Uses of Interface
weka.classifiers.Classifier
Package
Description
-
Uses of Classifier in weka.attributeSelection
Modifier and TypeMethodDescriptionClassifierAttributeEval.getClassifier()
Get the classifier used as the base learner.ClassifierSubsetEval.getClassifier()
Get the classifier used as the base learner.WrapperSubsetEval.getClassifier()
Get the classifier used as the base learner.Modifier and TypeMethodDescriptionvoid
ClassifierAttributeEval.setClassifier
(Classifier newClassifier) Set the classifier to use for accuracy estimationvoid
ClassifierSubsetEval.setClassifier
(Classifier newClassifier) Set the classifier to use for accuracy estimationvoid
WrapperSubsetEval.setClassifier
(Classifier newClassifier) Set the classifier to use for accuracy estimation -
Uses of Classifier in weka.classifiers
Modifier and TypeInterfaceDescriptioninterface
Interface for classifiers that can induce models of growing complexity one step at a time.Modifier and TypeClassDescriptionclass
Abstract classifier.class
Abstract utility class for handling settings common to meta classifiers that build an ensemble from a single base learner.class
Abstract utility class for handling settings common to meta classifiers that build an ensemble from multiple classifiers.class
Abstract utility class for handling settings common to meta classifiers that build an ensemble in parallel from a single base learner.class
Abstract utility class for handling settings common to meta classifiers that build an ensemble in parallel using multiple classifiers.class
Abstract utility class for handling settings common to randomizable classifiers.class
Abstract utility class for handling settings common to randomizable meta classifiers that build an ensemble from a single base learner.class
Abstract utility class for handling settings common to randomizable meta classifiers that build an ensemble from multiple classifiers based on a given random number seed.class
Abstract utility class for handling settings common to randomizable meta classifiers that build an ensemble in parallel from a single base learner.class
Abstract utility class for handling settings common to meta classifiers that build an ensemble in parallel using multiple classifiers based on a given random number seed.class
Abstract utility class for handling settings common to randomizable meta classifiers that build an ensemble from a single base learner.class
Abstract utility class for handling settings common to meta classifiers that use a single base learner.Modifier and TypeMethodDescriptionstatic Classifier
Creates a new instance of a classifier given it's class name and (optional) arguments to pass to it's setOptions method.BVDecompose.getClassifier()
Gets the name of the classifier being analysedBVDecomposeSegCVSub.getClassifier()
Gets the name of the classifier being analysedCheckClassifier.getClassifier()
Get the classifier used as the classifierCheckSource.getClassifier()
Gets the classifier being used for the tests, can be null.MultipleClassifiersCombiner.getClassifier
(int index) Gets a single classifier from the set of available classifiers.SingleClassifierEnhancer.getClassifier()
Get the classifier used as the base learner.MultipleClassifiersCombiner.getClassifiers()
Gets the list of possible classifers to choose from.CheckSource.getSourceCode()
Gets the class to test.static Classifier[]
AbstractClassifier.makeCopies
(Classifier model, int num) Creates a given number of deep copies of the given classifier using serialization.static Classifier
AbstractClassifier.makeCopy
(Classifier model) Creates a deep copy of the given classifier using serialization.Modifier and TypeMethodDescriptionvoid
Evaluation.crossValidateModel
(Classifier classifier, Instances data, int numFolds, Random random) Performs a (stratified if class is nominal) cross-validation for a classifier on a set of instances.void
Evaluation.crossValidateModel
(Classifier classifier, Instances data, int numFolds, Random random, Object... forPredictionsPrinting) Performs a (stratified if class is nominal) cross-validation for a classifier on a set of instances.static String
Evaluation.evaluateModel
(Classifier classifier, String[] options) Evaluates a classifier with the options given in an array of strings.double[]
Evaluation.evaluateModel
(Classifier classifier, Instances data, Object... forPredictionsPrinting) Evaluates the classifier on a given set of instances.double
Evaluation.evaluateModelOnce
(Classifier classifier, Instance instance) Evaluates the classifier on a single instance.double
Evaluation.evaluateModelOnceAndRecordPrediction
(Classifier classifier, Instance instance) Evaluates the classifier on a single instance and records the prediction.static Classifier[]
AbstractClassifier.makeCopies
(Classifier model, int num) Creates a given number of deep copies of the given classifier using serialization.static Classifier
AbstractClassifier.makeCopy
(Classifier model) Creates a deep copy of the given classifier using serialization.static void
AbstractClassifier.runClassifier
(Classifier classifier, String[] options) runs the classifier instance with the given options.void
BVDecompose.setClassifier
(Classifier newClassifier) Set the classifiers being analysedvoid
BVDecomposeSegCVSub.setClassifier
(Classifier newClassifier) Set the classifiers being analysedvoid
CheckClassifier.setClassifier
(Classifier newClassifier) Set the classifier for boosting.void
CheckSource.setClassifier
(Classifier value) Sets the classifier to use for the comparison.void
SingleClassifierEnhancer.setClassifier
(Classifier newClassifier) Set the base learner.void
MultipleClassifiersCombiner.setClassifiers
(Classifier[] classifiers) Sets the list of possible classifers to choose from.void
CheckSource.setSourceCode
(Classifier value) Sets the class to test. -
Uses of Classifier in weka.classifiers.bayes
Modifier and TypeClassDescriptionclass
Bayes Network learning using various search algorithms and quality measures.
Base class for a Bayes Network classifier.class
Class for a Naive Bayes classifier using estimator classes.class
Class for building and using a multinomial Naive Bayes classifier.class
Multinomial naive bayes for text data.class
Class for building and using an updateable multinomial Naive Bayes classifier.class
Class for a Naive Bayes classifier using estimator classes. -
Uses of Classifier in weka.classifiers.bayes.net
Modifier and TypeClassDescriptionclass
Bayes Network learning using various search algorithms and quality measures.
Base class for a Bayes Network classifier.class
Builds a description of a Bayes Net classifier stored in XML BIF 0.3 format.
For more details on XML BIF see:
Fabio Cozman, Marek Druzdzel, Daniel Garcia (1998).class
Bayes Network learning using various search algorithms and quality measures.
Base class for a Bayes Network classifier. -
Uses of Classifier in weka.classifiers.evaluation
Modifier and TypeMethodDescriptionvoid
Evaluation.crossValidateModel
(Classifier classifier, Instances data, int numFolds, Random random) Performs a (stratified if class is nominal) cross-validation for a classifier on a set of instances.void
Evaluation.crossValidateModel
(Classifier classifier, Instances data, int numFolds, Random random, Object... forPrinting) Performs a (stratified if class is nominal) cross-validation for a classifier on a set of instances.static String
Evaluation.evaluateModel
(Classifier classifier, String[] options) Evaluates a classifier with the options given in an array of strings.double[]
Evaluation.evaluateModel
(Classifier classifier, Instances data, Object... forPredictionsPrinting) Evaluates the classifier on a given set of instances.double
Evaluation.evaluateModelOnce
(Classifier classifier, Instance instance) Evaluates the classifier on a single instance.double
Evaluation.evaluateModelOnceAndRecordPrediction
(Classifier classifier, Instance instance) Evaluates the classifier on a single instance and records the prediction.EvaluationUtils.getCVPredictions
(Classifier classifier, Instances data, int numFolds) Generate a bunch of predictions ready for processing, by performing a cross-validation on the supplied dataset.EvaluationUtils.getPrediction
(Classifier classifier, Instance test) Generate a single prediction for a test instance given the pre-trained classifier.EvaluationUtils.getTestPredictions
(Classifier classifier, Instances test) Generate a bunch of predictions ready for processing, by performing a evaluation on a test set assuming the classifier is already trained.EvaluationUtils.getTrainTestPredictions
(Classifier classifier, Instances train, Instances test) Generate a bunch of predictions ready for processing, by performing a evaluation on a test set after training on the given training set. -
Uses of Classifier in weka.classifiers.evaluation.output.prediction
Modifier and TypeMethodDescriptionvoid
AbstractOutput.print
(Classifier classifier, ConverterUtils.DataSource testset) Prints the header, classifications and footer to the buffer.void
AbstractOutput.print
(Classifier classifier, Instances testset) Prints the header, classifications and footer to the buffer.void
AbstractOutput.printClassification
(Classifier classifier, Instance inst, int index) Prints the classification to the buffer.void
AbstractOutput.printClassifications
(Classifier classifier, ConverterUtils.DataSource testset) Prints the classifications to the buffer.void
AbstractOutput.printClassifications
(Classifier classifier, Instances testset) Prints the classifications to the buffer. -
Uses of Classifier in weka.classifiers.functions
Modifier and TypeClassDescriptionclass
* Implements Gaussian processes for regression without hyperparameter-tuning.class
Class for using linear regression for prediction.class
Class for building and using a multinomial logistic regression model with a ridge estimator.
There are some modifications, however, compared to the paper of leCessie and van Houwelingen(1992):
If there are k classes for n instances with m attributes, the parameter matrix B to be calculated will be an m*(k-1) matrix.
The probability for class j with the exception of the last class is
Pj(Xi) = exp(XiBj)/((sum[j=1..(k-1)]exp(Xi*Bj))+1)
The last class has probability
1-(sum[j=1..(k-1)]Pj(Xi))
= 1/((sum[j=1..(k-1)]exp(Xi*Bj))+1)
The (negative) multinomial log-likelihood is thus:
L = -sum[i=1..n]{
sum[j=1..(k-1)](Yij * ln(Pj(Xi)))
+(1 - (sum[j=1..(k-1)]Yij))
* ln(1 - sum[j=1..(k-1)]Pj(Xi))
} + ridge * (B^2)
In order to find the matrix B for which L is minimised, a Quasi-Newton Method is used to search for the optimized values of the m*(k-1) variables.class
A classifier that uses backpropagation to learn a multi-layer perceptron to classify instances.class
Implements stochastic gradient descent for learning various linear models (binary class SVM, binary class logistic regression, squared loss, Huber loss and epsilon-insensitive loss linear regression).class
Implements stochastic gradient descent for learning a linear binary class SVM or binary class logistic regression on text data.class
Learns a simple linear regression model.class
Classifier for building linear logistic regression models.class
Implements John Platt's sequential minimal optimization algorithm for training a support vector classifier.
This implementation globally replaces all missing values and transforms nominal attributes into binary ones.class
SMOreg implements the support vector machine for regression.class
Implementation of the voted perceptron algorithm by Freund and Schapire.Modifier and TypeMethodDescriptionvoid
SMO.setCalibrator
(Classifier value) sets the calibrator to use -
Uses of Classifier in weka.classifiers.lazy
Modifier and TypeClassDescriptionclass
K-nearest neighbours classifier.class
K* is an instance-based classifier, that is the class of a test instance is based upon the class of those training instances similar to it, as determined by some similarity function.class
Locally weighted learning. -
Uses of Classifier in weka.classifiers.meta
Modifier and TypeClassDescriptionclass
Class for boosting a nominal class classifier using the Adaboost M1 method.class
Meta classifier that enhances the performance of a regression base classifier.class
Dimensionality of training and test data is reduced by attribute selection before being passed on to a classifier.class
Class for bagging a classifier to reduce variance.class
Class for doing classification using regression methods.class
A metaclassifier that makes its base classifier cost sensitive.class
Class for performing parameter selection by cross-validation for any classifier.
For more information, see:
R.class
Class for running an arbitrary classifier on data that has been passed through an arbitrary filter.class
Chooses the best number of iterations for an IterativeClassifier such as LogitBoost using cross-validation or a percentage split evaluation.class
Class for performing additive logistic regression.class
A metaclassifier for handling multi-class datasets with 2-class classifiers.class
A metaclassifier for handling multi-class datasets with 2-class classifiers.class
Class for selecting a classifier from among several using cross validation on the training data or the performance on the training data.class
Class for building an ensemble of randomizable base classifiers.class
Class for running an arbitrary classifier on data that has been passed through an arbitrary filter.class
This method constructs a decision tree based classifier that maintains highest accuracy on training data and improves on generalization accuracy as it grows in complexity.class
A regression scheme that employs any classifier on a copy of the data that has the class attribute (equal-width) discretized.class
Combines several classifiers using the stacking method.class
Class for combining classifiers.class
Generic wrapper around any classifier to enable weighted instances support.
Uses resampling with weights if the base classifier is not implementing the weka.core.WeightedInstancesHandler interface and there are instance weights other 1.0 present.Modifier and TypeMethodDescriptionVote.aggregate
(Classifier toAggregate) Aggregate an object with this oneClassifier[][]
LogitBoost.classifiers()
Returns the array of classifiers that have been built.MultiScheme.getClassifier
(int index) Gets a single classifier from the set of available classifiers.MultiScheme.getClassifiers()
Gets the list of possible classifers to choose from.Stacking.getMetaClassifier()
Gets the meta classifier.Modifier and TypeMethodDescriptionvoid
Vote.addPreBuiltClassifier
(Classifier c) Add a prebuilt classifier to the list for use in the ensembleVote.aggregate
(Classifier toAggregate) Aggregate an object with this onevoid
Vote.removePreBuiltClassifier
(Classifier c) Remove a prebuilt classifier from the list to use in the ensemblevoid
MultiScheme.setClassifiers
(Classifier[] classifiers) Sets the list of possible classifers to choose from.void
Stacking.setMetaClassifier
(Classifier classifier) Adds meta classifierModifierConstructorDescriptionAdditiveRegression
(Classifier classifier) Constructor which takes base classifier as argument. -
Uses of Classifier in weka.classifiers.misc
Modifier and TypeClassDescriptionclass
Wrapper classifier that addresses incompatible training and test data by building a mapping between the training data that a classifier has been built with and the incoming test instances' structure.class
A wrapper around a serialized classifier model.Modifier and TypeMethodDescriptionSerializedClassifier.getCurrentModel()
Gets the currently loaded model (can be null).Modifier and TypeMethodDescriptionvoid
SerializedClassifier.setModel
(Classifier value) Sets the fully built model to use, if one doesn't want to load a model from a file or already deserialized a model from somewhere else. -
Uses of Classifier in weka.classifiers.pmml.consumer
Modifier and TypeClassDescriptionclass
Class implementing import of PMML General Regression model.class
Class implementing import of PMML Neural Network model.class
Abstract base class for all PMML classifiers.class
Class implementing import of PMML Regression model.class
Class implementing import of PMML RuleSetModel.class
Implements a PMML SupportVectorMachineModelclass
Class implementing import of PMML TreeModel. -
Uses of Classifier in weka.classifiers.rules
Modifier and TypeClassDescriptionclass
Class for building and using a simple decision table majority classifier.
For more information see:
Ron Kohavi: The Power of Decision Tables.class
This class implements a propositional rule learner, Repeated Incremental Pruning to Produce Error Reduction (RIPPER), which was proposed by William W.class
Generates a decision list for regression problems using separate-and-conquer.class
Class for building and using a 1R classifier; in other words, uses the minimum-error attribute for prediction, discretizing numeric attributes.class
Class for generating a PART decision list.class
Class for building and using a 0-R classifier. -
Uses of Classifier in weka.classifiers.trees
Modifier and TypeClassDescriptionclass
Class for building and using a decision stump.class
A Hoeffding tree (VFDT) is an incremental, anytime decision tree induction algorithm that is capable of learning from massive data streams, assuming that the distribution generating examples does not change over time.class
Class for generating a pruned or unpruned C4.5 decision tree.class
Classifier for building 'logistic model trees', which are classification trees with logistic regression functions at the leaves.class
M5Base.class
Class for constructing a forest of random trees.
For more information see:
Leo Breiman (2001).class
Class for constructing a tree that considers K randomly chosen attributes at each node.class
Fast decision tree learner.Modifier and TypeMethodDescriptionvoid
RandomForest.setClassifier
(Classifier newClassifier) This method only accepts RandomTree arguments. -
Uses of Classifier in weka.classifiers.trees.lmt
Modifier and TypeClassDescriptionclass
Class for logistic model tree structure.class
Base/helper class for building logistic regression models with the LogitBoost algorithm. -
Uses of Classifier in weka.classifiers.trees.m5
Modifier and TypeClassDescriptionclass
M5Base.class
This class encapsulates a linear regression function.class
Constructs a node for use in an m5 tree or rule -
Uses of Classifier in weka.experiment
Modifier and TypeMethodDescriptionClassifierSplitEvaluator.getClassifier()
Get the value of Classifier.RegressionSplitEvaluator.getClassifier()
Get the value of Classifier.Modifier and TypeMethodDescriptionvoid
ClassifierSplitEvaluator.setClassifier
(Classifier newClassifier) Sets the classifier.void
RegressionSplitEvaluator.setClassifier
(Classifier newClassifier) Sets the classifier. -
Uses of Classifier in weka.filters.supervised.attribute
Modifier and TypeMethodDescriptionAddClassification.getClassifier()
Gets the classifier used by the filter.Modifier and TypeMethodDescriptionvoid
AddClassification.setClassifier
(Classifier value) Sets the classifier to classify instances with. -
Uses of Classifier in weka.filters.unsupervised.instance
Modifier and TypeMethodDescriptionRemoveMisclassified.getClassifier()
Gets the classifier used by the filter.Modifier and TypeMethodDescriptionvoid
RemoveMisclassified.setClassifier
(Classifier classifier) Sets the classifier to classify instances with. -
Uses of Classifier in weka.gui.beans
Modifier and TypeMethodDescriptionBatchClassifierEvent.getClassifier()
Get the classifierClassifier.getClassifier()
Get the currently trained classifier.IncrementalClassifierEvent.getClassifier()
Get the classifierClassifier.getClassifierTemplate()
Return the classifier template currently in use.Modifier and TypeMethodDescriptionvoid
BatchClassifierEvent.setClassifier
(Classifier classifier) Set the classifiervoid
IncrementalClassifierEvent.setClassifier
(Classifier c) void
Classifier.setClassifierTemplate
(Classifier c) Set the template classifier for this wrapperModifierConstructorDescriptionBatchClassifierEvent
(Object source, Classifier scheme, DataSetEvent trsI, DataSetEvent tstI, int setNum, int maxSetNum) Creates a newBatchClassifierEvent
instance.BatchClassifierEvent
(Object source, Classifier scheme, DataSetEvent trsI, DataSetEvent tstI, int runNum, int maxRunNum, int setNum, int maxSetNum) Creates a newBatchClassifierEvent
instance.IncrementalClassifierEvent
(Object source, Classifier scheme, Instance currentI, int status) Creates a newIncrementalClassifierEvent
instance.IncrementalClassifierEvent
(Object source, Classifier scheme, Instances structure) Creates a new incremental classifier event that encapsulates header information and classifier. -
Uses of Classifier in weka.gui.boundaryvisualizer
Modifier and TypeMethodDescriptionstatic void
BoundaryVisualizer.createNewVisualizerWindow
(Classifier classifier, Instances instances) Creates a new GUI window with all of the BoundaryVisualizer trappings,void
BoundaryPanel.setClassifier
(Classifier classifier) Set the classifier to use.void
BoundaryVisualizer.setClassifier
(Classifier newClassifier) Set a classifier to usevoid
RemoteBoundaryVisualizerSubTask.setClassifier
(Classifier dc) Set the classifier to use -
Uses of Classifier in weka.gui.explorer
Modifier and TypeMethodDescriptionClassifierErrorsPlotInstances.getClassifier()
Returns the currently set classifier.ClassifierPanel.getClassifier()
Get the currently configured classifier from the GenericObjectEditorModifier and TypeMethodDescriptionvoid
ClassifierErrorsPlotInstances.process
(Instance toPredict, Classifier classifier, Evaluation eval) Process a classifier's prediction for an instance and update a set of plotting instances and additional plotting info.void
ClassifierPanel.saveClassifier
(String name, Classifier classifier, Instances trainHeader) Saves the currently selected classifier.void
ClassifierErrorsPlotInstances.setClassifier
(Classifier value) Sets the classifier used for making the predictions.static Evaluation
ClassifierPanel.setupEval
(Evaluation eval, Classifier classifier, Instances inst, CostMatrix costMatrix, ClassifierErrorsPlotInstances plotInstances, AbstractOutput classificationOutput, boolean onlySetPriors) Configures an evaluation object with respect to a classifier, cost matrix, output and plotting.static Evaluation
ClassifierPanel.setupEval
(Evaluation eval, Classifier classifier, Instances inst, CostMatrix costMatrix, ClassifierErrorsPlotInstances plotInstances, AbstractOutput classificationOutput, boolean onlySetPriors, boolean collectPredictions) Configures an evaluation object with respect to a classifier, cost matrix, output and plotting. -
Uses of Classifier in weka.knowledgeflow.steps
Modifier and TypeMethodDescriptionClassifier.getClassifier()
Get the classifier to trainClassifier.processPrimary
(Integer setNum, Integer maxSetNum, Data data, PairedDataHelper<Classifier> helper) Process a training split (primary data handled by the PairedDataHelper)Modifier and TypeMethodDescriptionvoid
Classifier.setClassifier
(Classifier classifier) Set the classifier to trainModifier and TypeMethodDescriptionClassifier.processPrimary
(Integer setNum, Integer maxSetNum, Data data, PairedDataHelper<Classifier> helper) Process a training split (primary data handled by the PairedDataHelper)void
Classifier.processSecondary
(Integer setNum, Integer maxSetNum, Data data, PairedDataHelper<Classifier> helper) Process a test split/fold (secondary data handled by PairedDataHelper)