getStructure()Get the instances structure (may be null if this is not a FORMAT_AVAILABLE event)Join.getStructure(String eventName) Get the output instances structure given an input event typeLoader.getStructure(String eventName) Get the structure of the output encapsulated in the named event.Sorter.getStructure(String eventName) Get the structure of the output encapsulated in the named event.StructureProducer.getStructure(String eventName) Get the structure of the output encapsulated in the named event.TestSetMaker.getStructure(String eventName) Get the structure of the output encapsulated in the named event.TrainingSetMaker.getStructure(String eventName) Get the structure of the output encapsulated in the named event.TrainTestSplitMaker.getStructure(String eventName) Get the structure of the output encapsulated in the named event.TestSetEvent.getTestSet()Get the test set instancesTrainingSetEvent.getTrainingSet()Get the training instancesMethods in weka.gui.beans with parameters of type InstancesModifier and TypeMethodDescriptionvoidSubstringLabelerRules.SubstringLabelerMatchRule.init(Environment env, Instances structure) Initialize this match rule by substituting any environment variables in the attributes, match and label strings.voidSubstringReplacerRules.SubstringReplacerMatchRule.init(Environment env, Instances structure) Initialize this match replace rule by substituting any environment variables in the attributes, match and replace strings.SubstringLabelerRules.matchRulesFromInternal(String matchDetails, Instances inputStructure, String statusMessagePrefix, Logger log, Environment env) Get a list of match rules from an internally encoded match specificationSubstringReplacerRules.matchRulesFromInternal(String matchReplaceDetails, Instances inputStructure, String statusMessagePrefix, Logger log, Environment env) Get a list of match rules from an internally encoded match specificationstatic voidSerializedModelSaver.saveBinary(File saveTo, Object model, Instances header) Save a model in binary form.static voidSave a model in KOML deep object serialized XML form.static voidSerializedModelSaver.saveXStream(File saveTo, Object model, Instances header) Save a model in XStream deep object serialized XML form.voidAttributeSummarizer.setInstances(Instances inst) Set instances for this bean.voidDataVisualizer.setInstances(Instances inst) Set instances for this bean.voidKnowledgeFlowApp.KFPerspective.setInstances(Instances insts) Set instances (if the perspective accepts them)voidKnowledgeFlowApp.MainKFPerspective.setInstances(Instances insts) voidScatterPlotMatrix.setInstances(Instances inst) Set instances for this bean.voidSQLViewerPerspective.setInstances(Instances insts) Set instances (if the perspective accepts them)voidIncrementalClassifierEvent.setStructure(Instances structure) Set the instances structurevoidInstanceEvent.setStructure(Instances structure) Set the instances structureMethod parameters in weka.gui.beans with type arguments of type InstancesModifier and TypeMethodDescriptionOffscreenChartRenderer.renderHistogram(int width, int height, List<Instances> series, String attsToPlot, List<String> optionalArgs) Render histogram(s) (numeric attribute) or bar chart(s) (nominal attribute).WekaOffscreenChartRenderer.renderHistogram(int width, int height, List<Instances> series, String attToPlot, List<String> optionalArgs) Render histogram(s) (numeric attribute) or pie chart (nominal attribute).OffscreenChartRenderer.renderXYLineChart(int width, int height, List<Instances> series, String xAxis, String yAxis, List<String> optionalArgs) Render an XY line chartWekaOffscreenChartRenderer.renderXYLineChart(int width, int height, List<Instances> series, String xAxis, String yAxis, List<String> optionalArgs) Render an XY line chartOffscreenChartRenderer.renderXYScatterPlot(int width, int height, List<Instances> series, String xAxis, String yAxis, List<String> optionalArgs) Render an XY scatter plotWekaOffscreenChartRenderer.renderXYScatterPlot(int width, int height, List<Instances> series, String xAxis, String yAxis, List<String> optionalArgs) Render an XY scatter plotConstructors in weka.gui.beans with parameters of type InstancesModifierConstructorDescriptionDataSetEvent(Object source, Instances dataSet) IncrementalClassifierEvent(Object source, Classifier scheme, Instances structure) Creates a new incremental classifier event that encapsulates header information and classifier.InstanceEvent(Object source, Instances structure) Creates a newInstanceEventinstance which encapsulates header information only.SubstringLabelerRules(String matchDetails, String newAttName, boolean consumeNonMatching, boolean nominalBinary, Instances inputStructure, String statusMessagePrefix, Logger log, Environment env) ConstructorSubstringLabelerRules(String matchDetails, String newAttName, Instances inputStructure) Constructor.SubstringReplacerRules(String matchDetails, Instances inputStructure) Constructor.SubstringReplacerRules(String matchDetails, Instances inputStructure, String statusMessagePrefix, Logger log, Environment env) ConstructorTestSetEvent(Object source, Instances testSet) Creates a newTestSetEventTestSetEvent(Object source, Instances testSet, int setNum, int maxSetNum) Creates a newTestSetEventTestSetEvent(Object source, Instances testSet, int runNum, int maxRunNum, int setNum, int maxSetNum) Creates a newTestSetEventTrainingSetEvent(Object source, Instances trainSet) Creates a newTrainingSetEventTrainingSetEvent(Object source, Instances trainSet, int setNum, int maxSetNum) Creates a newTrainingSetEventTrainingSetEvent(Object source, Instances trainSet, int runNum, int maxRunNum, int setNum, int maxSetNum) Creates a newTrainingSetEvent -
Uses of Instances in weka.gui.boundaryvisualizer
Methods in weka.gui.boundaryvisualizer that return InstancesMethods in weka.gui.boundaryvisualizer with parameters of type InstancesModifier and TypeMethodDescriptionvoidDataGenerator.buildGenerator(Instances inputInstances) Build the data generatorvoidKDDataGenerator.buildGenerator(Instances inputInstances) Initialize the generator using the supplied instancesstatic voidBoundaryVisualizer.createNewVisualizerWindow(Classifier classifier, Instances instances) Creates a new GUI window with all of the BoundaryVisualizer trappings,voidBoundaryVisualizer.setInstances(Instances inst) Set the training instancesvoidRemoteBoundaryVisualizerSubTask.setInstances(Instances i) Set the training datavoidBoundaryPanel.setTrainingData(Instances trainingData) Set the training data to use -
Uses of Instances in weka.gui.experiment
Methods in weka.gui.experiment with parameters of type InstancesModifier and TypeMethodDescriptionvoidResultsPanel.setInstances(Instances newInstances) Sets up the panel with a new set of instances, attempting to guess the correct settings for various columns. -
Uses of Instances in weka.gui.explorer
Methods in weka.gui.explorer that return InstancesModifier and TypeMethodDescriptionAbstractPlotInstances.getInstances()Returns the training data.ClassifierPanel.getInstances()Get the current set of instancesDataGeneratorPanel.getInstances()returns the generated instances, null if the process was cancelled.PreprocessPanel.getInstances()Gets the working set of instances.AbstractPlotInstances.getPlotInstances()Returns the generated plot instances.Methods in weka.gui.explorer with parameters of type InstancesModifier and TypeMethodDescriptionvoidClassifierErrorsPlotInstances.process(Instances batch, double[][] predictions, Evaluation eval) voidClassifierPanel.saveClassifier(String name, Classifier classifier, Instances trainHeader) Saves the currently selected classifier.voidPreprocessPanel.saveInstancesToFile(AbstractFileSaver saver, Instances inst) saves the data with the specified savervoidAbstractPlotInstances.setInstances(Instances value) Sets the instances that are the basis for the plot instances.voidAssociationsPanel.setInstances(Instances inst) Tells the panel to use a new set of instances.voidAttributeSelectionPanel.setInstances(Instances inst) Tells the panel to use a new set of instances.voidClassifierPanel.setInstances(Instances inst) Tells the panel to use a new set of instances.voidClustererPanel.setInstances(Instances inst) Tells the panel to use a new set of instances.voidExplorer.ExplorerPanel.setInstances(Instances inst) Tells the panel to use a new set of instances.voidPreprocessPanel.setInstances(Instances inst) Tells the panel to use a new base set of instances.voidVisualizePanel.setInstances(Instances instances) static EvaluationClassifierPanel.setupEval(Evaluation eval, Classifier classifier, Instances inst, CostMatrix costMatrix, ClassifierErrorsPlotInstances plotInstances, AbstractOutput classificationOutput, boolean onlySetPriors) Configures an evaluation object with respect to a classifier, cost matrix, output and plotting.static EvaluationClassifierPanel.setupEval(Evaluation eval, Classifier classifier, Instances inst, CostMatrix costMatrix, ClassifierErrorsPlotInstances plotInstances, AbstractOutput classificationOutput, boolean onlySetPriors, boolean collectPredictions) Configures an evaluation object with respect to a classifier, cost matrix, output and plotting. -
Uses of Instances in weka.gui.knowledgeflow
Methods in weka.gui.knowledgeflow with parameters of type InstancesModifier and TypeMethodDescriptionvoidAttributeSummaryPerspective.setInstances(Instances instances) Set the instances to visualizevoidAttributeSummaryPerspective.setInstances(Instances instances, Settings settings) Set the instances to visualizevoidMainKFPerspective.setInstances(Instances instances) Set instances (if this perspective can use them)voidScatterPlotMatrixPerspective.setInstances(Instances instances) Set the instances to use -
Uses of Instances in weka.gui.streams
Methods in weka.gui.streams that return InstancesModifier and TypeMethodDescriptionInstanceJoiner.outputFormat()Gets the format of the output instances.InstanceLoader.outputFormat()InstanceProducer.outputFormat()Methods in weka.gui.streams with parameters of type InstancesModifier and TypeMethodDescriptionvoidInstanceCounter.inputFormat(Instances instanceInfo) booleanInstanceJoiner.inputFormat(Instances instanceInfo) Sets the format of the input instances.voidInstanceSavePanel.inputFormat(Instances instanceInfo) voidInstanceTable.inputFormat(Instances instanceInfo) voidInstanceViewer.inputFormat(Instances instanceInfo) -
Uses of Instances in weka.gui.treevisualizer
Methods in weka.gui.treevisualizer that return InstancesModifier and TypeMethodDescriptionNode.getInstances()This will return the Instances object related to this node. -
Uses of Instances in weka.gui.visualize
Methods in weka.gui.visualize that return InstancesModifier and TypeMethodDescriptionVisualizePanel.getInstances()Get the master plot's instancesVisualizePanelEvent.getInstances1()VisualizePanelEvent.getInstances2()PlotData2D.getPlotInstances()Returns the instances for this plotMethods in weka.gui.visualize that return types with arguments of type InstancesModifier and TypeMethodDescriptionInstanceInfo.getInfoData()Returns the underlying data.InstanceInfoFrame.getInfoData()Returns the underlying data.Methods in weka.gui.visualize with parameters of type InstancesModifier and TypeMethodDescriptionvoidAttributePanel.setInstances(Instances ins) This sets the instances to be drawn into the attribute panelvoidClassPanel.setInstances(Instances insts) Set the instances.voidMatrixPanel.setInstances(Instances newInst) This method changes the Instances object of this class to a new one.voidPlot2D.setInstances(Instances inst) Sets the master plot from a set of instancesvoidVisualizePanel.setInstances(Instances inst) Tells the panel to use a new set of instances.voidThresholdVisualizePanel.setUpComboBoxes(Instances inst) This overloads VisualizePanel's setUpComboBoxes to add ActionListeners to watch for when the X/Y Axis comboboxes are changed.voidVisualizePanel.setUpComboBoxes(Instances inst) initializes the comboboxes based on the dataMethod parameters in weka.gui.visualize with type arguments of type InstancesModifier and TypeMethodDescriptionvoidInstanceInfo.setInfoData(Vector<Instances> data) Sets the underlying data.voidInstanceInfoFrame.setInfoData(Vector<Instances> data) Sets the underlying data.Constructors in weka.gui.visualize with parameters of type InstancesModifierConstructorDescriptionPlotData2D(Instances insts) Construct a new PlotData2D using the supplied instancesThis constructor creates the event with all the parameters set. -
Uses of Instances in weka.gui.visualize.plugins
Methods in weka.gui.visualize.plugins with parameters of type InstancesModifier and TypeMethodDescriptionErrorVisualizePlugin.getVisualizeMenuItem(Instances predInst) Get a JMenu or JMenuItem which contain action listeners that perform the visualization of the classifier errors. -
Uses of Instances in weka.knowledgeflow
Methods in weka.knowledgeflow that return InstancesModifier and TypeMethodDescriptionStepManager.getIncomingStructureForConnectionType(String connectionName) Attempt to retrieve the structure (as a header-only set of instances) for the named incoming connection type.StepManager.getIncomingStructureForConnectionType(String connectionName, Environment env) Attempt to retrieve the structure (as a header-only set of instances) for the named incoming connection type.StepManagerImpl.getIncomingStructureForConnectionType(String connectionName) Attempt to get the incoming structure (as a header-only set of instances) for the named incoming connection type.StepManagerImpl.getIncomingStructureForConnectionType(String connectionName, Environment env) Attempt to retrieve the structure (as a header-only set of instances) for the named incoming connection type.StepManager.getIncomingStructureFromStep(StepManager sourceStep, String connectionName) Attempt to get the incoming structure (as a header-only set of instances) from the given managed step for the given connection type.StepManagerImpl.getIncomingStructureFromStep(StepManager sourceStep, String connectionName) Attempt to get the incoming structure (as a header-only set of instances) from the given managed step for the given connection type. -
Uses of Instances in weka.knowledgeflow.steps
Methods in weka.knowledgeflow.steps that return InstancesModifier and TypeMethodDescriptionJoin.getFirstInputStructure()Get the Instances structure being produced by the first inputMemoryBasedDataSource.getInstances()Get the data to output from this stepJoin.getSecondInputStructure()Get the Instances structure being produced by the second inputAppender.outputStructureForConnectionType(String connectionName) If possible, get the output structure for the named connection type as a header-only set of instances.Associator.outputStructureForConnectionType(String connectionName) If possible, get the output structure for the named connection type as a header-only set of instances.BaseStep.outputStructureForConnectionType(String connectionName) If possible, get the output structure for the named connection type as a header-only set of instances.BaseStep.outputStructureForConnectionType(String connectionName, Environment env) If possible, get the output structure for the named connection type as a header-only set of instances.ClassAssigner.outputStructureForConnectionType(String connectionName) Return the structure of data output by this step for a given incoming connection typeClassValuePicker.outputStructureForConnectionType(String connectionName) If possible, get the output structure for the named connection type as a header-only set of instances.CrossValidationFoldMaker.outputStructureForConnectionType(String connectionName) If possible, get the output structure for the named connection type as a header-only set of instances.DataGenerator.outputStructureForConnectionType(String connectionName) If possible, get the output structure for the named connection type as a header-only set of instances.DataGrid.outputStructureForConnectionType(String connectionName) If possible, get the output structure for the named connection type as a header-only set of instances.ExecuteProcess.outputStructureForConnectionType(String connectionName) Get, if possible, the outgoing instance structure for the supplied incoming connection typeFilter.outputStructureForConnectionType(String connectionName) If possible, get the output structure for the named connection type as a header-only set of instances.FlowByExpression.outputStructureForConnectionType(String connectionName) If possible, get the output structure for the named connection type as a header-only set of instances.InstanceStreamToBatchMaker.outputStructureForConnectionType(String connectionName) If possible, get the output structure for the named connection type as a header-only set of instances.Loader.outputStructureForConnectionType(String connectionName, Environment env) If possible, get the output structure for the named connection type as a header-only set of instances.SetVariables.outputStructureForConnectionType(String connectionName) Step.outputStructureForConnectionType(String connectionName) If possible, get the output structure for the named connection type as a header-only set of instances.Step.outputStructureForConnectionType(String connectionName, Environment env) If possible, get the output structure for the named connection type as a header-only set of instances.SubstringLabeler.outputStructureForConnectionType(String connectionName) If possible, get the output structure for the named connection type as a header-only set of instances.SubstringReplacer.outputStructureForConnectionType(String connectionName) If possible, get the output structure for the named connection type as a header-only set of instances.TestSetMaker.outputStructureForConnectionType(String connectionName) If possible, get the output structure for the named connection type as a header-only set of instances.TrainingSetMaker.outputStructureForConnectionType(String connectionName) If possible, get the output structure for the named connection type as a header-only set of instances.TrainTestSplitMaker.outputStructureForConnectionType(String connectionName) If possible, get the output structure for the named connection type as a header-only set of instances.Methods in weka.knowledgeflow.steps with parameters of type InstancesModifier and TypeMethodDescriptionvoidFlowByExpression.BracketNode.init(Instances structure, Environment env) voidFlowByExpression.ExpressionClause.init(Instances structure, Environment env) voidFlowByExpression.ExpressionNode.init(Instances structure, Environment env) Initialize the nodevoidSorter.SortRule.init(Environment env, Instances structure) Initialize the rulevoidBoundaryPlotter.plotTrainingData(Instances trainingData) voidMemoryBasedDataSource.setInstances(Instances instances) Set the data to output from this step