Modifier and Type | Method and Description |
---|---|
protected void |
Transform_MovingLeastSquaresMesh.updateMapping() |
protected void |
Transform_ThinPlateSpline.updateMapping() |
Modifier and Type | Method and Description |
---|---|
<P extends PointMatch> |
SimilarityModel3D.fit(Collection<P> matches) |
void |
SimilarityModel3D.fit(double[][] p,
double[][] q,
double[] w) |
void |
SimilarityModel3D.fit(float[][] p,
float[][] q,
float[] w) |
Modifier and Type | Method and Description |
---|---|
<P extends PointMatch> |
CubicBSplineTransform.fit(Collection<P> matches) |
Modifier and Type | Method and Description |
---|---|
<P extends PointMatch> |
PolynomialModel2D.fit(Collection<P> pointMatches) |
Modifier and Type | Method and Description |
---|---|
void |
ICP.estimateIntialModel(List<PointMatch> matches,
Model<?> model)
Estimates an initial
Model based on some given PointMatch es. |
void |
ICP.runICPIteration(Model<?> lastModel,
Model<?> newModel)
Performs one iteration of the
ICP . |
Modifier and Type | Method and Description |
---|---|
protected abstract void |
InteractiveMapping.updateMapping() |
Modifier and Type | Method and Description |
---|---|
static <M extends AbstractModel<M> & InverseCoordinateTransform> |
AlignStacksWithLandmarks.createAlignedStack(ij.ImagePlus source,
ij.ImagePlus target,
Collection<PointMatch> pointMatches,
M model) |
Modifier and Type | Method and Description |
---|---|
<P extends PointMatch> |
Model.filter(Collection<P> candidates,
Collection<P> inliers)
Call
Model.filter(Collection, Collection, double) with maxTrust = 4 and minNumInliers = Model.getMinNumMatches() . |
<P extends PointMatch> |
AbstractModel.filter(Collection<P> candidates,
Collection<P> inliers)
Call
AbstractModel.filter(Collection, Collection, double) with maxTrust = 4 and minNumInliers = Model.getMinNumMatches() . |
<P extends PointMatch> |
Model.filter(Collection<P> candidates,
Collection<P> inliers,
double maxTrust)
Call
Model.filter(Collection, Collection, double, int) with minNumInliers = Model.getMinNumMatches() . |
<P extends PointMatch> |
AbstractModel.filter(Collection<P> candidates,
Collection<P> inliers,
double maxTrust)
Call
AbstractModel.filter(Collection, Collection, double, int) with minNumInliers = Model.getMinNumMatches() . |
<P extends PointMatch> |
Model.filter(Collection<P> candidates,
Collection<P> inliers,
double maxTrust,
int minNumInliers)
Estimate the
Model and filter potential outliers by robust
iterative regression. |
<P extends PointMatch> |
AbstractModel.filter(Collection<P> candidates,
Collection<P> inliers,
double maxTrust,
int minNumInliers)
Estimate the
AbstractModel and filter potential outliers by robust
iterative regression. |
<P extends PointMatch> |
Model.filterRansac(List<P> candidates,
Collection<P> inliers,
int iterations,
double maxEpsilon,
double minInlierRatio)
Call
Model.filterRansac(List, Collection, int, double, double, double)
with maxTrust = 4. |
<P extends PointMatch> |
AbstractModel.filterRansac(List<P> candidates,
Collection<P> inliers,
int iterations,
double maxEpsilon,
double minInlierRatio)
Call
AbstractModel.filterRansac(List, Collection, int, double, double, double)
with maxTrust = 4. |
<P extends PointMatch> |
Model.filterRansac(List<P> candidates,
Collection<P> inliers,
int iterations,
double maxEpsilon,
double minInlierRatio,
double maxTrust)
Call
Model.filterRansac(List, Collection, int, double, double, int, double)
with minNumInliers = Model.getMinNumMatches() . |
<P extends PointMatch> |
AbstractModel.filterRansac(List<P> candidates,
Collection<P> inliers,
int iterations,
double maxEpsilon,
double minInlierRatio,
double maxTrust)
Call
AbstractModel.filterRansac(List, Collection, int, double, double, int, double)
with minNumInliers = Model.getMinNumMatches() . |
<P extends PointMatch> |
Model.filterRansac(List<P> candidates,
Collection<P> inliers,
int iterations,
double maxEpsilon,
double minInlierRatio,
int minNumInliers)
Call
Model.filterRansac(List, Collection, int, double, double, int, double)
with maxTrust = 4. |
<P extends PointMatch> |
AbstractModel.filterRansac(List<P> candidates,
Collection<P> inliers,
int iterations,
double maxEpsilon,
double minInlierRatio,
int minNumInliers)
Call
AbstractModel.filterRansac(List, Collection, int, double, double, int, double)
with maxTrust = 4. |
<P extends PointMatch> |
Model.filterRansac(List<P> candidates,
Collection<P> inliers,
int iterations,
double maxEpsilon,
double minInlierRatio,
int minNumInliers,
double maxTrust)
|
<P extends PointMatch> |
AbstractModel.filterRansac(List<P> candidates,
Collection<P> inliers,
int iterations,
double maxEpsilon,
double minInlierRatio,
int minNumInliers,
double maxTrust)
Estimate a
AbstractModel from a set with many outliers by first
filtering the worst outliers with RANSAC
\citet[{FischlerB81} and filter potential outliers by robust iterative
regression. |
<P extends PointMatch> |
TranslationModel3D.fit(Collection<P> matches) |
<P extends PointMatch> |
TranslationModel2D.fit(Collection<P> matches) |
<P extends PointMatch> |
TranslationModel1D.fit(Collection<P> matches) |
<P extends PointMatch> |
SimilarityModel3D.fit(Collection<P> matches) |
<P extends PointMatch> |
SimilarityModel2D.fit(Collection<P> matches)
Closed form weighted least squares solution as described by
\citet{SchaeferAl06} and implemented by Johannes Schindelin.
|
<P extends PointMatch> |
RigidModel3D.fit(Collection<P> matches) |
<P extends PointMatch> |
RigidModel2D.fit(Collection<P> matches)
Closed form weighted least squares solution as described by
\citet{SchaeferAl06} and implemented by Johannes Schindelin.
|
<P extends PointMatch> |
Model.fit(Collection<P> matches)
Fit the
Model to a set of data points minimizing the global
transfer error. |
<P extends PointMatch> |
InterpolatedModel.fit(Collection<P> matches) |
<P extends PointMatch> |
InterpolatedAffineModel3D.fit(Collection<P> matches) |
<P extends PointMatch> |
InterpolatedAffineModel2D.fit(Collection<P> matches) |
<P extends PointMatch> |
InterpolatedAffineModel1D.fit(Collection<P> matches) |
<P extends PointMatch> |
HomographyModel2D.fit(Collection<P> matches) |
<P extends PointMatch> |
AffineModel3D.fit(Collection<P> matches)
Closed form weighted least squares solution as described by
\citet{SchaeferAl06}.
|
<P extends PointMatch> |
AffineModel2D.fit(Collection<P> matches)
Closed form weighted least squares solution as described by
\citet{SchaeferAl06}.
|
<P extends PointMatch> |
AffineModel1D.fit(Collection<P> matches)
Closed form weighted least squares solution as described by
\citet{SchaeferAl06}.
|
void |
TranslationModel2D.fit(double[][] p,
double[][] q,
double[] w) |
void |
TranslationModel1D.fit(double[][] p,
double[][] q,
double[] w) |
void |
SimilarityModel3D.fit(double[][] p,
double[][] q,
double[] w) |
void |
SimilarityModel2D.fit(double[][] p,
double[][] q,
double[] w)
Closed form weighted least squares solution as described by
\citet{SchaeferAl06} and implemented by Johannes Schindelin.
|
void |
RigidModel2D.fit(double[][] p,
double[][] q,
double[] w)
Closed form weighted least squares solution as described by
\citet{SchaeferAl06} and implemented by Johannes Schindelin.
|
void |
Model.fit(double[][] p,
double[][] q,
double[] w)
Fit the
Model to a set of data points minimizing the global
transfer error. |
void |
AffineModel3D.fit(double[][] p,
double[][] q,
double[] w)
Closed form weighted least squares solution as described by
\citet{SchaeferAl06}.
|
void |
AffineModel2D.fit(double[][] p,
double[][] q,
double[] w)
Closed form weighted least squares solution as described by
\citet{SchaeferAl06}.
|
void |
AffineModel1D.fit(double[][] p,
double[][] q,
double[] w)
Closed form weighted least squares solution as described by
\citet{SchaeferAl06}.
|
void |
AbstractModel.fit(double[][] p,
double[][] q,
double[] w)
Default fit implementation using
Model.fit(Collection) . |
void |
TranslationModel2D.fit(float[][] p,
float[][] q,
float[] w) |
void |
TranslationModel1D.fit(float[][] p,
float[][] q,
float[] w) |
void |
SimilarityModel3D.fit(float[][] p,
float[][] q,
float[] w) |
void |
SimilarityModel2D.fit(float[][] p,
float[][] q,
float[] w)
Closed form weighted least squares solution as described by
\citet{SchaeferAl06} and implemented by Johannes Schindelin.
|
void |
RigidModel2D.fit(float[][] p,
float[][] q,
float[] w)
Closed form weighted least squares solution as described by
\citet{SchaeferAl06} and implemented by Johannes Schindelin.
|
void |
Model.fit(float[][] p,
float[][] q,
float[] w)
Fit the
Model to a set of data points minimizing the global
transfer error. |
void |
AffineModel3D.fit(float[][] p,
float[][] q,
float[] w)
Closed form weighted least squares solution as described by
\citet{SchaeferAl06}.
|
void |
AffineModel2D.fit(float[][] p,
float[][] q,
float[] w)
Closed form weighted least squares solution as described by
\citet{SchaeferAl06}.
|
void |
AffineModel1D.fit(float[][] p,
float[][] q,
float[] w)
Closed form weighted least squares solution as described by
\citet{SchaeferAl06}.
|
void |
AbstractModel.fit(float[][] p,
float[][] q,
float[] w)
Default fit implementation using
Model.fit(Collection) . |
void |
Tile.fitModel()
Update the transformation
AbstractModel . |
<P extends PointMatch> |
Model.localSmoothnessFilter(Collection<P> candidates,
Collection<P> inliers,
double sigma,
double maxEpsilon,
double maxTrust)
|
void |
TileConfiguration.optimize(double maxAllowedError,
int maxIterations,
int maxPlateauwidth)
Minimize the displacement of all
Correspondence pairs
of all Tiles and tell about it. |
void |
SpringMesh.optimize(double maxError,
int maxIterations,
int maxPlateauwidth)
Optimize the mesh.
|
void |
ElasticMovingLeastSquaresMesh.optimize(double maxError,
int maxIterations,
int maxPlateauwidth)
Minimize the displacement of all PointMatches of all tiles.
|
void |
TileConfiguration.optimize(double maxAllowedError,
int maxIterations,
int maxPlateauwidth,
double damp)
Minimize the displacement of all
Correspondence pairs
of all Tiles and tell about it. |
void |
TileConfiguration.optimize(ErrorStatistic observer,
double maxAllowedError,
int maxIterations,
int maxPlateauwidth,
double damp)
Minimize the displacement of all
Correspondence pairs
of all Tiles and tell about it. |
void |
TileConfiguration.optimizeAndFilter(double maxAllowedError,
int maxIterations,
int maxPlateauwidth,
double maxMeanFactor) |
void |
TileConfiguration.optimizeAndFilter(double maxAllowedError,
int maxIterations,
int maxPlateauwidth,
double damp,
double maxMeanFactor) |
void |
ElasticMovingLeastSquaresMesh.optimizeByStrength(double maxError,
int maxIterations,
int maxPlateauwidth,
ij.process.ByteProcessor ipPlot,
ij.ImagePlus impPlot)
Minimize the displacement of all PointMatches of all tiles.
|
void |
ElasticMovingLeastSquaresMesh.optimizeIteration()
Performs one optimization iteration.
|
void |
ElasticMovingLeastSquaresMesh.optimizeIteration(ErrorStatistic observer)
Performs one optimization iteration and writes its error into the ErrorStatistics
|
static void |
SpringMesh.optimizeMeshes(Collection<SpringMesh> meshes,
double maxError,
int maxIterations,
int maxPlateauwidth)
Optimize a
Collection of connected SpringMeshes . |
static void |
SpringMesh.optimizeMeshes(Collection<SpringMesh> meshes,
double maxError,
int maxIterations,
int maxPlateauwidth,
boolean visualize)
Optimize a
Collection of connected SpringMeshes . |
static void |
SpringMesh.optimizeMeshes(Collection<SpringMesh> meshes,
double maxError,
int maxIterations,
int maxPlateauwidth,
double maxStepSize,
boolean visualize)
Optimize a
Collection of connected SpringMeshes . |
static void |
SpringMesh.optimizeMeshes2(Collection<SpringMesh> meshes,
double maxError,
int maxIterations,
int maxPlateauwidth)
Deprecated.
Remains for reproducing legacy results
|
static void |
SpringMesh.optimizeMeshes2(Collection<SpringMesh> meshes,
double maxError,
int maxIterations,
int maxPlateauwidth,
boolean visualize)
Deprecated.
Remains for reproducing legacy results
|
void |
TileConfiguration.optimizeSilently(ErrorStatistic observer,
double maxAllowedError,
int maxIterations,
int maxPlateauwidth)
Minimize the displacement of all
Correspondence pairs
of all Tiles |
void |
TileConfiguration.optimizeSilently(ErrorStatistic observer,
double maxAllowedError,
int maxIterations,
int maxPlateauwidth,
double damp)
Minimize the displacement of all
Correspondence pairs
of all Tiles |
void |
TileConfiguration.optimizeSilentlyConcurrent(ErrorStatistic observer,
double maxAllowedError,
int maxIterations,
int maxPlateauwidth,
double damp) |
protected void |
SpringMesh.optimizeStep(ErrorStatistic observer)
Performs one optimization step.
|
List<Tile<?>> |
TileConfiguration.preAlign()
Computes a pre-alignemnt of all non-fixed
Tile s by propagating the pairwise
models. |
<P extends PointMatch> |
Model.ransac(List<P> candidates,
Collection<P> inliers,
int iterations,
double epsilon,
double minInlierRatio)
Call
Model.ransac(List, Collection, int, double, double, int) with
minNumInliers = Model.getMinNumMatches() . |
<P extends PointMatch> |
AbstractModel.ransac(List<P> candidates,
Collection<P> inliers,
int iterations,
double epsilon,
double minInlierRatio)
Call
AbstractModel.ransac(List, Collection, int, double, double, int) with
minNumInliers = Model.getMinNumMatches() . |
<P extends PointMatch> |
Model.ransac(List<P> candidates,
Collection<P> inliers,
int iterations,
double epsilon,
double minInlierRatio,
int minNumInliers)
Find the
Model of a set of PointMatch candidates
containing a high number of outliers using
RANSAC
\citet[{FischlerB81}. |
<P extends PointMatch> |
AbstractModel.ransac(List<P> candidates,
Collection<P> inliers,
int iterations,
double epsilon,
double minInlierRatio,
int minNumInliers)
Find the
AbstractModel of a set of PointMatch candidates
containing a high number of outliers using
RANSAC
\citet[{FischlerB81}. |
void |
MovingLeastSquaresTransform2.setMatches(Collection<PointMatch> matches)
Set the control points.
|
void |
MovingLeastSquaresTransform.setMatches(Collection<PointMatch> matches) |
abstract void |
AbstractMovingLeastSquaresTransform.setMatches(Collection<PointMatch> matches) |
void |
MovingLeastSquaresTransform2.setMatches(float[][] p,
float[][] q,
float[] w)
Set the control points passing them as arrays that are used by
reference.
|
void |
MovingLeastSquaresMesh.updateModels()
Updates each vertex' transformation model by means of moving least
squares.
|
Modifier and Type | Method and Description |
---|---|
<P extends PointMatch> |
TranslationInvariantSimilarityModel3D.fit(Collection<P> matches) |
<P extends PointMatch> |
TranslationInvariantRigidModel3D.fit(Collection<P> matches) |
<P extends PointMatch> |
TranslationInvariantRigidModel2D.fit(Collection<P> matches)
Closed form weighted least squares solution as described by
\citet{SchaeferAl06} and implemented by Johannes Schindelin.
|
<P extends PointMatch> |
TranslationInvariantFixedModel.fit(Collection<P> matches) |
<P extends PointMatch> |
TranslationInvariantAffineModel3D.fit(Collection<P> matches) |
<P extends PointMatch> |
FixedModel.fit(Collection<P> matches) |
Modifier and Type | Method and Description |
---|---|
void |
TileConfigurationSPIM.optimize(double maxAllowedError,
int maxIterations,
int maxPlateauwidth,
int debugLevel)
Minimize the displacement of all
Correspondence pairs
of all Tiles |
void |
TileConfigurationSPIM.optimizeWithSketchTikZ(double maxAllowedError,
int maxIterations,
int maxPlateauwidth,
int debugLevel)
Minimize the displacement of all
Correspondence pairs
of all Tiles |
void |
TileConfigurationSPIM.optimizeWithSketchTikZNuclei(double maxAllowedError,
int maxIterations,
int maxPlateauwidth,
int debugLevel)
Minimize the displacement of all
Correspondence pairs
of all Tiles |
List<Tile<?>> |
TileConfigurationSPIM.preAlign()
Computes a pre-alignemnt of all non-fixed
Tile s by propagating the pairwise
models. |
Modifier and Type | Method and Description |
---|---|
<T extends RealType<T>,W extends RealType<W>> |
InferFromMatrix.getMediatedShifts(RandomAccessibleInterval<T> matrix,
RandomAccessibleInterval<T> scaledMatrix,
double[] lut,
double[] scalingFactors,
int iteration,
RandomAccessibleInterval<double[]>[] correlationFitsStore,
double[] shiftsArray,
double[] weightSums,
RandomAccessibleInterval<W> estimateWeightMatrix,
double[] shiftWeights,
Options options) |
void |
InferFromMatrix.ModelRegularization.regularize(double[] coordinates,
Options options) |
Modifier and Type | Method and Description |
---|---|
static void |
Matching.main(String[] args) |
Copyright © 2015–2021 Fiji. All rights reserved.