Uses of Interface
weka.core.Instance
Packages that use Instance
Package
Description
-
Uses of Instance in weka.associations
Methods in weka.associations with parameters of type InstanceModifier and TypeMethodDescriptionbooleanItemSet.containedBy(Instance instance) Checks if an instance contains an item set.booleanItemSet.containedByTreatZeroAsMissing(Instance instance) Checks if an instance contains an item set.voidItemSet.upDateCounter(Instance instance) Updates counter of item set with respect to given transaction.final voidLabeledItemSet.upDateCounter(Instance instanceNoClass, Instance instanceClass) Updates counter of item set with respect to given transaction.voidItemSet.updateCounterTreatZeroAsMissing(Instance instance) Updates counter of item set with respect to given transaction.final voidLabeledItemSet.upDateCounterTreatZeroAsMissing(Instance instanceNoClass, Instance instanceClass) Updates counter of item set with respect to given transaction. -
Uses of Instance in weka.attributeSelection
Methods in weka.attributeSelection that return InstanceModifier and TypeMethodDescriptionAttributeTransformer.convertInstance(Instance instance) Transforms an instance in the format of the original data to the transformed spacePrincipalComponents.convertInstance(Instance instance) Transform an instance in original (unormalized) format.AttributeSelection.reduceDimensionality(Instance in) reduce the dimensionality of a single instance to include only those attributes chosen by the last run of attribute selection.Methods in weka.attributeSelection with parameters of type InstanceModifier and TypeMethodDescriptionAttributeTransformer.convertInstance(Instance instance) Transforms an instance in the format of the original data to the transformed spacePrincipalComponents.convertInstance(Instance instance) Transform an instance in original (unormalized) format.doubleClassifierSubsetEval.evaluateSubset(BitSet subset, Instance holdOut, boolean retrain) Evaluates a subset of attributes with respect to a single instance.abstract doubleHoldOutSubsetEvaluator.evaluateSubset(BitSet subset, Instance holdOut, boolean retrain) Evaluates a subset of attributes with respect to a single instance.AttributeSelection.reduceDimensionality(Instance in) reduce the dimensionality of a single instance to include only those attributes chosen by the last run of attribute selection. -
Uses of Instance in weka.classifiers
Methods in weka.classifiers with parameters of type InstanceModifier and TypeMethodDescriptiondoubleAbstractClassifier.classifyInstance(Instance instance) Classifies the given test instance.doubleClassifier.classifyInstance(Instance instance) Classifies the given test instance.double[]AbstractClassifier.distributionForInstance(Instance instance) Predicts the class memberships for a given instance.double[]Classifier.distributionForInstance(Instance instance) Predicts the class memberships for a given instance.doubleEvaluation.evaluateModelOnce(double[] dist, Instance instance) Evaluates the supplied distribution on a single instance.voidEvaluation.evaluateModelOnce(double prediction, Instance instance) Evaluates the supplied prediction on a single instance.doubleEvaluation.evaluateModelOnce(Classifier classifier, Instance instance) Evaluates the classifier on a single instance.doubleEvaluation.evaluateModelOnceAndRecordPrediction(double[] dist, Instance instance) Evaluates the supplied distribution on a single instance.doubleEvaluation.evaluateModelOnceAndRecordPrediction(Classifier classifier, Instance instance) Evaluates the classifier on a single instance and records the prediction.doubleEvaluation.evaluationForSingleInstance(double[] dist, Instance instance, boolean storePredictions) Evaluates the supplied distribution on a single instance.double[]CostMatrix.expectedCosts(double[] classProbs, Instance inst) Calculates the expected misclassification cost for each possible class value, given class probability estimates.final doubleCostMatrix.getElement(int rowIndex, int columnIndex, Instance inst) Return the value of a cell as a double.doubleCostMatrix.getMaxCost(int classVal, Instance inst) Gets the maximum cost for a particular class value.doubleConditionalDensityEstimator.logDensity(Instance instance, double value) Returns natural logarithm of density estimate for given value based on given instance.double[][]IntervalEstimator.predictIntervals(Instance inst, double confidenceLevel) Returns an N * 2 array, where N is the number of prediction intervals.voidUpdateableClassifier.updateClassifier(Instance instance) Updates a classifier using the given instance.voidEvaluation.updatePriors(Instance instance) Updates the class prior probabilities or the mean respectively (when incrementally training). -
Uses of Instance in weka.classifiers.bayes
Methods in weka.classifiers.bayes with parameters of type InstanceModifier and TypeMethodDescriptiondouble[]BayesNet.countsForInstance(Instance instance) Calculates the counts for Dirichlet distribution for the class membership probabilities for the given test instance.double[]BayesNet.distributionForInstance(Instance instance) Calculates the class membership probabilities for the given test instance.double[]NaiveBayes.distributionForInstance(Instance instance) Calculates the class membership probabilities for the given test instance.double[]NaiveBayesMultinomial.distributionForInstance(Instance instance) Calculates the class membership probabilities for the given test instance.double[]NaiveBayesMultinomialText.distributionForInstance(Instance instance) Calculates the class membership probabilities for the given test instance.voidBayesNet.updateClassifier(Instance instance) Updates the classifier with the given instance.voidNaiveBayes.updateClassifier(Instance instance) Updates the classifier with the given instance.voidNaiveBayesMultinomialText.updateClassifier(Instance instance) Updates the classifier with the given instance.voidNaiveBayesMultinomialUpdateable.updateClassifier(Instance instance) Updates the classifier with information from one training instance. -
Uses of Instance in weka.classifiers.bayes.net
Fields in weka.classifiers.bayes.net declared as InstanceModifier and TypeFieldDescriptionInstance[]ADNode.m_Instanceslist of Instance children (either m_Instances or m_VaryNodes is instantiated) -
Uses of Instance in weka.classifiers.bayes.net.estimate
Methods in weka.classifiers.bayes.net.estimate with parameters of type InstanceModifier and TypeMethodDescriptiondouble[]BayesNetEstimator.distributionForInstance(BayesNet bayesNet, Instance instance) Calculates the class membership probabilities for the given test instance.double[]MultiNomialBMAEstimator.distributionForInstance(BayesNet bayesNet, Instance instance) Calculates the class membership probabilities for the given test instance.double[]SimpleEstimator.distributionForInstance(BayesNet bayesNet, Instance instance) Calculates the class membership probabilities for the given test instance.voidBayesNetEstimator.updateClassifier(BayesNet bayesNet, Instance instance) Updates the classifier with the given instance.voidBMAEstimator.updateClassifier(BayesNet bayesNet, Instance instance) Updates the classifier with the given instance.voidMultiNomialBMAEstimator.updateClassifier(BayesNet bayesNet, Instance instance) Updates the classifier with the given instance.voidSimpleEstimator.updateClassifier(BayesNet bayesNet, Instance instance) Updates the classifier with the given instance. -
Uses of Instance in weka.classifiers.evaluation
Methods in weka.classifiers.evaluation with parameters of type InstanceModifier and TypeMethodDescriptiondoubleEvaluation.evaluateModelOnce(double[] dist, Instance instance) Evaluates the supplied distribution on a single instance.voidEvaluation.evaluateModelOnce(double prediction, Instance instance) Evaluates the supplied prediction on a single instance.doubleEvaluation.evaluateModelOnce(Classifier classifier, Instance instance) Evaluates the classifier on a single instance.doubleEvaluation.evaluateModelOnceAndRecordPrediction(double[] dist, Instance instance) Evaluates the supplied distribution on a single instance.doubleEvaluation.evaluateModelOnceAndRecordPrediction(Classifier classifier, Instance instance) Evaluates the classifier on a single instance and records the prediction.doubleEvaluation.evaluationForSingleInstance(double[] dist, Instance instance, boolean storePredictions) Evaluates the supplied distribution on a single instance.EvaluationUtils.getPrediction(Classifier classifier, Instance test) Generate a single prediction for a test instance given the pre-trained classifier.voidEvaluation.updatePriors(Instance instance) Updates the class prior probabilities or the mean respectively (when incrementally training).voidInformationRetrievalEvaluationMetric.updateStatsForClassifier(double[] predictedDistribution, Instance instance) Updates the statistics about a classifiers performance for the current test instance.voidInformationTheoreticEvaluationMetric.updateStatsForClassifier(double[] predictedDistribution, Instance instance) Updates the statistics about a classifiers performance for the current test instance.voidStandardEvaluationMetric.updateStatsForClassifier(double[] predictedDistribution, Instance instance) Updates the statistics about a classifiers performance for the current test instance.voidInformationTheoreticEvaluationMetric.updateStatsForConditionalDensityEstimator(ConditionalDensityEstimator classifier, Instance classMissing, double classValue) Updates stats for conditional density estimator based on current test instance.voidIntervalBasedEvaluationMetric.updateStatsForIntervalEstimator(IntervalEstimator classifier, Instance classMissing, double classValue) Updates stats for interval estimator based on current test instance.voidInformationTheoreticEvaluationMetric.updateStatsForPredictor(double predictedValue, Instance instance) Updates the statistics about a predictors performance for the current test instance.voidStandardEvaluationMetric.updateStatsForPredictor(double predictedValue, Instance instance) Updates the statistics about a predictors performance for the current test instance. -
Uses of Instance in weka.classifiers.evaluation.output.prediction
Fields in weka.classifiers.evaluation.output.prediction declared as InstanceMethods in weka.classifiers.evaluation.output.prediction with parameters of type InstanceModifier and TypeMethodDescriptionvoidAbstractOutput.printClassification(double[] dist, Instance inst, int index) Prints the classification to the buffer.voidAbstractOutput.printClassification(Classifier classifier, Instance inst, int index) Prints the classification to the buffer. -
Uses of Instance in weka.classifiers.functions
Methods in weka.classifiers.functions with parameters of type InstanceModifier and TypeMethodDescriptiondoubleGaussianProcesses.classifyInstance(Instance inst) Classifies a given instance.doubleLinearRegression.classifyInstance(Instance instance) Classifies the given instance using the linear regression function.doubleSimpleLinearRegression.classifyInstance(Instance inst) Generate a prediction for the supplied instance.doubleSMOreg.classifyInstance(Instance instance) Classifies the given instance using the linear regression function.double[]Logistic.distributionForInstance(Instance instance) Computes the distribution for a given instancedouble[]MultilayerPerceptron.distributionForInstance(Instance i) Call this function to predict the class of an instance once a classification model has been built with the buildClassifier call.double[]SGD.distributionForInstance(Instance inst) Computes the distribution for a given instancedouble[]SGDText.distributionForInstance(Instance inst) double[]SimpleLogistic.distributionForInstance(Instance inst) Returns class probabilities for an instance.double[]SMO.distributionForInstance(Instance inst) Estimates class probabilities for given instance.double[]VotedPerceptron.distributionForInstance(Instance inst) Outputs the distribution for the given output.doubleGaussianProcesses.getStandardDeviation(Instance inst) Gives standard deviation of the prediction at the given instance.doubleGaussianProcesses.logDensity(Instance inst, double value) Returns natural logarithm of density estimate for given value based on given instance.int[]SMO.obtainVotes(Instance inst) Returns an array of votes for the given instance.double[][]GaussianProcesses.predictIntervals(Instance inst, double confidenceLevel) Computes a prediction interval for the given instance and confidence level.doubleComputes SVM output for given instance.voidSGD.updateClassifier(Instance instance) Updates the classifier with the given instance.voidSGDText.updateClassifier(Instance instance) Updates the classifier with the given instance. -
Uses of Instance in weka.classifiers.functions.supportVector
Methods in weka.classifiers.functions.supportVector with parameters of type InstanceModifier and TypeMethodDescriptiondoubleImplements the abstract function of Kernel using the cache.abstract doubleComputes the result of the kernel function for two instances.doubledoubleComputes the result of the kernel function for two instances.double -
Uses of Instance in weka.classifiers.lazy
Methods in weka.classifiers.lazy with parameters of type InstanceModifier and TypeMethodDescriptiondouble[]IBk.distributionForInstance(Instance instance) Calculates the class membership probabilities for the given test instance.double[]KStar.distributionForInstance(Instance instance) Calculates the class membership probabilities for the given test instance.double[]LWL.distributionForInstance(Instance instance) Calculates the class membership probabilities for the given test instance.voidIBk.updateClassifier(Instance instance) Adds the supplied instance to the training set.voidKStar.updateClassifier(Instance instance) Adds the supplied instance to the training setvoidLWL.updateClassifier(Instance instance) Adds the supplied instance to the training set. -
Uses of Instance in weka.classifiers.lazy.kstar
Constructors in weka.classifiers.lazy.kstar with parameters of type InstanceModifierConstructorDescriptionKStarNominalAttribute(Instance test, Instance train, int attrIndex, Instances trainSet, int[][] randClassCol, KStarCache cache) ConstructorKStarNumericAttribute(Instance test, Instance train, int attrIndex, Instances trainSet, int[][] randClassCols, KStarCache cache) Constructor -
Uses of Instance in weka.classifiers.meta
Methods in weka.classifiers.meta with parameters of type InstanceModifier and TypeMethodDescriptiondoubleAdditiveRegression.classifyInstance(Instance inst) Classify an instance.doubleRegressionByDiscretization.classifyInstance(Instance instance) Returns a predicted class for the test instance.doubleVote.classifyInstance(Instance instance) Classifies the given test instance.doubleWeightedInstancesHandlerWrapper.classifyInstance(Instance instance) Classifies the given test instance.double[]AdaBoostM1.distributionForInstance(Instance instance) Calculates the class membership probabilities for the given test instance.double[]AttributeSelectedClassifier.distributionForInstance(Instance instance) Classifies a given instance after attribute selectiondouble[]Bagging.distributionForInstance(Instance instance) Calculates the class membership probabilities for the given test instance.double[]ClassificationViaRegression.distributionForInstance(Instance inst) Returns the distribution for an instance.double[]CostSensitiveClassifier.distributionForInstance(Instance instance) Returns class probabilities.double[]CVParameterSelection.distributionForInstance(Instance instance) Predicts the class distribution for the given test instance.double[]FilteredClassifier.distributionForInstance(Instance instance) Classifies a given instance after filtering.double[]IterativeClassifierOptimizer.distributionForInstance(Instance inst) Returns the class distribution for an instance.double[]LogitBoost.distributionForInstance(Instance inst) Calculates the class membership probabilities for the given test instance.double[]MultiClassClassifier.distributionForInstance(Instance inst) Returns the distribution for an instance.double[]MultiClassClassifierUpdateable.distributionForInstance(Instance inst) Returns the distribution for an instance.double[]MultiScheme.distributionForInstance(Instance instance) Returns class probabilities.double[]RandomCommittee.distributionForInstance(Instance instance) Calculates the class membership probabilities for the given test instance.double[]RandomSubSpace.distributionForInstance(Instance instance) Calculates the class membership probabilities for the given test instance.double[]Stacking.distributionForInstance(Instance instance) Returns estimated class probabilities for the given instance if the class is nominal and a one-element array containing the numeric prediction if the class is numeric.double[]Vote.distributionForInstance(Instance instance) Classifies a given instance using the selected combination rule.double[]WeightedInstancesHandlerWrapper.distributionForInstance(Instance instance) Calculates the class membership probabilities for the given test instance.double[]Bagging.getMembershipValues(Instance inst) Computes an array that indicates leaf membershipdouble[]FilteredClassifier.getMembershipValues(Instance inst) Computes an array that has a value for each element in the partition.double[]RandomCommittee.getMembershipValues(Instance inst) Computes an array that indicates leaf membershipdouble[]MultiClassClassifier.individualPredictions(Instance inst) Returns the individual predictions of the base classifiers for an instance.doubleRegressionByDiscretization.logDensity(Instance instance, double value) Returns natural logarithm of density estimate for given value based on given instance.double[][]RegressionByDiscretization.predictIntervals(Instance instance, double confidenceLevel) Returns an N * 2 array, where N is the number of prediction intervals.voidMultiClassClassifierUpdateable.updateClassifier(Instance instance) Updates the classifier with the given instance. -
Uses of Instance in weka.classifiers.misc
Methods in weka.classifiers.misc that return InstanceModifier and TypeMethodDescriptionInputMappedClassifier.constructMappedInstance(Instance incoming) Methods in weka.classifiers.misc with parameters of type InstanceModifier and TypeMethodDescriptiondoubleInputMappedClassifier.classifyInstance(Instance inst) InputMappedClassifier.constructMappedInstance(Instance incoming) double[]InputMappedClassifier.distributionForInstance(Instance inst) double[]SerializedClassifier.distributionForInstance(Instance instance) Calculates the class membership probabilities for the given test instance. -
Uses of Instance in weka.classifiers.pmml.consumer
Methods in weka.classifiers.pmml.consumer with parameters of type InstanceModifier and TypeMethodDescriptiondouble[]GeneralRegression.distributionForInstance(Instance inst) Classifies the given test instance.double[]NeuralNetwork.distributionForInstance(Instance inst) Classifies the given test instance.double[]Regression.distributionForInstance(Instance inst) Classifies the given test instance.double[]RuleSetModel.distributionForInstance(Instance inst) Classifies the given test instance.double[]SupportVectorMachineModel.distributionForInstance(Instance inst) Classifies the given test instance.double[]TreeModel.distributionForInstance(Instance inst) Classifies the given test instance. -
Uses of Instance in weka.classifiers.rules
Methods in weka.classifiers.rules with parameters of type InstanceModifier and TypeMethodDescriptiondoubleOneR.classifyInstance(Instance inst) Classifies a given instance.doublePART.classifyInstance(Instance instance) Classifies an instance.doubleZeroR.classifyInstance(Instance instance) Classifies a given instance.abstract booleanbooleanWhether the instance is covered by this antecedentbooleanWhether the instance is covered by this antecedentbooleanWhether the instance covered by this ruleabstract booleanWhether the instance covered by this ruledouble[]DecisionTable.distributionForInstance(Instance instance) Calculates the class membership probabilities for the given test instance.double[]JRip.distributionForInstance(Instance datum) Classify the test instance with the rule learner and provide the class distributionsfinal double[]PART.distributionForInstance(Instance instance) Returns class probabilities for an instance.double[]ZeroR.distributionForInstance(Instance instance) Calculates the class membership probabilities for the given test instance.Constructors in weka.classifiers.rules with parameters of type InstanceModifierConstructorDescriptionDecisionTableHashKey(Instance t, int numAtts, boolean ignoreClass) Constructor for a hashKey -
Uses of Instance in weka.classifiers.rules.part
Methods in weka.classifiers.rules.part with parameters of type InstanceModifier and TypeMethodDescriptiondoubleClassifierDecList.classifyInstance(Instance instance) Classifies an instance.doubleMakeDecList.classifyInstance(Instance instance) Classifies an instance.final double[]ClassifierDecList.distributionForInstance(Instance instance) Returns class probabilities for a weighted instance.double[]MakeDecList.distributionForInstance(Instance instance) Returns the class distribution for an instance.doubleReturns the weight a rule assigns to an instance. -
Uses of Instance in weka.classifiers.trees
Methods in weka.classifiers.trees with parameters of type InstanceModifier and TypeMethodDescriptiondoubleJ48.classifyInstance(Instance instance) Classifies an instance.doubleLMT.classifyInstance(Instance instance) Classifies an instance.double[]DecisionStump.distributionForInstance(Instance instance) Calculates the class membership probabilities for the given test instance.double[]HoeffdingTree.distributionForInstance(Instance inst) Returns class probabilities for an instance.final double[]J48.distributionForInstance(Instance instance) Returns class probabilities for an instance.double[]LMT.distributionForInstance(Instance instance) Returns class probabilities for an instance.double[]RandomTree.distributionForInstance(Instance instance) Computes class distribution of an instance using the tree.double[]REPTree.distributionForInstance(Instance instance) Computes class distribution of an instance using the tree.double[]J48.getMembershipValues(Instance inst) Computes an array that indicates node membership.double[]RandomTree.getMembershipValues(Instance instance) Computes array that indicates node membership.double[]REPTree.getMembershipValues(Instance instance) Computes array that indicates node membership.voidHoeffdingTree.updateClassifier(Instance inst) Updates the classifier with the given instance. -
Uses of Instance in weka.classifiers.trees.ht
Methods in weka.classifiers.trees.ht with parameters of type InstanceModifier and TypeMethodDescriptionabstract StringSplit.branchForInstance(Instance inst) Returns the name of the branch that the supplied instance would go downSplitNode.branchForInstance(Instance inst) Return the branch that the supplied instance goes downUnivariateNominalMultiwaySplit.branchForInstance(Instance inst) UnivariateNumericBinarySplit.branchForInstance(Instance inst) double[]HNode.getDistribution(Instance inst, Attribute classAtt) Return a class probability distribution computed from the frequency counts at this nodedouble[]NBNode.getDistribution(Instance inst, Attribute classAtt) double[]NBNodeAdaptive.getDistribution(Instance inst, Attribute classAtt) HNode.leafForInstance(Instance inst, SplitNode parent, String parentBranch) Return the leaf that the supplied instance ends up atSplitNode.leafForInstance(Instance inst, SplitNode parent, String parentBranch) voidHNode.updateDistribution(Instance inst) Update the class frequency distribution with the supplied instancevoidActiveHNode.updateNode(Instance inst) abstract voidHNode.updateNode(Instance inst) Update the node with the supplied instancevoidInactiveHNode.updateNode(Instance inst) voidLeafNode.updateNode(Instance inst) voidNBNode.updateNode(Instance inst) voidNBNodeAdaptive.updateNode(Instance inst) voidSplitNode.updateNode(Instance inst) -
Uses of Instance in weka.classifiers.trees.j48
Methods in weka.classifiers.trees.j48 with parameters of type InstanceModifier and TypeMethodDescriptionfinal voidAdds given instance to given bag.final voidDistribution.addWeights(Instance instance, double[] weights) Adds given instance to all bags weighting it according to given weights.final doubleClassifierSplitModel.classifyInstance(Instance instance) Classifies a given instance.doubleClassifierTree.classifyInstance(Instance instance) Classifies an instance.final doubleGets class probability for instance.final doubleGets class probability for instance.doubleGets class probability for instance.doubleReturn the probability for a class valuedoubleReturn the probability for a class valuedoubleClassifierSplitModel.classProbLaplace(int classIndex, Instance instance, int theSubset) Gets class probability for instance.final voidDeletes given instance from given bag.double[]ClassifierTree.distributionForInstance(Instance instance, boolean useLaplace) Returns class probabilities for a weighted instance.double[]ClassifierTree.getMembershipValues(Instance instance) Computes a list that indicates node membershipfinal voidShifts given instance from one bag to another one.final voidSubtracts given instance from given bag.final double[]Returns weights if instance is assigned to more than one subset.final double[]Returns weights if instance is assigned to more than one subset.abstract double[]Returns weights if instance is assigned to more than one subset.final double[]Always returns null because there is only one subset.final double[]Returns weights if instance is assigned to more than one subset.final double[]Always returns null because there is only one subset.final intBinC45Split.whichSubset(Instance instance) Returns index of subset instance is assigned to.final intC45Split.whichSubset(Instance instance) Returns index of subset instance is assigned to.abstract intClassifierSplitModel.whichSubset(Instance instance) Returns index of subset instance is assigned to.final intNBTreeNoSplit.whichSubset(Instance instance) Always returns 0 because only there is only one subset.final intNBTreeSplit.whichSubset(Instance instance) Returns index of subset instance is assigned to.final intNoSplit.whichSubset(Instance instance) Always returns 0 because only there is only one subset. -
Uses of Instance in weka.classifiers.trees.lmt
Methods in weka.classifiers.trees.lmt with parameters of type InstanceModifier and TypeMethodDescriptiondoubleSimpleLinearRegression.classifyInstance(Instance inst) Generate a prediction for the supplied instance.double[]LMTNode.distributionForInstance(Instance instance) Returns the class probabilities for an instance given by the logistic model tree.double[]LogisticBase.distributionForInstance(Instance instance) Returns class probabilities for an instance.double[]LMTNode.modelDistributionForInstance(Instance instance) Returns the class probabilities for an instance according to the logistic model at the node.final double[]Method not in usefinal intResidualSplit.whichSubset(Instance instance) -
Uses of Instance in weka.classifiers.trees.m5
Methods in weka.classifiers.trees.m5 with parameters of type InstanceModifier and TypeMethodDescriptiondoubleM5Base.classifyInstance(Instance inst) Calculates a prediction for an instance using a set of rules or an M5 model treedoublePreConstructedLinearModel.classifyInstance(Instance inst) Predicts the class of the supplied instance using the linear model.doubleRule.classifyInstance(Instance instance) Calculates a prediction for an instance using this rule or M5 model treedoubleRuleNode.classifyInstance(Instance inst) Classify an instance using this node. -
Uses of Instance in weka.clusterers
Methods in weka.clusterers with parameters of type InstanceModifier and TypeMethodDescriptionvoidCobweb.addInstance(Instance newInstance) Deprecated.updateClusterer(Instance) should be used insteadlong[]Canopy.assignCanopies(Instance inst) Uses T1 distance to assign canopies to the supplied instance.intAbstractClusterer.clusterInstance(Instance instance) Classifies a given instance.intClusterer.clusterInstance(Instance instance) Classifies a given instance.intCobweb.clusterInstance(Instance instance) Classifies a given instance.intFarthestFirst.clusterInstance(Instance instance) Classifies a given instance.intHierarchicalClusterer.clusterInstance(Instance instance) intSimpleKMeans.clusterInstance(Instance instance) Classifies a given instance.double[]AbstractClusterer.distributionForInstance(Instance instance) Predicts the cluster memberships for a given instance.double[]AbstractDensityBasedClusterer.distributionForInstance(Instance instance) Returns the cluster probability distribution for an instance.double[]Canopy.distributionForInstance(Instance instance) double[]Clusterer.distributionForInstance(Instance instance) Predicts the cluster memberships for a given instance.double[]DensityBasedClusterer.distributionForInstance(Instance instance) Returns the cluster probability distribution for an instance.double[]FilteredClusterer.distributionForInstance(Instance instance) Classifies a given instance after filtering.double[]HierarchicalClusterer.distributionForInstance(Instance instance) doubleAbstractDensityBasedClusterer.logDensityForInstance(Instance instance) Computes the density for a given instance.doubleDensityBasedClusterer.logDensityForInstance(Instance instance) Computes the density for a given instance.abstract double[]AbstractDensityBasedClusterer.logDensityPerClusterForInstance(Instance instance) Computes the log of the conditional density (per cluster) for a given instance.double[]DensityBasedClusterer.logDensityPerClusterForInstance(Instance instance) Computes the log of the conditional density (per cluster) for a given instance.double[]EM.logDensityPerClusterForInstance(Instance inst) Computes the log of the conditional density (per cluster) for a given instance.double[]MakeDensityBasedClusterer.logDensityPerClusterForInstance(Instance inst) Computes the log of the conditional density (per cluster) for a given instance.double[]AbstractDensityBasedClusterer.logJointDensitiesForInstance(Instance inst) Returns the logs of the joint densities for a given instance.double[]DensityBasedClusterer.logJointDensitiesForInstance(Instance inst) Returns the logs of the joint densities for a given instance.voidCanopy.updateClusterer(Instance newInstance) voidCobweb.updateClusterer(Instance newInstance) Adds an instance to the clusterer.voidUpdateableClusterer.updateClusterer(Instance newInstance) Adds an instance to the clusterer.Constructors in weka.clusterers with parameters of type Instance -
Uses of Instance in weka.core
Modifier and TypeClassDescriptionclassAbstract class providing common functionality for the original instance implementations.classClass for storing a binary-data-only instance as a sparse vector.classClass for handling an instance.classClass for storing an instance as a sparse vector.Modifier and TypeMethodDescriptionBinarySparseInstance.copy(double[] values) Copies the instance but fills up its values based on the given array of doubles.DenseInstance.copy(double[] values) Copies the instance but fills up its values based on the given array of doubles.Instance.copy(double[] values) Copies the instance but fills up its values based on the given array of doubles.SparseInstance.copy(double[] values) Copies the instance but fills up its values based on the given array of doubles.Instances.firstInstance()Returns the first instance in the set.Instances.get(int index) Returns the instance at the given position.AlgVector.getAsInstance(Instances model, Random random) Gets the elements of the vector as an instance.Instances.instance(int index) Returns the instance at the given position.Instances.lastInstance()Returns the last instance in the set.BinarySparseInstance.mergeInstance(Instance inst) Merges this instance with the given instance and returns the result.DenseInstance.mergeInstance(Instance inst) Merges this instance with the given instance and returns the result.Instance.mergeInstance(Instance inst) Merges this instance with the given instance and returns the result.SparseInstance.mergeInstance(Instance inst) Merges this instance with the given instance and returns the result.Instances.remove(int index) Removes the instance at the given position.Replaces the instance at the given position.DictionaryBuilder.vectorizeInstance(Instance input) Convert an input instance.DictionaryBuilder.vectorizeInstance(Instance input, boolean retainStringAttValuesInMemory) Convert an input instance.Modifier and TypeMethodDescriptionInstances.enumerateInstances()Returns an enumeration of all instances in the dataset.Modifier and TypeMethodDescriptionvoidAdds one instance at the given position in the list.booleanAdds one instance to the end of the set.booleanInstances.checkInstance(Instance instance) Checks if the given instance is compatible with this dataset.intEuclideanDistance.closestPoint(Instance instance, Instances allPoints, int[] pointList) Returns the index of the closest point to the current instance.intcompares the two instances, returns -1 if o1 is smaller than o2, 0 if equal and +1 if greater.static voidRelationalLocator.copyRelationalValues(Instance instance, boolean instSrcCompat, Instances srcDataset, AttributeLocator srcLoc, Instances destDataset, AttributeLocator destLoc) Takes relational values referenced by an Instance and copies them from a source dataset to a destination dataset.static voidRelationalLocator.copyRelationalValues(Instance inst, Instances destDataset, AttributeLocator strAtts) Copies relational values contained in the instance copied to a new dataset.static voidStringLocator.copyStringValues(Instance instance, boolean instSrcCompat, Instances srcDataset, AttributeLocator srcLoc, Instances destDataset, AttributeLocator destLoc) Takes string values referenced by an Instance and copies them from a source dataset to a destination dataset.static voidStringLocator.copyStringValues(Instance inst, Instances destDataset, AttributeLocator strAtts) Copies string values contained in the instance copied to a new dataset.doubleCalculates the distance between two instances.doubleCalculates the distance between two instances.doubleDistanceFunction.distance(Instance first, Instance second, double cutOffValue, PerformanceStats stats) Calculates the distance between two instances.doubleDistanceFunction.distance(Instance first, Instance second, PerformanceStats stats) Calculates the distance between two instances.doubleCalculates the distance between two instances.doubleEuclideanDistance.distance(Instance first, Instance second, PerformanceStats stats) Calculates the distance (or similarity) between two instances.doubleCalculates the distance between two instances.doubleCalculates the distance between two instances.doubleFilteredDistance.distance(Instance first, Instance second, double cutOffValue, PerformanceStats stats) Calculates the distance between two instances.doubleFilteredDistance.distance(Instance first, Instance second, PerformanceStats stats) Calculates the distance between two instances.doubleCalculates the distance between two instances.doubleMinkowskiDistance.distance(Instance first, Instance second, PerformanceStats stats) Calculates the distance (or similarity) between two instances.doubleCalculates the distance between two instances.doubleCalculates the distance between two instances.doubleNormalizableDistance.distance(Instance first, Instance second, double cutOffValue, PerformanceStats stats) Calculates the distance between two instances.doubleNormalizableDistance.distance(Instance first, Instance second, PerformanceStats stats) Calculates the distance between two instances.booleanAbstractInstance.equalHeaders(Instance inst) Tests if the headers of two instances are equivalent.booleanInstance.equalHeaders(Instance inst) Tests if the headers of two instances are equivalent.AbstractInstance.equalHeadersMsg(Instance inst) Checks if the headers of two instances are equivalent.Instance.equalHeadersMsg(Instance inst) Checks if the headers of two instances are equivalent.double[]PartitionGenerator.getMembershipValues(Instance inst) Computes an array that has a value for each element in the partition.booleanTest if an instance is within the given ranges.BinarySparseInstance.mergeInstance(Instance inst) Merges this instance with the given instance and returns the result.DenseInstance.mergeInstance(Instance inst) Merges this instance with the given instance and returns the result.Instance.mergeInstance(Instance inst) Merges this instance with the given instance and returns the result.SparseInstance.mergeInstance(Instance inst) Merges this instance with the given instance and returns the result.voidDictionaryBuilder.processInstance(Instance inst) Process an instance by tokenizing string attributes and updating the dictionary.Replaces the instance at the given position.voidUpdate the distance function (if necessary) for the newly added instance.voidUpdate the distance function (if necessary) for the newly added instance.voidUpdate the distance function (if necessary) for the newly added instance.voidNormalizableDistance.updateRanges(Instance instance) Update the ranges with a new instance.double[][]NormalizableDistance.updateRanges(Instance instance, double[][] ranges) Updates the ranges given a new instance.voidNormalizableDistance.updateRanges(Instance instance, int numAtt, double[][] ranges) Updates the minimum and maximum and width values for all the attributes based on a new instance.voidNormalizableDistance.updateRangesFirst(Instance instance, int numAtt, double[][] ranges) Used to initialize the ranges.booleanEuclideanDistance.valueIsSmallerEqual(Instance instance, int dim, double value) Returns true if the value of the given dimension is smaller or equal the value to be compared with.DictionaryBuilder.vectorizeInstance(Instance input) Convert an input instance.DictionaryBuilder.vectorizeInstance(Instance input, boolean retainStringAttValuesInMemory) Convert an input instance.ModifierConstructorDescriptionConstructs a vector using an instance.BinarySparseInstance(Instance instance) Constructor that generates a sparse instance from the given instance.DenseInstance(Instance instance) Constructor that copies the attribute values and the weight from the given instance.SparseInstance(Instance instance) Constructor that generates a sparse instance from the given instance. -
Uses of Instance in weka.core.converters
Methods in weka.core.converters that return InstanceModifier and TypeMethodDescriptionabstract InstanceAbstractLoader.getNextInstance(Instances structure) ArffLoader.getNextInstance(Instances structure) Read the data set incrementally---get the next instance in the data set or returns null if there are no more instances to get.C45Loader.getNextInstance(Instances structure) Read the data set incrementally---get the next instance in the data set or returns null if there are no more instances to get.CSVLoader.getNextInstance(Instances structure) DatabaseLoader.getNextInstance(Instances structure) Read the data set incrementally---get the next instance in the data set or returns null if there are no more instances to get.JSONLoader.getNextInstance(Instances structure) JSONLoader is unable to process a data set incrementally.LibSVMLoader.getNextInstance(Instances structure) LibSVmLoader is unable to process a data set incrementally.Loader.getNextInstance(Instances structure) Read the data set incrementally---get the next instance in the data set or returns null if there are no more instances to get.MatlabLoader.getNextInstance(Instances structure) MatlabLoader is unable to process a data set incrementally.SerializedInstancesLoader.getNextInstance(Instances structure) Read the data set incrementally---get the next instance in the data set or returns null if there are no more instances to get.SVMLightLoader.getNextInstance(Instances structure) SVMLightLoader is unable to process a data set incrementally.TextDirectoryLoader.getNextInstance(Instances structure) Process input directories/files incrementally.XRFFLoader.getNextInstance(Instances structure) XRFFLoader is unable to process a data set incrementally.ConverterUtils.DataSource.nextElement(Instances dataset) returns the next element and sets the specified dataset, null if none available.ArffLoader.ArffReader.readInstance(Instances structure) Reads a single instance using the tokenizer and returns it.ArffLoader.ArffReader.readInstance(Instances structure, boolean flag) Reads a single instance using the tokenizer and returns it.Methods in weka.core.converters with parameters of type InstanceModifier and TypeMethodDescriptionvoidAbstractSaver.writeIncremental(Instance i) Method for incremental saving.voidArffSaver.writeIncremental(Instance inst) Saves an instances incrementally.voidC45Saver.writeIncremental(Instance inst) Saves an instances incrementally.voidCSVSaver.writeIncremental(Instance inst) Saves an instances incrementally.voidDatabaseSaver.writeIncremental(Instance inst) Saves an instances incrementally.voidDictionarySaver.writeIncremental(Instance inst) voidLibSVMSaver.writeIncremental(Instance inst) Saves an instances incrementally.voidMatlabSaver.writeIncremental(Instance inst) Saves an instances incrementally.voidSaver.writeIncremental(Instance inst) Writes to a destination in incremental mode.voidSVMLightSaver.writeIncremental(Instance inst) Saves an instances incrementally. -
Uses of Instance in weka.core.expressionlanguage.weka
Methods in weka.core.expressionlanguage.weka with parameters of type InstanceModifier and TypeMethodDescriptionvoidInstancesHelper.setInstance(Instance instance) Sets the current instance to be the supplied instance -
Uses of Instance in weka.core.neighboursearch
Methods in weka.core.neighboursearch that return InstanceModifier and TypeMethodDescriptionBallTree.nearestNeighbour(Instance target) Returns the nearest instance in the current neighbourhood to the supplied instance.CoverTree.nearestNeighbour(Instance target) Returns the NN instance of a given target instance, from among the previously supplied training instances.FilteredNeighbourSearch.nearestNeighbour(Instance target) Returns the nearest neighbour for the given instance based on distance measured in the filtered space.KDTree.nearestNeighbour(Instance target) Returns the nearest neighbour of the supplied target instance.LinearNNSearch.nearestNeighbour(Instance target) Returns the nearest instance in the current neighbourhood to the supplied instance.abstract InstanceNearestNeighbourSearch.nearestNeighbour(Instance target) Returns the nearest instance in the current neighbourhood to the supplied instance.CoverTree.CoverTreeNode.p()Returns the instance represented by the node.Methods in weka.core.neighboursearch with parameters of type InstanceModifier and TypeMethodDescriptionvoidBallTree.addInstanceInfo(Instance ins) Adds the given instance's info.voidCoverTree.addInstanceInfo(Instance ins) Adds the given instance info.voidFilteredNeighbourSearch.addInstanceInfo(Instance ins) Updates the instance info in the underlying search method, once the instance has been filtered.voidKDTree.addInstanceInfo(Instance instance) Adds one instance to KDTree loosly.voidLinearNNSearch.addInstanceInfo(Instance ins) Adds the given instance info.voidNearestNeighbourSearch.addInstanceInfo(Instance ins) Adds information from the given instance without modifying the datastructure a lot.BallTree.kNearestNeighbours(Instance target, int k) Returns k nearest instances in the current neighbourhood to the supplied instance.CoverTree.kNearestNeighbours(Instance target, int k) Returns k-NNs of a given target instance, from among the previously supplied training instances (supplied through setInstances method) P.S.: May return more than k-NNs if more one instances have the same distance to the target as the kth NN.FilteredNeighbourSearch.kNearestNeighbours(Instance target, int k) Returns the nearest neighbours for the given instance based on distance measured in the filtered space.KDTree.kNearestNeighbours(Instance target, int k) Returns the k nearest neighbours of the supplied instance.LinearNNSearch.kNearestNeighbours(Instance target, int kNN) Returns k nearest instances in the current neighbourhood to the supplied instance.abstract InstancesNearestNeighbourSearch.kNearestNeighbours(Instance target, int k) Returns k nearest instances in the current neighbourhood to the supplied instance.BallTree.nearestNeighbour(Instance target) Returns the nearest instance in the current neighbourhood to the supplied instance.CoverTree.nearestNeighbour(Instance target) Returns the NN instance of a given target instance, from among the previously supplied training instances.FilteredNeighbourSearch.nearestNeighbour(Instance target) Returns the nearest neighbour for the given instance based on distance measured in the filtered space.KDTree.nearestNeighbour(Instance target) Returns the nearest neighbour of the supplied target instance.LinearNNSearch.nearestNeighbour(Instance target) Returns the nearest instance in the current neighbourhood to the supplied instance.abstract InstanceNearestNeighbourSearch.nearestNeighbour(Instance target) Returns the nearest instance in the current neighbourhood to the supplied instance.voidAdds one instance to the BallTree.voidAdds an instance to the cover tree.voidUpdates ranges based on the given instance, once it has been filtered.voidAdds one instance to the KDTree.voidUpdates the LinearNNSearch to cater for the new added instance.abstract voidUpdates the NearNeighbourSearch algorithm for the new added instance. -
Uses of Instance in weka.core.neighboursearch.balltrees
Methods in weka.core.neighboursearch.balltrees that return InstanceModifier and TypeMethodDescriptionstatic InstanceBallNode.calcCentroidPivot(int[] instList, Instances insts) Calculates the centroid pivot of a node.static InstanceBallNode.calcCentroidPivot(int start, int end, int[] instList, Instances insts) Calculates the centroid pivot of a node.static InstanceCalculates the centroid pivot of a node based on its two child nodes (if merging two nodes).BottomUpConstructor.calcPivot(weka.core.neighboursearch.balltrees.BottomUpConstructor.TempNode node1, weka.core.neighboursearch.balltrees.BottomUpConstructor.TempNode node2, Instances insts) Calculates the centroid pivot of a node based on its two child nodes.MiddleOutConstructor.calcPivot(weka.core.neighboursearch.balltrees.MiddleOutConstructor.MyIdxList list1, weka.core.neighboursearch.balltrees.MiddleOutConstructor.MyIdxList list2, Instances insts) Calculates the centroid pivot of a node based on the list of points that it contains (tbe two lists of its children are provided).MiddleOutConstructor.calcPivot(weka.core.neighboursearch.balltrees.MiddleOutConstructor.TempNode node1, weka.core.neighboursearch.balltrees.MiddleOutConstructor.TempNode node2, Instances insts) /** Calculates the centroid pivot of a node based on its two child nodes (if merging two nodes).BallNode.getPivot()Returns the pivot/centre of the node's ball.Methods in weka.core.neighboursearch.balltrees with parameters of type InstanceModifier and TypeMethodDescriptionabstract int[]BallTreeConstructor.addInstance(BallNode node, Instance inst) Adds an instance to the ball tree.int[]BottomUpConstructor.addInstance(BallNode node, Instance inst) Adds an instance to the ball tree.int[]MiddleOutConstructor.addInstance(BallNode node, Instance inst) Adds an instance to the tree.int[]TopDownConstructor.addInstance(BallNode node, Instance inst) Adds an instance to the ball tree.static doubleBallNode.calcRadius(int[] instList, Instances insts, Instance pivot, DistanceFunction distanceFunction) Calculates the radius of node.static doubleBallNode.calcRadius(int start, int end, int[] instList, Instances insts, Instance pivot, DistanceFunction distanceFunction) Calculates the radius of a node.static doubleBallNode.calcRadius(BallNode child1, BallNode child2, Instance pivot, DistanceFunction distanceFunction) Calculates the radius of a node based on its two child nodes (if merging two nodes).doubleMiddleOutConstructor.calcRadius(weka.core.neighboursearch.balltrees.MiddleOutConstructor.MyIdxList list1, weka.core.neighboursearch.balltrees.MiddleOutConstructor.MyIdxList list2, Instance pivot, Instances insts) Calculates the radius of a node based on the list of points that it contains (the two lists of its children are provided).voidSets the pivot/centre of this nodes ball.Constructors in weka.core.neighboursearch.balltrees with parameters of type Instance -
Uses of Instance in weka.core.pmml
Methods in weka.core.pmml with parameters of type InstanceModifier and TypeMethodDescriptiondouble[]MappingInfo.instanceToSchema(Instance inst, MiningSchema miningSchema) Convert anInstanceto an array of values that matches the format of the mining schema. -
Uses of Instance in weka.datagenerators
Methods in weka.datagenerators that return InstanceModifier and TypeMethodDescriptionabstract InstanceDataGenerator.generateExample()Generates one example of the dataset.Methods in weka.datagenerators with parameters of type InstanceModifier and TypeMethodDescriptionbooleanTest.passesTest(Instance inst) Determines whether an instance passes the test. -
Uses of Instance in weka.datagenerators.classifiers.classification
Methods in weka.datagenerators.classifiers.classification that return InstanceModifier and TypeMethodDescriptionAgrawal.generateExample()Generates one example of the dataset.BayesNet.generateExample()Generates one example of the dataset.LED24.generateExample()Generates one example of the dataset.RandomRBF.generateExample()Generates one example of the dataset.RDG1.generateExample()Generate an example of the dataset dataset. -
Uses of Instance in weka.datagenerators.classifiers.regression
Methods in weka.datagenerators.classifiers.regression that return InstanceModifier and TypeMethodDescriptionExpression.generateExample()Generates one example of the dataset.MexicanHat.generateExample()Generates one example of the dataset. -
Uses of Instance in weka.datagenerators.clusterers
Methods in weka.datagenerators.clusterers that return InstanceModifier and TypeMethodDescriptionBIRCHCluster.generateExample()Generate an example of the dataset.SubspaceCluster.generateExample()Generate an example of the dataset. -
Uses of Instance in weka.experiment
Methods in weka.experiment with parameters of type InstanceModifier and TypeMethodDescriptionPairedCorrectedTTester.calculateStatistics(Instance datasetSpecifier, int resultset1Index, int resultset2Index, int comparisonColumn) Computes a paired t-test comparison for a specified dataset between two resultsets.PairedTTester.calculateStatistics(Instance datasetSpecifier, int resultset1Index, int resultset2Index, int comparisonColumn) Computes a paired t-test comparison for a specified dataset between two resultsets.Tester.calculateStatistics(Instance datasetSpecifier, int resultset1Index, int resultset2Index, int comparisonColumn) Computes a paired t-test comparison for a specified dataset between two resultsets. -
Uses of Instance in weka.filters
Methods in weka.filters that return InstanceModifier and TypeMethodDescriptionFilter.output()Output an instance after filtering and remove from the output queue.Filter.outputPeek()Output an instance after filtering but do not remove from the output queue.Methods in weka.filters with parameters of type InstanceModifier and TypeMethodDescriptionbooleanInput an instance for filtering.booleanInput an instance for filtering.booleanbooleanInput an instance for filtering.booleanInput an instance for filtering. -
Uses of Instance in weka.filters.supervised.attribute
Methods in weka.filters.supervised.attribute with parameters of type InstanceModifier and TypeMethodDescriptionbooleanInput an instance for filtering.booleanbooleanInput an instance for filtering.booleanInput an instance for filtering.booleanInput an instance for filtering.booleanInput an instance for filtering. -
Uses of Instance in weka.filters.supervised.instance
Methods in weka.filters.supervised.instance with parameters of type Instance -
Uses of Instance in weka.filters.unsupervised.attribute
Methods in weka.filters.unsupervised.attribute that return InstanceModifier and TypeMethodDescriptionRemoveType.output()Output an instance after filtering and remove from the output queue.RemoveType.outputPeek()Output an instance after filtering but do not remove from the output queue.Methods in weka.filters.unsupervised.attribute with parameters of type InstanceModifier and TypeMethodDescriptionbooleanInput an instance for filtering.booleanInput an instance for filtering.booleanInput an instance for filtering.booleanInput an instance for filtering.booleanInput an instance for filtering.booleanInput an instance for filtering.booleanInput an instance for filtering.booleanInput an instance for filtering.booleanInput an instance for filtering.booleanInput an instance for filtering.booleanInput an instance for filtering.booleanInput an instance for filtering.booleanInput an instance for filtering.booleanInput an instance for filtering.booleanInput an instance for filtering.booleanInput an instance for filtering.booleanInput an instance for filtering.booleanInput an instance for filtering.booleanInput an instance for filtering.booleanInput an instance for filtering.booleanInput an instance for filtering.booleanInput an instance for filtering.booleanInput an instance for filtering.booleanInput an instance for filtering.booleanInput an instance for filtering.booleanInput an instance for filtering.booleanInput an instance for filtering.booleanInput an instance for filtering.booleanInput an instance for filtering.booleanInput an instance for filtering.booleanInput an instance for filtering.booleanInput an instance for filtering.booleanInput an instance for filtering.booleanbooleanInput an instance for filtering.booleanInput an instance for filtering.booleanInput an instance for filtering.booleanInput an instance for filtering. -
Uses of Instance in weka.filters.unsupervised.instance
Methods in weka.filters.unsupervised.instance with parameters of type InstanceModifier and TypeMethodDescriptionbooleanInput an instance for filtering.booleanInput an instance for filtering.booleanInput an instance for filtering.booleanInput an instance for filtering.booleanInput an instance for filtering.booleanInput an instance for filtering.booleanInput an instance for filtering.booleanInput an instance for filtering.booleanInput an instance for filtering.booleanInput an instance for filtering.booleanInput an instance for filtering.booleanInput an instance for filtering.booleanInput an instance for filtering. -
Uses of Instance in weka.gui.beans
Methods in weka.gui.beans that return InstanceModifier and TypeMethodDescriptionIncrementalClassifierEvent.getCurrentInstance()Get the current instanceInstanceEvent.getInstance()Get the instanceSubstringLabelerRules.makeOutputInstance(Instance inputI, boolean batch) Process and input instance and return an output instanceSubstringReplacerRules.makeOutputInstance(Instance inputI) Make an output instance given an input oneMethods in weka.gui.beans with parameters of type InstanceModifier and TypeMethodDescriptionApply this rule to the supplied instancevoidApply this rule to the supplied instancevoidSubstringReplacerRules.applyRules(Instance inst) SubstringLabelerRules.makeOutputInstance(Instance inputI, boolean batch) Process and input instance and return an output instanceSubstringReplacerRules.makeOutputInstance(Instance inputI) Make an output instance given an input onevoidIncrementalClassifierEvent.setCurrentInstance(Instance i) Set the current instance for this eventvoidInstanceEvent.setInstance(Instance i) Set the instanceConstructors in weka.gui.beans with parameters of type InstanceModifierConstructorDescriptionIncrementalClassifierEvent(Object source, Classifier scheme, Instance currentI, int status) Creates a newIncrementalClassifierEventinstance.InstanceEvent(Object source, Instance instance, int status) Creates a newInstanceEventinstance that encapsulates a single instance only. -
Uses of Instance in weka.gui.boundaryvisualizer
Methods in weka.gui.boundaryvisualizer with parameters of type InstanceModifier and TypeMethodDescriptionvoidBoundaryPanel.addTrainingInstance(Instance instance) Adds a training instance to the visualization dataset. -
Uses of Instance in weka.gui.explorer
Methods in weka.gui.explorer with parameters of type InstanceModifier and TypeMethodDescriptionvoidClassifierErrorsPlotInstances.process(Instance toPredict, Classifier classifier, Evaluation eval) Process a classifier's prediction for an instance and update a set of plotting instances and additional plotting info. -
Uses of Instance in weka.gui.streams
Methods in weka.gui.streams that return InstanceModifier and TypeMethodDescriptionInstanceJoiner.outputPeek()Output an instance after filtering but do not remove from the output queue.InstanceLoader.outputPeek()InstanceProducer.outputPeek()Methods in weka.gui.streams with parameters of type Instance -
Uses of Instance in weka.knowledgeflow.steps
Methods in weka.knowledgeflow.steps with parameters of type InstanceModifier and TypeMethodDescriptionbooleanbooleanabstract booleanEvaluate this node and combine with the result so far