Uses of Interface
weka.classifiers.Classifier
Packages that use Classifier
Package
Description
-
Uses of Classifier in weka.attributeSelection
Methods in weka.attributeSelection that return ClassifierModifier and TypeMethodDescriptionClassifierAttributeEval.getClassifier()Get the classifier used as the base learner.ClassifierSubsetEval.getClassifier()Get the classifier used as the base learner.WrapperSubsetEval.getClassifier()Get the classifier used as the base learner.Methods in weka.attributeSelection with parameters of type ClassifierModifier and TypeMethodDescriptionvoidClassifierAttributeEval.setClassifier(Classifier newClassifier) Set the classifier to use for accuracy estimationvoidClassifierSubsetEval.setClassifier(Classifier newClassifier) Set the classifier to use for accuracy estimationvoidWrapperSubsetEval.setClassifier(Classifier newClassifier) Set the classifier to use for accuracy estimation -
Uses of Classifier in weka.classifiers
Subinterfaces of Classifier in weka.classifiersModifier and TypeInterfaceDescriptioninterfaceInterface for classifiers that can induce models of growing complexity one step at a time.Classes in weka.classifiers that implement ClassifierModifier and TypeClassDescriptionclassAbstract classifier.classAbstract utility class for handling settings common to meta classifiers that build an ensemble from a single base learner.classAbstract utility class for handling settings common to meta classifiers that build an ensemble from multiple classifiers.classAbstract utility class for handling settings common to meta classifiers that build an ensemble in parallel from a single base learner.classAbstract utility class for handling settings common to meta classifiers that build an ensemble in parallel using multiple classifiers.classAbstract utility class for handling settings common to randomizable classifiers.classAbstract utility class for handling settings common to randomizable meta classifiers that build an ensemble from a single base learner.classAbstract utility class for handling settings common to randomizable meta classifiers that build an ensemble from multiple classifiers based on a given random number seed.classAbstract utility class for handling settings common to randomizable meta classifiers that build an ensemble in parallel from a single base learner.classAbstract utility class for handling settings common to meta classifiers that build an ensemble in parallel using multiple classifiers based on a given random number seed.classAbstract utility class for handling settings common to randomizable meta classifiers that build an ensemble from a single base learner.classAbstract utility class for handling settings common to meta classifiers that use a single base learner.Methods in weka.classifiers that return ClassifierModifier and TypeMethodDescriptionstatic ClassifierCreates a new instance of a classifier given it's class name and (optional) arguments to pass to it's setOptions method.BVDecompose.getClassifier()Gets the name of the classifier being analysedBVDecomposeSegCVSub.getClassifier()Gets the name of the classifier being analysedCheckClassifier.getClassifier()Get the classifier used as the classifierCheckSource.getClassifier()Gets the classifier being used for the tests, can be null.MultipleClassifiersCombiner.getClassifier(int index) Gets a single classifier from the set of available classifiers.SingleClassifierEnhancer.getClassifier()Get the classifier used as the base learner.MultipleClassifiersCombiner.getClassifiers()Gets the list of possible classifers to choose from.CheckSource.getSourceCode()Gets the class to test.static Classifier[]AbstractClassifier.makeCopies(Classifier model, int num) Creates a given number of deep copies of the given classifier using serialization.static ClassifierAbstractClassifier.makeCopy(Classifier model) Creates a deep copy of the given classifier using serialization.Methods in weka.classifiers with parameters of type ClassifierModifier and TypeMethodDescriptionvoidEvaluation.crossValidateModel(Classifier classifier, Instances data, int numFolds, Random random) Performs a (stratified if class is nominal) cross-validation for a classifier on a set of instances.voidEvaluation.crossValidateModel(Classifier classifier, Instances data, int numFolds, Random random, Object... forPredictionsPrinting) Performs a (stratified if class is nominal) cross-validation for a classifier on a set of instances.static StringEvaluation.evaluateModel(Classifier classifier, String[] options) Evaluates a classifier with the options given in an array of strings.double[]Evaluation.evaluateModel(Classifier classifier, Instances data, Object... forPredictionsPrinting) Evaluates the classifier on a given set of instances.doubleEvaluation.evaluateModelOnce(Classifier classifier, Instance instance) Evaluates the classifier on a single instance.doubleEvaluation.evaluateModelOnceAndRecordPrediction(Classifier classifier, Instance instance) Evaluates the classifier on a single instance and records the prediction.static Classifier[]AbstractClassifier.makeCopies(Classifier model, int num) Creates a given number of deep copies of the given classifier using serialization.static ClassifierAbstractClassifier.makeCopy(Classifier model) Creates a deep copy of the given classifier using serialization.static voidAbstractClassifier.runClassifier(Classifier classifier, String[] options) runs the classifier instance with the given options.voidBVDecompose.setClassifier(Classifier newClassifier) Set the classifiers being analysedvoidBVDecomposeSegCVSub.setClassifier(Classifier newClassifier) Set the classifiers being analysedvoidCheckClassifier.setClassifier(Classifier newClassifier) Set the classifier for boosting.voidCheckSource.setClassifier(Classifier value) Sets the classifier to use for the comparison.voidSingleClassifierEnhancer.setClassifier(Classifier newClassifier) Set the base learner.voidMultipleClassifiersCombiner.setClassifiers(Classifier[] classifiers) Sets the list of possible classifers to choose from.voidCheckSource.setSourceCode(Classifier value) Sets the class to test. -
Uses of Classifier in weka.classifiers.bayes
Classes in weka.classifiers.bayes that implement ClassifierModifier and TypeClassDescriptionclassBayes Network learning using various search algorithms and quality measures.
Base class for a Bayes Network classifier.classClass for a Naive Bayes classifier using estimator classes.classClass for building and using a multinomial Naive Bayes classifier.classMultinomial naive bayes for text data.classClass for building and using an updateable multinomial Naive Bayes classifier.classClass for a Naive Bayes classifier using estimator classes. -
Uses of Classifier in weka.classifiers.bayes.net
Classes in weka.classifiers.bayes.net that implement ClassifierModifier and TypeClassDescriptionclassBayes Network learning using various search algorithms and quality measures.
Base class for a Bayes Network classifier.classBuilds a description of a Bayes Net classifier stored in XML BIF 0.3 format.
For more details on XML BIF see:
Fabio Cozman, Marek Druzdzel, Daniel Garcia (1998).classBayes Network learning using various search algorithms and quality measures.
Base class for a Bayes Network classifier. -
Uses of Classifier in weka.classifiers.evaluation
Methods in weka.classifiers.evaluation with parameters of type ClassifierModifier and TypeMethodDescriptionvoidEvaluation.crossValidateModel(Classifier classifier, Instances data, int numFolds, Random random) Performs a (stratified if class is nominal) cross-validation for a classifier on a set of instances.voidEvaluation.crossValidateModel(Classifier classifier, Instances data, int numFolds, Random random, Object... forPrinting) Performs a (stratified if class is nominal) cross-validation for a classifier on a set of instances.static StringEvaluation.evaluateModel(Classifier classifier, String[] options) Evaluates a classifier with the options given in an array of strings.double[]Evaluation.evaluateModel(Classifier classifier, Instances data, Object... forPredictionsPrinting) Evaluates the classifier on a given set of instances.doubleEvaluation.evaluateModelOnce(Classifier classifier, Instance instance) Evaluates the classifier on a single instance.doubleEvaluation.evaluateModelOnceAndRecordPrediction(Classifier classifier, Instance instance) Evaluates the classifier on a single instance and records the prediction.EvaluationUtils.getCVPredictions(Classifier classifier, Instances data, int numFolds) Generate a bunch of predictions ready for processing, by performing a cross-validation on the supplied dataset.EvaluationUtils.getPrediction(Classifier classifier, Instance test) Generate a single prediction for a test instance given the pre-trained classifier.EvaluationUtils.getTestPredictions(Classifier classifier, Instances test) Generate a bunch of predictions ready for processing, by performing a evaluation on a test set assuming the classifier is already trained.EvaluationUtils.getTrainTestPredictions(Classifier classifier, Instances train, Instances test) Generate a bunch of predictions ready for processing, by performing a evaluation on a test set after training on the given training set. -
Uses of Classifier in weka.classifiers.evaluation.output.prediction
Methods in weka.classifiers.evaluation.output.prediction with parameters of type ClassifierModifier and TypeMethodDescriptionvoidAbstractOutput.print(Classifier classifier, ConverterUtils.DataSource testset) Prints the header, classifications and footer to the buffer.voidAbstractOutput.print(Classifier classifier, Instances testset) Prints the header, classifications and footer to the buffer.voidAbstractOutput.printClassification(Classifier classifier, Instance inst, int index) Prints the classification to the buffer.voidAbstractOutput.printClassifications(Classifier classifier, ConverterUtils.DataSource testset) Prints the classifications to the buffer.voidAbstractOutput.printClassifications(Classifier classifier, Instances testset) Prints the classifications to the buffer. -
Uses of Classifier in weka.classifiers.functions
Classes in weka.classifiers.functions that implement ClassifierModifier and TypeClassDescriptionclass* Implements Gaussian processes for regression without hyperparameter-tuning.classClass for using linear regression for prediction.classClass for building and using a multinomial logistic regression model with a ridge estimator.
There are some modifications, however, compared to the paper of leCessie and van Houwelingen(1992):
If there are k classes for n instances with m attributes, the parameter matrix B to be calculated will be an m*(k-1) matrix.
The probability for class j with the exception of the last class is
Pj(Xi) = exp(XiBj)/((sum[j=1..(k-1)]exp(Xi*Bj))+1)
The last class has probability
1-(sum[j=1..(k-1)]Pj(Xi))
= 1/((sum[j=1..(k-1)]exp(Xi*Bj))+1)
The (negative) multinomial log-likelihood is thus:
L = -sum[i=1..n]{
sum[j=1..(k-1)](Yij * ln(Pj(Xi)))
+(1 - (sum[j=1..(k-1)]Yij))
* ln(1 - sum[j=1..(k-1)]Pj(Xi))
} + ridge * (B^2)
In order to find the matrix B for which L is minimised, a Quasi-Newton Method is used to search for the optimized values of the m*(k-1) variables.classA classifier that uses backpropagation to learn a multi-layer perceptron to classify instances.classImplements stochastic gradient descent for learning various linear models (binary class SVM, binary class logistic regression, squared loss, Huber loss and epsilon-insensitive loss linear regression).classImplements stochastic gradient descent for learning a linear binary class SVM or binary class logistic regression on text data.classLearns a simple linear regression model.classClassifier for building linear logistic regression models.classImplements John Platt's sequential minimal optimization algorithm for training a support vector classifier.
This implementation globally replaces all missing values and transforms nominal attributes into binary ones.classSMOreg implements the support vector machine for regression.classImplementation of the voted perceptron algorithm by Freund and Schapire.Methods in weka.classifiers.functions that return ClassifierMethods in weka.classifiers.functions with parameters of type ClassifierModifier and TypeMethodDescriptionvoidSMO.setCalibrator(Classifier value) sets the calibrator to use -
Uses of Classifier in weka.classifiers.lazy
Classes in weka.classifiers.lazy that implement ClassifierModifier and TypeClassDescriptionclassK-nearest neighbours classifier.classK* is an instance-based classifier, that is the class of a test instance is based upon the class of those training instances similar to it, as determined by some similarity function.classLocally weighted learning. -
Uses of Classifier in weka.classifiers.meta
Classes in weka.classifiers.meta that implement ClassifierModifier and TypeClassDescriptionclassClass for boosting a nominal class classifier using the Adaboost M1 method.classMeta classifier that enhances the performance of a regression base classifier.classDimensionality of training and test data is reduced by attribute selection before being passed on to a classifier.classClass for bagging a classifier to reduce variance.classClass for doing classification using regression methods.classA metaclassifier that makes its base classifier cost sensitive.classClass for performing parameter selection by cross-validation for any classifier.
For more information, see:
R.classClass for running an arbitrary classifier on data that has been passed through an arbitrary filter.classChooses the best number of iterations for an IterativeClassifier such as LogitBoost using cross-validation or a percentage split evaluation.classClass for performing additive logistic regression.classA metaclassifier for handling multi-class datasets with 2-class classifiers.classA metaclassifier for handling multi-class datasets with 2-class classifiers.classClass for selecting a classifier from among several using cross validation on the training data or the performance on the training data.classClass for building an ensemble of randomizable base classifiers.classClass for running an arbitrary classifier on data that has been passed through an arbitrary filter.classThis method constructs a decision tree based classifier that maintains highest accuracy on training data and improves on generalization accuracy as it grows in complexity.classA regression scheme that employs any classifier on a copy of the data that has the class attribute (equal-width) discretized.classCombines several classifiers using the stacking method.classClass for combining classifiers.classGeneric wrapper around any classifier to enable weighted instances support.
Uses resampling with weights if the base classifier is not implementing the weka.core.WeightedInstancesHandler interface and there are instance weights other 1.0 present.Methods in weka.classifiers.meta that return ClassifierModifier and TypeMethodDescriptionVote.aggregate(Classifier toAggregate) Aggregate an object with this oneClassifier[][]LogitBoost.classifiers()Returns the array of classifiers that have been built.MultiScheme.getClassifier(int index) Gets a single classifier from the set of available classifiers.MultiScheme.getClassifiers()Gets the list of possible classifers to choose from.Stacking.getMetaClassifier()Gets the meta classifier.Methods in weka.classifiers.meta with parameters of type ClassifierModifier and TypeMethodDescriptionvoidVote.addPreBuiltClassifier(Classifier c) Add a prebuilt classifier to the list for use in the ensembleVote.aggregate(Classifier toAggregate) Aggregate an object with this onevoidVote.removePreBuiltClassifier(Classifier c) Remove a prebuilt classifier from the list to use in the ensemblevoidMultiScheme.setClassifiers(Classifier[] classifiers) Sets the list of possible classifers to choose from.voidStacking.setMetaClassifier(Classifier classifier) Adds meta classifierConstructors in weka.classifiers.meta with parameters of type ClassifierModifierConstructorDescriptionAdditiveRegression(Classifier classifier) Constructor which takes base classifier as argument. -
Uses of Classifier in weka.classifiers.misc
Classes in weka.classifiers.misc that implement ClassifierModifier and TypeClassDescriptionclassWrapper classifier that addresses incompatible training and test data by building a mapping between the training data that a classifier has been built with and the incoming test instances' structure.classA wrapper around a serialized classifier model.Methods in weka.classifiers.misc that return ClassifierModifier and TypeMethodDescriptionSerializedClassifier.getCurrentModel()Gets the currently loaded model (can be null).Methods in weka.classifiers.misc with parameters of type ClassifierModifier and TypeMethodDescriptionvoidSerializedClassifier.setModel(Classifier value) Sets the fully built model to use, if one doesn't want to load a model from a file or already deserialized a model from somewhere else. -
Uses of Classifier in weka.classifiers.pmml.consumer
Classes in weka.classifiers.pmml.consumer that implement ClassifierModifier and TypeClassDescriptionclassClass implementing import of PMML General Regression model.classClass implementing import of PMML Neural Network model.classAbstract base class for all PMML classifiers.classClass implementing import of PMML Regression model.classClass implementing import of PMML RuleSetModel.classImplements a PMML SupportVectorMachineModelclassClass implementing import of PMML TreeModel. -
Uses of Classifier in weka.classifiers.rules
Classes in weka.classifiers.rules that implement ClassifierModifier and TypeClassDescriptionclassClass for building and using a simple decision table majority classifier.
For more information see:
Ron Kohavi: The Power of Decision Tables.classThis class implements a propositional rule learner, Repeated Incremental Pruning to Produce Error Reduction (RIPPER), which was proposed by William W.classGenerates a decision list for regression problems using separate-and-conquer.classClass for building and using a 1R classifier; in other words, uses the minimum-error attribute for prediction, discretizing numeric attributes.classClass for generating a PART decision list.classClass for building and using a 0-R classifier. -
Uses of Classifier in weka.classifiers.trees
Classes in weka.classifiers.trees that implement ClassifierModifier and TypeClassDescriptionclassClass for building and using a decision stump.classA Hoeffding tree (VFDT) is an incremental, anytime decision tree induction algorithm that is capable of learning from massive data streams, assuming that the distribution generating examples does not change over time.classClass for generating a pruned or unpruned C4.5 decision tree.classClassifier for building 'logistic model trees', which are classification trees with logistic regression functions at the leaves.classM5Base.classClass for constructing a forest of random trees.
For more information see:
Leo Breiman (2001).classClass for constructing a tree that considers K randomly chosen attributes at each node.classFast decision tree learner.Methods in weka.classifiers.trees with parameters of type ClassifierModifier and TypeMethodDescriptionvoidRandomForest.setClassifier(Classifier newClassifier) This method only accepts RandomTree arguments. -
Uses of Classifier in weka.classifiers.trees.lmt
Classes in weka.classifiers.trees.lmt that implement ClassifierModifier and TypeClassDescriptionclassClass for logistic model tree structure.classBase/helper class for building logistic regression models with the LogitBoost algorithm. -
Uses of Classifier in weka.classifiers.trees.m5
Classes in weka.classifiers.trees.m5 that implement ClassifierModifier and TypeClassDescriptionclassM5Base.classThis class encapsulates a linear regression function.classConstructs a node for use in an m5 tree or rule -
Uses of Classifier in weka.experiment
Methods in weka.experiment that return ClassifierModifier and TypeMethodDescriptionClassifierSplitEvaluator.getClassifier()Get the value of Classifier.RegressionSplitEvaluator.getClassifier()Get the value of Classifier.Methods in weka.experiment with parameters of type ClassifierModifier and TypeMethodDescriptionvoidClassifierSplitEvaluator.setClassifier(Classifier newClassifier) Sets the classifier.voidRegressionSplitEvaluator.setClassifier(Classifier newClassifier) Sets the classifier. -
Uses of Classifier in weka.filters.supervised.attribute
Methods in weka.filters.supervised.attribute that return ClassifierModifier and TypeMethodDescriptionAddClassification.getClassifier()Gets the classifier used by the filter.Methods in weka.filters.supervised.attribute with parameters of type ClassifierModifier and TypeMethodDescriptionvoidAddClassification.setClassifier(Classifier value) Sets the classifier to classify instances with. -
Uses of Classifier in weka.filters.unsupervised.instance
Methods in weka.filters.unsupervised.instance that return ClassifierModifier and TypeMethodDescriptionRemoveMisclassified.getClassifier()Gets the classifier used by the filter.Methods in weka.filters.unsupervised.instance with parameters of type ClassifierModifier and TypeMethodDescriptionvoidRemoveMisclassified.setClassifier(Classifier classifier) Sets the classifier to classify instances with. -
Uses of Classifier in weka.gui.beans
Methods in weka.gui.beans that return ClassifierModifier and TypeMethodDescriptionBatchClassifierEvent.getClassifier()Get the classifierClassifier.getClassifier()Get the currently trained classifier.IncrementalClassifierEvent.getClassifier()Get the classifierClassifier.getClassifierTemplate()Return the classifier template currently in use.Methods in weka.gui.beans with parameters of type ClassifierModifier and TypeMethodDescriptionvoidBatchClassifierEvent.setClassifier(Classifier classifier) Set the classifiervoidIncrementalClassifierEvent.setClassifier(Classifier c) voidClassifier.setClassifierTemplate(Classifier c) Set the template classifier for this wrapperConstructors in weka.gui.beans with parameters of type ClassifierModifierConstructorDescriptionBatchClassifierEvent(Object source, Classifier scheme, DataSetEvent trsI, DataSetEvent tstI, int setNum, int maxSetNum) Creates a newBatchClassifierEventinstance.BatchClassifierEvent(Object source, Classifier scheme, DataSetEvent trsI, DataSetEvent tstI, int runNum, int maxRunNum, int setNum, int maxSetNum) Creates a newBatchClassifierEventinstance.IncrementalClassifierEvent(Object source, Classifier scheme, Instance currentI, int status) Creates a newIncrementalClassifierEventinstance.IncrementalClassifierEvent(Object source, Classifier scheme, Instances structure) Creates a new incremental classifier event that encapsulates header information and classifier. -
Uses of Classifier in weka.gui.boundaryvisualizer
Methods in weka.gui.boundaryvisualizer with parameters of type ClassifierModifier and TypeMethodDescriptionstatic voidBoundaryVisualizer.createNewVisualizerWindow(Classifier classifier, Instances instances) Creates a new GUI window with all of the BoundaryVisualizer trappings,voidBoundaryPanel.setClassifier(Classifier classifier) Set the classifier to use.voidBoundaryVisualizer.setClassifier(Classifier newClassifier) Set a classifier to usevoidRemoteBoundaryVisualizerSubTask.setClassifier(Classifier dc) Set the classifier to use -
Uses of Classifier in weka.gui.explorer
Methods in weka.gui.explorer that return ClassifierModifier and TypeMethodDescriptionClassifierErrorsPlotInstances.getClassifier()Returns the currently set classifier.ClassifierPanel.getClassifier()Get the currently configured classifier from the GenericObjectEditorMethods in weka.gui.explorer with parameters of type ClassifierModifier and TypeMethodDescriptionvoidClassifierErrorsPlotInstances.process(Instance toPredict, Classifier classifier, Evaluation eval) Process a classifier's prediction for an instance and update a set of plotting instances and additional plotting info.voidClassifierPanel.saveClassifier(String name, Classifier classifier, Instances trainHeader) Saves the currently selected classifier.voidClassifierErrorsPlotInstances.setClassifier(Classifier value) Sets the classifier used for making the predictions.static EvaluationClassifierPanel.setupEval(Evaluation eval, Classifier classifier, Instances inst, CostMatrix costMatrix, ClassifierErrorsPlotInstances plotInstances, AbstractOutput classificationOutput, boolean onlySetPriors) Configures an evaluation object with respect to a classifier, cost matrix, output and plotting.static EvaluationClassifierPanel.setupEval(Evaluation eval, Classifier classifier, Instances inst, CostMatrix costMatrix, ClassifierErrorsPlotInstances plotInstances, AbstractOutput classificationOutput, boolean onlySetPriors, boolean collectPredictions) Configures an evaluation object with respect to a classifier, cost matrix, output and plotting. -
Uses of Classifier in weka.knowledgeflow.steps
Methods in weka.knowledgeflow.steps that return ClassifierModifier and TypeMethodDescriptionClassifier.getClassifier()Get the classifier to trainClassifier.processPrimary(Integer setNum, Integer maxSetNum, Data data, PairedDataHelper<Classifier> helper) Process a training split (primary data handled by the PairedDataHelper)Methods in weka.knowledgeflow.steps with parameters of type ClassifierModifier and TypeMethodDescriptionvoidClassifier.setClassifier(Classifier classifier) Set the classifier to trainMethod parameters in weka.knowledgeflow.steps with type arguments of type ClassifierModifier and TypeMethodDescriptionClassifier.processPrimary(Integer setNum, Integer maxSetNum, Data data, PairedDataHelper<Classifier> helper) Process a training split (primary data handled by the PairedDataHelper)voidClassifier.processSecondary(Integer setNum, Integer maxSetNum, Data data, PairedDataHelper<Classifier> helper) Process a test split/fold (secondary data handled by PairedDataHelper)