Package weka.core

Interface OptionHandler

All Known Subinterfaces:
CARuleMiner, DistanceFunction
All Known Implementing Classes:
AbstractAssociator, AbstractClassifier, AbstractClusterer, AbstractDensityBasedClusterer, AbstractFileBasedStopwords, AbstractFileSaver, AbstractOutput, AbstractPlotInstances, AbstractStopwords, AbstractTimeSeries, AdaBoostM1, Add, AddClassification, AddCluster, AddExpression, AddID, AdditiveRegression, AddNoise, AddUserFields, AddValues, Agrawal, AllFilter, AllJavadoc, AlphabeticTokenizer, Apriori, ArffSaver, ASEvaluation, ASSearch, AttributeSelectedClassifier, AttributeSelection, AttributeSetEvaluator, AveragingResultProducer, Bagging, BallSplitter, BallTree, BallTreeConstructor, BayesNet, BayesNet, BayesNetEstimator, BayesNetGenerator, BestFirst, BIFReader, BIRCHCluster, BMAEstimator, BottomUpConstructor, BVDecompose, BVDecomposeSegCVSub, C45Saver, CachedKernel, Canopy, CartesianProduct, Center, CfsSubsetEval, ChangeDateFormat, CharacterDelimitedTokenizer, CharacterNGramTokenizer, ChebyshevDistance, Check, CheckAssociator, CheckAttributeSelection, CheckClassifier, CheckClusterer, CheckEstimator, CheckGOE, CheckKernel, CheckOptionHandler, CheckScheme, CheckSource, CheckSource, CISearchAlgorithm, ClassAssigner, ClassBalancer, ClassConditionalProbabilities, ClassificationGenerator, ClassificationViaRegression, ClassifierAttributeEval, ClassifierErrorsPlotInstances, ClassifierSplitEvaluator, ClassifierSubsetEval, ClassOrder, ClusterDefinition, ClustererAssignmentsPlotInstances, ClusterGenerator, ClusterMembership, Cobweb, Copy, CorrelationAttributeEval, CostSensitiveClassifier, CostSensitiveClassifierSplitEvaluator, CoverTree, CrossValidationResultProducer, CrossValidationSplitResultProducer, CSV, CSVLoader, CSVResultListener, CSVSaver, CVParameterSelection, DatabaseLoader, DatabaseResultProducer, DatabaseSaver, DataGenerator, DateToNumeric, DecisionStump, DecisionTable, DensityBasedClustererSplitEvaluator, DictionaryBuilder, DictionarySaver, DiscreteEstimator, DiscreteEstimatorBayes, DiscreteEstimatorFullBayes, Discretize, Discretize, EditableBayesNet, EM, Estimator, EuclideanDistance, Experiment, ExplicitTestsetResultProducer, Expression, FarthestFirst, Filter, FilteredAssociator, FilteredClassifier, FilteredClusterer, FilteredDistance, FilteredNeighbourSearch, FindWithCapabilities, FirstOrder, FixedDictionaryStringToWordVector, FPGrowth, FromFile, GainRatioAttributeEval, GaussianProcesses, GeneralRegression, GeneticSearch, GeneticSearch, GlobalInfoJavadoc, GlobalScoreSearchAlgorithm, GreedyStepwise, GroovyScript, HierarchicalClusterer, HillClimber, HillClimber, HoeffdingTree, HoldOutSubsetEvaluator, HTML, IBk, ICSSearchAlgorithm, InfoGainAttributeEval, InMemory, InputMappedClassifier, InstanceQuery, InstancesResultListener, InterquartileRange, IteratedSingleClassifierEnhancer, IterativeClassifierOptimizer, J48, Javadoc, JRip, JSONSaver, JythonScript, K2, K2, KDTree, KDTreeNodeSplitter, Kernel, KernelEstimator, KernelFilter, KMeansInpiredMethod, KStar, LAGDHillClimber, LearningRateResultProducer, LED24, LibSVMSaver, LinearNNSearch, LinearRegression, ListOptions, LMT, LMTNode, LocalScoreSearchAlgorithm, Logistic, LogisticBase, LogitBoost, LWL, M5Base, M5P, M5Rules, MahalanobisEstimator, Main, MakeDensityBasedClusterer, MakeIndicator, ManhattanDistance, MathExpression, MatlabSaver, MedianDistanceFromArbitraryPoint, MedianOfWidestDimension, MedianOfWidestDimension, MergeInfrequentNominalValues, MergeManyValues, MergeNominalValues, MergeTwoValues, MexicanHat, MiddleOutConstructor, MidPointOfWidestDimension, MinkowskiDistance, MultiClassClassifier, MultiClassClassifierUpdateable, MultiFilter, MultilayerPerceptron, MultiNomialBMAEstimator, MultipleClassifiersCombiner, MultiScheme, MultiStopwords, NaiveBayes, NaiveBayes, NaiveBayesMultinomial, NaiveBayesMultinomialText, NaiveBayesMultinomialUpdateable, NaiveBayesUpdateable, NearestNeighbourSearch, NeuralNetwork, NGramTokenizer, NominalToBinary, NominalToBinary, NominalToString, NonSparseToSparse, NormalEstimator, NormalizableDistance, Normalize, NormalizedPolyKernel, Null, Null, NumericCleaner, NumericToBinary, NumericToDate, NumericToNominal, NumericTransform, Obfuscate, OneR, OneRAttributeEval, OptionHandlerJavadoc, OrdinalToNumeric, PairedCorrectedTTester, PairedTTester, ParallelIteratedSingleClassifierEnhancer, ParallelMultipleClassifiersCombiner, PART, PartitionedMultiFilter, PartitionMembership, PKIDiscretize, PlainText, PMMLClassifier, PointsClosestToFurthestChildren, PoissonEstimator, PolyKernel, PotentialClassIgnorer, PrecomputedKernelMatrixKernel, PreConstructedLinearModel, PrincipalComponents, PrincipalComponents, Puk, Rainbow, RandomCommittee, RandomForest, RandomizableClassifier, RandomizableClusterer, RandomizableDensityBasedClusterer, RandomizableFilteredClassifier, RandomizableIteratedSingleClassifierEnhancer, RandomizableMultipleClassifiersCombiner, RandomizableParallelIteratedSingleClassifierEnhancer, RandomizableParallelMultipleClassifiersCombiner, RandomizableSingleClassifierEnhancer, RandomizableSingleClustererEnhancer, Randomize, RandomProjection, RandomRBF, RandomSplitResultProducer, RandomSubset, RandomSubSpace, RandomTree, Ranker, RBFKernel, RDG1, RegExpFromFile, RegOptimizer, Regression, RegressionByDiscretization, RegressionGenerator, RegressionSplitEvaluator, RegSMO, RegSMOImproved, ReliefFAttributeEval, RemoteExperiment, Remove, RemoveByName, RemoveDuplicates, RemoveFolds, RemoveFrequentValues, RemoveMisclassified, RemovePercentage, RemoveRange, RemoveType, RemoveUseless, RemoveWithValues, RenameAttribute, RenameNominalValues, RenameRelation, Reorder, RepeatedHillClimber, RepeatedHillClimber, ReplaceMissingValues, ReplaceMissingWithUserConstant, ReplaceWithMissingValue, REPTree, Resample, Resample, ReservoirSample, ResultMatrix, ResultMatrixCSV, ResultMatrixGnuPlot, ResultMatrixHTML, ResultMatrixLatex, ResultMatrixPlainText, ResultMatrixSignificance, RuleNode, RuleSetModel, Script, SearchAlgorithm, SerializedClassifier, SerializedInstancesSaver, SGD, SGDText, SimpleBatchFilter, SimpleEstimator, SimpleFilter, SimpleKMeans, SimpleLinearRegression, SimpleLogistic, SimpleStreamFilter, SimulatedAnnealing, SimulatedAnnealing, SingleAssociatorEnhancer, SingleClassifierEnhancer, SingleClustererEnhancer, SlidingMidPointOfWidestSide, SMO, SMOreg, SnowballStemmer, SortLabels, SparseToNonSparse, SpreadSubsample, Stacking, Standardize, StratifiedRemoveFolds, StringKernel, StringToNominal, StringToWordVector, SubsetByExpression, SubspaceCluster, SubspaceClusterDefinition, SupportVectorMachineModel, SVMLightSaver, SwapValues, SymmetricalUncertAttributeEval, TabuSearch, TabuSearch, TAN, TAN, TechnicalInformationHandlerJavadoc, TestInstances, TextDirectoryLoader, TimeSeriesDelta, TimeSeriesTranslate, Tokenizer, TopDownConstructor, Transpose, TreeModel, UnivariateMixtureEstimator, UnsupervisedAttributeEvaluator, UnsupervisedSubsetEvaluator, Vote, VotedPerceptron, WeightedInstancesHandlerWrapper, WordsFromFile, WordTokenizer, WrapperSubsetEval, XML, XRFFSaver, ZeroR

public interface OptionHandler
Interface to something that understands options.
Version:
$Revision: 15234 $
Author:
Eibe Frank (eibe@cs.waikato.ac.nz), Len Trigg (trigg@cs.waikato.ac.nz)
  • Method Summary

    Modifier and Type
    Method
    Description
    Gets the current option settings for the OptionHandler.
    Returns an enumeration of all the available options..
    Creates an instance of the class that the given option handler belongs to and sets the options for this new instance by taking the option settings from the given option handler.
    void
    setOptions(String[] options)
    Sets the OptionHandler's options using the given list.
  • Method Details

    • listOptions

      Enumeration<Option> listOptions()
      Returns an enumeration of all the available options..
      Returns:
      an enumeration of all available options.
    • setOptions

      void setOptions(String[] options) throws Exception
      Sets the OptionHandler's options using the given list. All options will be set (or reset) during this call (i.e. incremental setting of options is not possible).
      Parameters:
      options - the list of options as an array of strings
      Throws:
      Exception - if an option is not supported
    • getOptions

      String[] getOptions()
      Gets the current option settings for the OptionHandler.
      Returns:
      the list of current option settings as an array of strings
    • makeCopy

      static OptionHandler makeCopy(OptionHandler toCopy) throws Exception
      Creates an instance of the class that the given option handler belongs to and sets the options for this new instance by taking the option settings from the given option handler. If an exception is thrown when this process is performed, the fall back is to take a standard deep copy of the given option handler object. If that also fails, an exception is thrown by this method. A message will be printed to the standard error if the object is deep copied. A stack trace is also output in this case.
      Parameters:
      toCopy - the option handler to copy
      Throws:
      Exception - if the object could not be deep copied either