Uses of Interface
weka.core.Instance
Package
Description
-
Uses of Instance in weka.associations
Modifier and TypeMethodDescriptionboolean
ItemSet.containedBy
(Instance instance) Checks if an instance contains an item set.boolean
ItemSet.containedByTreatZeroAsMissing
(Instance instance) Checks if an instance contains an item set.void
ItemSet.upDateCounter
(Instance instance) Updates counter of item set with respect to given transaction.final void
LabeledItemSet.upDateCounter
(Instance instanceNoClass, Instance instanceClass) Updates counter of item set with respect to given transaction.void
ItemSet.updateCounterTreatZeroAsMissing
(Instance instance) Updates counter of item set with respect to given transaction.final void
LabeledItemSet.upDateCounterTreatZeroAsMissing
(Instance instanceNoClass, Instance instanceClass) Updates counter of item set with respect to given transaction. -
Uses of Instance in weka.attributeSelection
Modifier and TypeMethodDescriptionAttributeTransformer.convertInstance
(Instance instance) Transforms an instance in the format of the original data to the transformed spacePrincipalComponents.convertInstance
(Instance instance) Transform an instance in original (unormalized) format.AttributeSelection.reduceDimensionality
(Instance in) reduce the dimensionality of a single instance to include only those attributes chosen by the last run of attribute selection.Modifier and TypeMethodDescriptionAttributeTransformer.convertInstance
(Instance instance) Transforms an instance in the format of the original data to the transformed spacePrincipalComponents.convertInstance
(Instance instance) Transform an instance in original (unormalized) format.double
ClassifierSubsetEval.evaluateSubset
(BitSet subset, Instance holdOut, boolean retrain) Evaluates a subset of attributes with respect to a single instance.abstract double
HoldOutSubsetEvaluator.evaluateSubset
(BitSet subset, Instance holdOut, boolean retrain) Evaluates a subset of attributes with respect to a single instance.AttributeSelection.reduceDimensionality
(Instance in) reduce the dimensionality of a single instance to include only those attributes chosen by the last run of attribute selection. -
Uses of Instance in weka.classifiers
Modifier and TypeMethodDescriptiondouble
AbstractClassifier.classifyInstance
(Instance instance) Classifies the given test instance.double
Classifier.classifyInstance
(Instance instance) Classifies the given test instance.double[]
AbstractClassifier.distributionForInstance
(Instance instance) Predicts the class memberships for a given instance.double[]
Classifier.distributionForInstance
(Instance instance) Predicts the class memberships for a given instance.double
Evaluation.evaluateModelOnce
(double[] dist, Instance instance) Evaluates the supplied distribution on a single instance.void
Evaluation.evaluateModelOnce
(double prediction, Instance instance) Evaluates the supplied prediction on a single instance.double
Evaluation.evaluateModelOnce
(Classifier classifier, Instance instance) Evaluates the classifier on a single instance.double
Evaluation.evaluateModelOnceAndRecordPrediction
(double[] dist, Instance instance) Evaluates the supplied distribution on a single instance.double
Evaluation.evaluateModelOnceAndRecordPrediction
(Classifier classifier, Instance instance) Evaluates the classifier on a single instance and records the prediction.double
Evaluation.evaluationForSingleInstance
(double[] dist, Instance instance, boolean storePredictions) Evaluates the supplied distribution on a single instance.double[]
CostMatrix.expectedCosts
(double[] classProbs, Instance inst) Calculates the expected misclassification cost for each possible class value, given class probability estimates.final double
CostMatrix.getElement
(int rowIndex, int columnIndex, Instance inst) Return the value of a cell as a double.double
CostMatrix.getMaxCost
(int classVal, Instance inst) Gets the maximum cost for a particular class value.double
ConditionalDensityEstimator.logDensity
(Instance instance, double value) Returns natural logarithm of density estimate for given value based on given instance.double[][]
IntervalEstimator.predictIntervals
(Instance inst, double confidenceLevel) Returns an N * 2 array, where N is the number of prediction intervals.void
UpdateableClassifier.updateClassifier
(Instance instance) Updates a classifier using the given instance.void
Evaluation.updatePriors
(Instance instance) Updates the class prior probabilities or the mean respectively (when incrementally training). -
Uses of Instance in weka.classifiers.bayes
Modifier and TypeMethodDescriptiondouble[]
BayesNet.countsForInstance
(Instance instance) Calculates the counts for Dirichlet distribution for the class membership probabilities for the given test instance.double[]
BayesNet.distributionForInstance
(Instance instance) Calculates the class membership probabilities for the given test instance.double[]
NaiveBayes.distributionForInstance
(Instance instance) Calculates the class membership probabilities for the given test instance.double[]
NaiveBayesMultinomial.distributionForInstance
(Instance instance) Calculates the class membership probabilities for the given test instance.double[]
NaiveBayesMultinomialText.distributionForInstance
(Instance instance) Calculates the class membership probabilities for the given test instance.void
BayesNet.updateClassifier
(Instance instance) Updates the classifier with the given instance.void
NaiveBayes.updateClassifier
(Instance instance) Updates the classifier with the given instance.void
NaiveBayesMultinomialText.updateClassifier
(Instance instance) Updates the classifier with the given instance.void
NaiveBayesMultinomialUpdateable.updateClassifier
(Instance instance) Updates the classifier with information from one training instance. -
Uses of Instance in weka.classifiers.bayes.net
Modifier and TypeFieldDescriptionInstance[]
ADNode.m_Instances
list of Instance children (either m_Instances or m_VaryNodes is instantiated) -
Uses of Instance in weka.classifiers.bayes.net.estimate
Modifier and TypeMethodDescriptiondouble[]
BayesNetEstimator.distributionForInstance
(BayesNet bayesNet, Instance instance) Calculates the class membership probabilities for the given test instance.double[]
MultiNomialBMAEstimator.distributionForInstance
(BayesNet bayesNet, Instance instance) Calculates the class membership probabilities for the given test instance.double[]
SimpleEstimator.distributionForInstance
(BayesNet bayesNet, Instance instance) Calculates the class membership probabilities for the given test instance.void
BayesNetEstimator.updateClassifier
(BayesNet bayesNet, Instance instance) Updates the classifier with the given instance.void
BMAEstimator.updateClassifier
(BayesNet bayesNet, Instance instance) Updates the classifier with the given instance.void
MultiNomialBMAEstimator.updateClassifier
(BayesNet bayesNet, Instance instance) Updates the classifier with the given instance.void
SimpleEstimator.updateClassifier
(BayesNet bayesNet, Instance instance) Updates the classifier with the given instance. -
Uses of Instance in weka.classifiers.evaluation
Modifier and TypeMethodDescriptiondouble
Evaluation.evaluateModelOnce
(double[] dist, Instance instance) Evaluates the supplied distribution on a single instance.void
Evaluation.evaluateModelOnce
(double prediction, Instance instance) Evaluates the supplied prediction on a single instance.double
Evaluation.evaluateModelOnce
(Classifier classifier, Instance instance) Evaluates the classifier on a single instance.double
Evaluation.evaluateModelOnceAndRecordPrediction
(double[] dist, Instance instance) Evaluates the supplied distribution on a single instance.double
Evaluation.evaluateModelOnceAndRecordPrediction
(Classifier classifier, Instance instance) Evaluates the classifier on a single instance and records the prediction.double
Evaluation.evaluationForSingleInstance
(double[] dist, Instance instance, boolean storePredictions) Evaluates the supplied distribution on a single instance.EvaluationUtils.getPrediction
(Classifier classifier, Instance test) Generate a single prediction for a test instance given the pre-trained classifier.void
Evaluation.updatePriors
(Instance instance) Updates the class prior probabilities or the mean respectively (when incrementally training).void
InformationRetrievalEvaluationMetric.updateStatsForClassifier
(double[] predictedDistribution, Instance instance) Updates the statistics about a classifiers performance for the current test instance.void
InformationTheoreticEvaluationMetric.updateStatsForClassifier
(double[] predictedDistribution, Instance instance) Updates the statistics about a classifiers performance for the current test instance.void
StandardEvaluationMetric.updateStatsForClassifier
(double[] predictedDistribution, Instance instance) Updates the statistics about a classifiers performance for the current test instance.void
InformationTheoreticEvaluationMetric.updateStatsForConditionalDensityEstimator
(ConditionalDensityEstimator classifier, Instance classMissing, double classValue) Updates stats for conditional density estimator based on current test instance.void
IntervalBasedEvaluationMetric.updateStatsForIntervalEstimator
(IntervalEstimator classifier, Instance classMissing, double classValue) Updates stats for interval estimator based on current test instance.void
InformationTheoreticEvaluationMetric.updateStatsForPredictor
(double predictedValue, Instance instance) Updates the statistics about a predictors performance for the current test instance.void
StandardEvaluationMetric.updateStatsForPredictor
(double predictedValue, Instance instance) Updates the statistics about a predictors performance for the current test instance. -
Uses of Instance in weka.classifiers.evaluation.output.prediction
Modifier and TypeMethodDescriptionvoid
AbstractOutput.printClassification
(double[] dist, Instance inst, int index) Prints the classification to the buffer.void
AbstractOutput.printClassification
(Classifier classifier, Instance inst, int index) Prints the classification to the buffer. -
Uses of Instance in weka.classifiers.functions
Modifier and TypeMethodDescriptiondouble
GaussianProcesses.classifyInstance
(Instance inst) Classifies a given instance.double
LinearRegression.classifyInstance
(Instance instance) Classifies the given instance using the linear regression function.double
SimpleLinearRegression.classifyInstance
(Instance inst) Generate a prediction for the supplied instance.double
SMOreg.classifyInstance
(Instance instance) Classifies the given instance using the linear regression function.double[]
Logistic.distributionForInstance
(Instance instance) Computes the distribution for a given instancedouble[]
MultilayerPerceptron.distributionForInstance
(Instance i) Call this function to predict the class of an instance once a classification model has been built with the buildClassifier call.double[]
SGD.distributionForInstance
(Instance inst) Computes the distribution for a given instancedouble[]
SGDText.distributionForInstance
(Instance inst) double[]
SimpleLogistic.distributionForInstance
(Instance inst) Returns class probabilities for an instance.double[]
SMO.distributionForInstance
(Instance inst) Estimates class probabilities for given instance.double[]
VotedPerceptron.distributionForInstance
(Instance inst) Outputs the distribution for the given output.double
GaussianProcesses.getStandardDeviation
(Instance inst) Gives standard deviation of the prediction at the given instance.double
GaussianProcesses.logDensity
(Instance inst, double value) Returns natural logarithm of density estimate for given value based on given instance.int[]
SMO.obtainVotes
(Instance inst) Returns an array of votes for the given instance.double[][]
GaussianProcesses.predictIntervals
(Instance inst, double confidenceLevel) Computes a prediction interval for the given instance and confidence level.double
Computes SVM output for given instance.void
SGD.updateClassifier
(Instance instance) Updates the classifier with the given instance.void
SGDText.updateClassifier
(Instance instance) Updates the classifier with the given instance. -
Uses of Instance in weka.classifiers.functions.supportVector
Modifier and TypeMethodDescriptiondouble
Implements the abstract function of Kernel using the cache.abstract double
Computes the result of the kernel function for two instances.double
double
Computes the result of the kernel function for two instances.double
-
Uses of Instance in weka.classifiers.lazy
Modifier and TypeMethodDescriptiondouble[]
IBk.distributionForInstance
(Instance instance) Calculates the class membership probabilities for the given test instance.double[]
KStar.distributionForInstance
(Instance instance) Calculates the class membership probabilities for the given test instance.double[]
LWL.distributionForInstance
(Instance instance) Calculates the class membership probabilities for the given test instance.void
IBk.updateClassifier
(Instance instance) Adds the supplied instance to the training set.void
KStar.updateClassifier
(Instance instance) Adds the supplied instance to the training setvoid
LWL.updateClassifier
(Instance instance) Adds the supplied instance to the training set. -
Uses of Instance in weka.classifiers.lazy.kstar
ModifierConstructorDescriptionKStarNominalAttribute
(Instance test, Instance train, int attrIndex, Instances trainSet, int[][] randClassCol, KStarCache cache) ConstructorKStarNumericAttribute
(Instance test, Instance train, int attrIndex, Instances trainSet, int[][] randClassCols, KStarCache cache) Constructor -
Uses of Instance in weka.classifiers.meta
Modifier and TypeMethodDescriptiondouble
AdditiveRegression.classifyInstance
(Instance inst) Classify an instance.double
RegressionByDiscretization.classifyInstance
(Instance instance) Returns a predicted class for the test instance.double
Vote.classifyInstance
(Instance instance) Classifies the given test instance.double
WeightedInstancesHandlerWrapper.classifyInstance
(Instance instance) Classifies the given test instance.double[]
AdaBoostM1.distributionForInstance
(Instance instance) Calculates the class membership probabilities for the given test instance.double[]
AttributeSelectedClassifier.distributionForInstance
(Instance instance) Classifies a given instance after attribute selectiondouble[]
Bagging.distributionForInstance
(Instance instance) Calculates the class membership probabilities for the given test instance.double[]
ClassificationViaRegression.distributionForInstance
(Instance inst) Returns the distribution for an instance.double[]
CostSensitiveClassifier.distributionForInstance
(Instance instance) Returns class probabilities.double[]
CVParameterSelection.distributionForInstance
(Instance instance) Predicts the class distribution for the given test instance.double[]
FilteredClassifier.distributionForInstance
(Instance instance) Classifies a given instance after filtering.double[]
IterativeClassifierOptimizer.distributionForInstance
(Instance inst) Returns the class distribution for an instance.double[]
LogitBoost.distributionForInstance
(Instance inst) Calculates the class membership probabilities for the given test instance.double[]
MultiClassClassifier.distributionForInstance
(Instance inst) Returns the distribution for an instance.double[]
MultiClassClassifierUpdateable.distributionForInstance
(Instance inst) Returns the distribution for an instance.double[]
MultiScheme.distributionForInstance
(Instance instance) Returns class probabilities.double[]
RandomCommittee.distributionForInstance
(Instance instance) Calculates the class membership probabilities for the given test instance.double[]
RandomSubSpace.distributionForInstance
(Instance instance) Calculates the class membership probabilities for the given test instance.double[]
Stacking.distributionForInstance
(Instance instance) Returns estimated class probabilities for the given instance if the class is nominal and a one-element array containing the numeric prediction if the class is numeric.double[]
Vote.distributionForInstance
(Instance instance) Classifies a given instance using the selected combination rule.double[]
WeightedInstancesHandlerWrapper.distributionForInstance
(Instance instance) Calculates the class membership probabilities for the given test instance.double[]
Bagging.getMembershipValues
(Instance inst) Computes an array that indicates leaf membershipdouble[]
FilteredClassifier.getMembershipValues
(Instance inst) Computes an array that has a value for each element in the partition.double[]
RandomCommittee.getMembershipValues
(Instance inst) Computes an array that indicates leaf membershipdouble[]
MultiClassClassifier.individualPredictions
(Instance inst) Returns the individual predictions of the base classifiers for an instance.double
RegressionByDiscretization.logDensity
(Instance instance, double value) Returns natural logarithm of density estimate for given value based on given instance.double[][]
RegressionByDiscretization.predictIntervals
(Instance instance, double confidenceLevel) Returns an N * 2 array, where N is the number of prediction intervals.void
MultiClassClassifierUpdateable.updateClassifier
(Instance instance) Updates the classifier with the given instance. -
Uses of Instance in weka.classifiers.misc
Modifier and TypeMethodDescriptionInputMappedClassifier.constructMappedInstance
(Instance incoming) Modifier and TypeMethodDescriptiondouble
InputMappedClassifier.classifyInstance
(Instance inst) InputMappedClassifier.constructMappedInstance
(Instance incoming) double[]
InputMappedClassifier.distributionForInstance
(Instance inst) double[]
SerializedClassifier.distributionForInstance
(Instance instance) Calculates the class membership probabilities for the given test instance. -
Uses of Instance in weka.classifiers.pmml.consumer
Modifier and TypeMethodDescriptiondouble[]
GeneralRegression.distributionForInstance
(Instance inst) Classifies the given test instance.double[]
NeuralNetwork.distributionForInstance
(Instance inst) Classifies the given test instance.double[]
Regression.distributionForInstance
(Instance inst) Classifies the given test instance.double[]
RuleSetModel.distributionForInstance
(Instance inst) Classifies the given test instance.double[]
SupportVectorMachineModel.distributionForInstance
(Instance inst) Classifies the given test instance.double[]
TreeModel.distributionForInstance
(Instance inst) Classifies the given test instance. -
Uses of Instance in weka.classifiers.rules
Modifier and TypeMethodDescriptiondouble
OneR.classifyInstance
(Instance inst) Classifies a given instance.double
PART.classifyInstance
(Instance instance) Classifies an instance.double
ZeroR.classifyInstance
(Instance instance) Classifies a given instance.abstract boolean
boolean
Whether the instance is covered by this antecedentboolean
Whether the instance is covered by this antecedentboolean
Whether the instance covered by this ruleabstract boolean
Whether the instance covered by this ruledouble[]
DecisionTable.distributionForInstance
(Instance instance) Calculates the class membership probabilities for the given test instance.double[]
JRip.distributionForInstance
(Instance datum) Classify the test instance with the rule learner and provide the class distributionsfinal double[]
PART.distributionForInstance
(Instance instance) Returns class probabilities for an instance.double[]
ZeroR.distributionForInstance
(Instance instance) Calculates the class membership probabilities for the given test instance.ModifierConstructorDescriptionDecisionTableHashKey
(Instance t, int numAtts, boolean ignoreClass) Constructor for a hashKey -
Uses of Instance in weka.classifiers.rules.part
Modifier and TypeMethodDescriptiondouble
ClassifierDecList.classifyInstance
(Instance instance) Classifies an instance.double
MakeDecList.classifyInstance
(Instance instance) Classifies an instance.final double[]
ClassifierDecList.distributionForInstance
(Instance instance) Returns class probabilities for a weighted instance.double[]
MakeDecList.distributionForInstance
(Instance instance) Returns the class distribution for an instance.double
Returns the weight a rule assigns to an instance. -
Uses of Instance in weka.classifiers.trees
Modifier and TypeMethodDescriptiondouble
J48.classifyInstance
(Instance instance) Classifies an instance.double
LMT.classifyInstance
(Instance instance) Classifies an instance.double[]
DecisionStump.distributionForInstance
(Instance instance) Calculates the class membership probabilities for the given test instance.double[]
HoeffdingTree.distributionForInstance
(Instance inst) Returns class probabilities for an instance.final double[]
J48.distributionForInstance
(Instance instance) Returns class probabilities for an instance.double[]
LMT.distributionForInstance
(Instance instance) Returns class probabilities for an instance.double[]
RandomTree.distributionForInstance
(Instance instance) Computes class distribution of an instance using the tree.double[]
REPTree.distributionForInstance
(Instance instance) Computes class distribution of an instance using the tree.double[]
J48.getMembershipValues
(Instance inst) Computes an array that indicates node membership.double[]
RandomTree.getMembershipValues
(Instance instance) Computes array that indicates node membership.double[]
REPTree.getMembershipValues
(Instance instance) Computes array that indicates node membership.void
HoeffdingTree.updateClassifier
(Instance inst) Updates the classifier with the given instance. -
Uses of Instance in weka.classifiers.trees.ht
Modifier and TypeMethodDescriptionabstract String
Split.branchForInstance
(Instance inst) Returns the name of the branch that the supplied instance would go downSplitNode.branchForInstance
(Instance inst) Return the branch that the supplied instance goes downUnivariateNominalMultiwaySplit.branchForInstance
(Instance inst) UnivariateNumericBinarySplit.branchForInstance
(Instance inst) double[]
HNode.getDistribution
(Instance inst, Attribute classAtt) Return a class probability distribution computed from the frequency counts at this nodedouble[]
NBNode.getDistribution
(Instance inst, Attribute classAtt) double[]
NBNodeAdaptive.getDistribution
(Instance inst, Attribute classAtt) HNode.leafForInstance
(Instance inst, SplitNode parent, String parentBranch) Return the leaf that the supplied instance ends up atSplitNode.leafForInstance
(Instance inst, SplitNode parent, String parentBranch) void
HNode.updateDistribution
(Instance inst) Update the class frequency distribution with the supplied instancevoid
ActiveHNode.updateNode
(Instance inst) abstract void
HNode.updateNode
(Instance inst) Update the node with the supplied instancevoid
InactiveHNode.updateNode
(Instance inst) void
LeafNode.updateNode
(Instance inst) void
NBNode.updateNode
(Instance inst) void
NBNodeAdaptive.updateNode
(Instance inst) void
SplitNode.updateNode
(Instance inst) -
Uses of Instance in weka.classifiers.trees.j48
Modifier and TypeMethodDescriptionfinal void
Adds given instance to given bag.final void
Distribution.addWeights
(Instance instance, double[] weights) Adds given instance to all bags weighting it according to given weights.final double
ClassifierSplitModel.classifyInstance
(Instance instance) Classifies a given instance.double
ClassifierTree.classifyInstance
(Instance instance) Classifies an instance.final double
Gets class probability for instance.final double
Gets class probability for instance.double
Gets class probability for instance.double
Return the probability for a class valuedouble
Return the probability for a class valuedouble
ClassifierSplitModel.classProbLaplace
(int classIndex, Instance instance, int theSubset) Gets class probability for instance.final void
Deletes given instance from given bag.double[]
ClassifierTree.distributionForInstance
(Instance instance, boolean useLaplace) Returns class probabilities for a weighted instance.double[]
ClassifierTree.getMembershipValues
(Instance instance) Computes a list that indicates node membershipfinal void
Shifts given instance from one bag to another one.final void
Subtracts given instance from given bag.final double[]
Returns weights if instance is assigned to more than one subset.final double[]
Returns weights if instance is assigned to more than one subset.abstract double[]
Returns weights if instance is assigned to more than one subset.final double[]
Always returns null because there is only one subset.final double[]
Returns weights if instance is assigned to more than one subset.final double[]
Always returns null because there is only one subset.final int
BinC45Split.whichSubset
(Instance instance) Returns index of subset instance is assigned to.final int
C45Split.whichSubset
(Instance instance) Returns index of subset instance is assigned to.abstract int
ClassifierSplitModel.whichSubset
(Instance instance) Returns index of subset instance is assigned to.final int
NBTreeNoSplit.whichSubset
(Instance instance) Always returns 0 because only there is only one subset.final int
NBTreeSplit.whichSubset
(Instance instance) Returns index of subset instance is assigned to.final int
NoSplit.whichSubset
(Instance instance) Always returns 0 because only there is only one subset. -
Uses of Instance in weka.classifiers.trees.lmt
Modifier and TypeMethodDescriptiondouble
SimpleLinearRegression.classifyInstance
(Instance inst) Generate a prediction for the supplied instance.double[]
LMTNode.distributionForInstance
(Instance instance) Returns the class probabilities for an instance given by the logistic model tree.double[]
LogisticBase.distributionForInstance
(Instance instance) Returns class probabilities for an instance.double[]
LMTNode.modelDistributionForInstance
(Instance instance) Returns the class probabilities for an instance according to the logistic model at the node.final double[]
Method not in usefinal int
ResidualSplit.whichSubset
(Instance instance) -
Uses of Instance in weka.classifiers.trees.m5
Modifier and TypeMethodDescriptiondouble
M5Base.classifyInstance
(Instance inst) Calculates a prediction for an instance using a set of rules or an M5 model treedouble
PreConstructedLinearModel.classifyInstance
(Instance inst) Predicts the class of the supplied instance using the linear model.double
Rule.classifyInstance
(Instance instance) Calculates a prediction for an instance using this rule or M5 model treedouble
RuleNode.classifyInstance
(Instance inst) Classify an instance using this node. -
Uses of Instance in weka.clusterers
Modifier and TypeMethodDescriptionvoid
Cobweb.addInstance
(Instance newInstance) Deprecated.updateClusterer(Instance) should be used insteadlong[]
Canopy.assignCanopies
(Instance inst) Uses T1 distance to assign canopies to the supplied instance.int
AbstractClusterer.clusterInstance
(Instance instance) Classifies a given instance.int
Clusterer.clusterInstance
(Instance instance) Classifies a given instance.int
Cobweb.clusterInstance
(Instance instance) Classifies a given instance.int
FarthestFirst.clusterInstance
(Instance instance) Classifies a given instance.int
HierarchicalClusterer.clusterInstance
(Instance instance) int
SimpleKMeans.clusterInstance
(Instance instance) Classifies a given instance.double[]
AbstractClusterer.distributionForInstance
(Instance instance) Predicts the cluster memberships for a given instance.double[]
AbstractDensityBasedClusterer.distributionForInstance
(Instance instance) Returns the cluster probability distribution for an instance.double[]
Canopy.distributionForInstance
(Instance instance) double[]
Clusterer.distributionForInstance
(Instance instance) Predicts the cluster memberships for a given instance.double[]
DensityBasedClusterer.distributionForInstance
(Instance instance) Returns the cluster probability distribution for an instance.double[]
FilteredClusterer.distributionForInstance
(Instance instance) Classifies a given instance after filtering.double[]
HierarchicalClusterer.distributionForInstance
(Instance instance) double
AbstractDensityBasedClusterer.logDensityForInstance
(Instance instance) Computes the density for a given instance.double
DensityBasedClusterer.logDensityForInstance
(Instance instance) Computes the density for a given instance.abstract double[]
AbstractDensityBasedClusterer.logDensityPerClusterForInstance
(Instance instance) Computes the log of the conditional density (per cluster) for a given instance.double[]
DensityBasedClusterer.logDensityPerClusterForInstance
(Instance instance) Computes the log of the conditional density (per cluster) for a given instance.double[]
EM.logDensityPerClusterForInstance
(Instance inst) Computes the log of the conditional density (per cluster) for a given instance.double[]
MakeDensityBasedClusterer.logDensityPerClusterForInstance
(Instance inst) Computes the log of the conditional density (per cluster) for a given instance.double[]
AbstractDensityBasedClusterer.logJointDensitiesForInstance
(Instance inst) Returns the logs of the joint densities for a given instance.double[]
DensityBasedClusterer.logJointDensitiesForInstance
(Instance inst) Returns the logs of the joint densities for a given instance.void
Canopy.updateClusterer
(Instance newInstance) void
Cobweb.updateClusterer
(Instance newInstance) Adds an instance to the clusterer.void
UpdateableClusterer.updateClusterer
(Instance newInstance) Adds an instance to the clusterer. -
Uses of Instance in weka.core
Modifier and TypeClassDescriptionclass
Abstract class providing common functionality for the original instance implementations.class
Class for storing a binary-data-only instance as a sparse vector.class
Class for handling an instance.class
Class for storing an instance as a sparse vector.Modifier and TypeMethodDescriptionBinarySparseInstance.copy
(double[] values) Copies the instance but fills up its values based on the given array of doubles.DenseInstance.copy
(double[] values) Copies the instance but fills up its values based on the given array of doubles.Instance.copy
(double[] values) Copies the instance but fills up its values based on the given array of doubles.SparseInstance.copy
(double[] values) Copies the instance but fills up its values based on the given array of doubles.Instances.firstInstance()
Returns the first instance in the set.Instances.get
(int index) Returns the instance at the given position.AlgVector.getAsInstance
(Instances model, Random random) Gets the elements of the vector as an instance.Instances.instance
(int index) Returns the instance at the given position.Instances.lastInstance()
Returns the last instance in the set.BinarySparseInstance.mergeInstance
(Instance inst) Merges this instance with the given instance and returns the result.DenseInstance.mergeInstance
(Instance inst) Merges this instance with the given instance and returns the result.Instance.mergeInstance
(Instance inst) Merges this instance with the given instance and returns the result.SparseInstance.mergeInstance
(Instance inst) Merges this instance with the given instance and returns the result.Instances.remove
(int index) Removes the instance at the given position.Replaces the instance at the given position.DictionaryBuilder.vectorizeInstance
(Instance input) Convert an input instance.DictionaryBuilder.vectorizeInstance
(Instance input, boolean retainStringAttValuesInMemory) Convert an input instance.Modifier and TypeMethodDescriptionInstances.enumerateInstances()
Returns an enumeration of all instances in the dataset.Modifier and TypeMethodDescriptionvoid
Adds one instance at the given position in the list.boolean
Adds one instance to the end of the set.boolean
Instances.checkInstance
(Instance instance) Checks if the given instance is compatible with this dataset.int
EuclideanDistance.closestPoint
(Instance instance, Instances allPoints, int[] pointList) Returns the index of the closest point to the current instance.int
compares the two instances, returns -1 if o1 is smaller than o2, 0 if equal and +1 if greater.static void
RelationalLocator.copyRelationalValues
(Instance instance, boolean instSrcCompat, Instances srcDataset, AttributeLocator srcLoc, Instances destDataset, AttributeLocator destLoc) Takes relational values referenced by an Instance and copies them from a source dataset to a destination dataset.static void
RelationalLocator.copyRelationalValues
(Instance inst, Instances destDataset, AttributeLocator strAtts) Copies relational values contained in the instance copied to a new dataset.static void
StringLocator.copyStringValues
(Instance instance, boolean instSrcCompat, Instances srcDataset, AttributeLocator srcLoc, Instances destDataset, AttributeLocator destLoc) Takes string values referenced by an Instance and copies them from a source dataset to a destination dataset.static void
StringLocator.copyStringValues
(Instance inst, Instances destDataset, AttributeLocator strAtts) Copies string values contained in the instance copied to a new dataset.double
Calculates the distance between two instances.double
Calculates the distance between two instances.double
DistanceFunction.distance
(Instance first, Instance second, double cutOffValue, PerformanceStats stats) Calculates the distance between two instances.double
DistanceFunction.distance
(Instance first, Instance second, PerformanceStats stats) Calculates the distance between two instances.double
Calculates the distance between two instances.double
EuclideanDistance.distance
(Instance first, Instance second, PerformanceStats stats) Calculates the distance (or similarity) between two instances.double
Calculates the distance between two instances.double
Calculates the distance between two instances.double
FilteredDistance.distance
(Instance first, Instance second, double cutOffValue, PerformanceStats stats) Calculates the distance between two instances.double
FilteredDistance.distance
(Instance first, Instance second, PerformanceStats stats) Calculates the distance between two instances.double
Calculates the distance between two instances.double
MinkowskiDistance.distance
(Instance first, Instance second, PerformanceStats stats) Calculates the distance (or similarity) between two instances.double
Calculates the distance between two instances.double
Calculates the distance between two instances.double
NormalizableDistance.distance
(Instance first, Instance second, double cutOffValue, PerformanceStats stats) Calculates the distance between two instances.double
NormalizableDistance.distance
(Instance first, Instance second, PerformanceStats stats) Calculates the distance between two instances.boolean
AbstractInstance.equalHeaders
(Instance inst) Tests if the headers of two instances are equivalent.boolean
Instance.equalHeaders
(Instance inst) Tests if the headers of two instances are equivalent.AbstractInstance.equalHeadersMsg
(Instance inst) Checks if the headers of two instances are equivalent.Instance.equalHeadersMsg
(Instance inst) Checks if the headers of two instances are equivalent.double[]
PartitionGenerator.getMembershipValues
(Instance inst) Computes an array that has a value for each element in the partition.boolean
Test if an instance is within the given ranges.BinarySparseInstance.mergeInstance
(Instance inst) Merges this instance with the given instance and returns the result.DenseInstance.mergeInstance
(Instance inst) Merges this instance with the given instance and returns the result.Instance.mergeInstance
(Instance inst) Merges this instance with the given instance and returns the result.SparseInstance.mergeInstance
(Instance inst) Merges this instance with the given instance and returns the result.void
DictionaryBuilder.processInstance
(Instance inst) Process an instance by tokenizing string attributes and updating the dictionary.Replaces the instance at the given position.void
Update the distance function (if necessary) for the newly added instance.void
Update the distance function (if necessary) for the newly added instance.void
Update the distance function (if necessary) for the newly added instance.void
NormalizableDistance.updateRanges
(Instance instance) Update the ranges with a new instance.double[][]
NormalizableDistance.updateRanges
(Instance instance, double[][] ranges) Updates the ranges given a new instance.void
NormalizableDistance.updateRanges
(Instance instance, int numAtt, double[][] ranges) Updates the minimum and maximum and width values for all the attributes based on a new instance.void
NormalizableDistance.updateRangesFirst
(Instance instance, int numAtt, double[][] ranges) Used to initialize the ranges.boolean
EuclideanDistance.valueIsSmallerEqual
(Instance instance, int dim, double value) Returns true if the value of the given dimension is smaller or equal the value to be compared with.DictionaryBuilder.vectorizeInstance
(Instance input) Convert an input instance.DictionaryBuilder.vectorizeInstance
(Instance input, boolean retainStringAttValuesInMemory) Convert an input instance.ModifierConstructorDescriptionConstructs a vector using an instance.BinarySparseInstance
(Instance instance) Constructor that generates a sparse instance from the given instance.DenseInstance
(Instance instance) Constructor that copies the attribute values and the weight from the given instance.SparseInstance
(Instance instance) Constructor that generates a sparse instance from the given instance. -
Uses of Instance in weka.core.converters
Modifier and TypeMethodDescriptionabstract Instance
AbstractLoader.getNextInstance
(Instances structure) ArffLoader.getNextInstance
(Instances structure) Read the data set incrementally---get the next instance in the data set or returns null if there are no more instances to get.C45Loader.getNextInstance
(Instances structure) Read the data set incrementally---get the next instance in the data set or returns null if there are no more instances to get.CSVLoader.getNextInstance
(Instances structure) DatabaseLoader.getNextInstance
(Instances structure) Read the data set incrementally---get the next instance in the data set or returns null if there are no more instances to get.JSONLoader.getNextInstance
(Instances structure) JSONLoader is unable to process a data set incrementally.LibSVMLoader.getNextInstance
(Instances structure) LibSVmLoader is unable to process a data set incrementally.Loader.getNextInstance
(Instances structure) Read the data set incrementally---get the next instance in the data set or returns null if there are no more instances to get.MatlabLoader.getNextInstance
(Instances structure) MatlabLoader is unable to process a data set incrementally.SerializedInstancesLoader.getNextInstance
(Instances structure) Read the data set incrementally---get the next instance in the data set or returns null if there are no more instances to get.SVMLightLoader.getNextInstance
(Instances structure) SVMLightLoader is unable to process a data set incrementally.TextDirectoryLoader.getNextInstance
(Instances structure) Process input directories/files incrementally.XRFFLoader.getNextInstance
(Instances structure) XRFFLoader is unable to process a data set incrementally.ConverterUtils.DataSource.nextElement
(Instances dataset) returns the next element and sets the specified dataset, null if none available.ArffLoader.ArffReader.readInstance
(Instances structure) Reads a single instance using the tokenizer and returns it.ArffLoader.ArffReader.readInstance
(Instances structure, boolean flag) Reads a single instance using the tokenizer and returns it.Modifier and TypeMethodDescriptionvoid
AbstractSaver.writeIncremental
(Instance i) Method for incremental saving.void
ArffSaver.writeIncremental
(Instance inst) Saves an instances incrementally.void
C45Saver.writeIncremental
(Instance inst) Saves an instances incrementally.void
CSVSaver.writeIncremental
(Instance inst) Saves an instances incrementally.void
DatabaseSaver.writeIncremental
(Instance inst) Saves an instances incrementally.void
DictionarySaver.writeIncremental
(Instance inst) void
LibSVMSaver.writeIncremental
(Instance inst) Saves an instances incrementally.void
MatlabSaver.writeIncremental
(Instance inst) Saves an instances incrementally.void
Saver.writeIncremental
(Instance inst) Writes to a destination in incremental mode.void
SVMLightSaver.writeIncremental
(Instance inst) Saves an instances incrementally. -
Uses of Instance in weka.core.expressionlanguage.weka
Modifier and TypeMethodDescriptionvoid
InstancesHelper.setInstance
(Instance instance) Sets the current instance to be the supplied instance -
Uses of Instance in weka.core.neighboursearch
Modifier and TypeMethodDescriptionBallTree.nearestNeighbour
(Instance target) Returns the nearest instance in the current neighbourhood to the supplied instance.CoverTree.nearestNeighbour
(Instance target) Returns the NN instance of a given target instance, from among the previously supplied training instances.FilteredNeighbourSearch.nearestNeighbour
(Instance target) Returns the nearest neighbour for the given instance based on distance measured in the filtered space.KDTree.nearestNeighbour
(Instance target) Returns the nearest neighbour of the supplied target instance.LinearNNSearch.nearestNeighbour
(Instance target) Returns the nearest instance in the current neighbourhood to the supplied instance.abstract Instance
NearestNeighbourSearch.nearestNeighbour
(Instance target) Returns the nearest instance in the current neighbourhood to the supplied instance.CoverTree.CoverTreeNode.p()
Returns the instance represented by the node.Modifier and TypeMethodDescriptionvoid
BallTree.addInstanceInfo
(Instance ins) Adds the given instance's info.void
CoverTree.addInstanceInfo
(Instance ins) Adds the given instance info.void
FilteredNeighbourSearch.addInstanceInfo
(Instance ins) Updates the instance info in the underlying search method, once the instance has been filtered.void
KDTree.addInstanceInfo
(Instance instance) Adds one instance to KDTree loosly.void
LinearNNSearch.addInstanceInfo
(Instance ins) Adds the given instance info.void
NearestNeighbourSearch.addInstanceInfo
(Instance ins) Adds information from the given instance without modifying the datastructure a lot.BallTree.kNearestNeighbours
(Instance target, int k) Returns k nearest instances in the current neighbourhood to the supplied instance.CoverTree.kNearestNeighbours
(Instance target, int k) Returns k-NNs of a given target instance, from among the previously supplied training instances (supplied through setInstances method) P.S.: May return more than k-NNs if more one instances have the same distance to the target as the kth NN.FilteredNeighbourSearch.kNearestNeighbours
(Instance target, int k) Returns the nearest neighbours for the given instance based on distance measured in the filtered space.KDTree.kNearestNeighbours
(Instance target, int k) Returns the k nearest neighbours of the supplied instance.LinearNNSearch.kNearestNeighbours
(Instance target, int kNN) Returns k nearest instances in the current neighbourhood to the supplied instance.abstract Instances
NearestNeighbourSearch.kNearestNeighbours
(Instance target, int k) Returns k nearest instances in the current neighbourhood to the supplied instance.BallTree.nearestNeighbour
(Instance target) Returns the nearest instance in the current neighbourhood to the supplied instance.CoverTree.nearestNeighbour
(Instance target) Returns the NN instance of a given target instance, from among the previously supplied training instances.FilteredNeighbourSearch.nearestNeighbour
(Instance target) Returns the nearest neighbour for the given instance based on distance measured in the filtered space.KDTree.nearestNeighbour
(Instance target) Returns the nearest neighbour of the supplied target instance.LinearNNSearch.nearestNeighbour
(Instance target) Returns the nearest instance in the current neighbourhood to the supplied instance.abstract Instance
NearestNeighbourSearch.nearestNeighbour
(Instance target) Returns the nearest instance in the current neighbourhood to the supplied instance.void
Adds one instance to the BallTree.void
Adds an instance to the cover tree.void
Updates ranges based on the given instance, once it has been filtered.void
Adds one instance to the KDTree.void
Updates the LinearNNSearch to cater for the new added instance.abstract void
Updates the NearNeighbourSearch algorithm for the new added instance. -
Uses of Instance in weka.core.neighboursearch.balltrees
Modifier and TypeMethodDescriptionstatic Instance
BallNode.calcCentroidPivot
(int[] instList, Instances insts) Calculates the centroid pivot of a node.static Instance
BallNode.calcCentroidPivot
(int start, int end, int[] instList, Instances insts) Calculates the centroid pivot of a node.static Instance
Calculates the centroid pivot of a node based on its two child nodes (if merging two nodes).BottomUpConstructor.calcPivot
(weka.core.neighboursearch.balltrees.BottomUpConstructor.TempNode node1, weka.core.neighboursearch.balltrees.BottomUpConstructor.TempNode node2, Instances insts) Calculates the centroid pivot of a node based on its two child nodes.MiddleOutConstructor.calcPivot
(weka.core.neighboursearch.balltrees.MiddleOutConstructor.MyIdxList list1, weka.core.neighboursearch.balltrees.MiddleOutConstructor.MyIdxList list2, Instances insts) Calculates the centroid pivot of a node based on the list of points that it contains (tbe two lists of its children are provided).MiddleOutConstructor.calcPivot
(weka.core.neighboursearch.balltrees.MiddleOutConstructor.TempNode node1, weka.core.neighboursearch.balltrees.MiddleOutConstructor.TempNode node2, Instances insts) /** Calculates the centroid pivot of a node based on its two child nodes (if merging two nodes).BallNode.getPivot()
Returns the pivot/centre of the node's ball.Modifier and TypeMethodDescriptionabstract int[]
BallTreeConstructor.addInstance
(BallNode node, Instance inst) Adds an instance to the ball tree.int[]
BottomUpConstructor.addInstance
(BallNode node, Instance inst) Adds an instance to the ball tree.int[]
MiddleOutConstructor.addInstance
(BallNode node, Instance inst) Adds an instance to the tree.int[]
TopDownConstructor.addInstance
(BallNode node, Instance inst) Adds an instance to the ball tree.static double
BallNode.calcRadius
(int[] instList, Instances insts, Instance pivot, DistanceFunction distanceFunction) Calculates the radius of node.static double
BallNode.calcRadius
(int start, int end, int[] instList, Instances insts, Instance pivot, DistanceFunction distanceFunction) Calculates the radius of a node.static double
BallNode.calcRadius
(BallNode child1, BallNode child2, Instance pivot, DistanceFunction distanceFunction) Calculates the radius of a node based on its two child nodes (if merging two nodes).double
MiddleOutConstructor.calcRadius
(weka.core.neighboursearch.balltrees.MiddleOutConstructor.MyIdxList list1, weka.core.neighboursearch.balltrees.MiddleOutConstructor.MyIdxList list2, Instance pivot, Instances insts) Calculates the radius of a node based on the list of points that it contains (the two lists of its children are provided).void
Sets the pivot/centre of this nodes ball. -
Uses of Instance in weka.core.pmml
Modifier and TypeMethodDescriptiondouble[]
MappingInfo.instanceToSchema
(Instance inst, MiningSchema miningSchema) Convert anInstance
to an array of values that matches the format of the mining schema. -
Uses of Instance in weka.datagenerators
Modifier and TypeMethodDescriptionabstract Instance
DataGenerator.generateExample()
Generates one example of the dataset.Modifier and TypeMethodDescriptionboolean
Test.passesTest
(Instance inst) Determines whether an instance passes the test. -
Uses of Instance in weka.datagenerators.classifiers.classification
Modifier and TypeMethodDescriptionAgrawal.generateExample()
Generates one example of the dataset.BayesNet.generateExample()
Generates one example of the dataset.LED24.generateExample()
Generates one example of the dataset.RandomRBF.generateExample()
Generates one example of the dataset.RDG1.generateExample()
Generate an example of the dataset dataset. -
Uses of Instance in weka.datagenerators.classifiers.regression
Modifier and TypeMethodDescriptionExpression.generateExample()
Generates one example of the dataset.MexicanHat.generateExample()
Generates one example of the dataset. -
Uses of Instance in weka.datagenerators.clusterers
Modifier and TypeMethodDescriptionBIRCHCluster.generateExample()
Generate an example of the dataset.SubspaceCluster.generateExample()
Generate an example of the dataset. -
Uses of Instance in weka.experiment
Modifier and TypeMethodDescriptionPairedCorrectedTTester.calculateStatistics
(Instance datasetSpecifier, int resultset1Index, int resultset2Index, int comparisonColumn) Computes a paired t-test comparison for a specified dataset between two resultsets.PairedTTester.calculateStatistics
(Instance datasetSpecifier, int resultset1Index, int resultset2Index, int comparisonColumn) Computes a paired t-test comparison for a specified dataset between two resultsets.Tester.calculateStatistics
(Instance datasetSpecifier, int resultset1Index, int resultset2Index, int comparisonColumn) Computes a paired t-test comparison for a specified dataset between two resultsets. -
Uses of Instance in weka.filters
Modifier and TypeMethodDescriptionFilter.output()
Output an instance after filtering and remove from the output queue.Filter.outputPeek()
Output an instance after filtering but do not remove from the output queue.Modifier and TypeMethodDescriptionboolean
Input an instance for filtering.boolean
Input an instance for filtering.boolean
boolean
Input an instance for filtering.boolean
Input an instance for filtering. -
Uses of Instance in weka.filters.supervised.attribute
Modifier and TypeMethodDescriptionboolean
Input an instance for filtering.boolean
boolean
Input an instance for filtering.boolean
Input an instance for filtering.boolean
Input an instance for filtering.boolean
Input an instance for filtering. -
Uses of Instance in weka.filters.supervised.instance
-
Uses of Instance in weka.filters.unsupervised.attribute
Modifier and TypeMethodDescriptionRemoveType.output()
Output an instance after filtering and remove from the output queue.RemoveType.outputPeek()
Output an instance after filtering but do not remove from the output queue.Modifier and TypeMethodDescriptionboolean
Input an instance for filtering.boolean
Input an instance for filtering.boolean
Input an instance for filtering.boolean
Input an instance for filtering.boolean
Input an instance for filtering.boolean
Input an instance for filtering.boolean
Input an instance for filtering.boolean
Input an instance for filtering.boolean
Input an instance for filtering.boolean
Input an instance for filtering.boolean
Input an instance for filtering.boolean
Input an instance for filtering.boolean
Input an instance for filtering.boolean
Input an instance for filtering.boolean
Input an instance for filtering.boolean
Input an instance for filtering.boolean
Input an instance for filtering.boolean
Input an instance for filtering.boolean
Input an instance for filtering.boolean
Input an instance for filtering.boolean
Input an instance for filtering.boolean
Input an instance for filtering.boolean
Input an instance for filtering.boolean
Input an instance for filtering.boolean
Input an instance for filtering.boolean
Input an instance for filtering.boolean
Input an instance for filtering.boolean
Input an instance for filtering.boolean
Input an instance for filtering.boolean
Input an instance for filtering.boolean
Input an instance for filtering.boolean
Input an instance for filtering.boolean
Input an instance for filtering.boolean
boolean
Input an instance for filtering.boolean
Input an instance for filtering.boolean
Input an instance for filtering.boolean
Input an instance for filtering. -
Uses of Instance in weka.filters.unsupervised.instance
Modifier and TypeMethodDescriptionboolean
Input an instance for filtering.boolean
Input an instance for filtering.boolean
Input an instance for filtering.boolean
Input an instance for filtering.boolean
Input an instance for filtering.boolean
Input an instance for filtering.boolean
Input an instance for filtering.boolean
Input an instance for filtering.boolean
Input an instance for filtering.boolean
Input an instance for filtering.boolean
Input an instance for filtering.boolean
Input an instance for filtering.boolean
Input an instance for filtering. -
Uses of Instance in weka.gui.beans
Modifier and TypeMethodDescriptionIncrementalClassifierEvent.getCurrentInstance()
Get the current instanceInstanceEvent.getInstance()
Get the instanceSubstringLabelerRules.makeOutputInstance
(Instance inputI, boolean batch) Process and input instance and return an output instanceSubstringReplacerRules.makeOutputInstance
(Instance inputI) Make an output instance given an input oneModifier and TypeMethodDescriptionApply this rule to the supplied instancevoid
Apply this rule to the supplied instancevoid
SubstringReplacerRules.applyRules
(Instance inst) SubstringLabelerRules.makeOutputInstance
(Instance inputI, boolean batch) Process and input instance and return an output instanceSubstringReplacerRules.makeOutputInstance
(Instance inputI) Make an output instance given an input onevoid
IncrementalClassifierEvent.setCurrentInstance
(Instance i) Set the current instance for this eventvoid
InstanceEvent.setInstance
(Instance i) Set the instanceModifierConstructorDescriptionIncrementalClassifierEvent
(Object source, Classifier scheme, Instance currentI, int status) Creates a newIncrementalClassifierEvent
instance.InstanceEvent
(Object source, Instance instance, int status) Creates a newInstanceEvent
instance that encapsulates a single instance only. -
Uses of Instance in weka.gui.boundaryvisualizer
Modifier and TypeMethodDescriptionvoid
BoundaryPanel.addTrainingInstance
(Instance instance) Adds a training instance to the visualization dataset. -
Uses of Instance in weka.gui.explorer
Modifier and TypeMethodDescriptionvoid
ClassifierErrorsPlotInstances.process
(Instance toPredict, Classifier classifier, Evaluation eval) Process a classifier's prediction for an instance and update a set of plotting instances and additional plotting info. -
Uses of Instance in weka.gui.streams
Modifier and TypeMethodDescriptionInstanceJoiner.outputPeek()
Output an instance after filtering but do not remove from the output queue.InstanceLoader.outputPeek()
InstanceProducer.outputPeek()
-
Uses of Instance in weka.knowledgeflow.steps
Modifier and TypeMethodDescriptionboolean
boolean
abstract boolean
Evaluate this node and combine with the result so far