Package weka.core
Interface BatchPredictor
- All Known Implementing Classes:
AbstractClassifier
,AdaBoostM1
,AdditiveRegression
,AttributeSelectedClassifier
,Bagging
,BayesNet
,BayesNetGenerator
,BIFReader
,ClassificationViaRegression
,CostSensitiveClassifier
,CVParameterSelection
,DecisionStump
,DecisionTable
,EditableBayesNet
,FilteredClassifier
,GaussianProcesses
,GeneralRegression
,HoeffdingTree
,IBk
,InputMappedClassifier
,IteratedSingleClassifierEnhancer
,IterativeClassifierOptimizer
,J48
,JRip
,KStar
,LinearRegression
,LMT
,LMTNode
,Logistic
,LogisticBase
,LogitBoost
,LWL
,M5Base
,M5P
,M5Rules
,MultiClassClassifier
,MultiClassClassifierUpdateable
,MultilayerPerceptron
,MultipleClassifiersCombiner
,MultiScheme
,NaiveBayes
,NaiveBayesMultinomial
,NaiveBayesMultinomialText
,NaiveBayesMultinomialUpdateable
,NaiveBayesUpdateable
,NeuralNetwork
,OneR
,ParallelIteratedSingleClassifierEnhancer
,ParallelMultipleClassifiersCombiner
,PART
,PMMLClassifier
,PreConstructedLinearModel
,RandomCommittee
,RandomForest
,RandomizableClassifier
,RandomizableFilteredClassifier
,RandomizableIteratedSingleClassifierEnhancer
,RandomizableMultipleClassifiersCombiner
,RandomizableParallelIteratedSingleClassifierEnhancer
,RandomizableParallelMultipleClassifiersCombiner
,RandomizableSingleClassifierEnhancer
,RandomSubSpace
,RandomTree
,Regression
,RegressionByDiscretization
,REPTree
,RuleNode
,RuleSetModel
,SerializedClassifier
,SGD
,SGDText
,SimpleLinearRegression
,SimpleLogistic
,SingleClassifierEnhancer
,SMO
,SMOreg
,Stacking
,SupportVectorMachineModel
,TreeModel
,Vote
,VotedPerceptron
,WeightedInstancesHandlerWrapper
,ZeroR
public interface BatchPredictor
Interface to something that can produce predictions in a batch manner
when presented with a set of Instances.
- Version:
- $Revision: 11958 $
- Author:
- Mark Hall (mhall{[at]}pentaho{[dot]}com)
-
Method Summary
Modifier and TypeMethodDescriptiondouble[][]
Batch scoring methodGet the batch size to use.boolean
Returns true if this BatchPredictor can generate batch predictions in an efficient manner.void
setBatchSize
(String size) Set the batch size to use.
-
Method Details
-
setBatchSize
Set the batch size to use. The implementer will prefer (but not necessarily expect) this many instances to be passed in to distributionsForInstances().- Parameters:
size
- the batch size to use
-
getBatchSize
String getBatchSize()Get the batch size to use. The implementer will prefer (but not necessarily expect) this many instances to be passed in to distributionsForInstances(). Allows the preferred batch size to be encapsulated with the client.- Returns:
- the batch size to use
-
distributionsForInstances
Batch scoring method- Parameters:
insts
- the instances to get predictions for- Returns:
- an array of probability distributions, one for each instance
- Throws:
Exception
- if a problem occurs
-
implementsMoreEfficientBatchPrediction
boolean implementsMoreEfficientBatchPrediction()Returns true if this BatchPredictor can generate batch predictions in an efficient manner.- Returns:
- true if batch predictions can be generated efficiently
-