Package org.joml

Class Matrix4d

  • All Implemented Interfaces:
    java.io.Externalizable, java.io.Serializable, java.lang.Cloneable, Matrix4dc
    Direct Known Subclasses:
    Matrix4dStack

    public class Matrix4d
    extends java.lang.Object
    implements java.io.Externalizable, java.lang.Cloneable, Matrix4dc
    Contains the definition of a 4x4 Matrix of doubles, and associated functions to transform it. The matrix is column-major to match OpenGL's interpretation, and it looks like this:

    m00 m10 m20 m30
    m01 m11 m21 m31
    m02 m12 m22 m32
    m03 m13 m23 m33

    Author:
    Richard Greenlees, Kai Burjack
    See Also:
    Serialized Form
    • Constructor Summary

      Constructors 
      Constructor Description
      Matrix4d()
      Create a new Matrix4d and set it to identity.
      Matrix4d​(double m00, double m01, double m02, double m03, double m10, double m11, double m12, double m13, double m20, double m21, double m22, double m23, double m30, double m31, double m32, double m33)
      Create a new 4x4 matrix using the supplied double values.
      Matrix4d​(java.nio.DoubleBuffer buffer)
      Create a new Matrix4d by reading its 16 double components from the given DoubleBuffer at the buffer's current position.
      Matrix4d​(Matrix3dc mat)
      Create a new Matrix4d by setting its uppper left 3x3 submatrix to the values of the given Matrix3dc and the rest to identity.
      Matrix4d​(Matrix4dc mat)
      Create a new Matrix4d and make it a copy of the given matrix.
      Matrix4d​(Matrix4fc mat)
      Create a new Matrix4d and make it a copy of the given matrix.
      Matrix4d​(Matrix4x3dc mat)
      Create a new Matrix4d and set its upper 4x3 submatrix to the given matrix mat and all other elements to identity.
      Matrix4d​(Matrix4x3fc mat)
      Create a new Matrix4d and set its upper 4x3 submatrix to the given matrix mat and all other elements to identity.
      Matrix4d​(Vector4d col0, Vector4d col1, Vector4d col2, Vector4d col3)
      Create a new Matrix4d and initialize its four columns using the supplied vectors.
    • Method Summary

      All Methods Static Methods Instance Methods Concrete Methods 
      Modifier and Type Method Description
      Matrix4d add​(Matrix4dc other)
      Component-wise add this and other.
      Matrix4d add​(Matrix4dc other, Matrix4d dest)
      Component-wise add this and other and store the result in dest.
      Matrix4d add4x3​(Matrix4dc other)
      Component-wise add the upper 4x3 submatrices of this and other.
      Matrix4d add4x3​(Matrix4dc other, Matrix4d dest)
      Component-wise add the upper 4x3 submatrices of this and other and store the result in dest.
      Matrix4d add4x3​(Matrix4fc other)
      Component-wise add the upper 4x3 submatrices of this and other.
      Matrix4d add4x3​(Matrix4fc other, Matrix4d dest)
      Component-wise add the upper 4x3 submatrices of this and other and store the result in dest.
      Matrix4d affineSpan​(Vector3d corner, Vector3d xDir, Vector3d yDir, Vector3d zDir)
      Compute the extents of the coordinate system before this affine transformation was applied and store the resulting corner coordinates in corner and the span vectors in xDir, yDir and zDir.
      Matrix4d arcball​(double radius, double centerX, double centerY, double centerZ, double angleX, double angleY)
      Apply an arcball view transformation to this matrix with the given radius and center (centerX, centerY, centerZ) position of the arcball and the specified X and Y rotation angles.
      Matrix4d arcball​(double radius, double centerX, double centerY, double centerZ, double angleX, double angleY, Matrix4d dest)
      Apply an arcball view transformation to this matrix with the given radius and center (centerX, centerY, centerZ) position of the arcball and the specified X and Y rotation angles, and store the result in dest.
      Matrix4d arcball​(double radius, Vector3dc center, double angleX, double angleY)
      Apply an arcball view transformation to this matrix with the given radius and center position of the arcball and the specified X and Y rotation angles.
      Matrix4d arcball​(double radius, Vector3dc center, double angleX, double angleY, Matrix4d dest)
      Apply an arcball view transformation to this matrix with the given radius and center position of the arcball and the specified X and Y rotation angles, and store the result in dest.
      Matrix4d assume​(int properties)
      Assume the given properties about this matrix.
      Matrix4d billboardCylindrical​(Vector3dc objPos, Vector3dc targetPos, Vector3dc up)
      Set this matrix to a cylindrical billboard transformation that rotates the local +Z axis of a given object with position objPos towards a target position at targetPos while constraining a cylindrical rotation around the given up vector.
      Matrix4d billboardSpherical​(Vector3dc objPos, Vector3dc targetPos)
      Set this matrix to a spherical billboard transformation that rotates the local +Z axis of a given object with position objPos towards a target position at targetPos using a shortest arc rotation by not preserving any up vector of the object.
      Matrix4d billboardSpherical​(Vector3dc objPos, Vector3dc targetPos, Vector3dc up)
      Set this matrix to a spherical billboard transformation that rotates the local +Z axis of a given object with position objPos towards a target position at targetPos.
      java.lang.Object clone()  
      Matrix4d cofactor3x3()
      Compute the cofactor matrix of the upper left 3x3 submatrix of this.
      Matrix3d cofactor3x3​(Matrix3d dest)
      Compute the cofactor matrix of the upper left 3x3 submatrix of this and store it into dest.
      Matrix4d cofactor3x3​(Matrix4d dest)
      Compute the cofactor matrix of the upper left 3x3 submatrix of this and store it into dest.
      double determinant()
      Return the determinant of this matrix.
      double determinant3x3()
      Return the determinant of the upper left 3x3 submatrix of this matrix.
      double determinantAffine()
      Return the determinant of this matrix by assuming that it represents an affine transformation and thus its last row is equal to (0, 0, 0, 1).
      Matrix4d determineProperties()
      Compute and set the matrix properties returned by properties() based on the current matrix element values.
      boolean equals​(java.lang.Object obj)  
      boolean equals​(Matrix4dc m, double delta)
      Compare the matrix elements of this matrix with the given matrix using the given delta and return whether all of them are equal within a maximum difference of delta.
      Matrix4d fma4x3​(Matrix4dc other, double otherFactor)
      Component-wise add the upper 4x3 submatrices of this and other by first multiplying each component of other's 4x3 submatrix by otherFactor and adding that result to this.
      Matrix4d fma4x3​(Matrix4dc other, double otherFactor, Matrix4d dest)
      Component-wise add the upper 4x3 submatrices of this and other by first multiplying each component of other's 4x3 submatrix by otherFactor, adding that to this and storing the final result in dest.
      Matrix4d frustum​(double left, double right, double bottom, double top, double zNear, double zFar)
      Apply an arbitrary perspective projection frustum transformation for a right-handed coordinate system using OpenGL's NDC z range of [-1..+1] to this matrix.
      Matrix4d frustum​(double left, double right, double bottom, double top, double zNear, double zFar, boolean zZeroToOne)
      Apply an arbitrary perspective projection frustum transformation for a right-handed coordinate system using the given NDC z range to this matrix.
      Matrix4d frustum​(double left, double right, double bottom, double top, double zNear, double zFar, boolean zZeroToOne, Matrix4d dest)
      Apply an arbitrary perspective projection frustum transformation for a right-handed coordinate system using the given NDC z range to this matrix and store the result in dest.
      Matrix4d frustum​(double left, double right, double bottom, double top, double zNear, double zFar, Matrix4d dest)
      Apply an arbitrary perspective projection frustum transformation for a right-handed coordinate system using OpenGL's NDC z range of [-1..+1] to this matrix and store the result in dest.
      Matrix4d frustumAabb​(Vector3d min, Vector3d max)
      Compute the axis-aligned bounding box of the frustum described by this matrix and store the minimum corner coordinates in the given min and the maximum corner coordinates in the given max vector.
      Vector3d frustumCorner​(int corner, Vector3d dest)
      Compute the corner coordinates of the frustum defined by this matrix, which can be a projection matrix or a combined modelview-projection matrix, and store the result in the given point.
      Matrix4d frustumLH​(double left, double right, double bottom, double top, double zNear, double zFar)
      Apply an arbitrary perspective projection frustum transformation for a left-handed coordinate system using the given NDC z range to this matrix.
      Matrix4d frustumLH​(double left, double right, double bottom, double top, double zNear, double zFar, boolean zZeroToOne)
      Apply an arbitrary perspective projection frustum transformation for a left-handed coordinate system using the given NDC z range to this matrix.
      Matrix4d frustumLH​(double left, double right, double bottom, double top, double zNear, double zFar, boolean zZeroToOne, Matrix4d dest)
      Apply an arbitrary perspective projection frustum transformation for a left-handed coordinate system using the given NDC z range to this matrix and store the result in dest.
      Matrix4d frustumLH​(double left, double right, double bottom, double top, double zNear, double zFar, Matrix4d dest)
      Apply an arbitrary perspective projection frustum transformation for a left-handed coordinate system using OpenGL's NDC z range of [-1..+1] to this matrix and store the result in dest.
      Vector4d frustumPlane​(int plane, Vector4d dest)
      Calculate a frustum plane of this matrix, which can be a projection matrix or a combined modelview-projection matrix, and store the result in the given dest.
      Vector3d frustumRayDir​(double x, double y, Vector3d dest)
      Obtain the direction of a ray starting at the center of the coordinate system and going through the near frustum plane.
      double[] get​(double[] dest)
      Store this matrix into the supplied double array in column-major order.
      double[] get​(double[] dest, int offset)
      Store this matrix into the supplied double array in column-major order at the given offset.
      float[] get​(float[] dest)
      Store the elements of this matrix as float values in column-major order into the supplied float array.
      float[] get​(float[] dest, int offset)
      Store the elements of this matrix as float values in column-major order into the supplied float array at the given offset.
      double get​(int column, int row)
      Get the matrix element value at the given column and row.
      java.nio.ByteBuffer get​(int index, java.nio.ByteBuffer dest)
      Store this matrix in column-major order into the supplied ByteBuffer starting at the specified absolute buffer position/index.
      java.nio.DoubleBuffer get​(int index, java.nio.DoubleBuffer dest)
      Store this matrix in column-major order into the supplied DoubleBuffer starting at the specified absolute buffer position/index.
      java.nio.FloatBuffer get​(int index, java.nio.FloatBuffer dest)
      Store this matrix in column-major order into the supplied FloatBuffer starting at the specified absolute buffer position/index.
      java.nio.ByteBuffer get​(java.nio.ByteBuffer dest)
      Store this matrix in column-major order into the supplied ByteBuffer at the current buffer position.
      java.nio.DoubleBuffer get​(java.nio.DoubleBuffer dest)
      Store this matrix in column-major order into the supplied DoubleBuffer at the current buffer position.
      java.nio.FloatBuffer get​(java.nio.FloatBuffer dest)
      Store this matrix in column-major order into the supplied FloatBuffer at the current buffer position.
      Matrix4d get​(Matrix4d dest)
      Get the current values of this matrix and store them into dest.
      Matrix3d get3x3​(Matrix3d dest)
      Get the current values of the upper left 3x3 submatrix of this matrix and store them into dest.
      Matrix4x3d get4x3​(Matrix4x3d dest)
      Get the current values of the upper 4x3 submatrix of this matrix and store them into dest.
      java.nio.ByteBuffer get4x3Transposed​(int index, java.nio.ByteBuffer dest)
      Store the upper 4x3 submatrix of this matrix in row-major order into the supplied ByteBuffer starting at the specified absolute buffer position/index.
      java.nio.DoubleBuffer get4x3Transposed​(int index, java.nio.DoubleBuffer dest)
      Store the upper 4x3 submatrix of this matrix in row-major order into the supplied DoubleBuffer starting at the specified absolute buffer position/index.
      java.nio.ByteBuffer get4x3Transposed​(java.nio.ByteBuffer dest)
      Store the upper 4x3 submatrix of this matrix in row-major order into the supplied ByteBuffer at the current buffer position.
      java.nio.DoubleBuffer get4x3Transposed​(java.nio.DoubleBuffer dest)
      Store the upper 4x3 submatrix of this matrix in row-major order into the supplied DoubleBuffer at the current buffer position.
      Vector3d getColumn​(int column, Vector3d dest)
      Get the first three components of the column at the given column index, starting with 0.
      Vector4d getColumn​(int column, Vector4d dest)
      Get the column at the given column index, starting with 0.
      Vector3d getEulerAnglesXYZ​(Vector3d dest)
      Extract the Euler angles from the rotation represented by the upper left 3x3 submatrix of this and store the extracted Euler angles in dest.
      Vector3d getEulerAnglesZYX​(Vector3d dest)
      Extract the Euler angles from the rotation represented by the upper left 3x3 submatrix of this and store the extracted Euler angles in dest.
      java.nio.ByteBuffer getFloats​(int index, java.nio.ByteBuffer dest)
      Store the elements of this matrix as float values in column-major order into the supplied ByteBuffer starting at the specified absolute buffer position/index.
      java.nio.ByteBuffer getFloats​(java.nio.ByteBuffer dest)
      Store the elements of this matrix as float values in column-major order into the supplied ByteBuffer at the current buffer position.
      Quaterniond getNormalizedRotation​(Quaterniond dest)
      Get the current values of this matrix and store the represented rotation into the given Quaterniond.
      Quaternionf getNormalizedRotation​(Quaternionf dest)
      Get the current values of this matrix and store the represented rotation into the given Quaternionf.
      Vector3d getRow​(int row, Vector3d dest)
      Get the first three components of the row at the given row index, starting with 0.
      Vector4d getRow​(int row, Vector4d dest)
      Get the row at the given row index, starting with 0.
      double getRowColumn​(int row, int column)
      Get the matrix element value at the given row and column.
      Vector3d getScale​(Vector3d dest)
      Get the scaling factors of this matrix for the three base axes.
      Matrix4dc getToAddress​(long address)
      Store this matrix in column-major order at the given off-heap address.
      Vector3d getTranslation​(Vector3d dest)
      Get only the translation components (m30, m31, m32) of this matrix and store them in the given vector xyz.
      java.nio.ByteBuffer getTransposed​(int index, java.nio.ByteBuffer dest)
      Store this matrix in row-major order into the supplied ByteBuffer starting at the specified absolute buffer position/index.
      java.nio.DoubleBuffer getTransposed​(int index, java.nio.DoubleBuffer dest)
      Store this matrix in row-major order into the supplied DoubleBuffer starting at the specified absolute buffer position/index.
      java.nio.FloatBuffer getTransposed​(int index, java.nio.FloatBuffer dest)
      Store this matrix in row-major order into the supplied FloatBuffer starting at the specified absolute buffer position/index.
      java.nio.ByteBuffer getTransposed​(java.nio.ByteBuffer dest)
      Store this matrix in row-major order into the supplied ByteBuffer at the current buffer position.
      java.nio.DoubleBuffer getTransposed​(java.nio.DoubleBuffer dest)
      Store this matrix in row-major order into the supplied DoubleBuffer at the current buffer position.
      java.nio.FloatBuffer getTransposed​(java.nio.FloatBuffer dest)
      Store this matrix in row-major order into the supplied FloatBuffer at the current buffer position.
      java.nio.ByteBuffer getTransposedFloats​(int index, java.nio.ByteBuffer buffer)
      Store this matrix in row-major order into the supplied ByteBuffer starting at the specified absolute buffer position/index.
      java.nio.ByteBuffer getTransposedFloats​(java.nio.ByteBuffer buffer)
      Store this matrix as float values in row-major order into the supplied ByteBuffer at the current buffer position.
      Quaterniond getUnnormalizedRotation​(Quaterniond dest)
      Get the current values of this matrix and store the represented rotation into the given Quaterniond.
      Quaternionf getUnnormalizedRotation​(Quaternionf dest)
      Get the current values of this matrix and store the represented rotation into the given Quaternionf.
      int hashCode()  
      Matrix4d identity()
      Reset this matrix to the identity.
      Matrix4d invert()
      Invert this matrix.
      Matrix4d invert​(Matrix4d dest)
      Invert this matrix and store the result in dest.
      Matrix4d invertAffine()
      Invert this matrix by assuming that it is an affine transformation (i.e.
      Matrix4d invertAffine​(Matrix4d dest)
      Invert this matrix by assuming that it is an affine transformation (i.e.
      Matrix4d invertFrustum()
      If this is an arbitrary perspective projection matrix obtained via one of the frustum() methods or via setFrustum(), then this method builds the inverse of this.
      Matrix4d invertFrustum​(Matrix4d dest)
      If this is an arbitrary perspective projection matrix obtained via one of the frustum() methods, then this method builds the inverse of this and stores it into the given dest.
      Matrix4d invertOrtho()
      Invert this orthographic projection matrix.
      Matrix4d invertOrtho​(Matrix4d dest)
      Invert this orthographic projection matrix and store the result into the given dest.
      Matrix4d invertPerspective()
      If this is a perspective projection matrix obtained via one of the perspective() methods or via setPerspective(), that is, if this is a symmetrical perspective frustum transformation, then this method builds the inverse of this.
      Matrix4d invertPerspective​(Matrix4d dest)
      If this is a perspective projection matrix obtained via one of the perspective() methods, that is, if this is a symmetrical perspective frustum transformation, then this method builds the inverse of this and stores it into the given dest.
      Matrix4d invertPerspectiveView​(Matrix4dc view, Matrix4d dest)
      If this is a perspective projection matrix obtained via one of the perspective() methods, that is, if this is a symmetrical perspective frustum transformation and the given view matrix is affine and has unit scaling (for example by being obtained via lookAt()), then this method builds the inverse of this * view and stores it into the given dest.
      Matrix4d invertPerspectiveView​(Matrix4x3dc view, Matrix4d dest)
      If this is a perspective projection matrix obtained via one of the perspective() methods, that is, if this is a symmetrical perspective frustum transformation and the given view matrix has unit scaling, then this method builds the inverse of this * view and stores it into the given dest.
      boolean isAffine()
      Determine whether this matrix describes an affine transformation.
      boolean isFinite()
      Determine whether all matrix elements are finite floating-point values, that is, they are not NaN and not infinity.
      Matrix4d lerp​(Matrix4dc other, double t)
      Linearly interpolate this and other using the given interpolation factor t and store the result in this.
      Matrix4d lerp​(Matrix4dc other, double t, Matrix4d dest)
      Linearly interpolate this and other using the given interpolation factor t and store the result in dest.
      Matrix4d lookAlong​(double dirX, double dirY, double dirZ, double upX, double upY, double upZ)
      Apply a rotation transformation to this matrix to make -z point along dir.
      Matrix4d lookAlong​(double dirX, double dirY, double dirZ, double upX, double upY, double upZ, Matrix4d dest)
      Apply a rotation transformation to this matrix to make -z point along dir and store the result in dest.
      Matrix4d lookAlong​(Vector3dc dir, Vector3dc up)
      Apply a rotation transformation to this matrix to make -z point along dir.
      Matrix4d lookAlong​(Vector3dc dir, Vector3dc up, Matrix4d dest)
      Apply a rotation transformation to this matrix to make -z point along dir and store the result in dest.
      Matrix4d lookAt​(double eyeX, double eyeY, double eyeZ, double centerX, double centerY, double centerZ, double upX, double upY, double upZ)
      Apply a "lookat" transformation to this matrix for a right-handed coordinate system, that aligns -z with center - eye.
      Matrix4d lookAt​(double eyeX, double eyeY, double eyeZ, double centerX, double centerY, double centerZ, double upX, double upY, double upZ, Matrix4d dest)
      Apply a "lookat" transformation to this matrix for a right-handed coordinate system, that aligns -z with center - eye and store the result in dest.
      Matrix4d lookAt​(Vector3dc eye, Vector3dc center, Vector3dc up)
      Apply a "lookat" transformation to this matrix for a right-handed coordinate system, that aligns -z with center - eye.
      Matrix4d lookAt​(Vector3dc eye, Vector3dc center, Vector3dc up, Matrix4d dest)
      Apply a "lookat" transformation to this matrix for a right-handed coordinate system, that aligns -z with center - eye and store the result in dest.
      Matrix4d lookAtLH​(double eyeX, double eyeY, double eyeZ, double centerX, double centerY, double centerZ, double upX, double upY, double upZ)
      Apply a "lookat" transformation to this matrix for a left-handed coordinate system, that aligns +z with center - eye.
      Matrix4d lookAtLH​(double eyeX, double eyeY, double eyeZ, double centerX, double centerY, double centerZ, double upX, double upY, double upZ, Matrix4d dest)
      Apply a "lookat" transformation to this matrix for a left-handed coordinate system, that aligns +z with center - eye and store the result in dest.
      Matrix4d lookAtLH​(Vector3dc eye, Vector3dc center, Vector3dc up)
      Apply a "lookat" transformation to this matrix for a left-handed coordinate system, that aligns +z with center - eye.
      Matrix4d lookAtLH​(Vector3dc eye, Vector3dc center, Vector3dc up, Matrix4d dest)
      Apply a "lookat" transformation to this matrix for a left-handed coordinate system, that aligns +z with center - eye and store the result in dest.
      Matrix4d lookAtPerspective​(double eyeX, double eyeY, double eyeZ, double centerX, double centerY, double centerZ, double upX, double upY, double upZ, Matrix4d dest)
      Apply a "lookat" transformation to this matrix for a right-handed coordinate system, that aligns -z with center - eye and store the result in dest.
      Matrix4d lookAtPerspectiveLH​(double eyeX, double eyeY, double eyeZ, double centerX, double centerY, double centerZ, double upX, double upY, double upZ, Matrix4d dest)
      Apply a "lookat" transformation to this matrix for a left-handed coordinate system, that aligns +z with center - eye and store the result in dest.
      double m00()
      Return the value of the matrix element at column 0 and row 0.
      Matrix4d m00​(double m00)
      Set the value of the matrix element at column 0 and row 0.
      double m01()
      Return the value of the matrix element at column 0 and row 1.
      Matrix4d m01​(double m01)
      Set the value of the matrix element at column 0 and row 1.
      double m02()
      Return the value of the matrix element at column 0 and row 2.
      Matrix4d m02​(double m02)
      Set the value of the matrix element at column 0 and row 2.
      double m03()
      Return the value of the matrix element at column 0 and row 3.
      Matrix4d m03​(double m03)
      Set the value of the matrix element at column 0 and row 3.
      double m10()
      Return the value of the matrix element at column 1 and row 0.
      Matrix4d m10​(double m10)
      Set the value of the matrix element at column 1 and row 0.
      double m11()
      Return the value of the matrix element at column 1 and row 1.
      Matrix4d m11​(double m11)
      Set the value of the matrix element at column 1 and row 1.
      double m12()
      Return the value of the matrix element at column 1 and row 2.
      Matrix4d m12​(double m12)
      Set the value of the matrix element at column 1 and row 2.
      double m13()
      Return the value of the matrix element at column 1 and row 3.
      Matrix4d m13​(double m13)
      Set the value of the matrix element at column 1 and row 3.
      double m20()
      Return the value of the matrix element at column 2 and row 0.
      Matrix4d m20​(double m20)
      Set the value of the matrix element at column 2 and row 0.
      double m21()
      Return the value of the matrix element at column 2 and row 1.
      Matrix4d m21​(double m21)
      Set the value of the matrix element at column 2 and row 1.
      double m22()
      Return the value of the matrix element at column 2 and row 2.
      Matrix4d m22​(double m22)
      Set the value of the matrix element at column 2 and row 2.
      double m23()
      Return the value of the matrix element at column 2 and row 3.
      Matrix4d m23​(double m23)
      Set the value of the matrix element at column 2 and row 3.
      double m30()
      Return the value of the matrix element at column 3 and row 0.
      Matrix4d m30​(double m30)
      Set the value of the matrix element at column 3 and row 0.
      double m31()
      Return the value of the matrix element at column 3 and row 1.
      Matrix4d m31​(double m31)
      Set the value of the matrix element at column 3 and row 1.
      double m32()
      Return the value of the matrix element at column 3 and row 2.
      Matrix4d m32​(double m32)
      Set the value of the matrix element at column 3 and row 2.
      double m33()
      Return the value of the matrix element at column 3 and row 3.
      Matrix4d m33​(double m33)
      Set the value of the matrix element at column 3 and row 3.
      Matrix4d mapnXnYnZ()
      Multiply this by the matrix
      Matrix4d mapnXnYnZ​(Matrix4d dest)
      Multiply this by the matrix
      Matrix4d mapnXnYZ()
      Multiply this by the matrix
      Matrix4d mapnXnYZ​(Matrix4d dest)
      Multiply this by the matrix
      Matrix4d mapnXnZnY()
      Multiply this by the matrix
      Matrix4d mapnXnZnY​(Matrix4d dest)
      Multiply this by the matrix
      Matrix4d mapnXnZY()
      Multiply this by the matrix
      Matrix4d mapnXnZY​(Matrix4d dest)
      Multiply this by the matrix
      Matrix4d mapnXYnZ()
      Multiply this by the matrix
      Matrix4d mapnXYnZ​(Matrix4d dest)
      Multiply this by the matrix
      Matrix4d mapnXZnY()
      Multiply this by the matrix
      Matrix4d mapnXZnY​(Matrix4d dest)
      Multiply this by the matrix
      Matrix4d mapnXZY()
      Multiply this by the matrix
      Matrix4d mapnXZY​(Matrix4d dest)
      Multiply this by the matrix
      Matrix4d mapnYnXnZ()
      Multiply this by the matrix
      Matrix4d mapnYnXnZ​(Matrix4d dest)
      Multiply this by the matrix
      Matrix4d mapnYnXZ()
      Multiply this by the matrix
      Matrix4d mapnYnXZ​(Matrix4d dest)
      Multiply this by the matrix
      Matrix4d mapnYnZnX()
      Multiply this by the matrix
      Matrix4d mapnYnZnX​(Matrix4d dest)
      Multiply this by the matrix
      Matrix4d mapnYnZX()
      Multiply this by the matrix
      Matrix4d mapnYnZX​(Matrix4d dest)
      Multiply this by the matrix
      Matrix4d mapnYXnZ()
      Multiply this by the matrix
      Matrix4d mapnYXnZ​(Matrix4d dest)
      Multiply this by the matrix
      Matrix4d mapnYXZ()
      Multiply this by the matrix
      Matrix4d mapnYXZ​(Matrix4d dest)
      Multiply this by the matrix
      Matrix4d mapnYZnX()
      Multiply this by the matrix
      Matrix4d mapnYZnX​(Matrix4d dest)
      Multiply this by the matrix
      Matrix4d mapnYZX()
      Multiply this by the matrix
      Matrix4d mapnYZX​(Matrix4d dest)
      Multiply this by the matrix
      Matrix4d mapnZnXnY()
      Multiply this by the matrix
      Matrix4d mapnZnXnY​(Matrix4d dest)
      Multiply this by the matrix
      Matrix4d mapnZnXY()
      Multiply this by the matrix
      Matrix4d mapnZnXY​(Matrix4d dest)
      Multiply this by the matrix
      Matrix4d mapnZnYnX()
      Multiply this by the matrix
      Matrix4d mapnZnYnX​(Matrix4d dest)
      Multiply this by the matrix
      Matrix4d mapnZnYX()
      Multiply this by the matrix
      Matrix4d mapnZnYX​(Matrix4d dest)
      Multiply this by the matrix
      Matrix4d mapnZXnY()
      Multiply this by the matrix
      Matrix4d mapnZXnY​(Matrix4d dest)
      Multiply this by the matrix
      Matrix4d mapnZXY()
      Multiply this by the matrix
      Matrix4d mapnZXY​(Matrix4d dest)
      Multiply this by the matrix
      Matrix4d mapnZYnX()
      Multiply this by the matrix
      Matrix4d mapnZYnX​(Matrix4d dest)
      Multiply this by the matrix
      Matrix4d mapnZYX()
      Multiply this by the matrix
      Matrix4d mapnZYX​(Matrix4d dest)
      Multiply this by the matrix
      Matrix4d mapXnYnZ()
      Multiply this by the matrix
      Matrix4d mapXnYnZ​(Matrix4d dest)
      Multiply this by the matrix
      Matrix4d mapXnZnY()
      Multiply this by the matrix
      Matrix4d mapXnZnY​(Matrix4d dest)
      Multiply this by the matrix
      Matrix4d mapXnZY()
      Multiply this by the matrix
      Matrix4d mapXnZY​(Matrix4d dest)
      Multiply this by the matrix
      Matrix4d mapXZnY()
      Multiply this by the matrix
      Matrix4d mapXZnY​(Matrix4d dest)
      Multiply this by the matrix
      Matrix4d mapXZY()
      Multiply this by the matrix
      Matrix4d mapXZY​(Matrix4d dest)
      Multiply this by the matrix
      Matrix4d mapYnXnZ()
      Multiply this by the matrix
      Matrix4d mapYnXnZ​(Matrix4d dest)
      Multiply this by the matrix
      Matrix4d mapYnXZ()
      Multiply this by the matrix
      Matrix4d mapYnXZ​(Matrix4d dest)
      Multiply this by the matrix
      Matrix4d mapYnZnX()
      Multiply this by the matrix
      Matrix4d mapYnZnX​(Matrix4d dest)
      Multiply this by the matrix
      Matrix4d mapYnZX()
      Multiply this by the matrix
      Matrix4d mapYnZX​(Matrix4d dest)
      Multiply this by the matrix
      Matrix4d mapYXnZ()
      Multiply this by the matrix
      Matrix4d mapYXnZ​(Matrix4d dest)
      Multiply this by the matrix
      Matrix4d mapYXZ()
      Multiply this by the matrix
      Matrix4d mapYXZ​(Matrix4d dest)
      Multiply this by the matrix
      Matrix4d mapYZnX()
      Multiply this by the matrix
      Matrix4d mapYZnX​(Matrix4d dest)
      Multiply this by the matrix
      Matrix4d mapYZX()
      Multiply this by the matrix
      Matrix4d mapYZX​(Matrix4d dest)
      Multiply this by the matrix
      Matrix4d mapZnXnY()
      Multiply this by the matrix
      Matrix4d mapZnXnY​(Matrix4d dest)
      Multiply this by the matrix
      Matrix4d mapZnXY()
      Multiply this by the matrix
      Matrix4d mapZnXY​(Matrix4d dest)
      Multiply this by the matrix
      Matrix4d mapZnYnX()
      Multiply this by the matrix
      Matrix4d mapZnYnX​(Matrix4d dest)
      Multiply this by the matrix
      Matrix4d mapZnYX()
      Multiply this by the matrix
      Matrix4d mapZnYX​(Matrix4d dest)
      Multiply this by the matrix
      Matrix4d mapZXnY()
      Multiply this by the matrix
      Matrix4d mapZXnY​(Matrix4d dest)
      Multiply this by the matrix
      Matrix4d mapZXY()
      Multiply this by the matrix
      Matrix4d mapZXY​(Matrix4d dest)
      Multiply this by the matrix
      Matrix4d mapZYnX()
      Multiply this by the matrix
      Matrix4d mapZYnX​(Matrix4d dest)
      Multiply this by the matrix
      Matrix4d mapZYX()
      Multiply this by the matrix
      Matrix4d mapZYX​(Matrix4d dest)
      Multiply this by the matrix
      Matrix4d mul​(double r00, double r01, double r02, double r03, double r10, double r11, double r12, double r13, double r20, double r21, double r22, double r23, double r30, double r31, double r32, double r33)
      Multiply this matrix by the matrix with the supplied elements.
      Matrix4d mul​(double r00, double r01, double r02, double r03, double r10, double r11, double r12, double r13, double r20, double r21, double r22, double r23, double r30, double r31, double r32, double r33, Matrix4d dest)
      Multiply this matrix by the matrix with the supplied elements and store the result in dest.
      Matrix4d mul​(Matrix3x2dc right)
      Multiply this matrix by the supplied right matrix and store the result in this.
      Matrix4d mul​(Matrix3x2dc right, Matrix4d dest)
      Multiply this matrix by the supplied right matrix and store the result in dest.
      Matrix4d mul​(Matrix3x2fc right)
      Multiply this matrix by the supplied right matrix and store the result in this.
      Matrix4d mul​(Matrix3x2fc right, Matrix4d dest)
      Multiply this matrix by the supplied right matrix and store the result in dest.
      Matrix4d mul​(Matrix4dc right)
      Multiply this matrix by the supplied right matrix.
      Matrix4d mul​(Matrix4dc right, Matrix4d dest)
      Multiply this matrix by the supplied right matrix and store the result in dest.
      Matrix4d mul​(Matrix4f right)
      Multiply this matrix by the supplied parameter matrix.
      Matrix4d mul​(Matrix4fc right, Matrix4d dest)
      Multiply this matrix by the supplied parameter matrix and store the result in dest.
      Matrix4d mul​(Matrix4x3dc right)
      Multiply this matrix by the supplied right matrix.
      Matrix4d mul​(Matrix4x3dc right, Matrix4d dest)
      Multiply this matrix by the supplied right matrix and store the result in dest.
      Matrix4d mul​(Matrix4x3fc right, Matrix4d dest)
      Multiply this matrix by the supplied right matrix and store the result in dest.
      Matrix4d mul0​(Matrix4dc right)
      Multiply this matrix by the supplied right matrix.
      Matrix4d mul0​(Matrix4dc right, Matrix4d dest)
      Multiply this matrix by the supplied right matrix and store the result in dest.
      Matrix4d mul3x3​(double r00, double r01, double r02, double r10, double r11, double r12, double r20, double r21, double r22)
      Multiply this matrix by the 3x3 matrix with the supplied elements expanded to a 4x4 matrix with all other matrix elements set to identity.
      Matrix4d mul3x3​(double r00, double r01, double r02, double r10, double r11, double r12, double r20, double r21, double r22, Matrix4d dest)
      Multiply this matrix by the 3x3 matrix with the supplied elements expanded to a 4x4 matrix with all other matrix elements set to identity, and store the result in dest.
      Matrix4d mul4x3ComponentWise​(Matrix4dc other)
      Component-wise multiply the upper 4x3 submatrices of this by other.
      Matrix4d mul4x3ComponentWise​(Matrix4dc other, Matrix4d dest)
      Component-wise multiply the upper 4x3 submatrices of this by other and store the result in dest.
      Matrix4d mulAffine​(Matrix4dc right)
      Multiply this matrix by the supplied right matrix, both of which are assumed to be affine, and store the result in this.
      Matrix4d mulAffine​(Matrix4dc right, Matrix4d dest)
      Multiply this matrix by the supplied right matrix, both of which are assumed to be affine, and store the result in dest.
      Matrix4d mulAffineR​(Matrix4dc right)
      Multiply this matrix by the supplied right matrix, which is assumed to be affine, and store the result in this.
      Matrix4d mulAffineR​(Matrix4dc right, Matrix4d dest)
      Multiply this matrix by the supplied right matrix, which is assumed to be affine, and store the result in dest.
      Matrix4d mulComponentWise​(Matrix4dc other)
      Component-wise multiply this by other.
      Matrix4d mulComponentWise​(Matrix4dc other, Matrix4d dest)
      Component-wise multiply this by other and store the result in dest.
      Matrix4d mulLocal​(Matrix4dc left)
      Pre-multiply this matrix by the supplied left matrix and store the result in this.
      Matrix4d mulLocal​(Matrix4dc left, Matrix4d dest)
      Pre-multiply this matrix by the supplied left matrix and store the result in dest.
      Matrix4d mulLocalAffine​(Matrix4dc left)
      Pre-multiply this matrix by the supplied left matrix, both of which are assumed to be affine, and store the result in this.
      Matrix4d mulLocalAffine​(Matrix4dc left, Matrix4d dest)
      Pre-multiply this matrix by the supplied left matrix, both of which are assumed to be affine, and store the result in dest.
      Matrix4d mulOrthoAffine​(Matrix4dc view)
      Multiply this orthographic projection matrix by the supplied affine view matrix.
      Matrix4d mulOrthoAffine​(Matrix4dc view, Matrix4d dest)
      Multiply this orthographic projection matrix by the supplied affine view matrix and store the result in dest.
      Matrix4d mulPerspectiveAffine​(Matrix4dc view)
      Multiply this symmetric perspective projection matrix by the supplied affine view matrix.
      Matrix4d mulPerspectiveAffine​(Matrix4dc view, Matrix4d dest)
      Multiply this symmetric perspective projection matrix by the supplied affine view matrix and store the result in dest.
      Matrix4d mulPerspectiveAffine​(Matrix4x3dc view, Matrix4d dest)
      Multiply this symmetric perspective projection matrix by the supplied view matrix and store the result in dest.
      Matrix4d mulTranslationAffine​(Matrix4dc right, Matrix4d dest)
      Multiply this matrix, which is assumed to only contain a translation, by the supplied right matrix, which is assumed to be affine, and store the result in dest.
      Matrix4d negateX()
      Multiply this by the matrix
      Matrix4d negateX​(Matrix4d dest)
      Multiply this by the matrix
      Matrix4d negateY()
      Multiply this by the matrix
      Matrix4d negateY​(Matrix4d dest)
      Multiply this by the matrix
      Matrix4d negateZ()
      Multiply this by the matrix
      Matrix4d negateZ​(Matrix4d dest)
      Multiply this by the matrix
      Matrix4d normal()
      Compute a normal matrix from the upper left 3x3 submatrix of this and store it into the upper left 3x3 submatrix of this.
      Matrix3d normal​(Matrix3d dest)
      Compute a normal matrix from the upper left 3x3 submatrix of this and store it into dest.
      Matrix4d normal​(Matrix4d dest)
      Compute a normal matrix from the upper left 3x3 submatrix of this and store it into the upper left 3x3 submatrix of dest.
      Matrix4d normalize3x3()
      Normalize the upper left 3x3 submatrix of this matrix.
      Matrix3d normalize3x3​(Matrix3d dest)
      Normalize the upper left 3x3 submatrix of this matrix and store the result in dest.
      Matrix4d normalize3x3​(Matrix4d dest)
      Normalize the upper left 3x3 submatrix of this matrix and store the result in dest.
      Vector3d normalizedPositiveX​(Vector3d dir)
      Obtain the direction of +X before the transformation represented by this orthogonal matrix is applied.
      Vector3d normalizedPositiveY​(Vector3d dir)
      Obtain the direction of +Y before the transformation represented by this orthogonal matrix is applied.
      Vector3d normalizedPositiveZ​(Vector3d dir)
      Obtain the direction of +Z before the transformation represented by this orthogonal matrix is applied.
      Matrix4d obliqueZ​(double a, double b)
      Apply an oblique projection transformation to this matrix with the given values for a and b.
      Matrix4d obliqueZ​(double a, double b, Matrix4d dest)
      Apply an oblique projection transformation to this matrix with the given values for a and b and store the result in dest.
      Vector3d origin​(Vector3d dest)
      Obtain the position that gets transformed to the origin by this matrix.
      Vector3d originAffine​(Vector3d dest)
      Obtain the position that gets transformed to the origin by this affine matrix.
      Matrix4d ortho​(double left, double right, double bottom, double top, double zNear, double zFar)
      Apply an orthographic projection transformation for a right-handed coordinate system using OpenGL's NDC z range of [-1..+1] to this matrix.
      Matrix4d ortho​(double left, double right, double bottom, double top, double zNear, double zFar, boolean zZeroToOne)
      Apply an orthographic projection transformation for a right-handed coordinate system using the given NDC z range to this matrix.
      Matrix4d ortho​(double left, double right, double bottom, double top, double zNear, double zFar, boolean zZeroToOne, Matrix4d dest)
      Apply an orthographic projection transformation for a right-handed coordinate system using the given NDC z range to this matrix and store the result in dest.
      Matrix4d ortho​(double left, double right, double bottom, double top, double zNear, double zFar, Matrix4d dest)
      Apply an orthographic projection transformation for a right-handed coordinate system using OpenGL's NDC z range of [-1..+1] to this matrix and store the result in dest.
      Matrix4d ortho2D​(double left, double right, double bottom, double top)
      Apply an orthographic projection transformation for a right-handed coordinate system to this matrix.
      Matrix4d ortho2D​(double left, double right, double bottom, double top, Matrix4d dest)
      Apply an orthographic projection transformation for a right-handed coordinate system to this matrix and store the result in dest.
      Matrix4d ortho2DLH​(double left, double right, double bottom, double top)
      Apply an orthographic projection transformation for a left-handed coordinate system to this matrix.
      Matrix4d ortho2DLH​(double left, double right, double bottom, double top, Matrix4d dest)
      Apply an orthographic projection transformation for a left-handed coordinate system to this matrix and store the result in dest.
      Matrix4d orthoCrop​(Matrix4dc view, Matrix4d dest)
      Build an ortographic projection transformation that fits the view-projection transformation represented by this into the given affine view transformation.
      Matrix4d orthoLH​(double left, double right, double bottom, double top, double zNear, double zFar)
      Apply an orthographic projection transformation for a left-handed coordiante system using OpenGL's NDC z range of [-1..+1] to this matrix.
      Matrix4d orthoLH​(double left, double right, double bottom, double top, double zNear, double zFar, boolean zZeroToOne)
      Apply an orthographic projection transformation for a left-handed coordiante system using the given NDC z range to this matrix.
      Matrix4d orthoLH​(double left, double right, double bottom, double top, double zNear, double zFar, boolean zZeroToOne, Matrix4d dest)
      Apply an orthographic projection transformation for a left-handed coordiante system using the given NDC z range to this matrix and store the result in dest.
      Matrix4d orthoLH​(double left, double right, double bottom, double top, double zNear, double zFar, Matrix4d dest)
      Apply an orthographic projection transformation for a left-handed coordiante system using OpenGL's NDC z range of [-1..+1] to this matrix and store the result in dest.
      Matrix4d orthoSymmetric​(double width, double height, double zNear, double zFar)
      Apply a symmetric orthographic projection transformation for a right-handed coordinate system using OpenGL's NDC z range of [-1..+1] to this matrix.
      Matrix4d orthoSymmetric​(double width, double height, double zNear, double zFar, boolean zZeroToOne)
      Apply a symmetric orthographic projection transformation for a right-handed coordinate system using the given NDC z range to this matrix.
      Matrix4d orthoSymmetric​(double width, double height, double zNear, double zFar, boolean zZeroToOne, Matrix4d dest)
      Apply a symmetric orthographic projection transformation for a right-handed coordinate system using the given NDC z range to this matrix and store the result in dest.
      Matrix4d orthoSymmetric​(double width, double height, double zNear, double zFar, Matrix4d dest)
      Apply a symmetric orthographic projection transformation for a right-handed coordinate system using OpenGL's NDC z range of [-1..+1] to this matrix and store the result in dest.
      Matrix4d orthoSymmetricLH​(double width, double height, double zNear, double zFar)
      Apply a symmetric orthographic projection transformation for a left-handed coordinate system using OpenGL's NDC z range of [-1..+1] to this matrix.
      Matrix4d orthoSymmetricLH​(double width, double height, double zNear, double zFar, boolean zZeroToOne)
      Apply a symmetric orthographic projection transformation for a left-handed coordinate system using the given NDC z range to this matrix.
      Matrix4d orthoSymmetricLH​(double width, double height, double zNear, double zFar, boolean zZeroToOne, Matrix4d dest)
      Apply a symmetric orthographic projection transformation for a left-handed coordinate system using the given NDC z range to this matrix and store the result in dest.
      Matrix4d orthoSymmetricLH​(double width, double height, double zNear, double zFar, Matrix4d dest)
      Apply a symmetric orthographic projection transformation for a left-handed coordinate system using OpenGL's NDC z range of [-1..+1] to this matrix and store the result in dest.
      Matrix4d perspective​(double fovy, double aspect, double zNear, double zFar)
      Apply a symmetric perspective projection frustum transformation for a right-handed coordinate system using OpenGL's NDC z range of [-1..+1] to this matrix.
      Matrix4d perspective​(double fovy, double aspect, double zNear, double zFar, boolean zZeroToOne)
      Apply a symmetric perspective projection frustum transformation using for a right-handed coordinate system using the given NDC z range to this matrix.
      Matrix4d perspective​(double fovy, double aspect, double zNear, double zFar, boolean zZeroToOne, Matrix4d dest)
      Apply a symmetric perspective projection frustum transformation for a right-handed coordinate system using the given NDC z range to this matrix and store the result in dest.
      Matrix4d perspective​(double fovy, double aspect, double zNear, double zFar, Matrix4d dest)
      Apply a symmetric perspective projection frustum transformation for a right-handed coordinate system using OpenGL's NDC z range of [-1..+1] to this matrix and store the result in dest.
      double perspectiveFar()
      Extract the far clip plane distance from this perspective projection matrix.
      double perspectiveFov()
      Return the vertical field-of-view angle in radians of this perspective transformation matrix.
      Matrix4d perspectiveFrustumSlice​(double near, double far, Matrix4d dest)
      Change the near and far clip plane distances of this perspective frustum transformation matrix and store the result in dest.
      Vector3d perspectiveInvOrigin​(Vector3d dest)
      Compute the eye/origin of the inverse of the perspective frustum transformation defined by this matrix, which can be the inverse of a projection matrix or the inverse of a combined modelview-projection matrix, and store the result in the given dest.
      Matrix4d perspectiveLH​(double fovy, double aspect, double zNear, double zFar)
      Apply a symmetric perspective projection frustum transformation for a left-handed coordinate system using OpenGL's NDC z range of [-1..+1] to this matrix.
      Matrix4d perspectiveLH​(double fovy, double aspect, double zNear, double zFar, boolean zZeroToOne)
      Apply a symmetric perspective projection frustum transformation for a left-handed coordinate system using the given NDC z range to this matrix.
      Matrix4d perspectiveLH​(double fovy, double aspect, double zNear, double zFar, boolean zZeroToOne, Matrix4d dest)
      Apply a symmetric perspective projection frustum transformation for a left-handed coordinate system using the given NDC z range to this matrix and store the result in dest.
      Matrix4d perspectiveLH​(double fovy, double aspect, double zNear, double zFar, Matrix4d dest)
      Apply a symmetric perspective projection frustum transformation for a left-handed coordinate system using OpenGL's NDC z range of [-1..+1] to this matrix and store the result in dest.
      double perspectiveNear()
      Extract the near clip plane distance from this perspective projection matrix.
      Matrix4d perspectiveOffCenter​(double fovy, double offAngleX, double offAngleY, double aspect, double zNear, double zFar)
      Apply an asymmetric off-center perspective projection frustum transformation for a right-handed coordinate system using OpenGL's NDC z range of [-1..+1] to this matrix.
      Matrix4d perspectiveOffCenter​(double fovy, double offAngleX, double offAngleY, double aspect, double zNear, double zFar, boolean zZeroToOne)
      Apply an asymmetric off-center perspective projection frustum transformation using for a right-handed coordinate system using the given NDC z range to this matrix.
      Matrix4d perspectiveOffCenter​(double fovy, double offAngleX, double offAngleY, double aspect, double zNear, double zFar, boolean zZeroToOne, Matrix4d dest)
      Apply an asymmetric off-center perspective projection frustum transformation for a right-handed coordinate system using the given NDC z range to this matrix and store the result in dest.
      Matrix4d perspectiveOffCenter​(double fovy, double offAngleX, double offAngleY, double aspect, double zNear, double zFar, Matrix4d dest)
      Apply an asymmetric off-center perspective projection frustum transformation for a right-handed coordinate system using OpenGL's NDC z range of [-1..+1] to this matrix and store the result in dest.
      Matrix4d perspectiveOffCenterFov​(double angleLeft, double angleRight, double angleDown, double angleUp, double zNear, double zFar)
      Apply an asymmetric off-center perspective projection frustum transformation for a right-handed coordinate system using OpenGL's NDC z range of [-1..+1] to this matrix.
      Matrix4d perspectiveOffCenterFov​(double angleLeft, double angleRight, double angleDown, double angleUp, double zNear, double zFar, boolean zZeroToOne)
      Apply an asymmetric off-center perspective projection frustum transformation for a right-handed coordinate system using the given NDC z range to this matrix.
      Matrix4d perspectiveOffCenterFov​(double angleLeft, double angleRight, double angleDown, double angleUp, double zNear, double zFar, boolean zZeroToOne, Matrix4d dest)
      Apply an asymmetric off-center perspective projection frustum transformation for a right-handed coordinate system using the given NDC z range to this matrix and store the result in dest.
      Matrix4d perspectiveOffCenterFov​(double angleLeft, double angleRight, double angleDown, double angleUp, double zNear, double zFar, Matrix4d dest)
      Apply an asymmetric off-center perspective projection frustum transformation for a right-handed coordinate system using OpenGL's NDC z range of [-1..+1] to this matrix and store the result in dest.
      Matrix4d perspectiveOffCenterFovLH​(double angleLeft, double angleRight, double angleDown, double angleUp, double zNear, double zFar)
      Apply an asymmetric off-center perspective projection frustum transformation for a left-handed coordinate system using OpenGL's NDC z range of [-1..+1] to this matrix.
      Matrix4d perspectiveOffCenterFovLH​(double angleLeft, double angleRight, double angleDown, double angleUp, double zNear, double zFar, boolean zZeroToOne)
      Apply an asymmetric off-center perspective projection frustum transformation for a left-handed coordinate system using the given NDC z range to this matrix.
      Matrix4d perspectiveOffCenterFovLH​(double angleLeft, double angleRight, double angleDown, double angleUp, double zNear, double zFar, boolean zZeroToOne, Matrix4d dest)
      Apply an asymmetric off-center perspective projection frustum transformation for a left-handed coordinate system using the given NDC z range to this matrix and store the result in dest.
      Matrix4d perspectiveOffCenterFovLH​(double angleLeft, double angleRight, double angleDown, double angleUp, double zNear, double zFar, Matrix4d dest)
      Apply an asymmetric off-center perspective projection frustum transformation for a left-handed coordinate system using OpenGL's NDC z range of [-1..+1] to this matrix and store the result in dest.
      static void perspectiveOffCenterViewFromRectangle​(Vector3d eye, Vector3d p, Vector3d x, Vector3d y, double nearFarDist, boolean zeroToOne, Matrix4d projDest, Matrix4d viewDest)
      Create a view and off-center perspective projection matrix from a given eye position, a given bottom left corner position p of the near plane rectangle and the extents of the near plane rectangle along its local x and y axes, and store the resulting matrices in projDest and viewDest.
      Vector3d perspectiveOrigin​(Vector3d dest)
      Compute the eye/origin of the perspective frustum transformation defined by this matrix, which can be a projection matrix or a combined modelview-projection matrix, and store the result in the given origin.
      Matrix4d perspectiveRect​(double width, double height, double zNear, double zFar)
      Apply a symmetric perspective projection frustum transformation for a right-handed coordinate system using OpenGL's NDC z range of [-1..+1] to this matrix.
      Matrix4d perspectiveRect​(double width, double height, double zNear, double zFar, boolean zZeroToOne)
      Apply a symmetric perspective projection frustum transformation using for a right-handed coordinate system using the given NDC z range to this matrix.
      Matrix4d perspectiveRect​(double width, double height, double zNear, double zFar, boolean zZeroToOne, Matrix4d dest)
      Apply a symmetric perspective projection frustum transformation for a right-handed coordinate system using the given NDC z range to this matrix and store the result in dest.
      Matrix4d perspectiveRect​(double width, double height, double zNear, double zFar, Matrix4d dest)
      Apply a symmetric perspective projection frustum transformation for a right-handed coordinate system using OpenGL's NDC z range of [-1..+1] to this matrix and store the result in dest.
      Matrix4d pick​(double x, double y, double width, double height, int[] viewport)
      Apply a picking transformation to this matrix using the given window coordinates (x, y) as the pick center and the given (width, height) as the size of the picking region in window coordinates.
      Matrix4d pick​(double x, double y, double width, double height, int[] viewport, Matrix4d dest)
      Apply a picking transformation to this matrix using the given window coordinates (x, y) as the pick center and the given (width, height) as the size of the picking region in window coordinates, and store the result in dest.
      Vector3d positiveX​(Vector3d dir)
      Obtain the direction of +X before the transformation represented by this matrix is applied.
      Vector3d positiveY​(Vector3d dir)
      Obtain the direction of +Y before the transformation represented by this matrix is applied.
      Vector3d positiveZ​(Vector3d dir)
      Obtain the direction of +Z before the transformation represented by this matrix is applied.
      Vector3d project​(double x, double y, double z, int[] viewport, Vector3d winCoordsDest)
      Project the given (x, y, z) position via this matrix using the specified viewport and store the resulting window coordinates in winCoordsDest.
      Vector4d project​(double x, double y, double z, int[] viewport, Vector4d winCoordsDest)
      Project the given (x, y, z) position via this matrix using the specified viewport and store the resulting window coordinates in winCoordsDest.
      Vector3d project​(Vector3dc position, int[] viewport, Vector3d dest)
      Project the given position via this matrix using the specified viewport and store the resulting window coordinates in winCoordsDest.
      Vector4d project​(Vector3dc position, int[] viewport, Vector4d dest)
      Project the given position via this matrix using the specified viewport and store the resulting window coordinates in winCoordsDest.
      Matrix4d projectedGridRange​(Matrix4dc projector, double sLower, double sUpper, Matrix4d dest)
      Compute the range matrix for the Projected Grid transformation as described in chapter "2.4.2 Creating the range conversion matrix" of the paper Real-time water rendering - Introducing the projected grid concept based on the inverse of the view-projection matrix which is assumed to be this, and store that range matrix into dest.
      int properties()
      Return the assumed properties of this matrix.
      void readExternal​(java.io.ObjectInput in)  
      Matrix4d reflect​(double a, double b, double c, double d)
      Apply a mirror/reflection transformation to this matrix that reflects about the given plane specified via the equation x*a + y*b + z*c + d = 0.
      Matrix4d reflect​(double nx, double ny, double nz, double px, double py, double pz)
      Apply a mirror/reflection transformation to this matrix that reflects about the given plane specified via the plane normal and a point on the plane.
      Matrix4d reflect​(double nx, double ny, double nz, double px, double py, double pz, Matrix4d dest)
      Apply a mirror/reflection transformation to this matrix that reflects about the given plane specified via the plane normal and a point on the plane, and store the result in dest.
      Matrix4d reflect​(double a, double b, double c, double d, Matrix4d dest)
      Apply a mirror/reflection transformation to this matrix that reflects about the given plane specified via the equation x*a + y*b + z*c + d = 0 and store the result in dest.
      Matrix4d reflect​(Quaterniondc orientation, Vector3dc point)
      Apply a mirror/reflection transformation to this matrix that reflects about a plane specified via the plane orientation and a point on the plane.
      Matrix4d reflect​(Quaterniondc orientation, Vector3dc point, Matrix4d dest)
      Apply a mirror/reflection transformation to this matrix that reflects about a plane specified via the plane orientation and a point on the plane, and store the result in dest.
      Matrix4d reflect​(Vector3dc normal, Vector3dc point)
      Apply a mirror/reflection transformation to this matrix that reflects about the given plane specified via the plane normal and a point on the plane.
      Matrix4d reflect​(Vector3dc normal, Vector3dc point, Matrix4d dest)
      Apply a mirror/reflection transformation to this matrix that reflects about the given plane specified via the plane normal and a point on the plane, and store the result in dest.
      Matrix4d reflection​(double a, double b, double c, double d)
      Set this matrix to a mirror/reflection transformation that reflects about the given plane specified via the equation x*a + y*b + z*c + d = 0.
      Matrix4d reflection​(double nx, double ny, double nz, double px, double py, double pz)
      Set this matrix to a mirror/reflection transformation that reflects about the given plane specified via the plane normal and a point on the plane.
      Matrix4d reflection​(Quaterniondc orientation, Vector3dc point)
      Set this matrix to a mirror/reflection transformation that reflects about a plane specified via the plane orientation and a point on the plane.
      Matrix4d reflection​(Vector3dc normal, Vector3dc point)
      Set this matrix to a mirror/reflection transformation that reflects about the given plane specified via the plane normal and a point on the plane.
      Matrix4d rotate​(double ang, double x, double y, double z)
      Apply rotation to this matrix by rotating the given amount of radians about the given axis specified as x, y and z components.
      Matrix4d rotate​(double ang, double x, double y, double z, Matrix4d dest)
      Apply rotation to this matrix by rotating the given amount of radians about the given axis specified as x, y and z components and store the result in dest.
      Matrix4d rotate​(double angle, Vector3dc axis)
      Apply a rotation transformation, rotating the given radians about the specified axis, to this matrix.
      Matrix4d rotate​(double angle, Vector3dc axis, Matrix4d dest)
      Apply a rotation transformation, rotating the given radians about the specified axis and store the result in dest.
      Matrix4d rotate​(double angle, Vector3fc axis)
      Apply a rotation transformation, rotating the given radians about the specified axis, to this matrix.
      Matrix4d rotate​(double angle, Vector3fc axis, Matrix4d dest)
      Apply a rotation transformation, rotating the given radians about the specified axis and store the result in dest.
      Matrix4d rotate​(AxisAngle4d axisAngle)
      Apply a rotation transformation, rotating about the given AxisAngle4d, to this matrix.
      Matrix4d rotate​(AxisAngle4d axisAngle, Matrix4d dest)
      Apply a rotation transformation, rotating about the given AxisAngle4d and store the result in dest.
      Matrix4d rotate​(AxisAngle4f axisAngle)
      Apply a rotation transformation, rotating about the given AxisAngle4f, to this matrix.
      Matrix4d rotate​(AxisAngle4f axisAngle, Matrix4d dest)
      Apply a rotation transformation, rotating about the given AxisAngle4f and store the result in dest.
      Matrix4d rotate​(Quaterniondc quat)
      Apply the rotation - and possibly scaling - transformation of the given Quaterniondc to this matrix.
      Matrix4d rotate​(Quaterniondc quat, Matrix4d dest)
      Apply the rotation - and possibly scaling - transformation of the given Quaterniondc to this matrix and store the result in dest.
      Matrix4d rotate​(Quaternionfc quat)
      Apply the rotation - and possibly scaling - transformation of the given Quaternionfc to this matrix.
      Matrix4d rotate​(Quaternionfc quat, Matrix4d dest)
      Apply the rotation - and possibly scaling - transformation of the given Quaternionfc to this matrix and store the result in dest.
      Matrix4d rotateAffine​(double ang, double x, double y, double z)
      Apply rotation to this affine matrix by rotating the given amount of radians about the specified (x, y, z) axis.
      Matrix4d rotateAffine​(double ang, double x, double y, double z, Matrix4d dest)
      Apply rotation to this affine matrix by rotating the given amount of radians about the specified (x, y, z) axis and store the result in dest.
      Matrix4d rotateAffine​(Quaterniondc quat)
      Apply the rotation - and possibly scaling - transformation of the given Quaterniondc to this matrix.
      Matrix4d rotateAffine​(Quaterniondc quat, Matrix4d dest)
      Apply the rotation - and possibly scaling - transformation of the given Quaterniondc to this affine matrix and store the result in dest.
      Matrix4d rotateAffine​(Quaternionfc quat)
      Apply the rotation - and possibly scaling - transformation of the given Quaternionfc to this matrix.
      Matrix4d rotateAffine​(Quaternionfc quat, Matrix4d dest)
      Apply the rotation - and possibly scaling - transformation of the given Quaternionfc to this affine matrix and store the result in dest.
      Matrix4d rotateAffineXYZ​(double angleX, double angleY, double angleZ)
      Apply rotation of angleX radians about the X axis, followed by a rotation of angleY radians about the Y axis and followed by a rotation of angleZ radians about the Z axis.
      Matrix4d rotateAffineXYZ​(double angleX, double angleY, double angleZ, Matrix4d dest)
      Apply rotation of angleX radians about the X axis, followed by a rotation of angleY radians about the Y axis and followed by a rotation of angleZ radians about the Z axis and store the result in dest.
      Matrix4d rotateAffineYXZ​(double angleY, double angleX, double angleZ)
      Apply rotation of angleY radians about the Y axis, followed by a rotation of angleX radians about the X axis and followed by a rotation of angleZ radians about the Z axis.
      Matrix4d rotateAffineYXZ​(double angleY, double angleX, double angleZ, Matrix4d dest)
      Apply rotation of angleY radians about the Y axis, followed by a rotation of angleX radians about the X axis and followed by a rotation of angleZ radians about the Z axis and store the result in dest.
      Matrix4d rotateAffineZYX​(double angleZ, double angleY, double angleX)
      Apply rotation of angleZ radians about the Z axis, followed by a rotation of angleY radians about the Y axis and followed by a rotation of angleX radians about the X axis.
      Matrix4d rotateAffineZYX​(double angleZ, double angleY, double angleX, Matrix4d dest)
      Apply rotation of angleZ radians about the Z axis, followed by a rotation of angleY radians about the Y axis and followed by a rotation of angleX radians about the X axis and store the result in dest.
      Matrix4d rotateAround​(Quaterniondc quat, double ox, double oy, double oz)
      Apply the rotation transformation of the given Quaterniondc to this matrix while using (ox, oy, oz) as the rotation origin.
      Matrix4d rotateAround​(Quaterniondc quat, double ox, double oy, double oz, Matrix4d dest)
      Apply the rotation - and possibly scaling - transformation of the given Quaterniondc to this matrix while using (ox, oy, oz) as the rotation origin, and store the result in dest.
      Matrix4d rotateAroundAffine​(Quaterniondc quat, double ox, double oy, double oz, Matrix4d dest)
      Apply the rotation - and possibly scaling - transformation of the given Quaterniondc to this affine matrix while using (ox, oy, oz) as the rotation origin, and store the result in dest.
      Matrix4d rotateAroundLocal​(Quaterniondc quat, double ox, double oy, double oz)
      Pre-multiply the rotation - and possibly scaling - transformation of the given Quaterniondc to this matrix while using (ox, oy, oz) as the rotation origin.
      Matrix4d rotateAroundLocal​(Quaterniondc quat, double ox, double oy, double oz, Matrix4d dest)
      Pre-multiply the rotation - and possibly scaling - transformation of the given Quaterniondc to this matrix while using (ox, oy, oz) as the rotation origin, and store the result in dest.
      Matrix4d rotateLocal​(double ang, double x, double y, double z)
      Pre-multiply a rotation to this matrix by rotating the given amount of radians about the specified (x, y, z) axis.
      Matrix4d rotateLocal​(double ang, double x, double y, double z, Matrix4d dest)
      Pre-multiply a rotation to this matrix by rotating the given amount of radians about the specified (x, y, z) axis and store the result in dest.
      Matrix4d rotateLocal​(Quaterniondc quat)
      Pre-multiply the rotation - and possibly scaling - transformation of the given Quaterniondc to this matrix.
      Matrix4d rotateLocal​(Quaterniondc quat, Matrix4d dest)
      Pre-multiply the rotation - and possibly scaling - transformation of the given Quaterniondc to this matrix and store the result in dest.
      Matrix4d rotateLocal​(Quaternionfc quat)
      Pre-multiply the rotation - and possibly scaling - transformation of the given Quaternionfc to this matrix.
      Matrix4d rotateLocal​(Quaternionfc quat, Matrix4d dest)
      Pre-multiply the rotation - and possibly scaling - transformation of the given Quaternionfc to this matrix and store the result in dest.
      Matrix4d rotateLocalX​(double ang)
      Pre-multiply a rotation to this matrix by rotating the given amount of radians about the X axis.
      Matrix4d rotateLocalX​(double ang, Matrix4d dest)
      Pre-multiply a rotation around the X axis to this matrix by rotating the given amount of radians about the X axis and store the result in dest.
      Matrix4d rotateLocalY​(double ang)
      Pre-multiply a rotation to this matrix by rotating the given amount of radians about the Y axis.
      Matrix4d rotateLocalY​(double ang, Matrix4d dest)
      Pre-multiply a rotation around the Y axis to this matrix by rotating the given amount of radians about the Y axis and store the result in dest.
      Matrix4d rotateLocalZ​(double ang)
      Pre-multiply a rotation to this matrix by rotating the given amount of radians about the Z axis.
      Matrix4d rotateLocalZ​(double ang, Matrix4d dest)
      Pre-multiply a rotation around the Z axis to this matrix by rotating the given amount of radians about the Z axis and store the result in dest.
      Matrix4d rotateTowards​(double dirX, double dirY, double dirZ, double upX, double upY, double upZ)
      Apply a model transformation to this matrix for a right-handed coordinate system, that aligns the local +Z axis with (dirX, dirY, dirZ).
      Matrix4d rotateTowards​(double dirX, double dirY, double dirZ, double upX, double upY, double upZ, Matrix4d dest)
      Apply a model transformation to this matrix for a right-handed coordinate system, that aligns the local +Z axis with dir and store the result in dest.
      Matrix4d rotateTowards​(Vector3dc direction, Vector3dc up)
      Apply a model transformation to this matrix for a right-handed coordinate system, that aligns the local +Z axis with direction.
      Matrix4d rotateTowards​(Vector3dc direction, Vector3dc up, Matrix4d dest)
      Apply a model transformation to this matrix for a right-handed coordinate system, that aligns the local +Z axis with direction and store the result in dest.
      Matrix4d rotateTowardsXY​(double dirX, double dirY)
      Apply rotation about the Z axis to align the local +X towards (dirX, dirY).
      Matrix4d rotateTowardsXY​(double dirX, double dirY, Matrix4d dest)
      Apply rotation about the Z axis to align the local +X towards (dirX, dirY) and store the result in dest.
      Matrix4d rotateTranslation​(double ang, double x, double y, double z, Matrix4d dest)
      Apply rotation to this matrix, which is assumed to only contain a translation, by rotating the given amount of radians about the specified (x, y, z) axis and store the result in dest.
      Matrix4d rotateTranslation​(Quaterniondc quat, Matrix4d dest)
      Apply the rotation - and possibly scaling - transformation of the given Quaterniondc to this matrix, which is assumed to only contain a translation, and store the result in dest.
      Matrix4d rotateTranslation​(Quaternionfc quat, Matrix4d dest)
      Apply the rotation - and possibly scaling - transformation of the given Quaternionfc to this matrix, which is assumed to only contain a translation, and store the result in dest.
      Matrix4d rotateX​(double ang)
      Apply rotation about the X axis to this matrix by rotating the given amount of radians.
      Matrix4d rotateX​(double ang, Matrix4d dest)
      Apply rotation about the X axis to this matrix by rotating the given amount of radians and store the result in dest.
      Matrix4d rotateXYZ​(double angleX, double angleY, double angleZ)
      Apply rotation of angleX radians about the X axis, followed by a rotation of angleY radians about the Y axis and followed by a rotation of angleZ radians about the Z axis.
      Matrix4d rotateXYZ​(double angleX, double angleY, double angleZ, Matrix4d dest)
      Apply rotation of angleX radians about the X axis, followed by a rotation of angleY radians about the Y axis and followed by a rotation of angleZ radians about the Z axis and store the result in dest.
      Matrix4d rotateXYZ​(Vector3d angles)
      Apply rotation of angles.x radians about the X axis, followed by a rotation of angles.y radians about the Y axis and followed by a rotation of angles.z radians about the Z axis.
      Matrix4d rotateY​(double ang)
      Apply rotation about the Y axis to this matrix by rotating the given amount of radians.
      Matrix4d rotateY​(double ang, Matrix4d dest)
      Apply rotation about the Y axis to this matrix by rotating the given amount of radians and store the result in dest.
      Matrix4d rotateYXZ​(double angleY, double angleX, double angleZ)
      Apply rotation of angleY radians about the Y axis, followed by a rotation of angleX radians about the X axis and followed by a rotation of angleZ radians about the Z axis.
      Matrix4d rotateYXZ​(double angleY, double angleX, double angleZ, Matrix4d dest)
      Apply rotation of angleY radians about the Y axis, followed by a rotation of angleX radians about the X axis and followed by a rotation of angleZ radians about the Z axis and store the result in dest.
      Matrix4d rotateYXZ​(Vector3d angles)
      Apply rotation of angles.y radians about the Y axis, followed by a rotation of angles.x radians about the X axis and followed by a rotation of angles.z radians about the Z axis.
      Matrix4d rotateZ​(double ang)
      Apply rotation about the Z axis to this matrix by rotating the given amount of radians.
      Matrix4d rotateZ​(double ang, Matrix4d dest)
      Apply rotation about the Z axis to this matrix by rotating the given amount of radians and store the result in dest.
      Matrix4d rotateZYX​(double angleZ, double angleY, double angleX)
      Apply rotation of angleZ radians about the Z axis, followed by a rotation of angleY radians about the Y axis and followed by a rotation of angleX radians about the X axis.
      Matrix4d rotateZYX​(double angleZ, double angleY, double angleX, Matrix4d dest)
      Apply rotation of angleZ radians about the Z axis, followed by a rotation of angleY radians about the Y axis and followed by a rotation of angleX radians about the X axis and store the result in dest.
      Matrix4d rotateZYX​(Vector3d angles)
      Apply rotation of angles.z radians about the Z axis, followed by a rotation of angles.y radians about the Y axis and followed by a rotation of angles.x radians about the X axis.
      Matrix4d rotation​(double angle, double x, double y, double z)
      Set this matrix to a rotation matrix which rotates the given radians about a given axis.
      Matrix4d rotation​(double angle, Vector3dc axis)
      Set this matrix to a rotation matrix which rotates the given radians about a given axis.
      Matrix4d rotation​(double angle, Vector3fc axis)
      Set this matrix to a rotation matrix which rotates the given radians about a given axis.
      Matrix4d rotation​(AxisAngle4d angleAxis)
      Set this matrix to a rotation transformation using the given AxisAngle4d.
      Matrix4d rotation​(AxisAngle4f angleAxis)
      Set this matrix to a rotation transformation using the given AxisAngle4f.
      Matrix4d rotation​(Quaterniondc quat)
      Set this matrix to the rotation - and possibly scaling - transformation of the given Quaterniondc.
      Matrix4d rotation​(Quaternionfc quat)
      Set this matrix to the rotation - and possibly scaling - transformation of the given Quaternionfc.
      Matrix4d rotationAround​(Quaterniondc quat, double ox, double oy, double oz)
      Set this matrix to a transformation composed of a rotation of the specified Quaterniondc while using (ox, oy, oz) as the rotation origin.
      Matrix4d rotationTowards​(double dirX, double dirY, double dirZ, double upX, double upY, double upZ)
      Set this matrix to a model transformation for a right-handed coordinate system, that aligns the local -z axis with dir.
      Matrix4d rotationTowards​(Vector3dc dir, Vector3dc up)
      Set this matrix to a model transformation for a right-handed coordinate system, that aligns the local -z axis with dir.
      Matrix4d rotationTowardsXY​(double dirX, double dirY)
      Set this matrix to a rotation transformation about the Z axis to align the local +X towards (dirX, dirY).
      Matrix4d rotationX​(double ang)
      Set this matrix to a rotation transformation about the X axis.
      Matrix4d rotationXYZ​(double angleX, double angleY, double angleZ)
      Set this matrix to a rotation of angleX radians about the X axis, followed by a rotation of angleY radians about the Y axis and followed by a rotation of angleZ radians about the Z axis.
      Matrix4d rotationY​(double ang)
      Set this matrix to a rotation transformation about the Y axis.
      Matrix4d rotationYXZ​(double angleY, double angleX, double angleZ)
      Set this matrix to a rotation of angleY radians about the Y axis, followed by a rotation of angleX radians about the X axis and followed by a rotation of angleZ radians about the Z axis.
      Matrix4d rotationZ​(double ang)
      Set this matrix to a rotation transformation about the Z axis.
      Matrix4d rotationZYX​(double angleZ, double angleY, double angleX)
      Set this matrix to a rotation of angleZ radians about the Z axis, followed by a rotation of angleY radians about the Y axis and followed by a rotation of angleX radians about the X axis.
      Matrix4d scale​(double xyz)
      Apply scaling to this matrix by uniformly scaling all base axes by the given xyz factor.
      Matrix4d scale​(double x, double y, double z)
      Apply scaling to this matrix by scaling the base axes by the given x, y and z factors.
      Matrix4d scale​(double x, double y, double z, Matrix4d dest)
      Apply scaling to this matrix by scaling the base axes by the given x, y and z factors and store the result in dest.
      Matrix4d scale​(double xyz, Matrix4d dest)
      Apply scaling to this matrix by uniformly scaling all base axes by the given xyz factor and store the result in dest.
      Matrix4d scale​(Vector3dc xyz)
      Apply scaling to this matrix by scaling the base axes by the given xyz.x, xyz.y and xyz.z factors, respectively.
      Matrix4d scale​(Vector3dc xyz, Matrix4d dest)
      Apply scaling to this matrix by scaling the base axes by the given xyz.x, xyz.y and xyz.z factors, respectively and store the result in dest.
      Matrix4d scaleAround​(double factor, double ox, double oy, double oz)
      Apply scaling to this matrix by scaling all three base axes by the given factor while using (ox, oy, oz) as the scaling origin.
      Matrix4d scaleAround​(double sx, double sy, double sz, double ox, double oy, double oz)
      Apply scaling to this matrix by scaling the base axes by the given sx, sy and sz factors while using (ox, oy, oz) as the scaling origin.
      Matrix4d scaleAround​(double sx, double sy, double sz, double ox, double oy, double oz, Matrix4d dest)
      Apply scaling to this matrix by scaling the base axes by the given sx, sy and sz factors while using (ox, oy, oz) as the scaling origin, and store the result in dest.
      Matrix4d scaleAround​(double factor, double ox, double oy, double oz, Matrix4d dest)
      Apply scaling to this matrix by scaling all three base axes by the given factor while using (ox, oy, oz) as the scaling origin, and store the result in dest.
      Matrix4d scaleAroundLocal​(double factor, double ox, double oy, double oz)
      Pre-multiply scaling to this matrix by scaling all three base axes by the given factor while using (ox, oy, oz) as the scaling origin.
      Matrix4d scaleAroundLocal​(double sx, double sy, double sz, double ox, double oy, double oz)
      Pre-multiply scaling to this matrix by scaling the base axes by the given sx, sy and sz factors while using (ox, oy, oz) as the scaling origin.
      Matrix4d scaleAroundLocal​(double sx, double sy, double sz, double ox, double oy, double oz, Matrix4d dest)
      Pre-multiply scaling to this matrix by scaling the base axes by the given sx, sy and sz factors while using the given (ox, oy, oz) as the scaling origin, and store the result in dest.
      Matrix4d scaleAroundLocal​(double factor, double ox, double oy, double oz, Matrix4d dest)
      Pre-multiply scaling to this matrix by scaling all three base axes by the given factor while using (ox, oy, oz) as the scaling origin, and store the result in dest.
      Matrix4d scaleLocal​(double xyz)
      Pre-multiply scaling to this matrix by scaling the base axes by the given xyz factor.
      Matrix4d scaleLocal​(double x, double y, double z)
      Pre-multiply scaling to this matrix by scaling the base axes by the given x, y and z factors.
      Matrix4d scaleLocal​(double x, double y, double z, Matrix4d dest)
      Pre-multiply scaling to this matrix by scaling the base axes by the given x, y and z factors and store the result in dest.
      Matrix4d scaleLocal​(double xyz, Matrix4d dest)
      Pre-multiply scaling to this matrix by scaling all base axes by the given xyz factor, and store the result in dest.
      Matrix4d scaleXY​(double x, double y)
      Apply scaling to this matrix by scaling the X axis by x and the Y axis by y.
      Matrix4d scaleXY​(double x, double y, Matrix4d dest)
      Apply scaling to this matrix by by scaling the X axis by x and the Y axis by y and store the result in dest.
      Matrix4d scaling​(double factor)
      Set this matrix to be a simple scale matrix, which scales all axes uniformly by the given factor.
      Matrix4d scaling​(double x, double y, double z)
      Set this matrix to be a simple scale matrix.
      Matrix4d scaling​(Vector3dc xyz)
      Set this matrix to be a simple scale matrix which scales the base axes by xyz.x, xyz.y and xyz.z, respectively.
      Matrix4d set​(double[] m)
      Set the values in the matrix using a double array that contains the matrix elements in column-major order.
      Matrix4d set​(double[] m, int off)
      Set the values in the matrix using a double array that contains the matrix elements in column-major order.
      Matrix4d set​(double m00, double m01, double m02, double m03, double m10, double m11, double m12, double m13, double m20, double m21, double m22, double m23, double m30, double m31, double m32, double m33)
      Set the values within this matrix to the supplied double values.
      Matrix4d set​(float[] m)
      Set the values in the matrix using a float array that contains the matrix elements in column-major order.
      Matrix4d set​(float[] m, int off)
      Set the values in the matrix using a float array that contains the matrix elements in column-major order.
      Matrix4d set​(int column, int row, double value)
      Set the matrix element at the given column and row to the specified value.
      Matrix4d set​(int index, java.nio.ByteBuffer buffer)
      Set the values of this matrix by reading 16 double values from the given ByteBuffer in column-major order, starting at the specified absolute buffer position/index.
      Matrix4d set​(int index, java.nio.DoubleBuffer buffer)
      Set the values of this matrix by reading 16 double values from the given DoubleBuffer in column-major order, starting at the specified absolute buffer position/index.
      Matrix4d set​(int index, java.nio.FloatBuffer buffer)
      Set the values of this matrix by reading 16 float values from the given FloatBuffer in column-major order, starting at the specified absolute buffer position/index.
      Matrix4d set​(java.nio.ByteBuffer buffer)
      Set the values of this matrix by reading 16 double values from the given ByteBuffer in column-major order, starting at its current position.
      Matrix4d set​(java.nio.DoubleBuffer buffer)
      Set the values of this matrix by reading 16 double values from the given DoubleBuffer in column-major order, starting at its current position.
      Matrix4d set​(java.nio.FloatBuffer buffer)
      Set the values of this matrix by reading 16 float values from the given FloatBuffer in column-major order, starting at its current position.
      Matrix4d set​(AxisAngle4d axisAngle)
      Set this matrix to be equivalent to the rotation specified by the given AxisAngle4d.
      Matrix4d set​(AxisAngle4f axisAngle)
      Set this matrix to be equivalent to the rotation specified by the given AxisAngle4f.
      Matrix4d set​(Matrix3dc mat)
      Set the upper left 3x3 submatrix of this Matrix4d to the given Matrix3dc and the rest to identity.
      Matrix4d set​(Matrix4dc m)
      Store the values of the given matrix m into this matrix.
      Matrix4d set​(Matrix4fc m)
      Store the values of the given matrix m into this matrix.
      Matrix4d set​(Matrix4x3dc m)
      Store the values of the given matrix m into this matrix and set the other matrix elements to identity.
      Matrix4d set​(Matrix4x3fc m)
      Store the values of the given matrix m into this matrix and set the other matrix elements to identity.
      Matrix4d set​(Quaterniondc q)
      Set this matrix to be equivalent to the rotation - and possibly scaling - specified by the given Quaterniondc.
      Matrix4d set​(Quaternionfc q)
      Set this matrix to be equivalent to the rotation - and possibly scaling - specified by the given Quaternionfc.
      Matrix4d set​(Vector4d col0, Vector4d col1, Vector4d col2, Vector4d col3)
      Set the four columns of this matrix to the supplied vectors, respectively.
      Matrix4d set3x3​(Matrix3dc mat)
      Set the upper left 3x3 submatrix of this Matrix4d to the given Matrix3dc and don't change the other elements.
      Matrix4d set3x3​(Matrix4dc mat)
      Set the upper left 3x3 submatrix of this Matrix4d to that of the given Matrix4dc and don't change the other elements.
      Matrix4d set4x3​(Matrix4dc mat)
      Set the upper 4x3 submatrix of this Matrix4d to the upper 4x3 submatrix of the given Matrix4dc and don't change the other elements.
      Matrix4d set4x3​(Matrix4x3dc mat)
      Set the upper 4x3 submatrix of this Matrix4d to the given Matrix4x3dc and don't change the other elements.
      Matrix4d set4x3​(Matrix4x3fc mat)
      Set the upper 4x3 submatrix of this Matrix4d to the given Matrix4x3fc and don't change the other elements.
      Matrix4d setColumn​(int column, Vector4dc src)
      Set the column at the given column index, starting with 0.
      Matrix4d setFloats​(int index, java.nio.ByteBuffer buffer)
      Set the values of this matrix by reading 16 float values from the given ByteBuffer in column-major order, starting at the specified absolute buffer position/index.
      Matrix4d setFloats​(java.nio.ByteBuffer buffer)
      Set the values of this matrix by reading 16 float values from the given ByteBuffer in column-major order, starting at its current position.
      Matrix4d setFromAddress​(long address)
      Set the values of this matrix by reading 16 double values from off-heap memory in column-major order, starting at the given address.
      Matrix4d setFromIntrinsic​(double alphaX, double alphaY, double gamma, double u0, double v0, int imgWidth, int imgHeight, double near, double far)
      Set this matrix to represent a perspective projection equivalent to the given intrinsic camera calibration parameters.
      Matrix4d setFrustum​(double left, double right, double bottom, double top, double zNear, double zFar)
      Set this matrix to be an arbitrary perspective projection frustum transformation for a right-handed coordinate system using OpenGL's NDC z range of [-1..+1].
      Matrix4d setFrustum​(double left, double right, double bottom, double top, double zNear, double zFar, boolean zZeroToOne)
      Set this matrix to be an arbitrary perspective projection frustum transformation for a right-handed coordinate system using the given NDC z range.
      Matrix4d setFrustumLH​(double left, double right, double bottom, double top, double zNear, double zFar)
      Set this matrix to be an arbitrary perspective projection frustum transformation for a left-handed coordinate system using OpenGL's NDC z range of [-1..+1].
      Matrix4d setFrustumLH​(double left, double right, double bottom, double top, double zNear, double zFar, boolean zZeroToOne)
      Set this matrix to be an arbitrary perspective projection frustum transformation for a left-handed coordinate system using OpenGL's NDC z range of [-1..+1].
      Matrix4d setLookAlong​(double dirX, double dirY, double dirZ, double upX, double upY, double upZ)
      Set this matrix to a rotation transformation to make -z point along dir.
      Matrix4d setLookAlong​(Vector3dc dir, Vector3dc up)
      Set this matrix to a rotation transformation to make -z point along dir.
      Matrix4d setLookAt​(double eyeX, double eyeY, double eyeZ, double centerX, double centerY, double centerZ, double upX, double upY, double upZ)
      Set this matrix to be a "lookat" transformation for a right-handed coordinate system, that aligns -z with center - eye.
      Matrix4d setLookAt​(Vector3dc eye, Vector3dc center, Vector3dc up)
      Set this matrix to be a "lookat" transformation for a right-handed coordinate system, that aligns -z with center - eye.
      Matrix4d setLookAtLH​(double eyeX, double eyeY, double eyeZ, double centerX, double centerY, double centerZ, double upX, double upY, double upZ)
      Set this matrix to be a "lookat" transformation for a left-handed coordinate system, that aligns +z with center - eye.
      Matrix4d setLookAtLH​(Vector3dc eye, Vector3dc center, Vector3dc up)
      Set this matrix to be a "lookat" transformation for a left-handed coordinate system, that aligns +z with center - eye.
      Matrix4d setOrtho​(double left, double right, double bottom, double top, double zNear, double zFar)
      Set this matrix to be an orthographic projection transformation for a right-handed coordinate system using OpenGL's NDC z range of [-1..+1].
      Matrix4d setOrtho​(double left, double right, double bottom, double top, double zNear, double zFar, boolean zZeroToOne)
      Set this matrix to be an orthographic projection transformation for a right-handed coordinate system using the given NDC z range.
      Matrix4d setOrtho2D​(double left, double right, double bottom, double top)
      Set this matrix to be an orthographic projection transformation for a right-handed coordinate system.
      Matrix4d setOrtho2DLH​(double left, double right, double bottom, double top)
      Set this matrix to be an orthographic projection transformation for a left-handed coordinate system.
      Matrix4d setOrthoLH​(double left, double right, double bottom, double top, double zNear, double zFar)
      Set this matrix to be an orthographic projection transformation for a left-handed coordinate system using OpenGL's NDC z range of [-1..+1].
      Matrix4d setOrthoLH​(double left, double right, double bottom, double top, double zNear, double zFar, boolean zZeroToOne)
      Set this matrix to be an orthographic projection transformation for a left-handed coordinate system using the given NDC z range.
      Matrix4d setOrthoSymmetric​(double width, double height, double zNear, double zFar)
      Set this matrix to be a symmetric orthographic projection transformation for a right-handed coordinate system using OpenGL's NDC z range of [-1..+1].
      Matrix4d setOrthoSymmetric​(double width, double height, double zNear, double zFar, boolean zZeroToOne)
      Set this matrix to be a symmetric orthographic projection transformation for a right-handed coordinate system using the given NDC z range.
      Matrix4d setOrthoSymmetricLH​(double width, double height, double zNear, double zFar)
      Set this matrix to be a symmetric orthographic projection transformation for a left-handed coordinate system using OpenGL's NDC z range of [-1..+1].
      Matrix4d setOrthoSymmetricLH​(double width, double height, double zNear, double zFar, boolean zZeroToOne)
      Set this matrix to be a symmetric orthographic projection transformation for a left-handed coordinate system using the given NDC z range.
      Matrix4d setPerspective​(double fovy, double aspect, double zNear, double zFar)
      Set this matrix to be a symmetric perspective projection frustum transformation for a right-handed coordinate system using OpenGL's NDC z range of [-1..+1].
      Matrix4d setPerspective​(double fovy, double aspect, double zNear, double zFar, boolean zZeroToOne)
      Set this matrix to be a symmetric perspective projection frustum transformation for a right-handed coordinate system using the given NDC z range.
      Matrix4d setPerspectiveLH​(double fovy, double aspect, double zNear, double zFar)
      Set this matrix to be a symmetric perspective projection frustum transformation for a left-handed coordinate system using OpenGL's NDC z range of [-1..+1].
      Matrix4d setPerspectiveLH​(double fovy, double aspect, double zNear, double zFar, boolean zZeroToOne)
      Set this matrix to be a symmetric perspective projection frustum transformation for a left-handed coordinate system using the given NDC z range of [-1..+1].
      Matrix4d setPerspectiveOffCenter​(double fovy, double offAngleX, double offAngleY, double aspect, double zNear, double zFar)
      Set this matrix to be an asymmetric off-center perspective projection frustum transformation for a right-handed coordinate system using OpenGL's NDC z range of [-1..+1].
      Matrix4d setPerspectiveOffCenter​(double fovy, double offAngleX, double offAngleY, double aspect, double zNear, double zFar, boolean zZeroToOne)
      Set this matrix to be an asymmetric off-center perspective projection frustum transformation for a right-handed coordinate system using the given NDC z range.
      Matrix4d setPerspectiveOffCenterFov​(double angleLeft, double angleRight, double angleDown, double angleUp, double zNear, double zFar)
      Set this matrix to be an asymmetric off-center perspective projection frustum transformation for a right-handed coordinate system using OpenGL's NDC z range of [-1..+1].
      Matrix4d setPerspectiveOffCenterFov​(double angleLeft, double angleRight, double angleDown, double angleUp, double zNear, double zFar, boolean zZeroToOne)
      Set this matrix to be an asymmetric off-center perspective projection frustum transformation for a right-handed coordinate system using the given NDC z range.
      Matrix4d setPerspectiveOffCenterFovLH​(double angleLeft, double angleRight, double angleDown, double angleUp, double zNear, double zFar)
      Set this matrix to be an asymmetric off-center perspective projection frustum transformation for a left-handed coordinate system using OpenGL's NDC z range of [-1..+1].
      Matrix4d setPerspectiveOffCenterFovLH​(double angleLeft, double angleRight, double angleDown, double angleUp, double zNear, double zFar, boolean zZeroToOne)
      Set this matrix to be an asymmetric off-center perspective projection frustum transformation for a left-handed coordinate system using the given NDC z range.
      Matrix4d setPerspectiveRect​(double width, double height, double zNear, double zFar)
      Set this matrix to be a symmetric perspective projection frustum transformation for a right-handed coordinate system using OpenGL's NDC z range of [-1..+1].
      Matrix4d setPerspectiveRect​(double width, double height, double zNear, double zFar, boolean zZeroToOne)
      Set this matrix to be a symmetric perspective projection frustum transformation for a right-handed coordinate system using the given NDC z range.
      Matrix4d setRotationXYZ​(double angleX, double angleY, double angleZ)
      Set only the upper left 3x3 submatrix of this matrix to a rotation of angleX radians about the X axis, followed by a rotation of angleY radians about the Y axis and followed by a rotation of angleZ radians about the Z axis.
      Matrix4d setRotationYXZ​(double angleY, double angleX, double angleZ)
      Set only the upper left 3x3 submatrix of this matrix to a rotation of angleY radians about the Y axis, followed by a rotation of angleX radians about the X axis and followed by a rotation of angleZ radians about the Z axis.
      Matrix4d setRotationZYX​(double angleZ, double angleY, double angleX)
      Set only the upper left 3x3 submatrix of this matrix to a rotation of angleZ radians about the Z axis, followed by a rotation of angleY radians about the Y axis and followed by a rotation of angleX radians about the X axis.
      Matrix4d setRow​(int row, Vector4dc src)
      Set the row at the given row index, starting with 0.
      Matrix4d setRowColumn​(int row, int column, double value)
      Set the matrix element at the given row and column to the specified value.
      Matrix4d setTranslation​(double x, double y, double z)
      Set only the translation components (m30, m31, m32) of this matrix to the given values (x, y, z).
      Matrix4d setTranslation​(Vector3dc xyz)
      Set only the translation components (m30, m31, m32) of this matrix to the given values (xyz.x, xyz.y, xyz.z).
      Matrix4d setTransposed​(Matrix4dc m)
      Store the values of the transpose of the given matrix m into this matrix.
      Matrix4d shadow​(double lightX, double lightY, double lightZ, double lightW, double a, double b, double c, double d)
      Apply a projection transformation to this matrix that projects onto the plane specified via the general plane equation x*a + y*b + z*c + d = 0 as if casting a shadow from a given light position/direction (lightX, lightY, lightZ, lightW).
      Matrix4d shadow​(double lightX, double lightY, double lightZ, double lightW, double a, double b, double c, double d, Matrix4d dest)
      Apply a projection transformation to this matrix that projects onto the plane specified via the general plane equation x*a + y*b + z*c + d = 0 as if casting a shadow from a given light position/direction (lightX, lightY, lightZ, lightW) and store the result in dest.
      Matrix4d shadow​(double lightX, double lightY, double lightZ, double lightW, Matrix4dc planeTransform)
      Apply a projection transformation to this matrix that projects onto the plane with the general plane equation y = 0 as if casting a shadow from a given light position/direction (lightX, lightY, lightZ, lightW).
      Matrix4d shadow​(double lightX, double lightY, double lightZ, double lightW, Matrix4dc planeTransform, Matrix4d dest)
      Apply a projection transformation to this matrix that projects onto the plane with the general plane equation y = 0 as if casting a shadow from a given light position/direction (lightX, lightY, lightZ, lightW) and store the result in dest.
      Matrix4d shadow​(Vector4dc light, double a, double b, double c, double d)
      Apply a projection transformation to this matrix that projects onto the plane specified via the general plane equation x*a + y*b + z*c + d = 0 as if casting a shadow from a given light position/direction light.
      Matrix4d shadow​(Vector4dc light, double a, double b, double c, double d, Matrix4d dest)
      Apply a projection transformation to this matrix that projects onto the plane specified via the general plane equation x*a + y*b + z*c + d = 0 as if casting a shadow from a given light position/direction light and store the result in dest.
      Matrix4d shadow​(Vector4dc light, Matrix4dc planeTransform, Matrix4d dest)
      Apply a projection transformation to this matrix that projects onto the plane with the general plane equation y = 0 as if casting a shadow from a given light position/direction light and store the result in dest.
      Matrix4d shadow​(Vector4d light, Matrix4d planeTransform)
      Apply a projection transformation to this matrix that projects onto the plane with the general plane equation y = 0 as if casting a shadow from a given light position/direction light.
      Matrix4d sub​(Matrix4dc subtrahend)
      Component-wise subtract subtrahend from this.
      Matrix4d sub​(Matrix4dc subtrahend, Matrix4d dest)
      Component-wise subtract subtrahend from this and store the result in dest.
      Matrix4d sub4x3​(Matrix4dc subtrahend)
      Component-wise subtract the upper 4x3 submatrices of subtrahend from this.
      Matrix4d sub4x3​(Matrix4dc subtrahend, Matrix4d dest)
      Component-wise subtract the upper 4x3 submatrices of subtrahend from this and store the result in dest.
      Matrix4d swap​(Matrix4d other)
      Exchange the values of this matrix with the given other matrix.
      boolean testAab​(double minX, double minY, double minZ, double maxX, double maxY, double maxZ)
      Test whether the given axis-aligned box is partly or completely within or outside of the frustum defined by this matrix.
      boolean testPoint​(double x, double y, double z)
      Test whether the given point (x, y, z) is within the frustum defined by this matrix.
      boolean testSphere​(double x, double y, double z, double r)
      Test whether the given sphere is partly or completely within or outside of the frustum defined by this matrix.
      Matrix4d tile​(int x, int y, int w, int h)
      This method is equivalent to calling: translate(w-1-2*x, h-1-2*y, 0).scale(w, h, 1)
      Matrix4d tile​(int x, int y, int w, int h, Matrix4d dest)
      This method is equivalent to calling: translate(w-1-2*x, h-1-2*y, 0, dest).scale(w, h, 1)
      java.lang.String toString()
      Return a string representation of this matrix.
      java.lang.String toString​(java.text.NumberFormat formatter)
      Return a string representation of this matrix by formatting the matrix elements with the given NumberFormat.
      Vector4d transform​(double x, double y, double z, double w, Vector4d dest)
      Transform/multiply the vector (x, y, z, w) by this matrix and store the result in dest.
      Vector4d transform​(Vector4d v)
      Transform/multiply the given vector by this matrix and store the result in that vector.
      Vector4d transform​(Vector4dc v, Vector4d dest)
      Transform/multiply the given vector by this matrix and store the result in dest.
      Matrix4d transformAab​(double minX, double minY, double minZ, double maxX, double maxY, double maxZ, Vector3d outMin, Vector3d outMax)
      Transform the axis-aligned box given as the minimum corner (minX, minY, minZ) and maximum corner (maxX, maxY, maxZ) by this affine matrix and compute the axis-aligned box of the result whose minimum corner is stored in outMin and maximum corner stored in outMax.
      Matrix4d transformAab​(Vector3dc min, Vector3dc max, Vector3d outMin, Vector3d outMax)
      Transform the axis-aligned box given as the minimum corner min and maximum corner max by this affine matrix and compute the axis-aligned box of the result whose minimum corner is stored in outMin and maximum corner stored in outMax.
      Vector4d transformAffine​(double x, double y, double z, double w, Vector4d dest)
      Transform/multiply the 4D-vector (x, y, z, w) by assuming that this matrix represents an affine transformation (i.e.
      Vector4d transformAffine​(Vector4d dest)
      Transform/multiply the given 4D-vector by assuming that this matrix represents an affine transformation (i.e.
      Vector4d transformAffine​(Vector4dc v, Vector4d dest)
      Transform/multiply the given 4D-vector by assuming that this matrix represents an affine transformation (i.e.
      Vector3d transformDirection​(double x, double y, double z, Vector3d dest)
      Transform/multiply the 3D-vector (x, y, z), as if it was a 4D-vector with w=0, by this matrix and store the result in dest.
      Vector3f transformDirection​(double x, double y, double z, Vector3f dest)
      Transform/multiply the 3D-vector (x, y, z), as if it was a 4D-vector with w=0, by this matrix and store the result in dest.
      Vector3d transformDirection​(Vector3d dest)
      Transform/multiply the given 3D-vector, as if it was a 4D-vector with w=0, by this matrix and store the result in that vector.
      Vector3d transformDirection​(Vector3dc v, Vector3d dest)
      Transform/multiply the given 3D-vector, as if it was a 4D-vector with w=0, by this matrix and store the result in dest.
      Vector3f transformDirection​(Vector3f dest)
      Transform/multiply the given 3D-vector, as if it was a 4D-vector with w=0, by this matrix and store the result in that vector.
      Vector3f transformDirection​(Vector3fc v, Vector3f dest)
      Transform/multiply the given 3D-vector, as if it was a 4D-vector with w=0, by this matrix and store the result in dest.
      Vector3d transformPosition​(double x, double y, double z, Vector3d dest)
      Transform/multiply the 3D-vector (x, y, z), as if it was a 4D-vector with w=1, by this matrix and store the result in dest.
      Vector3d transformPosition​(Vector3d dest)
      Transform/multiply the given 3D-vector, as if it was a 4D-vector with w=1, by this matrix and store the result in that vector.
      Vector3d transformPosition​(Vector3dc v, Vector3d dest)
      Transform/multiply the given 3D-vector, as if it was a 4D-vector with w=1, by this matrix and store the result in dest.
      Vector3d transformProject​(double x, double y, double z, double w, Vector3d dest)
      Transform/multiply the vector (x, y, z, w) by this matrix, perform perspective divide and store (x, y, z) of the result in dest.
      Vector4d transformProject​(double x, double y, double z, double w, Vector4d dest)
      Transform/multiply the vector (x, y, z, w) by this matrix, perform perspective divide and store the result in dest.
      Vector3d transformProject​(double x, double y, double z, Vector3d dest)
      Transform/multiply the vector (x, y, z) by this matrix, perform perspective divide and store the result in dest.
      Vector3d transformProject​(Vector3d v)
      Transform/multiply the given vector by this matrix, perform perspective divide and store the result in that vector.
      Vector3d transformProject​(Vector3dc v, Vector3d dest)
      Transform/multiply the given vector by this matrix, perform perspective divide and store the result in dest.
      Vector4d transformProject​(Vector4d v)
      Transform/multiply the given vector by this matrix, perform perspective divide and store the result in that vector.
      Vector3d transformProject​(Vector4dc v, Vector3d dest)
      Transform/multiply the given vector by this matrix, perform perspective divide and store the x, y and z components of the result in dest.
      Vector4d transformProject​(Vector4dc v, Vector4d dest)
      Transform/multiply the given vector by this matrix, perform perspective divide and store the result in dest.
      Vector4d transformTranspose​(double x, double y, double z, double w, Vector4d dest)
      Transform/multiply the vector (x, y, z, w) by the transpose of this matrix and store the result in dest.
      Vector4d transformTranspose​(Vector4d v)
      Transform/multiply the given vector by the transpose of this matrix and store the result in that vector.
      Vector4d transformTranspose​(Vector4dc v, Vector4d dest)
      Transform/multiply the given vector by the transpose of this matrix and store the result in dest.
      Matrix4d translate​(double x, double y, double z)
      Apply a translation to this matrix by translating by the given number of units in x, y and z.
      Matrix4d translate​(double x, double y, double z, Matrix4d dest)
      Apply a translation to this matrix by translating by the given number of units in x, y and z and store the result in dest.
      Matrix4d translate​(Vector3dc offset)
      Apply a translation to this matrix by translating by the given number of units in x, y and z.
      Matrix4d translate​(Vector3dc offset, Matrix4d dest)
      Apply a translation to this matrix by translating by the given number of units in x, y and z and store the result in dest.
      Matrix4d translate​(Vector3fc offset)
      Apply a translation to this matrix by translating by the given number of units in x, y and z.
      Matrix4d translate​(Vector3fc offset, Matrix4d dest)
      Apply a translation to this matrix by translating by the given number of units in x, y and z and store the result in dest.
      Matrix4d translateLocal​(double x, double y, double z)
      Pre-multiply a translation to this matrix by translating by the given number of units in x, y and z.
      Matrix4d translateLocal​(double x, double y, double z, Matrix4d dest)
      Pre-multiply a translation to this matrix by translating by the given number of units in x, y and z and store the result in dest.
      Matrix4d translateLocal​(Vector3dc offset)
      Pre-multiply a translation to this matrix by translating by the given number of units in x, y and z.
      Matrix4d translateLocal​(Vector3dc offset, Matrix4d dest)
      Pre-multiply a translation to this matrix by translating by the given number of units in x, y and z and store the result in dest.
      Matrix4d translateLocal​(Vector3fc offset)
      Pre-multiply a translation to this matrix by translating by the given number of units in x, y and z.
      Matrix4d translateLocal​(Vector3fc offset, Matrix4d dest)
      Pre-multiply a translation to this matrix by translating by the given number of units in x, y and z and store the result in dest.
      Matrix4d translation​(double x, double y, double z)
      Set this matrix to be a simple translation matrix.
      Matrix4d translation​(Vector3dc offset)
      Set this matrix to be a simple translation matrix.
      Matrix4d translation​(Vector3fc offset)
      Set this matrix to be a simple translation matrix.
      Matrix4d translationRotate​(double tx, double ty, double tz, double qx, double qy, double qz, double qw)
      Set this matrix to T * R, where T is a translation by the given (tx, ty, tz) and R is a rotation - and possibly scaling - transformation specified by the quaternion (qx, qy, qz, qw).
      Matrix4d translationRotate​(double tx, double ty, double tz, Quaterniondc quat)
      Set this matrix to T * R, where T is a translation by the given (tx, ty, tz) and R is a rotation - and possibly scaling - transformation specified by the given quaternion.
      Matrix4d translationRotate​(Vector3dc translation, Quaterniondc quat)
      Set this matrix to T * R, where T is the given translation and R is a rotation transformation specified by the given quaternion.
      Matrix4d translationRotateInvert​(double tx, double ty, double tz, double qx, double qy, double qz, double qw)
      Set this matrix to (T * R)-1, where T is a translation by the given (tx, ty, tz) and R is a rotation transformation specified by the quaternion (qx, qy, qz, qw).
      Matrix4d translationRotateInvert​(Vector3fc translation, Quaternionfc quat)
      Set this matrix to (T * R)-1, where T is the given translation and R is a rotation transformation specified by the given quaternion.
      Matrix4d translationRotateScale​(double tx, double ty, double tz, double qx, double qy, double qz, double qw, double scale)
      Set this matrix to T * R * S, where T is a translation by the given (tx, ty, tz), R is a rotation transformation specified by the quaternion (qx, qy, qz, qw), and S is a scaling transformation which scales all three axes by scale.
      Matrix4d translationRotateScale​(double tx, double ty, double tz, double qx, double qy, double qz, double qw, double sx, double sy, double sz)
      Set this matrix to T * R * S, where T is a translation by the given (tx, ty, tz), R is a rotation transformation specified by the quaternion (qx, qy, qz, qw), and S is a scaling transformation which scales the three axes x, y and z by (sx, sy, sz).
      Matrix4d translationRotateScale​(Vector3dc translation, Quaterniondc quat, double scale)
      Set this matrix to T * R * S, where T is the given translation, R is a rotation transformation specified by the given quaternion, and S is a scaling transformation which scales all three axes by scale.
      Matrix4d translationRotateScale​(Vector3dc translation, Quaterniondc quat, Vector3dc scale)
      Set this matrix to T * R * S, where T is the given translation, R is a rotation transformation specified by the given quaternion, and S is a scaling transformation which scales the axes by scale.
      Matrix4d translationRotateScale​(Vector3fc translation, Quaternionfc quat, double scale)
      Set this matrix to T * R * S, where T is the given translation, R is a rotation transformation specified by the given quaternion, and S is a scaling transformation which scales all three axes by scale.
      Matrix4d translationRotateScale​(Vector3fc translation, Quaternionfc quat, Vector3fc scale)
      Set this matrix to T * R * S, where T is the given translation, R is a rotation transformation specified by the given quaternion, and S is a scaling transformation which scales the axes by scale.
      Matrix4d translationRotateScaleInvert​(double tx, double ty, double tz, double qx, double qy, double qz, double qw, double sx, double sy, double sz)
      Set this matrix to (T * R * S)-1, where T is a translation by the given (tx, ty, tz), R is a rotation transformation specified by the quaternion (qx, qy, qz, qw), and S is a scaling transformation which scales the three axes x, y and z by (sx, sy, sz).
      Matrix4d translationRotateScaleInvert​(Vector3dc translation, Quaterniondc quat, double scale)
      Set this matrix to (T * R * S)-1, where T is the given translation, R is a rotation transformation specified by the given quaternion, and S is a scaling transformation which scales all three axes by scale.
      Matrix4d translationRotateScaleInvert​(Vector3dc translation, Quaterniondc quat, Vector3dc scale)
      Set this matrix to (T * R * S)-1, where T is the given translation, R is a rotation transformation specified by the given quaternion, and S is a scaling transformation which scales the axes by scale.
      Matrix4d translationRotateScaleInvert​(Vector3fc translation, Quaternionfc quat, double scale)
      Set this matrix to (T * R * S)-1, where T is the given translation, R is a rotation transformation specified by the given quaternion, and S is a scaling transformation which scales all three axes by scale.
      Matrix4d translationRotateScaleInvert​(Vector3fc translation, Quaternionfc quat, Vector3fc scale)
      Set this matrix to (T * R * S)-1, where T is the given translation, R is a rotation transformation specified by the given quaternion, and S is a scaling transformation which scales the axes by scale.
      Matrix4d translationRotateScaleMulAffine​(double tx, double ty, double tz, double qx, double qy, double qz, double qw, double sx, double sy, double sz, Matrix4d m)
      Set this matrix to T * R * S * M, where T is a translation by the given (tx, ty, tz), R is a rotation - and possibly scaling - transformation specified by the quaternion (qx, qy, qz, qw), S is a scaling transformation which scales the three axes x, y and z by (sx, sy, sz) and M is an affine matrix.
      Matrix4d translationRotateScaleMulAffine​(Vector3fc translation, Quaterniondc quat, Vector3fc scale, Matrix4d m)
      Set this matrix to T * R * S * M, where T is the given translation, R is a rotation - and possibly scaling - transformation specified by the given quaternion, S is a scaling transformation which scales the axes by scale and M is an affine matrix.
      Matrix4d translationRotateTowards​(double posX, double posY, double posZ, double dirX, double dirY, double dirZ, double upX, double upY, double upZ)
      Set this matrix to a model transformation for a right-handed coordinate system, that translates to the given (posX, posY, posZ) and aligns the local -z axis with (dirX, dirY, dirZ).
      Matrix4d translationRotateTowards​(Vector3dc pos, Vector3dc dir, Vector3dc up)
      Set this matrix to a model transformation for a right-handed coordinate system, that translates to the given pos and aligns the local -z axis with dir.
      Matrix4d transpose()
      Transpose this matrix.
      Matrix4d transpose​(Matrix4d dest)
      Transpose this matrix and store the result into dest.
      Matrix4d transpose3x3()
      Transpose only the upper left 3x3 submatrix of this matrix.
      Matrix3d transpose3x3​(Matrix3d dest)
      Transpose only the upper left 3x3 submatrix of this matrix and store the result in dest.
      Matrix4d transpose3x3​(Matrix4d dest)
      Transpose only the upper left 3x3 submatrix of this matrix and store the result in dest.
      Matrix4d trapezoidCrop​(double p0x, double p0y, double p1x, double p1y, double p2x, double p2y, double p3x, double p3y)
      Set this matrix to a perspective transformation that maps the trapezoid spanned by the four corner coordinates (p0x, p0y), (p1x, p1y), (p2x, p2y) and (p3x, p3y) to the unit square [(-1, -1)..(+1, +1)].
      Vector3d unproject​(double winX, double winY, double winZ, int[] viewport, Vector3d dest)
      Unproject the given window coordinates (winX, winY, winZ) by this matrix using the specified viewport.
      Vector4d unproject​(double winX, double winY, double winZ, int[] viewport, Vector4d dest)
      Unproject the given window coordinates (winX, winY, winZ) by this matrix using the specified viewport.
      Vector3d unproject​(Vector3dc winCoords, int[] viewport, Vector3d dest)
      Unproject the given window coordinates winCoords by this matrix using the specified viewport.
      Vector4d unproject​(Vector3dc winCoords, int[] viewport, Vector4d dest)
      Unproject the given window coordinates winCoords by this matrix using the specified viewport.
      Vector3d unprojectInv​(double winX, double winY, double winZ, int[] viewport, Vector3d dest)
      Unproject the given window coordinates (winX, winY, winZ) by this matrix using the specified viewport.
      Vector4d unprojectInv​(double winX, double winY, double winZ, int[] viewport, Vector4d dest)
      Unproject the given window coordinates (winX, winY, winZ) by this matrix using the specified viewport.
      Vector3d unprojectInv​(Vector3dc winCoords, int[] viewport, Vector3d dest)
      Unproject the given window coordinates winCoords by this matrix using the specified viewport.
      Vector4d unprojectInv​(Vector3dc winCoords, int[] viewport, Vector4d dest)
      Unproject the given window coordinates winCoords by this matrix using the specified viewport.
      Matrix4d unprojectInvRay​(double winX, double winY, int[] viewport, Vector3d originDest, Vector3d dirDest)
      Unproject the given 2D window coordinates (winX, winY) by this matrix using the specified viewport and compute the origin and the direction of the resulting ray which starts at NDC z = -1.0 and goes through NDC z = +1.0.
      Matrix4d unprojectInvRay​(Vector2dc winCoords, int[] viewport, Vector3d originDest, Vector3d dirDest)
      Unproject the given window coordinates winCoords by this matrix using the specified viewport and compute the origin and the direction of the resulting ray which starts at NDC z = -1.0 and goes through NDC z = +1.0.
      Matrix4d unprojectRay​(double winX, double winY, int[] viewport, Vector3d originDest, Vector3d dirDest)
      Unproject the given 2D window coordinates (winX, winY) by this matrix using the specified viewport and compute the origin and the direction of the resulting ray which starts at NDC z = -1.0 and goes through NDC z = +1.0.
      Matrix4d unprojectRay​(Vector2dc winCoords, int[] viewport, Vector3d originDest, Vector3d dirDest)
      Unproject the given 2D window coordinates winCoords by this matrix using the specified viewport and compute the origin and the direction of the resulting ray which starts at NDC z = -1.0 and goes through NDC z = +1.0.
      Matrix4d withLookAtUp​(double upX, double upY, double upZ)
      Apply a transformation to this matrix to ensure that the local Y axis (as obtained by positiveY(Vector3d)) will be coplanar to the plane spanned by the local Z axis (as obtained by positiveZ(Vector3d)) and the given vector (upX, upY, upZ).
      Matrix4d withLookAtUp​(double upX, double upY, double upZ, Matrix4d dest)
      Apply a transformation to this matrix to ensure that the local Y axis (as obtained by Matrix4dc.positiveY(Vector3d)) will be coplanar to the plane spanned by the local Z axis (as obtained by Matrix4dc.positiveZ(Vector3d)) and the given vector (upX, upY, upZ), and store the result in dest.
      Matrix4d withLookAtUp​(Vector3dc up)
      Apply a transformation to this matrix to ensure that the local Y axis (as obtained by positiveY(Vector3d)) will be coplanar to the plane spanned by the local Z axis (as obtained by positiveZ(Vector3d)) and the given vector up.
      Matrix4d withLookAtUp​(Vector3dc up, Matrix4d dest)
      Apply a transformation to this matrix to ensure that the local Y axis (as obtained by Matrix4dc.positiveY(Vector3d)) will be coplanar to the plane spanned by the local Z axis (as obtained by Matrix4dc.positiveZ(Vector3d)) and the given vector up, and store the result in dest.
      void writeExternal​(java.io.ObjectOutput out)  
      Matrix4d zero()
      Set all the values within this matrix to 0.
      • Methods inherited from class java.lang.Object

        finalize, getClass, notify, notifyAll, wait, wait, wait
    • Constructor Detail

      • Matrix4d

        public Matrix4d​(Matrix4dc mat)
        Create a new Matrix4d and make it a copy of the given matrix.
        Parameters:
        mat - the Matrix4dc to copy the values from
      • Matrix4d

        public Matrix4d​(Matrix4fc mat)
        Create a new Matrix4d and make it a copy of the given matrix.
        Parameters:
        mat - the Matrix4fc to copy the values from
      • Matrix4d

        public Matrix4d​(Matrix4x3dc mat)
        Create a new Matrix4d and set its upper 4x3 submatrix to the given matrix mat and all other elements to identity.
        Parameters:
        mat - the Matrix4x3dc to copy the values from
      • Matrix4d

        public Matrix4d​(Matrix4x3fc mat)
        Create a new Matrix4d and set its upper 4x3 submatrix to the given matrix mat and all other elements to identity.
        Parameters:
        mat - the Matrix4x3fc to copy the values from
      • Matrix4d

        public Matrix4d​(Matrix3dc mat)
        Create a new Matrix4d by setting its uppper left 3x3 submatrix to the values of the given Matrix3dc and the rest to identity.
        Parameters:
        mat - the Matrix3dc
      • Matrix4d

        public Matrix4d​(double m00,
                        double m01,
                        double m02,
                        double m03,
                        double m10,
                        double m11,
                        double m12,
                        double m13,
                        double m20,
                        double m21,
                        double m22,
                        double m23,
                        double m30,
                        double m31,
                        double m32,
                        double m33)
        Create a new 4x4 matrix using the supplied double values.

        The matrix layout will be:

        m00, m10, m20, m30
        m01, m11, m21, m31
        m02, m12, m22, m32
        m03, m13, m23, m33

        Parameters:
        m00 - the value of m00
        m01 - the value of m01
        m02 - the value of m02
        m03 - the value of m03
        m10 - the value of m10
        m11 - the value of m11
        m12 - the value of m12
        m13 - the value of m13
        m20 - the value of m20
        m21 - the value of m21
        m22 - the value of m22
        m23 - the value of m23
        m30 - the value of m30
        m31 - the value of m31
        m32 - the value of m32
        m33 - the value of m33
      • Matrix4d

        public Matrix4d​(java.nio.DoubleBuffer buffer)
        Create a new Matrix4d by reading its 16 double components from the given DoubleBuffer at the buffer's current position.

        That DoubleBuffer is expected to hold the values in column-major order.

        The buffer's position will not be changed by this method.

        Parameters:
        buffer - the DoubleBuffer to read the matrix values from
      • Matrix4d

        public Matrix4d​(Vector4d col0,
                        Vector4d col1,
                        Vector4d col2,
                        Vector4d col3)
        Create a new Matrix4d and initialize its four columns using the supplied vectors.
        Parameters:
        col0 - the first column
        col1 - the second column
        col2 - the third column
        col3 - the fourth column
    • Method Detail

      • determineProperties

        public Matrix4d determineProperties()
        Compute and set the matrix properties returned by properties() based on the current matrix element values.
        Returns:
        this
      • m00

        public double m00()
        Description copied from interface: Matrix4dc
        Return the value of the matrix element at column 0 and row 0.
        Specified by:
        m00 in interface Matrix4dc
        Returns:
        the value of the matrix element
      • m01

        public double m01()
        Description copied from interface: Matrix4dc
        Return the value of the matrix element at column 0 and row 1.
        Specified by:
        m01 in interface Matrix4dc
        Returns:
        the value of the matrix element
      • m02

        public double m02()
        Description copied from interface: Matrix4dc
        Return the value of the matrix element at column 0 and row 2.
        Specified by:
        m02 in interface Matrix4dc
        Returns:
        the value of the matrix element
      • m03

        public double m03()
        Description copied from interface: Matrix4dc
        Return the value of the matrix element at column 0 and row 3.
        Specified by:
        m03 in interface Matrix4dc
        Returns:
        the value of the matrix element
      • m10

        public double m10()
        Description copied from interface: Matrix4dc
        Return the value of the matrix element at column 1 and row 0.
        Specified by:
        m10 in interface Matrix4dc
        Returns:
        the value of the matrix element
      • m11

        public double m11()
        Description copied from interface: Matrix4dc
        Return the value of the matrix element at column 1 and row 1.
        Specified by:
        m11 in interface Matrix4dc
        Returns:
        the value of the matrix element
      • m12

        public double m12()
        Description copied from interface: Matrix4dc
        Return the value of the matrix element at column 1 and row 2.
        Specified by:
        m12 in interface Matrix4dc
        Returns:
        the value of the matrix element
      • m13

        public double m13()
        Description copied from interface: Matrix4dc
        Return the value of the matrix element at column 1 and row 3.
        Specified by:
        m13 in interface Matrix4dc
        Returns:
        the value of the matrix element
      • m20

        public double m20()
        Description copied from interface: Matrix4dc
        Return the value of the matrix element at column 2 and row 0.
        Specified by:
        m20 in interface Matrix4dc
        Returns:
        the value of the matrix element
      • m21

        public double m21()
        Description copied from interface: Matrix4dc
        Return the value of the matrix element at column 2 and row 1.
        Specified by:
        m21 in interface Matrix4dc
        Returns:
        the value of the matrix element
      • m22

        public double m22()
        Description copied from interface: Matrix4dc
        Return the value of the matrix element at column 2 and row 2.
        Specified by:
        m22 in interface Matrix4dc
        Returns:
        the value of the matrix element
      • m23

        public double m23()
        Description copied from interface: Matrix4dc
        Return the value of the matrix element at column 2 and row 3.
        Specified by:
        m23 in interface Matrix4dc
        Returns:
        the value of the matrix element
      • m30

        public double m30()
        Description copied from interface: Matrix4dc
        Return the value of the matrix element at column 3 and row 0.
        Specified by:
        m30 in interface Matrix4dc
        Returns:
        the value of the matrix element
      • m31

        public double m31()
        Description copied from interface: Matrix4dc
        Return the value of the matrix element at column 3 and row 1.
        Specified by:
        m31 in interface Matrix4dc
        Returns:
        the value of the matrix element
      • m32

        public double m32()
        Description copied from interface: Matrix4dc
        Return the value of the matrix element at column 3 and row 2.
        Specified by:
        m32 in interface Matrix4dc
        Returns:
        the value of the matrix element
      • m33

        public double m33()
        Description copied from interface: Matrix4dc
        Return the value of the matrix element at column 3 and row 3.
        Specified by:
        m33 in interface Matrix4dc
        Returns:
        the value of the matrix element
      • m00

        public Matrix4d m00​(double m00)
        Set the value of the matrix element at column 0 and row 0.
        Parameters:
        m00 - the new value
        Returns:
        this
      • m01

        public Matrix4d m01​(double m01)
        Set the value of the matrix element at column 0 and row 1.
        Parameters:
        m01 - the new value
        Returns:
        this
      • m02

        public Matrix4d m02​(double m02)
        Set the value of the matrix element at column 0 and row 2.
        Parameters:
        m02 - the new value
        Returns:
        this
      • m03

        public Matrix4d m03​(double m03)
        Set the value of the matrix element at column 0 and row 3.
        Parameters:
        m03 - the new value
        Returns:
        this
      • m10

        public Matrix4d m10​(double m10)
        Set the value of the matrix element at column 1 and row 0.
        Parameters:
        m10 - the new value
        Returns:
        this
      • m11

        public Matrix4d m11​(double m11)
        Set the value of the matrix element at column 1 and row 1.
        Parameters:
        m11 - the new value
        Returns:
        this
      • m12

        public Matrix4d m12​(double m12)
        Set the value of the matrix element at column 1 and row 2.
        Parameters:
        m12 - the new value
        Returns:
        this
      • m13

        public Matrix4d m13​(double m13)
        Set the value of the matrix element at column 1 and row 3.
        Parameters:
        m13 - the new value
        Returns:
        this
      • m20

        public Matrix4d m20​(double m20)
        Set the value of the matrix element at column 2 and row 0.
        Parameters:
        m20 - the new value
        Returns:
        this
      • m21

        public Matrix4d m21​(double m21)
        Set the value of the matrix element at column 2 and row 1.
        Parameters:
        m21 - the new value
        Returns:
        this
      • m22

        public Matrix4d m22​(double m22)
        Set the value of the matrix element at column 2 and row 2.
        Parameters:
        m22 - the new value
        Returns:
        this
      • m23

        public Matrix4d m23​(double m23)
        Set the value of the matrix element at column 2 and row 3.
        Parameters:
        m23 - the new value
        Returns:
        this
      • m30

        public Matrix4d m30​(double m30)
        Set the value of the matrix element at column 3 and row 0.
        Parameters:
        m30 - the new value
        Returns:
        this
      • m31

        public Matrix4d m31​(double m31)
        Set the value of the matrix element at column 3 and row 1.
        Parameters:
        m31 - the new value
        Returns:
        this
      • m32

        public Matrix4d m32​(double m32)
        Set the value of the matrix element at column 3 and row 2.
        Parameters:
        m32 - the new value
        Returns:
        this
      • m33

        public Matrix4d m33​(double m33)
        Set the value of the matrix element at column 3 and row 3.
        Parameters:
        m33 - the new value
        Returns:
        this
      • set

        public Matrix4d set​(Matrix4fc m)
        Store the values of the given matrix m into this matrix.
        Parameters:
        m - the matrix to copy the values from
        Returns:
        this
        See Also:
        Matrix4d(Matrix4fc)
      • setTransposed

        public Matrix4d setTransposed​(Matrix4dc m)
        Store the values of the transpose of the given matrix m into this matrix.
        Parameters:
        m - the matrix to copy the transposed values from
        Returns:
        this
      • set

        public Matrix4d set​(Matrix4x3dc m)
        Store the values of the given matrix m into this matrix and set the other matrix elements to identity.
        Parameters:
        m - the matrix to copy the values from
        Returns:
        this
        See Also:
        Matrix4d(Matrix4x3dc)
      • set

        public Matrix4d set​(Matrix4x3fc m)
        Store the values of the given matrix m into this matrix and set the other matrix elements to identity.
        Parameters:
        m - the matrix to copy the values from
        Returns:
        this
        See Also:
        Matrix4d(Matrix4x3fc)
      • set3x3

        public Matrix4d set3x3​(Matrix4dc mat)
        Set the upper left 3x3 submatrix of this Matrix4d to that of the given Matrix4dc and don't change the other elements.
        Parameters:
        mat - the Matrix4dc
        Returns:
        this
      • set4x3

        public Matrix4d set4x3​(Matrix4dc mat)
        Set the upper 4x3 submatrix of this Matrix4d to the upper 4x3 submatrix of the given Matrix4dc and don't change the other elements.
        Parameters:
        mat - the Matrix4dc
        Returns:
        this
      • mul

        public Matrix4d mul​(Matrix4dc right)
        Multiply this matrix by the supplied right matrix.

        If M is this matrix and R the right matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the transformation of the right matrix will be applied first!

        Parameters:
        right - the right operand of the multiplication
        Returns:
        this
      • mul

        public Matrix4d mul​(Matrix4dc right,
                            Matrix4d dest)
        Description copied from interface: Matrix4dc
        Multiply this matrix by the supplied right matrix and store the result in dest.

        If M is this matrix and R the right matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the transformation of the right matrix will be applied first!

        Specified by:
        mul in interface Matrix4dc
        Parameters:
        right - the right operand of the multiplication
        dest - will hold the result
        Returns:
        dest
      • mul0

        public Matrix4d mul0​(Matrix4dc right)
        Multiply this matrix by the supplied right matrix.

        If M is this matrix and R the right matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the transformation of the right matrix will be applied first!

        This method neither assumes nor checks for any matrix properties of this or right and will always perform a complete 4x4 matrix multiplication. This method should only be used whenever the multiplied matrices do not have any properties for which there are optimized multiplication methods available.

        Parameters:
        right - the right operand of the matrix multiplication
        Returns:
        this
      • mul0

        public Matrix4d mul0​(Matrix4dc right,
                             Matrix4d dest)
        Description copied from interface: Matrix4dc
        Multiply this matrix by the supplied right matrix and store the result in dest.

        If M is this matrix and R the right matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the transformation of the right matrix will be applied first!

        This method neither assumes nor checks for any matrix properties of this or right and will always perform a complete 4x4 matrix multiplication. This method should only be used whenever the multiplied matrices do not have any properties for which there are optimized multiplication methods available.

        Specified by:
        mul0 in interface Matrix4dc
        Parameters:
        right - the right operand of the matrix multiplication
        dest - the destination matrix, which will hold the result
        Returns:
        dest
      • mul

        public Matrix4d mul​(double r00,
                            double r01,
                            double r02,
                            double r03,
                            double r10,
                            double r11,
                            double r12,
                            double r13,
                            double r20,
                            double r21,
                            double r22,
                            double r23,
                            double r30,
                            double r31,
                            double r32,
                            double r33)
        Multiply this matrix by the matrix with the supplied elements.

        If M is this matrix and R the right matrix whose elements are supplied via the parameters, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the transformation of the right matrix will be applied first!

        Parameters:
        r00 - the m00 element of the right matrix
        r01 - the m01 element of the right matrix
        r02 - the m02 element of the right matrix
        r03 - the m03 element of the right matrix
        r10 - the m10 element of the right matrix
        r11 - the m11 element of the right matrix
        r12 - the m12 element of the right matrix
        r13 - the m13 element of the right matrix
        r20 - the m20 element of the right matrix
        r21 - the m21 element of the right matrix
        r22 - the m22 element of the right matrix
        r23 - the m23 element of the right matrix
        r30 - the m30 element of the right matrix
        r31 - the m31 element of the right matrix
        r32 - the m32 element of the right matrix
        r33 - the m33 element of the right matrix
        Returns:
        this
      • mul

        public Matrix4d mul​(double r00,
                            double r01,
                            double r02,
                            double r03,
                            double r10,
                            double r11,
                            double r12,
                            double r13,
                            double r20,
                            double r21,
                            double r22,
                            double r23,
                            double r30,
                            double r31,
                            double r32,
                            double r33,
                            Matrix4d dest)
        Description copied from interface: Matrix4dc
        Multiply this matrix by the matrix with the supplied elements and store the result in dest.

        If M is this matrix and R the right matrix whose elements are supplied via the parameters, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the transformation of the right matrix will be applied first!

        Specified by:
        mul in interface Matrix4dc
        Parameters:
        r00 - the m00 element of the right matrix
        r01 - the m01 element of the right matrix
        r02 - the m02 element of the right matrix
        r03 - the m03 element of the right matrix
        r10 - the m10 element of the right matrix
        r11 - the m11 element of the right matrix
        r12 - the m12 element of the right matrix
        r13 - the m13 element of the right matrix
        r20 - the m20 element of the right matrix
        r21 - the m21 element of the right matrix
        r22 - the m22 element of the right matrix
        r23 - the m23 element of the right matrix
        r30 - the m30 element of the right matrix
        r31 - the m31 element of the right matrix
        r32 - the m32 element of the right matrix
        r33 - the m33 element of the right matrix
        dest - the destination matrix, which will hold the result
        Returns:
        dest
      • mul3x3

        public Matrix4d mul3x3​(double r00,
                               double r01,
                               double r02,
                               double r10,
                               double r11,
                               double r12,
                               double r20,
                               double r21,
                               double r22)
        Multiply this matrix by the 3x3 matrix with the supplied elements expanded to a 4x4 matrix with all other matrix elements set to identity.

        If M is this matrix and R the right matrix whose elements are supplied via the parameters, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the transformation of the right matrix will be applied first!

        Parameters:
        r00 - the m00 element of the right matrix
        r01 - the m01 element of the right matrix
        r02 - the m02 element of the right matrix
        r10 - the m10 element of the right matrix
        r11 - the m11 element of the right matrix
        r12 - the m12 element of the right matrix
        r20 - the m20 element of the right matrix
        r21 - the m21 element of the right matrix
        r22 - the m22 element of the right matrix
        Returns:
        this
      • mul3x3

        public Matrix4d mul3x3​(double r00,
                               double r01,
                               double r02,
                               double r10,
                               double r11,
                               double r12,
                               double r20,
                               double r21,
                               double r22,
                               Matrix4d dest)
        Description copied from interface: Matrix4dc
        Multiply this matrix by the 3x3 matrix with the supplied elements expanded to a 4x4 matrix with all other matrix elements set to identity, and store the result in dest.

        If M is this matrix and R the right matrix whose elements are supplied via the parameters, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the transformation of the right matrix will be applied first!

        Specified by:
        mul3x3 in interface Matrix4dc
        Parameters:
        r00 - the m00 element of the right matrix
        r01 - the m01 element of the right matrix
        r02 - the m02 element of the right matrix
        r10 - the m10 element of the right matrix
        r11 - the m11 element of the right matrix
        r12 - the m12 element of the right matrix
        r20 - the m20 element of the right matrix
        r21 - the m21 element of the right matrix
        r22 - the m22 element of the right matrix
        dest - the destination matrix, which will hold the result
        Returns:
        this
      • mulLocal

        public Matrix4d mulLocal​(Matrix4dc left)
        Pre-multiply this matrix by the supplied left matrix and store the result in this.

        If M is this matrix and L the left matrix, then the new matrix will be L * M. So when transforming a vector v with the new matrix by using L * M * v, the transformation of this matrix will be applied first!

        Parameters:
        left - the left operand of the matrix multiplication
        Returns:
        this
      • mulLocal

        public Matrix4d mulLocal​(Matrix4dc left,
                                 Matrix4d dest)
        Description copied from interface: Matrix4dc
        Pre-multiply this matrix by the supplied left matrix and store the result in dest.

        If M is this matrix and L the left matrix, then the new matrix will be L * M. So when transforming a vector v with the new matrix by using L * M * v, the transformation of this matrix will be applied first!

        Specified by:
        mulLocal in interface Matrix4dc
        Parameters:
        left - the left operand of the matrix multiplication
        dest - the destination matrix, which will hold the result
        Returns:
        dest
      • mulLocalAffine

        public Matrix4d mulLocalAffine​(Matrix4dc left)
        Pre-multiply this matrix by the supplied left matrix, both of which are assumed to be affine, and store the result in this.

        This method assumes that this matrix and the given left matrix both represent an affine transformation (i.e. their last rows are equal to (0, 0, 0, 1)) and can be used to speed up matrix multiplication if the matrices only represent affine transformations, such as translation, rotation, scaling and shearing (in any combination).

        This method will not modify either the last row of this or the last row of left.

        If M is this matrix and L the left matrix, then the new matrix will be L * M. So when transforming a vector v with the new matrix by using L * M * v, the transformation of this matrix will be applied first!

        Parameters:
        left - the left operand of the matrix multiplication (the last row is assumed to be (0, 0, 0, 1))
        Returns:
        this
      • mulLocalAffine

        public Matrix4d mulLocalAffine​(Matrix4dc left,
                                       Matrix4d dest)
        Description copied from interface: Matrix4dc
        Pre-multiply this matrix by the supplied left matrix, both of which are assumed to be affine, and store the result in dest.

        This method assumes that this matrix and the given left matrix both represent an affine transformation (i.e. their last rows are equal to (0, 0, 0, 1)) and can be used to speed up matrix multiplication if the matrices only represent affine transformations, such as translation, rotation, scaling and shearing (in any combination).

        This method will not modify either the last row of this or the last row of left.

        If M is this matrix and L the left matrix, then the new matrix will be L * M. So when transforming a vector v with the new matrix by using L * M * v, the transformation of this matrix will be applied first!

        Specified by:
        mulLocalAffine in interface Matrix4dc
        Parameters:
        left - the left operand of the matrix multiplication (the last row is assumed to be (0, 0, 0, 1))
        dest - the destination matrix, which will hold the result
        Returns:
        dest
      • mul

        public Matrix4d mul​(Matrix4x3dc right)
        Multiply this matrix by the supplied right matrix.

        The last row of the right matrix is assumed to be (0, 0, 0, 1).

        If M is this matrix and R the right matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the transformation of the right matrix will be applied first!

        Parameters:
        right - the right operand of the matrix multiplication
        Returns:
        this
      • mul

        public Matrix4d mul​(Matrix4x3dc right,
                            Matrix4d dest)
        Description copied from interface: Matrix4dc
        Multiply this matrix by the supplied right matrix and store the result in dest.

        The last row of the right matrix is assumed to be (0, 0, 0, 1).

        If M is this matrix and R the right matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the transformation of the right matrix will be applied first!

        Specified by:
        mul in interface Matrix4dc
        Parameters:
        right - the right operand of the matrix multiplication
        dest - the destination matrix, which will hold the result
        Returns:
        dest
      • mulPerspectiveAffine

        public Matrix4d mulPerspectiveAffine​(Matrix4x3dc view,
                                             Matrix4d dest)
        Description copied from interface: Matrix4dc
        Multiply this symmetric perspective projection matrix by the supplied view matrix and store the result in dest.

        If P is this matrix and V the view matrix, then the new matrix will be P * V. So when transforming a vector v with the new matrix by using P * V * v, the transformation of the view matrix will be applied first!

        Specified by:
        mulPerspectiveAffine in interface Matrix4dc
        Parameters:
        view - the matrix to multiply this symmetric perspective projection matrix by
        dest - the destination matrix, which will hold the result
        Returns:
        dest
      • mul

        public Matrix4d mul​(Matrix4x3fc right,
                            Matrix4d dest)
        Description copied from interface: Matrix4dc
        Multiply this matrix by the supplied right matrix and store the result in dest.

        The last row of the right matrix is assumed to be (0, 0, 0, 1).

        If M is this matrix and R the right matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the transformation of the right matrix will be applied first!

        Specified by:
        mul in interface Matrix4dc
        Parameters:
        right - the right operand of the matrix multiplication
        dest - the destination matrix, which will hold the result
        Returns:
        dest
      • mul

        public Matrix4d mul​(Matrix3x2dc right)
        Multiply this matrix by the supplied right matrix and store the result in this.

        If M is this matrix and R the right matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the transformation of the right matrix will be applied first!

        Parameters:
        right - the right operand of the matrix multiplication
        Returns:
        this
      • mul

        public Matrix4d mul​(Matrix3x2dc right,
                            Matrix4d dest)
        Description copied from interface: Matrix4dc
        Multiply this matrix by the supplied right matrix and store the result in dest.

        If M is this matrix and R the right matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the transformation of the right matrix will be applied first!

        Specified by:
        mul in interface Matrix4dc
        Parameters:
        right - the right operand of the matrix multiplication
        dest - the destination matrix, which will hold the result
        Returns:
        dest
      • mul

        public Matrix4d mul​(Matrix3x2fc right)
        Multiply this matrix by the supplied right matrix and store the result in this.

        If M is this matrix and R the right matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the transformation of the right matrix will be applied first!

        Parameters:
        right - the right operand of the matrix multiplication
        Returns:
        this
      • mul

        public Matrix4d mul​(Matrix3x2fc right,
                            Matrix4d dest)
        Description copied from interface: Matrix4dc
        Multiply this matrix by the supplied right matrix and store the result in dest.

        If M is this matrix and R the right matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the transformation of the right matrix will be applied first!

        Specified by:
        mul in interface Matrix4dc
        Parameters:
        right - the right operand of the matrix multiplication
        dest - the destination matrix, which will hold the result
        Returns:
        dest
      • mul

        public Matrix4d mul​(Matrix4f right)
        Multiply this matrix by the supplied parameter matrix.

        If M is this matrix and R the right matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the transformation of the right matrix will be applied first!

        Parameters:
        right - the right operand of the multiplication
        Returns:
        this
      • mul

        public Matrix4d mul​(Matrix4fc right,
                            Matrix4d dest)
        Description copied from interface: Matrix4dc
        Multiply this matrix by the supplied parameter matrix and store the result in dest.

        If M is this matrix and R the right matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the transformation of the right matrix will be applied first!

        Specified by:
        mul in interface Matrix4dc
        Parameters:
        right - the right operand of the multiplication
        dest - will hold the result
        Returns:
        dest
      • mulPerspectiveAffine

        public Matrix4d mulPerspectiveAffine​(Matrix4dc view)
        Multiply this symmetric perspective projection matrix by the supplied affine view matrix.

        If P is this matrix and V the view matrix, then the new matrix will be P * V. So when transforming a vector v with the new matrix by using P * V * v, the transformation of the view matrix will be applied first!

        Parameters:
        view - the affine matrix to multiply this symmetric perspective projection matrix by
        Returns:
        this
      • mulPerspectiveAffine

        public Matrix4d mulPerspectiveAffine​(Matrix4dc view,
                                             Matrix4d dest)
        Description copied from interface: Matrix4dc
        Multiply this symmetric perspective projection matrix by the supplied affine view matrix and store the result in dest.

        If P is this matrix and V the view matrix, then the new matrix will be P * V. So when transforming a vector v with the new matrix by using P * V * v, the transformation of the view matrix will be applied first!

        Specified by:
        mulPerspectiveAffine in interface Matrix4dc
        Parameters:
        view - the affine matrix to multiply this symmetric perspective projection matrix by
        dest - the destination matrix, which will hold the result
        Returns:
        dest
      • mulAffineR

        public Matrix4d mulAffineR​(Matrix4dc right)
        Multiply this matrix by the supplied right matrix, which is assumed to be affine, and store the result in this.

        This method assumes that the given right matrix represents an affine transformation (i.e. its last row is equal to (0, 0, 0, 1)) and can be used to speed up matrix multiplication if the matrix only represents affine transformations, such as translation, rotation, scaling and shearing (in any combination).

        If M is this matrix and R the right matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the transformation of the right matrix will be applied first!

        Parameters:
        right - the right operand of the matrix multiplication (the last row is assumed to be (0, 0, 0, 1))
        Returns:
        this
      • mulAffineR

        public Matrix4d mulAffineR​(Matrix4dc right,
                                   Matrix4d dest)
        Description copied from interface: Matrix4dc
        Multiply this matrix by the supplied right matrix, which is assumed to be affine, and store the result in dest.

        This method assumes that the given right matrix represents an affine transformation (i.e. its last row is equal to (0, 0, 0, 1)) and can be used to speed up matrix multiplication if the matrix only represents affine transformations, such as translation, rotation, scaling and shearing (in any combination).

        If M is this matrix and R the right matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the transformation of the right matrix will be applied first!

        Specified by:
        mulAffineR in interface Matrix4dc
        Parameters:
        right - the right operand of the matrix multiplication (the last row is assumed to be (0, 0, 0, 1))
        dest - the destination matrix, which will hold the result
        Returns:
        dest
      • mulAffine

        public Matrix4d mulAffine​(Matrix4dc right)
        Multiply this matrix by the supplied right matrix, both of which are assumed to be affine, and store the result in this.

        This method assumes that this matrix and the given right matrix both represent an affine transformation (i.e. their last rows are equal to (0, 0, 0, 1)) and can be used to speed up matrix multiplication if the matrices only represent affine transformations, such as translation, rotation, scaling and shearing (in any combination).

        This method will not modify either the last row of this or the last row of right.

        If M is this matrix and R the right matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the transformation of the right matrix will be applied first!

        Parameters:
        right - the right operand of the matrix multiplication (the last row is assumed to be (0, 0, 0, 1))
        Returns:
        this
      • mulAffine

        public Matrix4d mulAffine​(Matrix4dc right,
                                  Matrix4d dest)
        Description copied from interface: Matrix4dc
        Multiply this matrix by the supplied right matrix, both of which are assumed to be affine, and store the result in dest.

        This method assumes that this matrix and the given right matrix both represent an affine transformation (i.e. their last rows are equal to (0, 0, 0, 1)) and can be used to speed up matrix multiplication if the matrices only represent affine transformations, such as translation, rotation, scaling and shearing (in any combination).

        This method will not modify either the last row of this or the last row of right.

        If M is this matrix and R the right matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the transformation of the right matrix will be applied first!

        Specified by:
        mulAffine in interface Matrix4dc
        Parameters:
        right - the right operand of the matrix multiplication (the last row is assumed to be (0, 0, 0, 1))
        dest - the destination matrix, which will hold the result
        Returns:
        dest
      • mulTranslationAffine

        public Matrix4d mulTranslationAffine​(Matrix4dc right,
                                             Matrix4d dest)
        Description copied from interface: Matrix4dc
        Multiply this matrix, which is assumed to only contain a translation, by the supplied right matrix, which is assumed to be affine, and store the result in dest.

        This method assumes that this matrix only contains a translation, and that the given right matrix represents an affine transformation (i.e. its last row is equal to (0, 0, 0, 1)).

        This method will not modify either the last row of this or the last row of right.

        If M is this matrix and R the right matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the transformation of the right matrix will be applied first!

        Specified by:
        mulTranslationAffine in interface Matrix4dc
        Parameters:
        right - the right operand of the matrix multiplication (the last row is assumed to be (0, 0, 0, 1))
        dest - the destination matrix, which will hold the result
        Returns:
        dest
      • mulOrthoAffine

        public Matrix4d mulOrthoAffine​(Matrix4dc view)
        Multiply this orthographic projection matrix by the supplied affine view matrix.

        If M is this matrix and V the view matrix, then the new matrix will be M * V. So when transforming a vector v with the new matrix by using M * V * v, the transformation of the view matrix will be applied first!

        Parameters:
        view - the affine matrix which to multiply this with
        Returns:
        this
      • mulOrthoAffine

        public Matrix4d mulOrthoAffine​(Matrix4dc view,
                                       Matrix4d dest)
        Description copied from interface: Matrix4dc
        Multiply this orthographic projection matrix by the supplied affine view matrix and store the result in dest.

        If M is this matrix and V the view matrix, then the new matrix will be M * V. So when transforming a vector v with the new matrix by using M * V * v, the transformation of the view matrix will be applied first!

        Specified by:
        mulOrthoAffine in interface Matrix4dc
        Parameters:
        view - the affine matrix which to multiply this with
        dest - the destination matrix, which will hold the result
        Returns:
        dest
      • fma4x3

        public Matrix4d fma4x3​(Matrix4dc other,
                               double otherFactor)
        Component-wise add the upper 4x3 submatrices of this and other by first multiplying each component of other's 4x3 submatrix by otherFactor and adding that result to this.

        The matrix other will not be changed.

        Parameters:
        other - the other matrix
        otherFactor - the factor to multiply each of the other matrix's 4x3 components
        Returns:
        this
      • fma4x3

        public Matrix4d fma4x3​(Matrix4dc other,
                               double otherFactor,
                               Matrix4d dest)
        Description copied from interface: Matrix4dc
        Component-wise add the upper 4x3 submatrices of this and other by first multiplying each component of other's 4x3 submatrix by otherFactor, adding that to this and storing the final result in dest.

        The other components of dest will be set to the ones of this.

        The matrices this and other will not be changed.

        Specified by:
        fma4x3 in interface Matrix4dc
        Parameters:
        other - the other matrix
        otherFactor - the factor to multiply each of the other matrix's 4x3 components
        dest - will hold the result
        Returns:
        dest
      • add

        public Matrix4d add​(Matrix4dc other)
        Component-wise add this and other.
        Parameters:
        other - the other addend
        Returns:
        this
      • add

        public Matrix4d add​(Matrix4dc other,
                            Matrix4d dest)
        Description copied from interface: Matrix4dc
        Component-wise add this and other and store the result in dest.
        Specified by:
        add in interface Matrix4dc
        Parameters:
        other - the other addend
        dest - will hold the result
        Returns:
        dest
      • sub

        public Matrix4d sub​(Matrix4dc subtrahend)
        Component-wise subtract subtrahend from this.
        Parameters:
        subtrahend - the subtrahend
        Returns:
        this
      • sub

        public Matrix4d sub​(Matrix4dc subtrahend,
                            Matrix4d dest)
        Description copied from interface: Matrix4dc
        Component-wise subtract subtrahend from this and store the result in dest.
        Specified by:
        sub in interface Matrix4dc
        Parameters:
        subtrahend - the subtrahend
        dest - will hold the result
        Returns:
        dest
      • mulComponentWise

        public Matrix4d mulComponentWise​(Matrix4dc other)
        Component-wise multiply this by other.
        Parameters:
        other - the other matrix
        Returns:
        this
      • mulComponentWise

        public Matrix4d mulComponentWise​(Matrix4dc other,
                                         Matrix4d dest)
        Description copied from interface: Matrix4dc
        Component-wise multiply this by other and store the result in dest.
        Specified by:
        mulComponentWise in interface Matrix4dc
        Parameters:
        other - the other matrix
        dest - will hold the result
        Returns:
        dest
      • add4x3

        public Matrix4d add4x3​(Matrix4dc other)
        Component-wise add the upper 4x3 submatrices of this and other.
        Parameters:
        other - the other addend
        Returns:
        this
      • add4x3

        public Matrix4d add4x3​(Matrix4dc other,
                               Matrix4d dest)
        Description copied from interface: Matrix4dc
        Component-wise add the upper 4x3 submatrices of this and other and store the result in dest.

        The other components of dest will be set to the ones of this.

        Specified by:
        add4x3 in interface Matrix4dc
        Parameters:
        other - the other addend
        dest - will hold the result
        Returns:
        dest
      • add4x3

        public Matrix4d add4x3​(Matrix4fc other)
        Component-wise add the upper 4x3 submatrices of this and other.
        Parameters:
        other - the other addend
        Returns:
        this
      • add4x3

        public Matrix4d add4x3​(Matrix4fc other,
                               Matrix4d dest)
        Description copied from interface: Matrix4dc
        Component-wise add the upper 4x3 submatrices of this and other and store the result in dest.

        The other components of dest will be set to the ones of this.

        Specified by:
        add4x3 in interface Matrix4dc
        Parameters:
        other - the other addend
        dest - will hold the result
        Returns:
        dest
      • sub4x3

        public Matrix4d sub4x3​(Matrix4dc subtrahend)
        Component-wise subtract the upper 4x3 submatrices of subtrahend from this.
        Parameters:
        subtrahend - the subtrahend
        Returns:
        this
      • sub4x3

        public Matrix4d sub4x3​(Matrix4dc subtrahend,
                               Matrix4d dest)
        Description copied from interface: Matrix4dc
        Component-wise subtract the upper 4x3 submatrices of subtrahend from this and store the result in dest.

        The other components of dest will be set to the ones of this.

        Specified by:
        sub4x3 in interface Matrix4dc
        Parameters:
        subtrahend - the subtrahend
        dest - will hold the result
        Returns:
        dest
      • mul4x3ComponentWise

        public Matrix4d mul4x3ComponentWise​(Matrix4dc other)
        Component-wise multiply the upper 4x3 submatrices of this by other.
        Parameters:
        other - the other matrix
        Returns:
        this
      • mul4x3ComponentWise

        public Matrix4d mul4x3ComponentWise​(Matrix4dc other,
                                            Matrix4d dest)
        Description copied from interface: Matrix4dc
        Component-wise multiply the upper 4x3 submatrices of this by other and store the result in dest.

        The other components of dest will be set to the ones of this.

        Specified by:
        mul4x3ComponentWise in interface Matrix4dc
        Parameters:
        other - the other matrix
        dest - will hold the result
        Returns:
        dest
      • set

        public Matrix4d set​(double m00,
                            double m01,
                            double m02,
                            double m03,
                            double m10,
                            double m11,
                            double m12,
                            double m13,
                            double m20,
                            double m21,
                            double m22,
                            double m23,
                            double m30,
                            double m31,
                            double m32,
                            double m33)
        Set the values within this matrix to the supplied double values. The matrix will look like this:

        m00, m10, m20, m30
        m01, m11, m21, m31
        m02, m12, m22, m32
        m03, m13, m23, m33
        Parameters:
        m00 - the new value of m00
        m01 - the new value of m01
        m02 - the new value of m02
        m03 - the new value of m03
        m10 - the new value of m10
        m11 - the new value of m11
        m12 - the new value of m12
        m13 - the new value of m13
        m20 - the new value of m20
        m21 - the new value of m21
        m22 - the new value of m22
        m23 - the new value of m23
        m30 - the new value of m30
        m31 - the new value of m31
        m32 - the new value of m32
        m33 - the new value of m33
        Returns:
        this
      • set

        public Matrix4d set​(double[] m,
                            int off)
        Set the values in the matrix using a double array that contains the matrix elements in column-major order.

        The results will look like this:

        0, 4, 8, 12
        1, 5, 9, 13
        2, 6, 10, 14
        3, 7, 11, 15

        Parameters:
        m - the array to read the matrix values from
        off - the offset into the array
        Returns:
        this
        See Also:
        set(double[])
      • set

        public Matrix4d set​(double[] m)
        Set the values in the matrix using a double array that contains the matrix elements in column-major order.

        The results will look like this:

        0, 4, 8, 12
        1, 5, 9, 13
        2, 6, 10, 14
        3, 7, 11, 15

        Parameters:
        m - the array to read the matrix values from
        Returns:
        this
        See Also:
        set(double[], int)
      • set

        public Matrix4d set​(float[] m,
                            int off)
        Set the values in the matrix using a float array that contains the matrix elements in column-major order.

        The results will look like this:

        0, 4, 8, 12
        1, 5, 9, 13
        2, 6, 10, 14
        3, 7, 11, 15

        Parameters:
        m - the array to read the matrix values from
        off - the offset into the array
        Returns:
        this
        See Also:
        set(float[])
      • set

        public Matrix4d set​(float[] m)
        Set the values in the matrix using a float array that contains the matrix elements in column-major order.

        The results will look like this:

        0, 4, 8, 12
        1, 5, 9, 13
        2, 6, 10, 14
        3, 7, 11, 15

        Parameters:
        m - the array to read the matrix values from
        Returns:
        this
        See Also:
        set(float[], int)
      • set

        public Matrix4d set​(java.nio.DoubleBuffer buffer)
        Set the values of this matrix by reading 16 double values from the given DoubleBuffer in column-major order, starting at its current position.

        The DoubleBuffer is expected to contain the values in column-major order.

        The position of the DoubleBuffer will not be changed by this method.

        Parameters:
        buffer - the DoubleBuffer to read the matrix values from in column-major order
        Returns:
        this
      • set

        public Matrix4d set​(java.nio.FloatBuffer buffer)
        Set the values of this matrix by reading 16 float values from the given FloatBuffer in column-major order, starting at its current position.

        The FloatBuffer is expected to contain the values in column-major order.

        The position of the FloatBuffer will not be changed by this method.

        Parameters:
        buffer - the FloatBuffer to read the matrix values from in column-major order
        Returns:
        this
      • set

        public Matrix4d set​(java.nio.ByteBuffer buffer)
        Set the values of this matrix by reading 16 double values from the given ByteBuffer in column-major order, starting at its current position.

        The ByteBuffer is expected to contain the values in column-major order.

        The position of the ByteBuffer will not be changed by this method.

        Parameters:
        buffer - the ByteBuffer to read the matrix values from in column-major order
        Returns:
        this
      • set

        public Matrix4d set​(int index,
                            java.nio.DoubleBuffer buffer)
        Set the values of this matrix by reading 16 double values from the given DoubleBuffer in column-major order, starting at the specified absolute buffer position/index.

        The DoubleBuffer is expected to contain the values in column-major order.

        The position of the DoubleBuffer will not be changed by this method.

        Parameters:
        index - the absolute position into the DoubleBuffer
        buffer - the DoubleBuffer to read the matrix values from in column-major order
        Returns:
        this
      • set

        public Matrix4d set​(int index,
                            java.nio.FloatBuffer buffer)
        Set the values of this matrix by reading 16 float values from the given FloatBuffer in column-major order, starting at the specified absolute buffer position/index.

        The FloatBuffer is expected to contain the values in column-major order.

        The position of the FloatBuffer will not be changed by this method.

        Parameters:
        index - the absolute position into the FloatBuffer
        buffer - the FloatBuffer to read the matrix values from in column-major order
        Returns:
        this
      • set

        public Matrix4d set​(int index,
                            java.nio.ByteBuffer buffer)
        Set the values of this matrix by reading 16 double values from the given ByteBuffer in column-major order, starting at the specified absolute buffer position/index.

        The ByteBuffer is expected to contain the values in column-major order.

        The position of the ByteBuffer will not be changed by this method.

        Parameters:
        index - the absolute position into the ByteBuffer
        buffer - the ByteBuffer to read the matrix values from in column-major order
        Returns:
        this
      • setFloats

        public Matrix4d setFloats​(java.nio.ByteBuffer buffer)
        Set the values of this matrix by reading 16 float values from the given ByteBuffer in column-major order, starting at its current position.

        The ByteBuffer is expected to contain the values in column-major order.

        The position of the ByteBuffer will not be changed by this method.

        Parameters:
        buffer - the ByteBuffer to read the matrix values from in column-major order
        Returns:
        this
      • setFloats

        public Matrix4d setFloats​(int index,
                                  java.nio.ByteBuffer buffer)
        Set the values of this matrix by reading 16 float values from the given ByteBuffer in column-major order, starting at the specified absolute buffer position/index.

        The ByteBuffer is expected to contain the values in column-major order.

        The position of the ByteBuffer will not be changed by this method.

        Parameters:
        index - the absolute position into the ByteBuffer
        buffer - the ByteBuffer to read the matrix values from in column-major order
        Returns:
        this
      • setFromAddress

        public Matrix4d setFromAddress​(long address)
        Set the values of this matrix by reading 16 double values from off-heap memory in column-major order, starting at the given address.

        This method will throw an UnsupportedOperationException when JOML is used with `-Djoml.nounsafe`.

        This method is unsafe as it can result in a crash of the JVM process when the specified address range does not belong to this process.

        Parameters:
        address - the off-heap memory address to read the matrix values from in column-major order
        Returns:
        this
      • set

        public Matrix4d set​(Vector4d col0,
                            Vector4d col1,
                            Vector4d col2,
                            Vector4d col3)
        Set the four columns of this matrix to the supplied vectors, respectively.
        Parameters:
        col0 - the first column
        col1 - the second column
        col2 - the third column
        col3 - the fourth column
        Returns:
        this
      • determinant

        public double determinant()
        Description copied from interface: Matrix4dc
        Return the determinant of this matrix.

        If this matrix represents an affine transformation, such as translation, rotation, scaling and shearing, and thus its last row is equal to (0, 0, 0, 1), then Matrix4dc.determinantAffine() can be used instead of this method.

        Specified by:
        determinant in interface Matrix4dc
        Returns:
        the determinant
        See Also:
        Matrix4dc.determinantAffine()
      • determinant3x3

        public double determinant3x3()
        Description copied from interface: Matrix4dc
        Return the determinant of the upper left 3x3 submatrix of this matrix.
        Specified by:
        determinant3x3 in interface Matrix4dc
        Returns:
        the determinant
      • determinantAffine

        public double determinantAffine()
        Description copied from interface: Matrix4dc
        Return the determinant of this matrix by assuming that it represents an affine transformation and thus its last row is equal to (0, 0, 0, 1).
        Specified by:
        determinantAffine in interface Matrix4dc
        Returns:
        the determinant
      • invert

        public Matrix4d invert()
        Invert this matrix.

        If this matrix represents an affine transformation, such as translation, rotation, scaling and shearing, and thus its last row is equal to (0, 0, 0, 1), then invertAffine() can be used instead of this method.

        Returns:
        this
        See Also:
        invertAffine()
      • invertPerspective

        public Matrix4d invertPerspective()
        If this is a perspective projection matrix obtained via one of the perspective() methods or via setPerspective(), that is, if this is a symmetrical perspective frustum transformation, then this method builds the inverse of this.

        This method can be used to quickly obtain the inverse of a perspective projection matrix when being obtained via perspective().

        Returns:
        this
        See Also:
        perspective(double, double, double, double)
      • invertOrtho

        public Matrix4d invertOrtho​(Matrix4d dest)
        Description copied from interface: Matrix4dc
        Invert this orthographic projection matrix and store the result into the given dest.

        This method can be used to quickly obtain the inverse of an orthographic projection matrix.

        Specified by:
        invertOrtho in interface Matrix4dc
        Parameters:
        dest - will hold the inverse of this
        Returns:
        dest
      • invertOrtho

        public Matrix4d invertOrtho()
        Invert this orthographic projection matrix.

        This method can be used to quickly obtain the inverse of an orthographic projection matrix.

        Returns:
        this
      • invertPerspectiveView

        public Matrix4d invertPerspectiveView​(Matrix4dc view,
                                              Matrix4d dest)
        Description copied from interface: Matrix4dc
        If this is a perspective projection matrix obtained via one of the perspective() methods, that is, if this is a symmetrical perspective frustum transformation and the given view matrix is affine and has unit scaling (for example by being obtained via lookAt()), then this method builds the inverse of this * view and stores it into the given dest.

        This method can be used to quickly obtain the inverse of the combination of the view and projection matrices, when both were obtained via the common methods perspective() and lookAt() or other methods, that build affine matrices, such as translate and Matrix4dc.rotate(double, double, double, double, Matrix4d), except for scale().

        For the special cases of the matrices this and view mentioned above, this method is equivalent to the following code:

         dest.set(this).mul(view).invert();
         
        Specified by:
        invertPerspectiveView in interface Matrix4dc
        Parameters:
        view - the view transformation (must be affine and have unit scaling)
        dest - will hold the inverse of this * view
        Returns:
        dest
      • invertPerspectiveView

        public Matrix4d invertPerspectiveView​(Matrix4x3dc view,
                                              Matrix4d dest)
        Description copied from interface: Matrix4dc
        If this is a perspective projection matrix obtained via one of the perspective() methods, that is, if this is a symmetrical perspective frustum transformation and the given view matrix has unit scaling, then this method builds the inverse of this * view and stores it into the given dest.

        This method can be used to quickly obtain the inverse of the combination of the view and projection matrices, when both were obtained via the common methods perspective() and lookAt() or other methods, that build affine matrices, such as translate and Matrix4dc.rotate(double, double, double, double, Matrix4d), except for scale().

        For the special cases of the matrices this and view mentioned above, this method is equivalent to the following code:

         dest.set(this).mul(view).invert();
         
        Specified by:
        invertPerspectiveView in interface Matrix4dc
        Parameters:
        view - the view transformation (must have unit scaling)
        dest - will hold the inverse of this * view
        Returns:
        dest
      • invertAffine

        public Matrix4d invertAffine​(Matrix4d dest)
        Description copied from interface: Matrix4dc
        Invert this matrix by assuming that it is an affine transformation (i.e. its last row is equal to (0, 0, 0, 1)) and write the result into dest.
        Specified by:
        invertAffine in interface Matrix4dc
        Parameters:
        dest - will hold the result
        Returns:
        dest
      • invertAffine

        public Matrix4d invertAffine()
        Invert this matrix by assuming that it is an affine transformation (i.e. its last row is equal to (0, 0, 0, 1)).
        Returns:
        this
      • transpose

        public Matrix4d transpose()
        Transpose this matrix.
        Returns:
        this
      • transpose

        public Matrix4d transpose​(Matrix4d dest)
        Description copied from interface: Matrix4dc
        Transpose this matrix and store the result into dest.
        Specified by:
        transpose in interface Matrix4dc
        Parameters:
        dest - will hold the result
        Returns:
        dest
      • transpose3x3

        public Matrix4d transpose3x3()
        Transpose only the upper left 3x3 submatrix of this matrix.

        All other matrix elements are left unchanged.

        Returns:
        this
      • transpose3x3

        public Matrix4d transpose3x3​(Matrix4d dest)
        Description copied from interface: Matrix4dc
        Transpose only the upper left 3x3 submatrix of this matrix and store the result in dest.

        All other matrix elements are left unchanged.

        Specified by:
        transpose3x3 in interface Matrix4dc
        Parameters:
        dest - will hold the result
        Returns:
        dest
      • transpose3x3

        public Matrix3d transpose3x3​(Matrix3d dest)
        Description copied from interface: Matrix4dc
        Transpose only the upper left 3x3 submatrix of this matrix and store the result in dest.
        Specified by:
        transpose3x3 in interface Matrix4dc
        Parameters:
        dest - will hold the result
        Returns:
        dest
      • translation

        public Matrix4d translation​(double x,
                                    double y,
                                    double z)
        Set this matrix to be a simple translation matrix.

        The resulting matrix can be multiplied against another transformation matrix to obtain an additional translation.

        Parameters:
        x - the offset to translate in x
        y - the offset to translate in y
        z - the offset to translate in z
        Returns:
        this
      • translation

        public Matrix4d translation​(Vector3fc offset)
        Set this matrix to be a simple translation matrix.

        The resulting matrix can be multiplied against another transformation matrix to obtain an additional translation.

        Parameters:
        offset - the offsets in x, y and z to translate
        Returns:
        this
      • translation

        public Matrix4d translation​(Vector3dc offset)
        Set this matrix to be a simple translation matrix.

        The resulting matrix can be multiplied against another transformation matrix to obtain an additional translation.

        Parameters:
        offset - the offsets in x, y and z to translate
        Returns:
        this
      • getTranslation

        public Vector3d getTranslation​(Vector3d dest)
        Description copied from interface: Matrix4dc
        Get only the translation components (m30, m31, m32) of this matrix and store them in the given vector xyz.
        Specified by:
        getTranslation in interface Matrix4dc
        Parameters:
        dest - will hold the translation components of this matrix
        Returns:
        dest
      • getScale

        public Vector3d getScale​(Vector3d dest)
        Description copied from interface: Matrix4dc
        Get the scaling factors of this matrix for the three base axes.
        Specified by:
        getScale in interface Matrix4dc
        Parameters:
        dest - will hold the scaling factors for x, y and z
        Returns:
        dest
      • toString

        public java.lang.String toString()
        Return a string representation of this matrix.

        This method creates a new DecimalFormat on every invocation with the format string "0.000E0;-".

        Overrides:
        toString in class java.lang.Object
        Returns:
        the string representation
      • toString

        public java.lang.String toString​(java.text.NumberFormat formatter)
        Return a string representation of this matrix by formatting the matrix elements with the given NumberFormat.
        Parameters:
        formatter - the NumberFormat used to format the matrix values with
        Returns:
        the string representation
      • get

        public Matrix4d get​(Matrix4d dest)
        Description copied from interface: Matrix4dc
        Get the current values of this matrix and store them into dest.
        Specified by:
        get in interface Matrix4dc
        Parameters:
        dest - the destination matrix
        Returns:
        the passed in destination
      • get4x3

        public Matrix4x3d get4x3​(Matrix4x3d dest)
        Description copied from interface: Matrix4dc
        Get the current values of the upper 4x3 submatrix of this matrix and store them into dest.
        Specified by:
        get4x3 in interface Matrix4dc
        Parameters:
        dest - the destination matrix
        Returns:
        the passed in destination
      • get3x3

        public Matrix3d get3x3​(Matrix3d dest)
        Description copied from interface: Matrix4dc
        Get the current values of the upper left 3x3 submatrix of this matrix and store them into dest.
        Specified by:
        get3x3 in interface Matrix4dc
        Parameters:
        dest - the destination matrix
        Returns:
        the passed in destination
      • get

        public java.nio.DoubleBuffer get​(java.nio.DoubleBuffer dest)
        Description copied from interface: Matrix4dc
        Store this matrix in column-major order into the supplied DoubleBuffer at the current buffer position.

        This method will not increment the position of the given DoubleBuffer.

        In order to specify the offset into the DoubleBuffer at which the matrix is stored, use Matrix4dc.get(int, DoubleBuffer), taking the absolute position as parameter.

        Specified by:
        get in interface Matrix4dc
        Parameters:
        dest - will receive the values of this matrix in column-major order at its current position
        Returns:
        the passed in buffer
        See Also:
        Matrix4dc.get(int, DoubleBuffer)
      • get

        public java.nio.DoubleBuffer get​(int index,
                                         java.nio.DoubleBuffer dest)
        Description copied from interface: Matrix4dc
        Store this matrix in column-major order into the supplied DoubleBuffer starting at the specified absolute buffer position/index.

        This method will not increment the position of the given DoubleBuffer.

        Specified by:
        get in interface Matrix4dc
        Parameters:
        index - the absolute position into the DoubleBuffer
        dest - will receive the values of this matrix in column-major order
        Returns:
        the passed in buffer
      • get

        public java.nio.FloatBuffer get​(java.nio.FloatBuffer dest)
        Description copied from interface: Matrix4dc
        Store this matrix in column-major order into the supplied FloatBuffer at the current buffer position.

        This method will not increment the position of the given FloatBuffer.

        In order to specify the offset into the FloatBuffer at which the matrix is stored, use Matrix4dc.get(int, FloatBuffer), taking the absolute position as parameter.

        Please note that due to this matrix storing double values those values will potentially lose precision when they are converted to float values before being put into the given FloatBuffer.

        Specified by:
        get in interface Matrix4dc
        Parameters:
        dest - will receive the values of this matrix in column-major order at its current position
        Returns:
        the passed in buffer
        See Also:
        Matrix4dc.get(int, FloatBuffer)
      • get

        public java.nio.FloatBuffer get​(int index,
                                        java.nio.FloatBuffer dest)
        Description copied from interface: Matrix4dc
        Store this matrix in column-major order into the supplied FloatBuffer starting at the specified absolute buffer position/index.

        This method will not increment the position of the given FloatBuffer.

        Please note that due to this matrix storing double values those values will potentially lose precision when they are converted to float values before being put into the given FloatBuffer.

        Specified by:
        get in interface Matrix4dc
        Parameters:
        index - the absolute position into the FloatBuffer
        dest - will receive the values of this matrix in column-major order
        Returns:
        the passed in buffer
      • get

        public java.nio.ByteBuffer get​(java.nio.ByteBuffer dest)
        Description copied from interface: Matrix4dc
        Store this matrix in column-major order into the supplied ByteBuffer at the current buffer position.

        This method will not increment the position of the given ByteBuffer.

        In order to specify the offset into the ByteBuffer at which the matrix is stored, use Matrix4dc.get(int, ByteBuffer), taking the absolute position as parameter.

        Specified by:
        get in interface Matrix4dc
        Parameters:
        dest - will receive the values of this matrix in column-major order at its current position
        Returns:
        the passed in buffer
        See Also:
        Matrix4dc.get(int, ByteBuffer)
      • get

        public java.nio.ByteBuffer get​(int index,
                                       java.nio.ByteBuffer dest)
        Description copied from interface: Matrix4dc
        Store this matrix in column-major order into the supplied ByteBuffer starting at the specified absolute buffer position/index.

        This method will not increment the position of the given ByteBuffer.

        Specified by:
        get in interface Matrix4dc
        Parameters:
        index - the absolute position into the ByteBuffer
        dest - will receive the values of this matrix in column-major order
        Returns:
        the passed in buffer
      • getFloats

        public java.nio.ByteBuffer getFloats​(java.nio.ByteBuffer dest)
        Description copied from interface: Matrix4dc
        Store the elements of this matrix as float values in column-major order into the supplied ByteBuffer at the current buffer position.

        This method will not increment the position of the given ByteBuffer.

        Please note that due to this matrix storing double values those values will potentially lose precision when they are converted to float values before being put into the given ByteBuffer.

        In order to specify the offset into the ByteBuffer at which the matrix is stored, use Matrix4dc.getFloats(int, ByteBuffer), taking the absolute position as parameter.

        Specified by:
        getFloats in interface Matrix4dc
        Parameters:
        dest - will receive the elements of this matrix as float values in column-major order at its current position
        Returns:
        the passed in buffer
        See Also:
        Matrix4dc.getFloats(int, ByteBuffer)
      • getFloats

        public java.nio.ByteBuffer getFloats​(int index,
                                             java.nio.ByteBuffer dest)
        Description copied from interface: Matrix4dc
        Store the elements of this matrix as float values in column-major order into the supplied ByteBuffer starting at the specified absolute buffer position/index.

        This method will not increment the position of the given ByteBuffer.

        Please note that due to this matrix storing double values those values will potentially lose precision when they are converted to float values before being put into the given ByteBuffer.

        Specified by:
        getFloats in interface Matrix4dc
        Parameters:
        index - the absolute position into the ByteBuffer
        dest - will receive the elements of this matrix as float values in column-major order
        Returns:
        the passed in buffer
      • getToAddress

        public Matrix4dc getToAddress​(long address)
        Description copied from interface: Matrix4dc
        Store this matrix in column-major order at the given off-heap address.

        This method will throw an UnsupportedOperationException when JOML is used with `-Djoml.nounsafe`.

        This method is unsafe as it can result in a crash of the JVM process when the specified address range does not belong to this process.

        Specified by:
        getToAddress in interface Matrix4dc
        Parameters:
        address - the off-heap address where to store this matrix
        Returns:
        this
      • get

        public double[] get​(double[] dest,
                            int offset)
        Description copied from interface: Matrix4dc
        Store this matrix into the supplied double array in column-major order at the given offset.
        Specified by:
        get in interface Matrix4dc
        Parameters:
        dest - the array to write the matrix values into
        offset - the offset into the array
        Returns:
        the passed in array
      • get

        public double[] get​(double[] dest)
        Description copied from interface: Matrix4dc
        Store this matrix into the supplied double array in column-major order.

        In order to specify an explicit offset into the array, use the method Matrix4dc.get(double[], int).

        Specified by:
        get in interface Matrix4dc
        Parameters:
        dest - the array to write the matrix values into
        Returns:
        the passed in array
        See Also:
        Matrix4dc.get(double[], int)
      • get

        public float[] get​(float[] dest,
                           int offset)
        Description copied from interface: Matrix4dc
        Store the elements of this matrix as float values in column-major order into the supplied float array at the given offset.

        Please note that due to this matrix storing double values those values will potentially lose precision when they are converted to float values before being put into the given float array.

        Specified by:
        get in interface Matrix4dc
        Parameters:
        dest - the array to write the matrix values into
        offset - the offset into the array
        Returns:
        the passed in array
      • get

        public float[] get​(float[] dest)
        Description copied from interface: Matrix4dc
        Store the elements of this matrix as float values in column-major order into the supplied float array.

        Please note that due to this matrix storing double values those values will potentially lose precision when they are converted to float values before being put into the given float array.

        In order to specify an explicit offset into the array, use the method Matrix4dc.get(float[], int).

        Specified by:
        get in interface Matrix4dc
        Parameters:
        dest - the array to write the matrix values into
        Returns:
        the passed in array
        See Also:
        Matrix4dc.get(float[], int)
      • getTransposed

        public java.nio.DoubleBuffer getTransposed​(java.nio.DoubleBuffer dest)
        Description copied from interface: Matrix4dc
        Store this matrix in row-major order into the supplied DoubleBuffer at the current buffer position.

        This method will not increment the position of the given DoubleBuffer.

        In order to specify the offset into the DoubleBuffer at which the matrix is stored, use Matrix4dc.getTransposed(int, DoubleBuffer), taking the absolute position as parameter.

        Specified by:
        getTransposed in interface Matrix4dc
        Parameters:
        dest - will receive the values of this matrix in row-major order at its current position
        Returns:
        the passed in buffer
        See Also:
        Matrix4dc.getTransposed(int, DoubleBuffer)
      • getTransposed

        public java.nio.DoubleBuffer getTransposed​(int index,
                                                   java.nio.DoubleBuffer dest)
        Description copied from interface: Matrix4dc
        Store this matrix in row-major order into the supplied DoubleBuffer starting at the specified absolute buffer position/index.

        This method will not increment the position of the given DoubleBuffer.

        Specified by:
        getTransposed in interface Matrix4dc
        Parameters:
        index - the absolute position into the DoubleBuffer
        dest - will receive the values of this matrix in row-major order
        Returns:
        the passed in buffer
      • getTransposed

        public java.nio.FloatBuffer getTransposed​(java.nio.FloatBuffer dest)
        Description copied from interface: Matrix4dc
        Store this matrix in row-major order into the supplied FloatBuffer at the current buffer position.

        This method will not increment the position of the given FloatBuffer.

        Please note that due to this matrix storing double values those values will potentially lose precision when they are converted to float values before being put into the given FloatBuffer.

        In order to specify the offset into the FloatBuffer at which the matrix is stored, use Matrix4dc.getTransposed(int, FloatBuffer), taking the absolute position as parameter.

        Specified by:
        getTransposed in interface Matrix4dc
        Parameters:
        dest - will receive the values of this matrix in row-major order at its current position
        Returns:
        the passed in buffer
        See Also:
        Matrix4dc.getTransposed(int, FloatBuffer)
      • getTransposed

        public java.nio.FloatBuffer getTransposed​(int index,
                                                  java.nio.FloatBuffer dest)
        Description copied from interface: Matrix4dc
        Store this matrix in row-major order into the supplied FloatBuffer starting at the specified absolute buffer position/index.

        This method will not increment the position of the given FloatBuffer.

        Please note that due to this matrix storing double values those values will potentially lose precision when they are converted to float values before being put into the given FloatBuffer.

        Specified by:
        getTransposed in interface Matrix4dc
        Parameters:
        index - the absolute position into the FloatBuffer
        dest - will receive the values of this matrix in row-major order
        Returns:
        the passed in buffer
      • getTransposed

        public java.nio.ByteBuffer getTransposed​(java.nio.ByteBuffer dest)
        Description copied from interface: Matrix4dc
        Store this matrix in row-major order into the supplied ByteBuffer at the current buffer position.

        This method will not increment the position of the given ByteBuffer.

        In order to specify the offset into the ByteBuffer at which the matrix is stored, use Matrix4dc.getTransposed(int, ByteBuffer), taking the absolute position as parameter.

        Specified by:
        getTransposed in interface Matrix4dc
        Parameters:
        dest - will receive the values of this matrix in row-major order at its current position
        Returns:
        the passed in buffer
        See Also:
        Matrix4dc.getTransposed(int, ByteBuffer)
      • getTransposed

        public java.nio.ByteBuffer getTransposed​(int index,
                                                 java.nio.ByteBuffer dest)
        Description copied from interface: Matrix4dc
        Store this matrix in row-major order into the supplied ByteBuffer starting at the specified absolute buffer position/index.

        This method will not increment the position of the given ByteBuffer.

        Specified by:
        getTransposed in interface Matrix4dc
        Parameters:
        index - the absolute position into the ByteBuffer
        dest - will receive the values of this matrix in row-major order
        Returns:
        the passed in buffer
      • get4x3Transposed

        public java.nio.DoubleBuffer get4x3Transposed​(java.nio.DoubleBuffer dest)
        Description copied from interface: Matrix4dc
        Store the upper 4x3 submatrix of this matrix in row-major order into the supplied DoubleBuffer at the current buffer position.

        This method will not increment the position of the given DoubleBuffer.

        In order to specify the offset into the DoubleBuffer at which the matrix is stored, use Matrix4dc.get4x3Transposed(int, DoubleBuffer), taking the absolute position as parameter.

        Specified by:
        get4x3Transposed in interface Matrix4dc
        Parameters:
        dest - will receive the values of the upper 4x3 submatrix in row-major order at its current position
        Returns:
        the passed in buffer
        See Also:
        Matrix4dc.get4x3Transposed(int, DoubleBuffer)
      • get4x3Transposed

        public java.nio.DoubleBuffer get4x3Transposed​(int index,
                                                      java.nio.DoubleBuffer dest)
        Description copied from interface: Matrix4dc
        Store the upper 4x3 submatrix of this matrix in row-major order into the supplied DoubleBuffer starting at the specified absolute buffer position/index.

        This method will not increment the position of the given DoubleBuffer.

        Specified by:
        get4x3Transposed in interface Matrix4dc
        Parameters:
        index - the absolute position into the DoubleBuffer
        dest - will receive the values of the upper 4x3 submatrix in row-major order
        Returns:
        the passed in buffer
      • get4x3Transposed

        public java.nio.ByteBuffer get4x3Transposed​(java.nio.ByteBuffer dest)
        Description copied from interface: Matrix4dc
        Store the upper 4x3 submatrix of this matrix in row-major order into the supplied ByteBuffer at the current buffer position.

        This method will not increment the position of the given ByteBuffer.

        In order to specify the offset into the ByteBuffer at which the matrix is stored, use Matrix4dc.get4x3Transposed(int, ByteBuffer), taking the absolute position as parameter.

        Specified by:
        get4x3Transposed in interface Matrix4dc
        Parameters:
        dest - will receive the values of the upper 4x3 submatrix in row-major order at its current position
        Returns:
        the passed in buffer
        See Also:
        Matrix4dc.get4x3Transposed(int, ByteBuffer)
      • get4x3Transposed

        public java.nio.ByteBuffer get4x3Transposed​(int index,
                                                    java.nio.ByteBuffer dest)
        Description copied from interface: Matrix4dc
        Store the upper 4x3 submatrix of this matrix in row-major order into the supplied ByteBuffer starting at the specified absolute buffer position/index.

        This method will not increment the position of the given ByteBuffer.

        Specified by:
        get4x3Transposed in interface Matrix4dc
        Parameters:
        index - the absolute position into the ByteBuffer
        dest - will receive the values of the upper 4x3 submatrix in row-major order
        Returns:
        the passed in buffer
      • getTransposedFloats

        public java.nio.ByteBuffer getTransposedFloats​(java.nio.ByteBuffer buffer)
        Description copied from interface: Matrix4dc
        Store this matrix as float values in row-major order into the supplied ByteBuffer at the current buffer position.

        This method will not increment the position of the given ByteBuffer.

        Please note that due to this matrix storing double values those values will potentially lose precision when they are converted to float values before being put into the given FloatBuffer.

        In order to specify the offset into the ByteBuffer at which the matrix is stored, use Matrix4dc.getTransposedFloats(int, ByteBuffer), taking the absolute position as parameter.

        Specified by:
        getTransposedFloats in interface Matrix4dc
        Parameters:
        buffer - will receive the values of this matrix as float values in row-major order at its current position
        Returns:
        the passed in buffer
        See Also:
        Matrix4dc.getTransposedFloats(int, ByteBuffer)
      • getTransposedFloats

        public java.nio.ByteBuffer getTransposedFloats​(int index,
                                                       java.nio.ByteBuffer buffer)
        Description copied from interface: Matrix4dc
        Store this matrix in row-major order into the supplied ByteBuffer starting at the specified absolute buffer position/index.

        This method will not increment the position of the given ByteBuffer.

        Please note that due to this matrix storing double values those values will potentially lose precision when they are converted to float values before being put into the given FloatBuffer.

        Specified by:
        getTransposedFloats in interface Matrix4dc
        Parameters:
        index - the absolute position into the ByteBuffer
        buffer - will receive the values of this matrix as float values in row-major order
        Returns:
        the passed in buffer
      • zero

        public Matrix4d zero()
        Set all the values within this matrix to 0.
        Returns:
        this
      • scaling

        public Matrix4d scaling​(double factor)
        Set this matrix to be a simple scale matrix, which scales all axes uniformly by the given factor.

        The resulting matrix can be multiplied against another transformation matrix to obtain an additional scaling.

        In order to post-multiply a scaling transformation directly to a matrix, use scale() instead.

        Parameters:
        factor - the scale factor in x, y and z
        Returns:
        this
        See Also:
        scale(double)
      • scaling

        public Matrix4d scaling​(double x,
                                double y,
                                double z)
        Set this matrix to be a simple scale matrix.
        Parameters:
        x - the scale in x
        y - the scale in y
        z - the scale in z
        Returns:
        this
      • scaling

        public Matrix4d scaling​(Vector3dc xyz)
        Set this matrix to be a simple scale matrix which scales the base axes by xyz.x, xyz.y and xyz.z, respectively.

        The resulting matrix can be multiplied against another transformation matrix to obtain an additional scaling.

        In order to post-multiply a scaling transformation directly to a matrix use scale() instead.

        Parameters:
        xyz - the scale in x, y and z, respectively
        Returns:
        this
        See Also:
        scale(Vector3dc)
      • rotation

        public Matrix4d rotation​(double angle,
                                 double x,
                                 double y,
                                 double z)
        Set this matrix to a rotation matrix which rotates the given radians about a given axis.

        When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

        From Wikipedia

        Parameters:
        angle - the angle in radians
        x - the x-coordinate of the axis to rotate about
        y - the y-coordinate of the axis to rotate about
        z - the z-coordinate of the axis to rotate about
        Returns:
        this
      • rotationX

        public Matrix4d rotationX​(double ang)
        Set this matrix to a rotation transformation about the X axis.

        When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

        Reference: http://en.wikipedia.org

        Parameters:
        ang - the angle in radians
        Returns:
        this
      • rotationY

        public Matrix4d rotationY​(double ang)
        Set this matrix to a rotation transformation about the Y axis.

        When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

        Reference: http://en.wikipedia.org

        Parameters:
        ang - the angle in radians
        Returns:
        this
      • rotationZ

        public Matrix4d rotationZ​(double ang)
        Set this matrix to a rotation transformation about the Z axis.

        When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

        Reference: http://en.wikipedia.org

        Parameters:
        ang - the angle in radians
        Returns:
        this
      • rotationTowardsXY

        public Matrix4d rotationTowardsXY​(double dirX,
                                          double dirY)
        Set this matrix to a rotation transformation about the Z axis to align the local +X towards (dirX, dirY).

        The vector (dirX, dirY) must be a unit vector.

        Parameters:
        dirX - the x component of the normalized direction
        dirY - the y component of the normalized direction
        Returns:
        this
      • rotationXYZ

        public Matrix4d rotationXYZ​(double angleX,
                                    double angleY,
                                    double angleZ)
        Set this matrix to a rotation of angleX radians about the X axis, followed by a rotation of angleY radians about the Y axis and followed by a rotation of angleZ radians about the Z axis.

        When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

        This method is equivalent to calling: rotationX(angleX).rotateY(angleY).rotateZ(angleZ)

        Parameters:
        angleX - the angle to rotate about X
        angleY - the angle to rotate about Y
        angleZ - the angle to rotate about Z
        Returns:
        this
      • rotationZYX

        public Matrix4d rotationZYX​(double angleZ,
                                    double angleY,
                                    double angleX)
        Set this matrix to a rotation of angleZ radians about the Z axis, followed by a rotation of angleY radians about the Y axis and followed by a rotation of angleX radians about the X axis.

        When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

        This method is equivalent to calling: rotationZ(angleZ).rotateY(angleY).rotateX(angleX)

        Parameters:
        angleZ - the angle to rotate about Z
        angleY - the angle to rotate about Y
        angleX - the angle to rotate about X
        Returns:
        this
      • rotationYXZ

        public Matrix4d rotationYXZ​(double angleY,
                                    double angleX,
                                    double angleZ)
        Set this matrix to a rotation of angleY radians about the Y axis, followed by a rotation of angleX radians about the X axis and followed by a rotation of angleZ radians about the Z axis.

        When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

        This method is equivalent to calling: rotationY(angleY).rotateX(angleX).rotateZ(angleZ)

        Parameters:
        angleY - the angle to rotate about Y
        angleX - the angle to rotate about X
        angleZ - the angle to rotate about Z
        Returns:
        this
      • setRotationXYZ

        public Matrix4d setRotationXYZ​(double angleX,
                                       double angleY,
                                       double angleZ)
        Set only the upper left 3x3 submatrix of this matrix to a rotation of angleX radians about the X axis, followed by a rotation of angleY radians about the Y axis and followed by a rotation of angleZ radians about the Z axis.

        When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

        Parameters:
        angleX - the angle to rotate about X
        angleY - the angle to rotate about Y
        angleZ - the angle to rotate about Z
        Returns:
        this
      • setRotationZYX

        public Matrix4d setRotationZYX​(double angleZ,
                                       double angleY,
                                       double angleX)
        Set only the upper left 3x3 submatrix of this matrix to a rotation of angleZ radians about the Z axis, followed by a rotation of angleY radians about the Y axis and followed by a rotation of angleX radians about the X axis.

        When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

        Parameters:
        angleZ - the angle to rotate about Z
        angleY - the angle to rotate about Y
        angleX - the angle to rotate about X
        Returns:
        this
      • setRotationYXZ

        public Matrix4d setRotationYXZ​(double angleY,
                                       double angleX,
                                       double angleZ)
        Set only the upper left 3x3 submatrix of this matrix to a rotation of angleY radians about the Y axis, followed by a rotation of angleX radians about the X axis and followed by a rotation of angleZ radians about the Z axis.

        When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

        Parameters:
        angleY - the angle to rotate about Y
        angleX - the angle to rotate about X
        angleZ - the angle to rotate about Z
        Returns:
        this
      • rotation

        public Matrix4d rotation​(double angle,
                                 Vector3dc axis)
        Set this matrix to a rotation matrix which rotates the given radians about a given axis.

        The axis described by the axis vector needs to be a unit vector.

        When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

        Parameters:
        angle - the angle in radians
        axis - the axis to rotate about
        Returns:
        this
      • rotation

        public Matrix4d rotation​(double angle,
                                 Vector3fc axis)
        Set this matrix to a rotation matrix which rotates the given radians about a given axis.

        The axis described by the axis vector needs to be a unit vector.

        When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

        Parameters:
        angle - the angle in radians
        axis - the axis to rotate about
        Returns:
        this
      • transform

        public Vector4d transform​(Vector4d v)
        Description copied from interface: Matrix4dc
        Transform/multiply the given vector by this matrix and store the result in that vector.
        Specified by:
        transform in interface Matrix4dc
        Parameters:
        v - the vector to transform and to hold the final result
        Returns:
        v
        See Also:
        Vector4d.mul(Matrix4dc)
      • transform

        public Vector4d transform​(double x,
                                  double y,
                                  double z,
                                  double w,
                                  Vector4d dest)
        Description copied from interface: Matrix4dc
        Transform/multiply the vector (x, y, z, w) by this matrix and store the result in dest.
        Specified by:
        transform in interface Matrix4dc
        Parameters:
        x - the x coordinate of the vector to transform
        y - the y coordinate of the vector to transform
        z - the z coordinate of the vector to transform
        w - the w coordinate of the vector to transform
        dest - will contain the result
        Returns:
        dest
      • transformTranspose

        public Vector4d transformTranspose​(double x,
                                           double y,
                                           double z,
                                           double w,
                                           Vector4d dest)
        Description copied from interface: Matrix4dc
        Transform/multiply the vector (x, y, z, w) by the transpose of this matrix and store the result in dest.
        Specified by:
        transformTranspose in interface Matrix4dc
        Parameters:
        x - the x coordinate of the vector to transform
        y - the y coordinate of the vector to transform
        z - the z coordinate of the vector to transform
        w - the w coordinate of the vector to transform
        dest - will contain the result
        Returns:
        dest
      • transformProject

        public Vector4d transformProject​(Vector4d v)
        Description copied from interface: Matrix4dc
        Transform/multiply the given vector by this matrix, perform perspective divide and store the result in that vector.
        Specified by:
        transformProject in interface Matrix4dc
        Parameters:
        v - the vector to transform and to hold the final result
        Returns:
        v
        See Also:
        Vector4d.mulProject(Matrix4dc)
      • transformProject

        public Vector4d transformProject​(double x,
                                         double y,
                                         double z,
                                         double w,
                                         Vector4d dest)
        Description copied from interface: Matrix4dc
        Transform/multiply the vector (x, y, z, w) by this matrix, perform perspective divide and store the result in dest.
        Specified by:
        transformProject in interface Matrix4dc
        Parameters:
        x - the x coordinate of the direction to transform
        y - the y coordinate of the direction to transform
        z - the z coordinate of the direction to transform
        w - the w coordinate of the direction to transform
        dest - will contain the result
        Returns:
        dest
      • transformProject

        public Vector3d transformProject​(Vector3d v)
        Description copied from interface: Matrix4dc
        Transform/multiply the given vector by this matrix, perform perspective divide and store the result in that vector.

        This method uses w=1.0 as the fourth vector component.

        Specified by:
        transformProject in interface Matrix4dc
        Parameters:
        v - the vector to transform and to hold the final result
        Returns:
        v
        See Also:
        Vector3d.mulProject(Matrix4dc)
      • transformProject

        public Vector3d transformProject​(double x,
                                         double y,
                                         double z,
                                         Vector3d dest)
        Description copied from interface: Matrix4dc
        Transform/multiply the vector (x, y, z) by this matrix, perform perspective divide and store the result in dest.

        This method uses w=1.0 as the fourth vector component.

        Specified by:
        transformProject in interface Matrix4dc
        Parameters:
        x - the x coordinate of the vector to transform
        y - the y coordinate of the vector to transform
        z - the z coordinate of the vector to transform
        dest - will contain the result
        Returns:
        dest
      • transformProject

        public Vector3d transformProject​(double x,
                                         double y,
                                         double z,
                                         double w,
                                         Vector3d dest)
        Description copied from interface: Matrix4dc
        Transform/multiply the vector (x, y, z, w) by this matrix, perform perspective divide and store (x, y, z) of the result in dest.
        Specified by:
        transformProject in interface Matrix4dc
        Parameters:
        x - the x coordinate of the vector to transform
        y - the y coordinate of the vector to transform
        z - the z coordinate of the vector to transform
        w - the w coordinate of the vector to transform
        dest - will contain the (x, y, z) components of the result
        Returns:
        dest
      • transformDirection

        public Vector3d transformDirection​(Vector3d dest)
        Description copied from interface: Matrix4dc
        Transform/multiply the given 3D-vector, as if it was a 4D-vector with w=0, by this matrix and store the result in that vector.

        The given 3D-vector is treated as a 4D-vector with its w-component being 0.0, so it will represent a direction in 3D-space rather than a position. This method will therefore not take the translation part of the matrix into account.

        In order to store the result in another vector, use Matrix4dc.transformDirection(Vector3dc, Vector3d).

        Specified by:
        transformDirection in interface Matrix4dc
        Parameters:
        dest - the vector to transform and to hold the final result
        Returns:
        v
      • transformDirection

        public Vector3d transformDirection​(Vector3dc v,
                                           Vector3d dest)
        Description copied from interface: Matrix4dc
        Transform/multiply the given 3D-vector, as if it was a 4D-vector with w=0, by this matrix and store the result in dest.

        The given 3D-vector is treated as a 4D-vector with its w-component being 0.0, so it will represent a direction in 3D-space rather than a position. This method will therefore not take the translation part of the matrix into account.

        In order to store the result in the same vector, use Matrix4dc.transformDirection(Vector3d).

        Specified by:
        transformDirection in interface Matrix4dc
        Parameters:
        v - the vector to transform and to hold the final result
        dest - will hold the result
        Returns:
        dest
      • transformDirection

        public Vector3d transformDirection​(double x,
                                           double y,
                                           double z,
                                           Vector3d dest)
        Description copied from interface: Matrix4dc
        Transform/multiply the 3D-vector (x, y, z), as if it was a 4D-vector with w=0, by this matrix and store the result in dest.

        The given 3D-vector is treated as a 4D-vector with its w-component being 0.0, so it will represent a direction in 3D-space rather than a position. This method will therefore not take the translation part of the matrix into account.

        Specified by:
        transformDirection in interface Matrix4dc
        Parameters:
        x - the x coordinate of the direction to transform
        y - the y coordinate of the direction to transform
        z - the z coordinate of the direction to transform
        dest - will hold the result
        Returns:
        dest
      • transformDirection

        public Vector3f transformDirection​(Vector3f dest)
        Description copied from interface: Matrix4dc
        Transform/multiply the given 3D-vector, as if it was a 4D-vector with w=0, by this matrix and store the result in that vector.

        The given 3D-vector is treated as a 4D-vector with its w-component being 0.0, so it will represent a direction in 3D-space rather than a position. This method will therefore not take the translation part of the matrix into account.

        In order to store the result in another vector, use Matrix4dc.transformDirection(Vector3fc, Vector3f).

        Specified by:
        transformDirection in interface Matrix4dc
        Parameters:
        dest - the vector to transform and to hold the final result
        Returns:
        v
      • transformDirection

        public Vector3f transformDirection​(Vector3fc v,
                                           Vector3f dest)
        Description copied from interface: Matrix4dc
        Transform/multiply the given 3D-vector, as if it was a 4D-vector with w=0, by this matrix and store the result in dest.

        The given 3D-vector is treated as a 4D-vector with its w-component being 0.0, so it will represent a direction in 3D-space rather than a position. This method will therefore not take the translation part of the matrix into account.

        In order to store the result in the same vector, use Matrix4dc.transformDirection(Vector3f).

        Specified by:
        transformDirection in interface Matrix4dc
        Parameters:
        v - the vector to transform and to hold the final result
        dest - will hold the result
        Returns:
        dest
      • transformDirection

        public Vector3f transformDirection​(double x,
                                           double y,
                                           double z,
                                           Vector3f dest)
        Description copied from interface: Matrix4dc
        Transform/multiply the 3D-vector (x, y, z), as if it was a 4D-vector with w=0, by this matrix and store the result in dest.

        The given 3D-vector is treated as a 4D-vector with its w-component being 0.0, so it will represent a direction in 3D-space rather than a position. This method will therefore not take the translation part of the matrix into account.

        Specified by:
        transformDirection in interface Matrix4dc
        Parameters:
        x - the x coordinate of the direction to transform
        y - the y coordinate of the direction to transform
        z - the z coordinate of the direction to transform
        dest - will hold the result
        Returns:
        dest
      • transformAffine

        public Vector4d transformAffine​(double x,
                                        double y,
                                        double z,
                                        double w,
                                        Vector4d dest)
        Description copied from interface: Matrix4dc
        Transform/multiply the 4D-vector (x, y, z, w) by assuming that this matrix represents an affine transformation (i.e. its last row is equal to (0, 0, 0, 1)) and store the result in dest.
        Specified by:
        transformAffine in interface Matrix4dc
        Parameters:
        x - the x coordinate of the direction to transform
        y - the y coordinate of the direction to transform
        z - the z coordinate of the direction to transform
        w - the w coordinate of the direction to transform
        dest - will hold the result
        Returns:
        dest
      • set3x3

        public Matrix4d set3x3​(Matrix3dc mat)
        Set the upper left 3x3 submatrix of this Matrix4d to the given Matrix3dc and don't change the other elements.
        Parameters:
        mat - the 3x3 matrix
        Returns:
        this
      • scale

        public Matrix4d scale​(Vector3dc xyz,
                              Matrix4d dest)
        Description copied from interface: Matrix4dc
        Apply scaling to this matrix by scaling the base axes by the given xyz.x, xyz.y and xyz.z factors, respectively and store the result in dest.

        If M is this matrix and S the scaling matrix, then the new matrix will be M * S. So when transforming a vector v with the new matrix by using M * S * v , the scaling will be applied first!

        Specified by:
        scale in interface Matrix4dc
        Parameters:
        xyz - the factors of the x, y and z component, respectively
        dest - will hold the result
        Returns:
        dest
      • scale

        public Matrix4d scale​(Vector3dc xyz)
        Apply scaling to this matrix by scaling the base axes by the given xyz.x, xyz.y and xyz.z factors, respectively.

        If M is this matrix and S the scaling matrix, then the new matrix will be M * S. So when transforming a vector v with the new matrix by using M * S * v, the scaling will be applied first!

        Parameters:
        xyz - the factors of the x, y and z component, respectively
        Returns:
        this
      • scale

        public Matrix4d scale​(double x,
                              double y,
                              double z,
                              Matrix4d dest)
        Description copied from interface: Matrix4dc
        Apply scaling to this matrix by scaling the base axes by the given x, y and z factors and store the result in dest.

        If M is this matrix and S the scaling matrix, then the new matrix will be M * S. So when transforming a vector v with the new matrix by using M * S * v , the scaling will be applied first!

        Specified by:
        scale in interface Matrix4dc
        Parameters:
        x - the factor of the x component
        y - the factor of the y component
        z - the factor of the z component
        dest - will hold the result
        Returns:
        dest
      • scale

        public Matrix4d scale​(double x,
                              double y,
                              double z)
        Apply scaling to this matrix by scaling the base axes by the given x, y and z factors.

        If M is this matrix and S the scaling matrix, then the new matrix will be M * S. So when transforming a vector v with the new matrix by using M * S * v , the scaling will be applied first!

        Parameters:
        x - the factor of the x component
        y - the factor of the y component
        z - the factor of the z component
        Returns:
        this
      • scale

        public Matrix4d scale​(double xyz,
                              Matrix4d dest)
        Description copied from interface: Matrix4dc
        Apply scaling to this matrix by uniformly scaling all base axes by the given xyz factor and store the result in dest.

        If M is this matrix and S the scaling matrix, then the new matrix will be M * S. So when transforming a vector v with the new matrix by using M * S * v , the scaling will be applied first!

        Specified by:
        scale in interface Matrix4dc
        Parameters:
        xyz - the factor for all components
        dest - will hold the result
        Returns:
        dest
        See Also:
        Matrix4dc.scale(double, double, double, Matrix4d)
      • scale

        public Matrix4d scale​(double xyz)
        Apply scaling to this matrix by uniformly scaling all base axes by the given xyz factor.

        If M is this matrix and S the scaling matrix, then the new matrix will be M * S. So when transforming a vector v with the new matrix by using M * S * v , the scaling will be applied first!

        Parameters:
        xyz - the factor for all components
        Returns:
        this
        See Also:
        scale(double, double, double)
      • scaleXY

        public Matrix4d scaleXY​(double x,
                                double y,
                                Matrix4d dest)
        Description copied from interface: Matrix4dc
        Apply scaling to this matrix by by scaling the X axis by x and the Y axis by y and store the result in dest.

        If M is this matrix and S the scaling matrix, then the new matrix will be M * S. So when transforming a vector v with the new matrix by using M * S * v, the scaling will be applied first!

        Specified by:
        scaleXY in interface Matrix4dc
        Parameters:
        x - the factor of the x component
        y - the factor of the y component
        dest - will hold the result
        Returns:
        dest
      • scaleXY

        public Matrix4d scaleXY​(double x,
                                double y)
        Apply scaling to this matrix by scaling the X axis by x and the Y axis by y.

        If M is this matrix and S the scaling matrix, then the new matrix will be M * S. So when transforming a vector v with the new matrix by using M * S * v, the scaling will be applied first!

        Parameters:
        x - the factor of the x component
        y - the factor of the y component
        Returns:
        this
      • scaleAround

        public Matrix4d scaleAround​(double sx,
                                    double sy,
                                    double sz,
                                    double ox,
                                    double oy,
                                    double oz,
                                    Matrix4d dest)
        Description copied from interface: Matrix4dc
        Apply scaling to this matrix by scaling the base axes by the given sx, sy and sz factors while using (ox, oy, oz) as the scaling origin, and store the result in dest.

        If M is this matrix and S the scaling matrix, then the new matrix will be M * S. So when transforming a vector v with the new matrix by using M * S * v , the scaling will be applied first!

        This method is equivalent to calling: translate(ox, oy, oz, dest).scale(sx, sy, sz).translate(-ox, -oy, -oz)

        Specified by:
        scaleAround in interface Matrix4dc
        Parameters:
        sx - the scaling factor of the x component
        sy - the scaling factor of the y component
        sz - the scaling factor of the z component
        ox - the x coordinate of the scaling origin
        oy - the y coordinate of the scaling origin
        oz - the z coordinate of the scaling origin
        dest - will hold the result
        Returns:
        dest
      • scaleAround

        public Matrix4d scaleAround​(double sx,
                                    double sy,
                                    double sz,
                                    double ox,
                                    double oy,
                                    double oz)
        Apply scaling to this matrix by scaling the base axes by the given sx, sy and sz factors while using (ox, oy, oz) as the scaling origin.

        If M is this matrix and S the scaling matrix, then the new matrix will be M * S. So when transforming a vector v with the new matrix by using M * S * v, the scaling will be applied first!

        This method is equivalent to calling: translate(ox, oy, oz).scale(sx, sy, sz).translate(-ox, -oy, -oz)

        Parameters:
        sx - the scaling factor of the x component
        sy - the scaling factor of the y component
        sz - the scaling factor of the z component
        ox - the x coordinate of the scaling origin
        oy - the y coordinate of the scaling origin
        oz - the z coordinate of the scaling origin
        Returns:
        this
      • scaleAround

        public Matrix4d scaleAround​(double factor,
                                    double ox,
                                    double oy,
                                    double oz)
        Apply scaling to this matrix by scaling all three base axes by the given factor while using (ox, oy, oz) as the scaling origin.

        If M is this matrix and S the scaling matrix, then the new matrix will be M * S. So when transforming a vector v with the new matrix by using M * S * v, the scaling will be applied first!

        This method is equivalent to calling: translate(ox, oy, oz).scale(factor).translate(-ox, -oy, -oz)

        Parameters:
        factor - the scaling factor for all three axes
        ox - the x coordinate of the scaling origin
        oy - the y coordinate of the scaling origin
        oz - the z coordinate of the scaling origin
        Returns:
        this
      • scaleAround

        public Matrix4d scaleAround​(double factor,
                                    double ox,
                                    double oy,
                                    double oz,
                                    Matrix4d dest)
        Description copied from interface: Matrix4dc
        Apply scaling to this matrix by scaling all three base axes by the given factor while using (ox, oy, oz) as the scaling origin, and store the result in dest.

        If M is this matrix and S the scaling matrix, then the new matrix will be M * S. So when transforming a vector v with the new matrix by using M * S * v, the scaling will be applied first!

        This method is equivalent to calling: translate(ox, oy, oz, dest).scale(factor).translate(-ox, -oy, -oz)

        Specified by:
        scaleAround in interface Matrix4dc
        Parameters:
        factor - the scaling factor for all three axes
        ox - the x coordinate of the scaling origin
        oy - the y coordinate of the scaling origin
        oz - the z coordinate of the scaling origin
        dest - will hold the result
        Returns:
        this
      • scaleLocal

        public Matrix4d scaleLocal​(double x,
                                   double y,
                                   double z,
                                   Matrix4d dest)
        Description copied from interface: Matrix4dc
        Pre-multiply scaling to this matrix by scaling the base axes by the given x, y and z factors and store the result in dest.

        If M is this matrix and S the scaling matrix, then the new matrix will be S * M. So when transforming a vector v with the new matrix by using S * M * v , the scaling will be applied last!

        Specified by:
        scaleLocal in interface Matrix4dc
        Parameters:
        x - the factor of the x component
        y - the factor of the y component
        z - the factor of the z component
        dest - will hold the result
        Returns:
        dest
      • scaleLocal

        public Matrix4d scaleLocal​(double xyz,
                                   Matrix4d dest)
        Description copied from interface: Matrix4dc
        Pre-multiply scaling to this matrix by scaling all base axes by the given xyz factor, and store the result in dest.

        If M is this matrix and S the scaling matrix, then the new matrix will be S * M. So when transforming a vector v with the new matrix by using S * M * v , the scaling will be applied last!

        Specified by:
        scaleLocal in interface Matrix4dc
        Parameters:
        xyz - the factor to scale all three base axes by
        dest - will hold the result
        Returns:
        dest
      • scaleLocal

        public Matrix4d scaleLocal​(double xyz)
        Pre-multiply scaling to this matrix by scaling the base axes by the given xyz factor.

        If M is this matrix and S the scaling matrix, then the new matrix will be S * M. So when transforming a vector v with the new matrix by using S * M * v, the scaling will be applied last!

        Parameters:
        xyz - the factor of the x, y and z component
        Returns:
        this
      • scaleLocal

        public Matrix4d scaleLocal​(double x,
                                   double y,
                                   double z)
        Pre-multiply scaling to this matrix by scaling the base axes by the given x, y and z factors.

        If M is this matrix and S the scaling matrix, then the new matrix will be S * M. So when transforming a vector v with the new matrix by using S * M * v, the scaling will be applied last!

        Parameters:
        x - the factor of the x component
        y - the factor of the y component
        z - the factor of the z component
        Returns:
        this
      • scaleAroundLocal

        public Matrix4d scaleAroundLocal​(double sx,
                                         double sy,
                                         double sz,
                                         double ox,
                                         double oy,
                                         double oz,
                                         Matrix4d dest)
        Description copied from interface: Matrix4dc
        Pre-multiply scaling to this matrix by scaling the base axes by the given sx, sy and sz factors while using the given (ox, oy, oz) as the scaling origin, and store the result in dest.

        If M is this matrix and S the scaling matrix, then the new matrix will be S * M. So when transforming a vector v with the new matrix by using S * M * v , the scaling will be applied last!

        This method is equivalent to calling: new Matrix4d().translate(ox, oy, oz).scale(sx, sy, sz).translate(-ox, -oy, -oz).mul(this, dest)

        Specified by:
        scaleAroundLocal in interface Matrix4dc
        Parameters:
        sx - the scaling factor of the x component
        sy - the scaling factor of the y component
        sz - the scaling factor of the z component
        ox - the x coordinate of the scaling origin
        oy - the y coordinate of the scaling origin
        oz - the z coordinate of the scaling origin
        dest - will hold the result
        Returns:
        dest
      • scaleAroundLocal

        public Matrix4d scaleAroundLocal​(double sx,
                                         double sy,
                                         double sz,
                                         double ox,
                                         double oy,
                                         double oz)
        Pre-multiply scaling to this matrix by scaling the base axes by the given sx, sy and sz factors while using (ox, oy, oz) as the scaling origin.

        If M is this matrix and S the scaling matrix, then the new matrix will be S * M. So when transforming a vector v with the new matrix by using S * M * v, the scaling will be applied last!

        This method is equivalent to calling: new Matrix4d().translate(ox, oy, oz).scale(sx, sy, sz).translate(-ox, -oy, -oz).mul(this, this)

        Parameters:
        sx - the scaling factor of the x component
        sy - the scaling factor of the y component
        sz - the scaling factor of the z component
        ox - the x coordinate of the scaling origin
        oy - the y coordinate of the scaling origin
        oz - the z coordinate of the scaling origin
        Returns:
        this
      • scaleAroundLocal

        public Matrix4d scaleAroundLocal​(double factor,
                                         double ox,
                                         double oy,
                                         double oz)
        Pre-multiply scaling to this matrix by scaling all three base axes by the given factor while using (ox, oy, oz) as the scaling origin.

        If M is this matrix and S the scaling matrix, then the new matrix will be S * M. So when transforming a vector v with the new matrix by using S * M * v, the scaling will be applied last!

        This method is equivalent to calling: new Matrix4d().translate(ox, oy, oz).scale(factor).translate(-ox, -oy, -oz).mul(this, this)

        Parameters:
        factor - the scaling factor for all three axes
        ox - the x coordinate of the scaling origin
        oy - the y coordinate of the scaling origin
        oz - the z coordinate of the scaling origin
        Returns:
        this
      • scaleAroundLocal

        public Matrix4d scaleAroundLocal​(double factor,
                                         double ox,
                                         double oy,
                                         double oz,
                                         Matrix4d dest)
        Description copied from interface: Matrix4dc
        Pre-multiply scaling to this matrix by scaling all three base axes by the given factor while using (ox, oy, oz) as the scaling origin, and store the result in dest.

        If M is this matrix and S the scaling matrix, then the new matrix will be S * M. So when transforming a vector v with the new matrix by using S * M * v, the scaling will be applied last!

        This method is equivalent to calling: new Matrix4d().translate(ox, oy, oz).scale(factor).translate(-ox, -oy, -oz).mul(this, dest)

        Specified by:
        scaleAroundLocal in interface Matrix4dc
        Parameters:
        factor - the scaling factor for all three axes
        ox - the x coordinate of the scaling origin
        oy - the y coordinate of the scaling origin
        oz - the z coordinate of the scaling origin
        dest - will hold the result
        Returns:
        this
      • rotate

        public Matrix4d rotate​(double ang,
                               double x,
                               double y,
                               double z,
                               Matrix4d dest)
        Description copied from interface: Matrix4dc
        Apply rotation to this matrix by rotating the given amount of radians about the given axis specified as x, y and z components and store the result in dest.

        When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

        If M is this matrix and R the rotation matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v , the rotation will be applied first!

        Specified by:
        rotate in interface Matrix4dc
        Parameters:
        ang - the angle is in radians
        x - the x component of the axis
        y - the y component of the axis
        z - the z component of the axis
        dest - will hold the result
        Returns:
        dest
      • rotate

        public Matrix4d rotate​(double ang,
                               double x,
                               double y,
                               double z)
        Apply rotation to this matrix by rotating the given amount of radians about the given axis specified as x, y and z components.

        When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

        If M is this matrix and R the rotation matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v , the rotation will be applied first!

        In order to set the matrix to a rotation matrix without post-multiplying the rotation transformation, use rotation().

        Parameters:
        ang - the angle is in radians
        x - the x component of the axis
        y - the y component of the axis
        z - the z component of the axis
        Returns:
        this
        See Also:
        rotation(double, double, double, double)
      • rotateTranslation

        public Matrix4d rotateTranslation​(double ang,
                                          double x,
                                          double y,
                                          double z,
                                          Matrix4d dest)
        Apply rotation to this matrix, which is assumed to only contain a translation, by rotating the given amount of radians about the specified (x, y, z) axis and store the result in dest.

        This method assumes this to only contain a translation.

        The axis described by the three components needs to be a unit vector.

        When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

        If M is this matrix and R the rotation matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the rotation will be applied first!

        In order to set the matrix to a rotation matrix without post-multiplying the rotation transformation, use rotation().

        Reference: http://en.wikipedia.org

        Specified by:
        rotateTranslation in interface Matrix4dc
        Parameters:
        ang - the angle in radians
        x - the x component of the axis
        y - the y component of the axis
        z - the z component of the axis
        dest - will hold the result
        Returns:
        dest
        See Also:
        rotation(double, double, double, double)
      • rotateAffine

        public Matrix4d rotateAffine​(double ang,
                                     double x,
                                     double y,
                                     double z,
                                     Matrix4d dest)
        Apply rotation to this affine matrix by rotating the given amount of radians about the specified (x, y, z) axis and store the result in dest.

        This method assumes this to be affine.

        The axis described by the three components needs to be a unit vector.

        When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

        If M is this matrix and R the rotation matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the rotation will be applied first!

        In order to set the matrix to a rotation matrix without post-multiplying the rotation transformation, use rotation().

        Reference: http://en.wikipedia.org

        Specified by:
        rotateAffine in interface Matrix4dc
        Parameters:
        ang - the angle in radians
        x - the x component of the axis
        y - the y component of the axis
        z - the z component of the axis
        dest - will hold the result
        Returns:
        dest
        See Also:
        rotation(double, double, double, double)
      • rotateAffine

        public Matrix4d rotateAffine​(double ang,
                                     double x,
                                     double y,
                                     double z)
        Apply rotation to this affine matrix by rotating the given amount of radians about the specified (x, y, z) axis.

        This method assumes this to be affine.

        The axis described by the three components needs to be a unit vector.

        When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

        If M is this matrix and R the rotation matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the rotation will be applied first!

        In order to set the matrix to a rotation matrix without post-multiplying the rotation transformation, use rotation().

        Reference: http://en.wikipedia.org

        Parameters:
        ang - the angle in radians
        x - the x component of the axis
        y - the y component of the axis
        z - the z component of the axis
        Returns:
        this
        See Also:
        rotation(double, double, double, double)
      • rotateAround

        public Matrix4d rotateAround​(Quaterniondc quat,
                                     double ox,
                                     double oy,
                                     double oz)
        Apply the rotation transformation of the given Quaterniondc to this matrix while using (ox, oy, oz) as the rotation origin.

        When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

        If M is this matrix and Q the rotation matrix obtained from the given quaternion, then the new matrix will be M * Q. So when transforming a vector v with the new matrix by using M * Q * v, the quaternion rotation will be applied first!

        This method is equivalent to calling: translate(ox, oy, oz).rotate(quat).translate(-ox, -oy, -oz)

        Reference: http://en.wikipedia.org

        Parameters:
        quat - the Quaterniondc
        ox - the x coordinate of the rotation origin
        oy - the y coordinate of the rotation origin
        oz - the z coordinate of the rotation origin
        Returns:
        this
      • rotateAroundAffine

        public Matrix4d rotateAroundAffine​(Quaterniondc quat,
                                           double ox,
                                           double oy,
                                           double oz,
                                           Matrix4d dest)
        Description copied from interface: Matrix4dc
        Apply the rotation - and possibly scaling - transformation of the given Quaterniondc to this affine matrix while using (ox, oy, oz) as the rotation origin, and store the result in dest.

        When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

        If M is this matrix and Q the rotation matrix obtained from the given quaternion, then the new matrix will be M * Q. So when transforming a vector v with the new matrix by using M * Q * v, the quaternion rotation will be applied first!

        This method is only applicable if this is an affine matrix.

        This method is equivalent to calling: translate(ox, oy, oz, dest).rotate(quat).translate(-ox, -oy, -oz)

        Reference: http://en.wikipedia.org

        Specified by:
        rotateAroundAffine in interface Matrix4dc
        Parameters:
        quat - the Quaterniondc
        ox - the x coordinate of the rotation origin
        oy - the y coordinate of the rotation origin
        oz - the z coordinate of the rotation origin
        dest - will hold the result
        Returns:
        dest
      • rotateAround

        public Matrix4d rotateAround​(Quaterniondc quat,
                                     double ox,
                                     double oy,
                                     double oz,
                                     Matrix4d dest)
        Description copied from interface: Matrix4dc
        Apply the rotation - and possibly scaling - transformation of the given Quaterniondc to this matrix while using (ox, oy, oz) as the rotation origin, and store the result in dest.

        When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

        If M is this matrix and Q the rotation matrix obtained from the given quaternion, then the new matrix will be M * Q. So when transforming a vector v with the new matrix by using M * Q * v, the quaternion rotation will be applied first!

        This method is equivalent to calling: translate(ox, oy, oz, dest).rotate(quat).translate(-ox, -oy, -oz)

        Reference: http://en.wikipedia.org

        Specified by:
        rotateAround in interface Matrix4dc
        Parameters:
        quat - the Quaterniondc
        ox - the x coordinate of the rotation origin
        oy - the y coordinate of the rotation origin
        oz - the z coordinate of the rotation origin
        dest - will hold the result
        Returns:
        dest
      • rotationAround

        public Matrix4d rotationAround​(Quaterniondc quat,
                                       double ox,
                                       double oy,
                                       double oz)
        Set this matrix to a transformation composed of a rotation of the specified Quaterniondc while using (ox, oy, oz) as the rotation origin.

        When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

        This method is equivalent to calling: translation(ox, oy, oz).rotate(quat).translate(-ox, -oy, -oz)

        Reference: http://en.wikipedia.org

        Parameters:
        quat - the Quaterniondc
        ox - the x coordinate of the rotation origin
        oy - the y coordinate of the rotation origin
        oz - the z coordinate of the rotation origin
        Returns:
        this
      • rotateLocal

        public Matrix4d rotateLocal​(double ang,
                                    double x,
                                    double y,
                                    double z,
                                    Matrix4d dest)
        Pre-multiply a rotation to this matrix by rotating the given amount of radians about the specified (x, y, z) axis and store the result in dest.

        The axis described by the three components needs to be a unit vector.

        When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

        If M is this matrix and R the rotation matrix, then the new matrix will be R * M. So when transforming a vector v with the new matrix by using R * M * v, the rotation will be applied last!

        In order to set the matrix to a rotation matrix without pre-multiplying the rotation transformation, use rotation().

        Reference: http://en.wikipedia.org

        Specified by:
        rotateLocal in interface Matrix4dc
        Parameters:
        ang - the angle in radians
        x - the x component of the axis
        y - the y component of the axis
        z - the z component of the axis
        dest - will hold the result
        Returns:
        dest
        See Also:
        rotation(double, double, double, double)
      • rotateLocal

        public Matrix4d rotateLocal​(double ang,
                                    double x,
                                    double y,
                                    double z)
        Pre-multiply a rotation to this matrix by rotating the given amount of radians about the specified (x, y, z) axis.

        The axis described by the three components needs to be a unit vector.

        When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

        If M is this matrix and R the rotation matrix, then the new matrix will be R * M. So when transforming a vector v with the new matrix by using R * M * v, the rotation will be applied last!

        In order to set the matrix to a rotation matrix without pre-multiplying the rotation transformation, use rotation().

        Reference: http://en.wikipedia.org

        Parameters:
        ang - the angle in radians
        x - the x component of the axis
        y - the y component of the axis
        z - the z component of the axis
        Returns:
        this
        See Also:
        rotation(double, double, double, double)
      • rotateAroundLocal

        public Matrix4d rotateAroundLocal​(Quaterniondc quat,
                                          double ox,
                                          double oy,
                                          double oz,
                                          Matrix4d dest)
        Description copied from interface: Matrix4dc
        Pre-multiply the rotation - and possibly scaling - transformation of the given Quaterniondc to this matrix while using (ox, oy, oz) as the rotation origin, and store the result in dest.

        When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

        If M is this matrix and Q the rotation matrix obtained from the given quaternion, then the new matrix will be Q * M. So when transforming a vector v with the new matrix by using Q * M * v, the quaternion rotation will be applied last!

        This method is equivalent to calling: translateLocal(-ox, -oy, -oz, dest).rotateLocal(quat).translateLocal(ox, oy, oz)

        Reference: http://en.wikipedia.org

        Specified by:
        rotateAroundLocal in interface Matrix4dc
        Parameters:
        quat - the Quaterniondc
        ox - the x coordinate of the rotation origin
        oy - the y coordinate of the rotation origin
        oz - the z coordinate of the rotation origin
        dest - will hold the result
        Returns:
        dest
      • rotateAroundLocal

        public Matrix4d rotateAroundLocal​(Quaterniondc quat,
                                          double ox,
                                          double oy,
                                          double oz)
        Pre-multiply the rotation - and possibly scaling - transformation of the given Quaterniondc to this matrix while using (ox, oy, oz) as the rotation origin.

        When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

        If M is this matrix and Q the rotation matrix obtained from the given quaternion, then the new matrix will be Q * M. So when transforming a vector v with the new matrix by using Q * M * v, the quaternion rotation will be applied last!

        This method is equivalent to calling: translateLocal(-ox, -oy, -oz).rotateLocal(quat).translateLocal(ox, oy, oz)

        Reference: http://en.wikipedia.org

        Parameters:
        quat - the Quaterniondc
        ox - the x coordinate of the rotation origin
        oy - the y coordinate of the rotation origin
        oz - the z coordinate of the rotation origin
        Returns:
        this
      • translate

        public Matrix4d translate​(Vector3dc offset)
        Apply a translation to this matrix by translating by the given number of units in x, y and z.

        If M is this matrix and T the translation matrix, then the new matrix will be M * T. So when transforming a vector v with the new matrix by using M * T * v, the translation will be applied first!

        In order to set the matrix to a translation transformation without post-multiplying it, use translation(Vector3dc).

        Parameters:
        offset - the number of units in x, y and z by which to translate
        Returns:
        this
        See Also:
        translation(Vector3dc)
      • translate

        public Matrix4d translate​(Vector3dc offset,
                                  Matrix4d dest)
        Apply a translation to this matrix by translating by the given number of units in x, y and z and store the result in dest.

        If M is this matrix and T the translation matrix, then the new matrix will be M * T. So when transforming a vector v with the new matrix by using M * T * v, the translation will be applied first!

        In order to set the matrix to a translation transformation without post-multiplying it, use translation(Vector3dc).

        Specified by:
        translate in interface Matrix4dc
        Parameters:
        offset - the number of units in x, y and z by which to translate
        dest - will hold the result
        Returns:
        dest
        See Also:
        translation(Vector3dc)
      • translate

        public Matrix4d translate​(Vector3fc offset)
        Apply a translation to this matrix by translating by the given number of units in x, y and z.

        If M is this matrix and T the translation matrix, then the new matrix will be M * T. So when transforming a vector v with the new matrix by using M * T * v, the translation will be applied first!

        In order to set the matrix to a translation transformation without post-multiplying it, use translation(Vector3fc).

        Parameters:
        offset - the number of units in x, y and z by which to translate
        Returns:
        this
        See Also:
        translation(Vector3fc)
      • translate

        public Matrix4d translate​(Vector3fc offset,
                                  Matrix4d dest)
        Apply a translation to this matrix by translating by the given number of units in x, y and z and store the result in dest.

        If M is this matrix and T the translation matrix, then the new matrix will be M * T. So when transforming a vector v with the new matrix by using M * T * v, the translation will be applied first!

        In order to set the matrix to a translation transformation without post-multiplying it, use translation(Vector3fc).

        Specified by:
        translate in interface Matrix4dc
        Parameters:
        offset - the number of units in x, y and z by which to translate
        dest - will hold the result
        Returns:
        dest
        See Also:
        translation(Vector3fc)
      • translate

        public Matrix4d translate​(double x,
                                  double y,
                                  double z,
                                  Matrix4d dest)
        Apply a translation to this matrix by translating by the given number of units in x, y and z and store the result in dest.

        If M is this matrix and T the translation matrix, then the new matrix will be M * T. So when transforming a vector v with the new matrix by using M * T * v, the translation will be applied first!

        In order to set the matrix to a translation transformation without post-multiplying it, use translation(double, double, double).

        Specified by:
        translate in interface Matrix4dc
        Parameters:
        x - the offset to translate in x
        y - the offset to translate in y
        z - the offset to translate in z
        dest - will hold the result
        Returns:
        dest
        See Also:
        translation(double, double, double)
      • translate

        public Matrix4d translate​(double x,
                                  double y,
                                  double z)
        Apply a translation to this matrix by translating by the given number of units in x, y and z.

        If M is this matrix and T the translation matrix, then the new matrix will be M * T. So when transforming a vector v with the new matrix by using M * T * v, the translation will be applied first!

        In order to set the matrix to a translation transformation without post-multiplying it, use translation(double, double, double).

        Parameters:
        x - the offset to translate in x
        y - the offset to translate in y
        z - the offset to translate in z
        Returns:
        this
        See Also:
        translation(double, double, double)
      • translateLocal

        public Matrix4d translateLocal​(Vector3fc offset)
        Pre-multiply a translation to this matrix by translating by the given number of units in x, y and z.

        If M is this matrix and T the translation matrix, then the new matrix will be T * M. So when transforming a vector v with the new matrix by using T * M * v, the translation will be applied last!

        In order to set the matrix to a translation transformation without pre-multiplying it, use translation(Vector3fc).

        Parameters:
        offset - the number of units in x, y and z by which to translate
        Returns:
        this
        See Also:
        translation(Vector3fc)
      • translateLocal

        public Matrix4d translateLocal​(Vector3fc offset,
                                       Matrix4d dest)
        Pre-multiply a translation to this matrix by translating by the given number of units in x, y and z and store the result in dest.

        If M is this matrix and T the translation matrix, then the new matrix will be T * M. So when transforming a vector v with the new matrix by using T * M * v, the translation will be applied last!

        In order to set the matrix to a translation transformation without pre-multiplying it, use translation(Vector3fc).

        Specified by:
        translateLocal in interface Matrix4dc
        Parameters:
        offset - the number of units in x, y and z by which to translate
        dest - will hold the result
        Returns:
        dest
        See Also:
        translation(Vector3fc)
      • translateLocal

        public Matrix4d translateLocal​(Vector3dc offset)
        Pre-multiply a translation to this matrix by translating by the given number of units in x, y and z.

        If M is this matrix and T the translation matrix, then the new matrix will be T * M. So when transforming a vector v with the new matrix by using T * M * v, the translation will be applied last!

        In order to set the matrix to a translation transformation without pre-multiplying it, use translation(Vector3dc).

        Parameters:
        offset - the number of units in x, y and z by which to translate
        Returns:
        this
        See Also:
        translation(Vector3dc)
      • translateLocal

        public Matrix4d translateLocal​(Vector3dc offset,
                                       Matrix4d dest)
        Pre-multiply a translation to this matrix by translating by the given number of units in x, y and z and store the result in dest.

        If M is this matrix and T the translation matrix, then the new matrix will be T * M. So when transforming a vector v with the new matrix by using T * M * v, the translation will be applied last!

        In order to set the matrix to a translation transformation without pre-multiplying it, use translation(Vector3dc).

        Specified by:
        translateLocal in interface Matrix4dc
        Parameters:
        offset - the number of units in x, y and z by which to translate
        dest - will hold the result
        Returns:
        dest
        See Also:
        translation(Vector3dc)
      • translateLocal

        public Matrix4d translateLocal​(double x,
                                       double y,
                                       double z,
                                       Matrix4d dest)
        Pre-multiply a translation to this matrix by translating by the given number of units in x, y and z and store the result in dest.

        If M is this matrix and T the translation matrix, then the new matrix will be T * M. So when transforming a vector v with the new matrix by using T * M * v, the translation will be applied last!

        In order to set the matrix to a translation transformation without pre-multiplying it, use translation(double, double, double).

        Specified by:
        translateLocal in interface Matrix4dc
        Parameters:
        x - the offset to translate in x
        y - the offset to translate in y
        z - the offset to translate in z
        dest - will hold the result
        Returns:
        dest
        See Also:
        translation(double, double, double)
      • translateLocal

        public Matrix4d translateLocal​(double x,
                                       double y,
                                       double z)
        Pre-multiply a translation to this matrix by translating by the given number of units in x, y and z.

        If M is this matrix and T the translation matrix, then the new matrix will be T * M. So when transforming a vector v with the new matrix by using T * M * v, the translation will be applied last!

        In order to set the matrix to a translation transformation without pre-multiplying it, use translation(double, double, double).

        Parameters:
        x - the offset to translate in x
        y - the offset to translate in y
        z - the offset to translate in z
        Returns:
        this
        See Also:
        translation(double, double, double)
      • rotateLocalX

        public Matrix4d rotateLocalX​(double ang,
                                     Matrix4d dest)
        Pre-multiply a rotation around the X axis to this matrix by rotating the given amount of radians about the X axis and store the result in dest.

        When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

        If M is this matrix and R the rotation matrix, then the new matrix will be R * M. So when transforming a vector v with the new matrix by using R * M * v, the rotation will be applied last!

        In order to set the matrix to a rotation matrix without pre-multiplying the rotation transformation, use rotationX().

        Reference: http://en.wikipedia.org

        Specified by:
        rotateLocalX in interface Matrix4dc
        Parameters:
        ang - the angle in radians to rotate about the X axis
        dest - will hold the result
        Returns:
        dest
        See Also:
        rotationX(double)
      • rotateLocalX

        public Matrix4d rotateLocalX​(double ang)
        Pre-multiply a rotation to this matrix by rotating the given amount of radians about the X axis.

        When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

        If M is this matrix and R the rotation matrix, then the new matrix will be R * M. So when transforming a vector v with the new matrix by using R * M * v, the rotation will be applied last!

        In order to set the matrix to a rotation matrix without pre-multiplying the rotation transformation, use rotationX().

        Reference: http://en.wikipedia.org

        Parameters:
        ang - the angle in radians to rotate about the X axis
        Returns:
        this
        See Also:
        rotationX(double)
      • rotateLocalY

        public Matrix4d rotateLocalY​(double ang,
                                     Matrix4d dest)
        Pre-multiply a rotation around the Y axis to this matrix by rotating the given amount of radians about the Y axis and store the result in dest.

        When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

        If M is this matrix and R the rotation matrix, then the new matrix will be R * M. So when transforming a vector v with the new matrix by using R * M * v, the rotation will be applied last!

        In order to set the matrix to a rotation matrix without pre-multiplying the rotation transformation, use rotationY().

        Reference: http://en.wikipedia.org

        Specified by:
        rotateLocalY in interface Matrix4dc
        Parameters:
        ang - the angle in radians to rotate about the Y axis
        dest - will hold the result
        Returns:
        dest
        See Also:
        rotationY(double)
      • rotateLocalY

        public Matrix4d rotateLocalY​(double ang)
        Pre-multiply a rotation to this matrix by rotating the given amount of radians about the Y axis.

        When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

        If M is this matrix and R the rotation matrix, then the new matrix will be R * M. So when transforming a vector v with the new matrix by using R * M * v, the rotation will be applied last!

        In order to set the matrix to a rotation matrix without pre-multiplying the rotation transformation, use rotationY().

        Reference: http://en.wikipedia.org

        Parameters:
        ang - the angle in radians to rotate about the Y axis
        Returns:
        this
        See Also:
        rotationY(double)
      • rotateLocalZ

        public Matrix4d rotateLocalZ​(double ang,
                                     Matrix4d dest)
        Pre-multiply a rotation around the Z axis to this matrix by rotating the given amount of radians about the Z axis and store the result in dest.

        When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

        If M is this matrix and R the rotation matrix, then the new matrix will be R * M. So when transforming a vector v with the new matrix by using R * M * v, the rotation will be applied last!

        In order to set the matrix to a rotation matrix without pre-multiplying the rotation transformation, use rotationZ().

        Reference: http://en.wikipedia.org

        Specified by:
        rotateLocalZ in interface Matrix4dc
        Parameters:
        ang - the angle in radians to rotate about the Z axis
        dest - will hold the result
        Returns:
        dest
        See Also:
        rotationZ(double)
      • rotateLocalZ

        public Matrix4d rotateLocalZ​(double ang)
        Pre-multiply a rotation to this matrix by rotating the given amount of radians about the Z axis.

        When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

        If M is this matrix and R the rotation matrix, then the new matrix will be R * M. So when transforming a vector v with the new matrix by using R * M * v, the rotation will be applied last!

        In order to set the matrix to a rotation matrix without pre-multiplying the rotation transformation, use rotationY().

        Reference: http://en.wikipedia.org

        Parameters:
        ang - the angle in radians to rotate about the Z axis
        Returns:
        this
        See Also:
        rotationY(double)
      • writeExternal

        public void writeExternal​(java.io.ObjectOutput out)
                           throws java.io.IOException
        Specified by:
        writeExternal in interface java.io.Externalizable
        Throws:
        java.io.IOException
      • readExternal

        public void readExternal​(java.io.ObjectInput in)
                          throws java.io.IOException
        Specified by:
        readExternal in interface java.io.Externalizable
        Throws:
        java.io.IOException
      • rotateX

        public Matrix4d rotateX​(double ang,
                                Matrix4d dest)
        Description copied from interface: Matrix4dc
        Apply rotation about the X axis to this matrix by rotating the given amount of radians and store the result in dest.

        When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

        If M is this matrix and R the rotation matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the rotation will be applied first!

        Reference: http://en.wikipedia.org

        Specified by:
        rotateX in interface Matrix4dc
        Parameters:
        ang - the angle in radians
        dest - will hold the result
        Returns:
        dest
      • rotateX

        public Matrix4d rotateX​(double ang)
        Apply rotation about the X axis to this matrix by rotating the given amount of radians.

        When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

        If M is this matrix and R the rotation matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the rotation will be applied first!

        Reference: http://en.wikipedia.org

        Parameters:
        ang - the angle in radians
        Returns:
        this
      • rotateY

        public Matrix4d rotateY​(double ang,
                                Matrix4d dest)
        Description copied from interface: Matrix4dc
        Apply rotation about the Y axis to this matrix by rotating the given amount of radians and store the result in dest.

        When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

        If M is this matrix and R the rotation matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the rotation will be applied first!

        Reference: http://en.wikipedia.org

        Specified by:
        rotateY in interface Matrix4dc
        Parameters:
        ang - the angle in radians
        dest - will hold the result
        Returns:
        dest
      • rotateY

        public Matrix4d rotateY​(double ang)
        Apply rotation about the Y axis to this matrix by rotating the given amount of radians.

        When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

        If M is this matrix and R the rotation matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the rotation will be applied first!

        Reference: http://en.wikipedia.org

        Parameters:
        ang - the angle in radians
        Returns:
        this
      • rotateZ

        public Matrix4d rotateZ​(double ang,
                                Matrix4d dest)
        Description copied from interface: Matrix4dc
        Apply rotation about the Z axis to this matrix by rotating the given amount of radians and store the result in dest.

        When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

        If M is this matrix and R the rotation matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the rotation will be applied first!

        Reference: http://en.wikipedia.org

        Specified by:
        rotateZ in interface Matrix4dc
        Parameters:
        ang - the angle in radians
        dest - will hold the result
        Returns:
        dest
      • rotateZ

        public Matrix4d rotateZ​(double ang)
        Apply rotation about the Z axis to this matrix by rotating the given amount of radians.

        When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

        If M is this matrix and R the rotation matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the rotation will be applied first!

        Reference: http://en.wikipedia.org

        Parameters:
        ang - the angle in radians
        Returns:
        this
      • rotateTowardsXY

        public Matrix4d rotateTowardsXY​(double dirX,
                                        double dirY)
        Apply rotation about the Z axis to align the local +X towards (dirX, dirY).

        If M is this matrix and R the rotation matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the rotation will be applied first!

        The vector (dirX, dirY) must be a unit vector.

        Parameters:
        dirX - the x component of the normalized direction
        dirY - the y component of the normalized direction
        Returns:
        this
      • rotateTowardsXY

        public Matrix4d rotateTowardsXY​(double dirX,
                                        double dirY,
                                        Matrix4d dest)
        Description copied from interface: Matrix4dc
        Apply rotation about the Z axis to align the local +X towards (dirX, dirY) and store the result in dest.

        If M is this matrix and R the rotation matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the rotation will be applied first!

        The vector (dirX, dirY) must be a unit vector.

        Specified by:
        rotateTowardsXY in interface Matrix4dc
        Parameters:
        dirX - the x component of the normalized direction
        dirY - the y component of the normalized direction
        dest - will hold the result
        Returns:
        this
      • rotateXYZ

        public Matrix4d rotateXYZ​(Vector3d angles)
        Apply rotation of angles.x radians about the X axis, followed by a rotation of angles.y radians about the Y axis and followed by a rotation of angles.z radians about the Z axis.

        When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

        If M is this matrix and R the rotation matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the rotation will be applied first!

        This method is equivalent to calling: rotateX(angles.x).rotateY(angles.y).rotateZ(angles.z)

        Parameters:
        angles - the Euler angles
        Returns:
        this
      • rotateXYZ

        public Matrix4d rotateXYZ​(double angleX,
                                  double angleY,
                                  double angleZ)
        Apply rotation of angleX radians about the X axis, followed by a rotation of angleY radians about the Y axis and followed by a rotation of angleZ radians about the Z axis.

        When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

        If M is this matrix and R the rotation matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the rotation will be applied first!

        This method is equivalent to calling: rotateX(angleX).rotateY(angleY).rotateZ(angleZ)

        Parameters:
        angleX - the angle to rotate about X
        angleY - the angle to rotate about Y
        angleZ - the angle to rotate about Z
        Returns:
        this
      • rotateXYZ

        public Matrix4d rotateXYZ​(double angleX,
                                  double angleY,
                                  double angleZ,
                                  Matrix4d dest)
        Description copied from interface: Matrix4dc
        Apply rotation of angleX radians about the X axis, followed by a rotation of angleY radians about the Y axis and followed by a rotation of angleZ radians about the Z axis and store the result in dest.

        When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

        If M is this matrix and R the rotation matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the rotation will be applied first!

        This method is equivalent to calling: rotateX(angleX, dest).rotateY(angleY).rotateZ(angleZ)

        Specified by:
        rotateXYZ in interface Matrix4dc
        Parameters:
        angleX - the angle to rotate about X
        angleY - the angle to rotate about Y
        angleZ - the angle to rotate about Z
        dest - will hold the result
        Returns:
        dest
      • rotateAffineXYZ

        public Matrix4d rotateAffineXYZ​(double angleX,
                                        double angleY,
                                        double angleZ)
        Apply rotation of angleX radians about the X axis, followed by a rotation of angleY radians about the Y axis and followed by a rotation of angleZ radians about the Z axis.

        When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

        This method assumes that this matrix represents an affine transformation (i.e. its last row is equal to (0, 0, 0, 1)) and can be used to speed up matrix multiplication if the matrix only represents affine transformations, such as translation, rotation, scaling and shearing (in any combination).

        If M is this matrix and R the rotation matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the rotation will be applied first!

        This method is equivalent to calling: rotateX(angleX).rotateY(angleY).rotateZ(angleZ)

        Parameters:
        angleX - the angle to rotate about X
        angleY - the angle to rotate about Y
        angleZ - the angle to rotate about Z
        Returns:
        this
      • rotateAffineXYZ

        public Matrix4d rotateAffineXYZ​(double angleX,
                                        double angleY,
                                        double angleZ,
                                        Matrix4d dest)
        Description copied from interface: Matrix4dc
        Apply rotation of angleX radians about the X axis, followed by a rotation of angleY radians about the Y axis and followed by a rotation of angleZ radians about the Z axis and store the result in dest.

        When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

        This method assumes that this matrix represents an affine transformation (i.e. its last row is equal to (0, 0, 0, 1)) and can be used to speed up matrix multiplication if the matrix only represents affine transformations, such as translation, rotation, scaling and shearing (in any combination).

        If M is this matrix and R the rotation matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the rotation will be applied first!

        Specified by:
        rotateAffineXYZ in interface Matrix4dc
        Parameters:
        angleX - the angle to rotate about X
        angleY - the angle to rotate about Y
        angleZ - the angle to rotate about Z
        dest - will hold the result
        Returns:
        dest
      • rotateZYX

        public Matrix4d rotateZYX​(Vector3d angles)
        Apply rotation of angles.z radians about the Z axis, followed by a rotation of angles.y radians about the Y axis and followed by a rotation of angles.x radians about the X axis.

        When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

        If M is this matrix and R the rotation matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the rotation will be applied first!

        This method is equivalent to calling: rotateZ(angles.z).rotateY(angles.y).rotateX(angles.x)

        Parameters:
        angles - the Euler angles
        Returns:
        this
      • rotateZYX

        public Matrix4d rotateZYX​(double angleZ,
                                  double angleY,
                                  double angleX)
        Apply rotation of angleZ radians about the Z axis, followed by a rotation of angleY radians about the Y axis and followed by a rotation of angleX radians about the X axis.

        When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

        If M is this matrix and R the rotation matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the rotation will be applied first!

        This method is equivalent to calling: rotateZ(angleZ).rotateY(angleY).rotateX(angleX)

        Parameters:
        angleZ - the angle to rotate about Z
        angleY - the angle to rotate about Y
        angleX - the angle to rotate about X
        Returns:
        this
      • rotateZYX

        public Matrix4d rotateZYX​(double angleZ,
                                  double angleY,
                                  double angleX,
                                  Matrix4d dest)
        Description copied from interface: Matrix4dc
        Apply rotation of angleZ radians about the Z axis, followed by a rotation of angleY radians about the Y axis and followed by a rotation of angleX radians about the X axis and store the result in dest.

        When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

        If M is this matrix and R the rotation matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the rotation will be applied first!

        This method is equivalent to calling: rotateZ(angleZ, dest).rotateY(angleY).rotateX(angleX)

        Specified by:
        rotateZYX in interface Matrix4dc
        Parameters:
        angleZ - the angle to rotate about Z
        angleY - the angle to rotate about Y
        angleX - the angle to rotate about X
        dest - will hold the result
        Returns:
        dest
      • rotateAffineZYX

        public Matrix4d rotateAffineZYX​(double angleZ,
                                        double angleY,
                                        double angleX)
        Apply rotation of angleZ radians about the Z axis, followed by a rotation of angleY radians about the Y axis and followed by a rotation of angleX radians about the X axis.

        When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

        This method assumes that this matrix represents an affine transformation (i.e. its last row is equal to (0, 0, 0, 1)) and can be used to speed up matrix multiplication if the matrix only represents affine transformations, such as translation, rotation, scaling and shearing (in any combination).

        If M is this matrix and R the rotation matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the rotation will be applied first!

        Parameters:
        angleZ - the angle to rotate about Z
        angleY - the angle to rotate about Y
        angleX - the angle to rotate about X
        Returns:
        this
      • rotateAffineZYX

        public Matrix4d rotateAffineZYX​(double angleZ,
                                        double angleY,
                                        double angleX,
                                        Matrix4d dest)
        Description copied from interface: Matrix4dc
        Apply rotation of angleZ radians about the Z axis, followed by a rotation of angleY radians about the Y axis and followed by a rotation of angleX radians about the X axis and store the result in dest.

        When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

        This method assumes that this matrix represents an affine transformation (i.e. its last row is equal to (0, 0, 0, 1)) and can be used to speed up matrix multiplication if the matrix only represents affine transformations, such as translation, rotation, scaling and shearing (in any combination).

        If M is this matrix and R the rotation matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the rotation will be applied first!

        Specified by:
        rotateAffineZYX in interface Matrix4dc
        Parameters:
        angleZ - the angle to rotate about Z
        angleY - the angle to rotate about Y
        angleX - the angle to rotate about X
        dest - will hold the result
        Returns:
        dest
      • rotateYXZ

        public Matrix4d rotateYXZ​(Vector3d angles)
        Apply rotation of angles.y radians about the Y axis, followed by a rotation of angles.x radians about the X axis and followed by a rotation of angles.z radians about the Z axis.

        When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

        If M is this matrix and R the rotation matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the rotation will be applied first!

        This method is equivalent to calling: rotateY(angles.y).rotateX(angles.x).rotateZ(angles.z)

        Parameters:
        angles - the Euler angles
        Returns:
        this
      • rotateYXZ

        public Matrix4d rotateYXZ​(double angleY,
                                  double angleX,
                                  double angleZ)
        Apply rotation of angleY radians about the Y axis, followed by a rotation of angleX radians about the X axis and followed by a rotation of angleZ radians about the Z axis.

        When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

        If M is this matrix and R the rotation matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the rotation will be applied first!

        This method is equivalent to calling: rotateY(angleY).rotateX(angleX).rotateZ(angleZ)

        Parameters:
        angleY - the angle to rotate about Y
        angleX - the angle to rotate about X
        angleZ - the angle to rotate about Z
        Returns:
        this
      • rotateYXZ

        public Matrix4d rotateYXZ​(double angleY,
                                  double angleX,
                                  double angleZ,
                                  Matrix4d dest)
        Description copied from interface: Matrix4dc
        Apply rotation of angleY radians about the Y axis, followed by a rotation of angleX radians about the X axis and followed by a rotation of angleZ radians about the Z axis and store the result in dest.

        When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

        If M is this matrix and R the rotation matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the rotation will be applied first!

        This method is equivalent to calling: rotateY(angleY, dest).rotateX(angleX).rotateZ(angleZ)

        Specified by:
        rotateYXZ in interface Matrix4dc
        Parameters:
        angleY - the angle to rotate about Y
        angleX - the angle to rotate about X
        angleZ - the angle to rotate about Z
        dest - will hold the result
        Returns:
        dest
      • rotateAffineYXZ

        public Matrix4d rotateAffineYXZ​(double angleY,
                                        double angleX,
                                        double angleZ)
        Apply rotation of angleY radians about the Y axis, followed by a rotation of angleX radians about the X axis and followed by a rotation of angleZ radians about the Z axis.

        When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

        This method assumes that this matrix represents an affine transformation (i.e. its last row is equal to (0, 0, 0, 1)) and can be used to speed up matrix multiplication if the matrix only represents affine transformations, such as translation, rotation, scaling and shearing (in any combination).

        If M is this matrix and R the rotation matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the rotation will be applied first!

        Parameters:
        angleY - the angle to rotate about Y
        angleX - the angle to rotate about X
        angleZ - the angle to rotate about Z
        Returns:
        this
      • rotateAffineYXZ

        public Matrix4d rotateAffineYXZ​(double angleY,
                                        double angleX,
                                        double angleZ,
                                        Matrix4d dest)
        Description copied from interface: Matrix4dc
        Apply rotation of angleY radians about the Y axis, followed by a rotation of angleX radians about the X axis and followed by a rotation of angleZ radians about the Z axis and store the result in dest.

        When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

        This method assumes that this matrix represents an affine transformation (i.e. its last row is equal to (0, 0, 0, 1)) and can be used to speed up matrix multiplication if the matrix only represents affine transformations, such as translation, rotation, scaling and shearing (in any combination).

        If M is this matrix and R the rotation matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the rotation will be applied first!

        Specified by:
        rotateAffineYXZ in interface Matrix4dc
        Parameters:
        angleY - the angle to rotate about Y
        angleX - the angle to rotate about X
        angleZ - the angle to rotate about Z
        dest - will hold the result
        Returns:
        dest
      • rotation

        public Matrix4d rotation​(AxisAngle4f angleAxis)
        Set this matrix to a rotation transformation using the given AxisAngle4f.

        When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

        The resulting matrix can be multiplied against another transformation matrix to obtain an additional rotation.

        In order to apply the rotation transformation to an existing transformation, use rotate() instead.

        Reference: http://en.wikipedia.org

        Parameters:
        angleAxis - the AxisAngle4f (needs to be normalized)
        Returns:
        this
        See Also:
        rotate(AxisAngle4f)
      • rotation

        public Matrix4d rotation​(AxisAngle4d angleAxis)
        Set this matrix to a rotation transformation using the given AxisAngle4d.

        When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

        The resulting matrix can be multiplied against another transformation matrix to obtain an additional rotation.

        In order to apply the rotation transformation to an existing transformation, use rotate() instead.

        Reference: http://en.wikipedia.org

        Parameters:
        angleAxis - the AxisAngle4d (needs to be normalized)
        Returns:
        this
        See Also:
        rotate(AxisAngle4d)
      • rotation

        public Matrix4d rotation​(Quaterniondc quat)
        Set this matrix to the rotation - and possibly scaling - transformation of the given Quaterniondc.

        When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

        The resulting matrix can be multiplied against another transformation matrix to obtain an additional rotation.

        In order to apply the rotation transformation to an existing transformation, use rotate() instead.

        Reference: http://en.wikipedia.org

        Parameters:
        quat - the Quaterniondc
        Returns:
        this
        See Also:
        rotate(Quaterniondc)
      • rotation

        public Matrix4d rotation​(Quaternionfc quat)
        Set this matrix to the rotation - and possibly scaling - transformation of the given Quaternionfc.

        When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

        The resulting matrix can be multiplied against another transformation matrix to obtain an additional rotation.

        In order to apply the rotation transformation to an existing transformation, use rotate() instead.

        Reference: http://en.wikipedia.org

        Parameters:
        quat - the Quaternionfc
        Returns:
        this
        See Also:
        rotate(Quaternionfc)
      • translationRotateScale

        public Matrix4d translationRotateScale​(double tx,
                                               double ty,
                                               double tz,
                                               double qx,
                                               double qy,
                                               double qz,
                                               double qw,
                                               double sx,
                                               double sy,
                                               double sz)
        Set this matrix to T * R * S, where T is a translation by the given (tx, ty, tz), R is a rotation transformation specified by the quaternion (qx, qy, qz, qw), and S is a scaling transformation which scales the three axes x, y and z by (sx, sy, sz).

        When transforming a vector by the resulting matrix the scaling transformation will be applied first, then the rotation and at last the translation.

        When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

        This method is equivalent to calling: translation(tx, ty, tz).rotate(quat).scale(sx, sy, sz)

        Parameters:
        tx - the number of units by which to translate the x-component
        ty - the number of units by which to translate the y-component
        tz - the number of units by which to translate the z-component
        qx - the x-coordinate of the vector part of the quaternion
        qy - the y-coordinate of the vector part of the quaternion
        qz - the z-coordinate of the vector part of the quaternion
        qw - the scalar part of the quaternion
        sx - the scaling factor for the x-axis
        sy - the scaling factor for the y-axis
        sz - the scaling factor for the z-axis
        Returns:
        this
        See Also:
        translation(double, double, double), rotate(Quaterniondc), scale(double, double, double)
      • translationRotateScale

        public Matrix4d translationRotateScale​(Vector3fc translation,
                                               Quaternionfc quat,
                                               Vector3fc scale)
        Set this matrix to T * R * S, where T is the given translation, R is a rotation transformation specified by the given quaternion, and S is a scaling transformation which scales the axes by scale.

        When transforming a vector by the resulting matrix the scaling transformation will be applied first, then the rotation and at last the translation.

        When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

        This method is equivalent to calling: translation(translation).rotate(quat).scale(scale)

        Parameters:
        translation - the translation
        quat - the quaternion representing a rotation
        scale - the scaling factors
        Returns:
        this
        See Also:
        translation(Vector3fc), rotate(Quaternionfc)
      • translationRotateScale

        public Matrix4d translationRotateScale​(Vector3dc translation,
                                               Quaterniondc quat,
                                               Vector3dc scale)
        Set this matrix to T * R * S, where T is the given translation, R is a rotation transformation specified by the given quaternion, and S is a scaling transformation which scales the axes by scale.

        When transforming a vector by the resulting matrix the scaling transformation will be applied first, then the rotation and at last the translation.

        When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

        This method is equivalent to calling: translation(translation).rotate(quat).scale(scale)

        Parameters:
        translation - the translation
        quat - the quaternion representing a rotation
        scale - the scaling factors
        Returns:
        this
        See Also:
        translation(Vector3dc), rotate(Quaterniondc), scale(Vector3dc)
      • translationRotateScale

        public Matrix4d translationRotateScale​(double tx,
                                               double ty,
                                               double tz,
                                               double qx,
                                               double qy,
                                               double qz,
                                               double qw,
                                               double scale)
        Set this matrix to T * R * S, where T is a translation by the given (tx, ty, tz), R is a rotation transformation specified by the quaternion (qx, qy, qz, qw), and S is a scaling transformation which scales all three axes by scale.

        When transforming a vector by the resulting matrix the scaling transformation will be applied first, then the rotation and at last the translation.

        When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

        This method is equivalent to calling: translation(tx, ty, tz).rotate(quat).scale(scale)

        Parameters:
        tx - the number of units by which to translate the x-component
        ty - the number of units by which to translate the y-component
        tz - the number of units by which to translate the z-component
        qx - the x-coordinate of the vector part of the quaternion
        qy - the y-coordinate of the vector part of the quaternion
        qz - the z-coordinate of the vector part of the quaternion
        qw - the scalar part of the quaternion
        scale - the scaling factor for all three axes
        Returns:
        this
        See Also:
        translation(double, double, double), rotate(Quaterniondc), scale(double)
      • translationRotateScale

        public Matrix4d translationRotateScale​(Vector3dc translation,
                                               Quaterniondc quat,
                                               double scale)
        Set this matrix to T * R * S, where T is the given translation, R is a rotation transformation specified by the given quaternion, and S is a scaling transformation which scales all three axes by scale.

        When transforming a vector by the resulting matrix the scaling transformation will be applied first, then the rotation and at last the translation.

        When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

        This method is equivalent to calling: translation(translation).rotate(quat).scale(scale)

        Parameters:
        translation - the translation
        quat - the quaternion representing a rotation
        scale - the scaling factors
        Returns:
        this
        See Also:
        translation(Vector3dc), rotate(Quaterniondc), scale(double)
      • translationRotateScale

        public Matrix4d translationRotateScale​(Vector3fc translation,
                                               Quaternionfc quat,
                                               double scale)
        Set this matrix to T * R * S, where T is the given translation, R is a rotation transformation specified by the given quaternion, and S is a scaling transformation which scales all three axes by scale.

        When transforming a vector by the resulting matrix the scaling transformation will be applied first, then the rotation and at last the translation.

        When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

        This method is equivalent to calling: translation(translation).rotate(quat).scale(scale)

        Parameters:
        translation - the translation
        quat - the quaternion representing a rotation
        scale - the scaling factors
        Returns:
        this
        See Also:
        translation(Vector3fc), rotate(Quaternionfc), scale(double)
      • translationRotateScaleInvert

        public Matrix4d translationRotateScaleInvert​(double tx,
                                                     double ty,
                                                     double tz,
                                                     double qx,
                                                     double qy,
                                                     double qz,
                                                     double qw,
                                                     double sx,
                                                     double sy,
                                                     double sz)
        Set this matrix to (T * R * S)-1, where T is a translation by the given (tx, ty, tz), R is a rotation transformation specified by the quaternion (qx, qy, qz, qw), and S is a scaling transformation which scales the three axes x, y and z by (sx, sy, sz).

        This method is equivalent to calling: translationRotateScale(...).invert()

        Parameters:
        tx - the number of units by which to translate the x-component
        ty - the number of units by which to translate the y-component
        tz - the number of units by which to translate the z-component
        qx - the x-coordinate of the vector part of the quaternion
        qy - the y-coordinate of the vector part of the quaternion
        qz - the z-coordinate of the vector part of the quaternion
        qw - the scalar part of the quaternion
        sx - the scaling factor for the x-axis
        sy - the scaling factor for the y-axis
        sz - the scaling factor for the z-axis
        Returns:
        this
        See Also:
        translationRotateScale(double, double, double, double, double, double, double, double, double, double), invert()
      • translationRotateScaleInvert

        public Matrix4d translationRotateScaleInvert​(Vector3dc translation,
                                                     Quaterniondc quat,
                                                     Vector3dc scale)
        Set this matrix to (T * R * S)-1, where T is the given translation, R is a rotation transformation specified by the given quaternion, and S is a scaling transformation which scales the axes by scale.

        This method is equivalent to calling: translationRotateScale(...).invert()

        Parameters:
        translation - the translation
        quat - the quaternion representing a rotation
        scale - the scaling factors
        Returns:
        this
        See Also:
        translationRotateScale(Vector3dc, Quaterniondc, Vector3dc), invert()
      • translationRotateScaleInvert

        public Matrix4d translationRotateScaleInvert​(Vector3fc translation,
                                                     Quaternionfc quat,
                                                     Vector3fc scale)
        Set this matrix to (T * R * S)-1, where T is the given translation, R is a rotation transformation specified by the given quaternion, and S is a scaling transformation which scales the axes by scale.

        This method is equivalent to calling: translationRotateScale(...).invert()

        Parameters:
        translation - the translation
        quat - the quaternion representing a rotation
        scale - the scaling factors
        Returns:
        this
        See Also:
        translationRotateScale(Vector3fc, Quaternionfc, Vector3fc), invert()
      • translationRotateScaleInvert

        public Matrix4d translationRotateScaleInvert​(Vector3dc translation,
                                                     Quaterniondc quat,
                                                     double scale)
        Set this matrix to (T * R * S)-1, where T is the given translation, R is a rotation transformation specified by the given quaternion, and S is a scaling transformation which scales all three axes by scale.

        This method is equivalent to calling: translationRotateScale(...).invert()

        Parameters:
        translation - the translation
        quat - the quaternion representing a rotation
        scale - the scaling factors
        Returns:
        this
        See Also:
        translationRotateScale(Vector3dc, Quaterniondc, double), invert()
      • translationRotateScaleInvert

        public Matrix4d translationRotateScaleInvert​(Vector3fc translation,
                                                     Quaternionfc quat,
                                                     double scale)
        Set this matrix to (T * R * S)-1, where T is the given translation, R is a rotation transformation specified by the given quaternion, and S is a scaling transformation which scales all three axes by scale.

        This method is equivalent to calling: translationRotateScale(...).invert()

        Parameters:
        translation - the translation
        quat - the quaternion representing a rotation
        scale - the scaling factors
        Returns:
        this
        See Also:
        translationRotateScale(Vector3fc, Quaternionfc, double), invert()
      • translationRotateScaleMulAffine

        public Matrix4d translationRotateScaleMulAffine​(double tx,
                                                        double ty,
                                                        double tz,
                                                        double qx,
                                                        double qy,
                                                        double qz,
                                                        double qw,
                                                        double sx,
                                                        double sy,
                                                        double sz,
                                                        Matrix4d m)
        Set this matrix to T * R * S * M, where T is a translation by the given (tx, ty, tz), R is a rotation - and possibly scaling - transformation specified by the quaternion (qx, qy, qz, qw), S is a scaling transformation which scales the three axes x, y and z by (sx, sy, sz) and M is an affine matrix.

        When transforming a vector by the resulting matrix the transformation described by M will be applied first, then the scaling, then rotation and at last the translation.

        When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

        This method is equivalent to calling: translation(tx, ty, tz).rotate(quat).scale(sx, sy, sz).mulAffine(m)

        Parameters:
        tx - the number of units by which to translate the x-component
        ty - the number of units by which to translate the y-component
        tz - the number of units by which to translate the z-component
        qx - the x-coordinate of the vector part of the quaternion
        qy - the y-coordinate of the vector part of the quaternion
        qz - the z-coordinate of the vector part of the quaternion
        qw - the scalar part of the quaternion
        sx - the scaling factor for the x-axis
        sy - the scaling factor for the y-axis
        sz - the scaling factor for the z-axis
        m - the affine matrix to multiply by
        Returns:
        this
        See Also:
        translation(double, double, double), rotate(Quaterniondc), scale(double, double, double), mulAffine(Matrix4dc)
      • translationRotateScaleMulAffine

        public Matrix4d translationRotateScaleMulAffine​(Vector3fc translation,
                                                        Quaterniondc quat,
                                                        Vector3fc scale,
                                                        Matrix4d m)
        Set this matrix to T * R * S * M, where T is the given translation, R is a rotation - and possibly scaling - transformation specified by the given quaternion, S is a scaling transformation which scales the axes by scale and M is an affine matrix.

        When transforming a vector by the resulting matrix the transformation described by M will be applied first, then the scaling, then rotation and at last the translation.

        When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

        This method is equivalent to calling: translation(translation).rotate(quat).scale(scale).mulAffine(m)

        Parameters:
        translation - the translation
        quat - the quaternion representing a rotation
        scale - the scaling factors
        m - the affine matrix to multiply by
        Returns:
        this
        See Also:
        translation(Vector3fc), rotate(Quaterniondc), mulAffine(Matrix4dc)
      • translationRotate

        public Matrix4d translationRotate​(double tx,
                                          double ty,
                                          double tz,
                                          double qx,
                                          double qy,
                                          double qz,
                                          double qw)
        Set this matrix to T * R, where T is a translation by the given (tx, ty, tz) and R is a rotation - and possibly scaling - transformation specified by the quaternion (qx, qy, qz, qw).

        When transforming a vector by the resulting matrix the rotation - and possibly scaling - transformation will be applied first and then the translation.

        When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

        This method is equivalent to calling: translation(tx, ty, tz).rotate(quat)

        Parameters:
        tx - the number of units by which to translate the x-component
        ty - the number of units by which to translate the y-component
        tz - the number of units by which to translate the z-component
        qx - the x-coordinate of the vector part of the quaternion
        qy - the y-coordinate of the vector part of the quaternion
        qz - the z-coordinate of the vector part of the quaternion
        qw - the scalar part of the quaternion
        Returns:
        this
        See Also:
        translation(double, double, double), rotate(Quaterniondc)
      • translationRotate

        public Matrix4d translationRotate​(double tx,
                                          double ty,
                                          double tz,
                                          Quaterniondc quat)
        Set this matrix to T * R, where T is a translation by the given (tx, ty, tz) and R is a rotation - and possibly scaling - transformation specified by the given quaternion.

        When transforming a vector by the resulting matrix the rotation - and possibly scaling - transformation will be applied first and then the translation.

        When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

        This method is equivalent to calling: translation(tx, ty, tz).rotate(quat)

        Parameters:
        tx - the number of units by which to translate the x-component
        ty - the number of units by which to translate the y-component
        tz - the number of units by which to translate the z-component
        quat - the quaternion representing a rotation
        Returns:
        this
        See Also:
        translation(double, double, double), rotate(Quaterniondc)
      • translationRotate

        public Matrix4d translationRotate​(Vector3dc translation,
                                          Quaterniondc quat)
        Set this matrix to T * R, where T is the given translation and R is a rotation transformation specified by the given quaternion.

        When transforming a vector by the resulting matrix the scaling transformation will be applied first, then the rotation and at last the translation.

        When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

        This method is equivalent to calling: translation(translation).rotate(quat)

        Parameters:
        translation - the translation
        quat - the quaternion representing a rotation
        Returns:
        this
        See Also:
        translation(Vector3dc), rotate(Quaterniondc)
      • translationRotateInvert

        public Matrix4d translationRotateInvert​(double tx,
                                                double ty,
                                                double tz,
                                                double qx,
                                                double qy,
                                                double qz,
                                                double qw)
        Set this matrix to (T * R)-1, where T is a translation by the given (tx, ty, tz) and R is a rotation transformation specified by the quaternion (qx, qy, qz, qw).

        This method is equivalent to calling: translationRotate(...).invert()

        Parameters:
        tx - the number of units by which to translate the x-component
        ty - the number of units by which to translate the y-component
        tz - the number of units by which to translate the z-component
        qx - the x-coordinate of the vector part of the quaternion
        qy - the y-coordinate of the vector part of the quaternion
        qz - the z-coordinate of the vector part of the quaternion
        qw - the scalar part of the quaternion
        Returns:
        this
        See Also:
        translationRotate(double, double, double, double, double, double, double), invert()
      • translationRotateInvert

        public Matrix4d translationRotateInvert​(Vector3fc translation,
                                                Quaternionfc quat)
        Set this matrix to (T * R)-1, where T is the given translation and R is a rotation transformation specified by the given quaternion.

        This method is equivalent to calling: translationRotate(...).invert()

        Parameters:
        translation - the translation
        quat - the quaternion representing a rotation
        Returns:
        this
        See Also:
        translationRotate(Vector3dc, Quaterniondc), invert()
      • rotate

        public Matrix4d rotate​(Quaterniondc quat,
                               Matrix4d dest)
        Apply the rotation - and possibly scaling - transformation of the given Quaterniondc to this matrix and store the result in dest.

        When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

        If M is this matrix and Q the rotation matrix obtained from the given quaternion, then the new matrix will be M * Q. So when transforming a vector v with the new matrix by using M * Q * v, the quaternion rotation will be applied first!

        In order to set the matrix to a rotation transformation without post-multiplying, use rotation(Quaterniondc).

        Reference: http://en.wikipedia.org

        Specified by:
        rotate in interface Matrix4dc
        Parameters:
        quat - the Quaterniondc
        dest - will hold the result
        Returns:
        dest
        See Also:
        rotation(Quaterniondc)
      • rotate

        public Matrix4d rotate​(Quaternionfc quat,
                               Matrix4d dest)
        Apply the rotation - and possibly scaling - transformation of the given Quaternionfc to this matrix and store the result in dest.

        When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

        If M is this matrix and Q the rotation matrix obtained from the given quaternion, then the new matrix will be M * Q. So when transforming a vector v with the new matrix by using M * Q * v, the quaternion rotation will be applied first!

        In order to set the matrix to a rotation transformation without post-multiplying, use rotation(Quaternionfc).

        Reference: http://en.wikipedia.org

        Specified by:
        rotate in interface Matrix4dc
        Parameters:
        quat - the Quaternionfc
        dest - will hold the result
        Returns:
        dest
        See Also:
        rotation(Quaternionfc)
      • rotate

        public Matrix4d rotate​(Quaterniondc quat)
        Apply the rotation - and possibly scaling - transformation of the given Quaterniondc to this matrix.

        When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

        If M is this matrix and Q the rotation matrix obtained from the given quaternion, then the new matrix will be M * Q. So when transforming a vector v with the new matrix by using M * Q * v, the quaternion rotation will be applied first!

        In order to set the matrix to a rotation transformation without post-multiplying, use rotation(Quaterniondc).

        Reference: http://en.wikipedia.org

        Parameters:
        quat - the Quaterniondc
        Returns:
        this
        See Also:
        rotation(Quaterniondc)
      • rotate

        public Matrix4d rotate​(Quaternionfc quat)
        Apply the rotation - and possibly scaling - transformation of the given Quaternionfc to this matrix.

        When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

        If M is this matrix and Q the rotation matrix obtained from the given quaternion, then the new matrix will be M * Q. So when transforming a vector v with the new matrix by using M * Q * v, the quaternion rotation will be applied first!

        In order to set the matrix to a rotation transformation without post-multiplying, use rotation(Quaternionfc).

        Reference: http://en.wikipedia.org

        Parameters:
        quat - the Quaternionfc
        Returns:
        this
        See Also:
        rotation(Quaternionfc)
      • rotateAffine

        public Matrix4d rotateAffine​(Quaterniondc quat,
                                     Matrix4d dest)
        Apply the rotation - and possibly scaling - transformation of the given Quaterniondc to this affine matrix and store the result in dest.

        This method assumes this to be affine.

        When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

        If M is this matrix and Q the rotation matrix obtained from the given quaternion, then the new matrix will be M * Q. So when transforming a vector v with the new matrix by using M * Q * v, the quaternion rotation will be applied first!

        In order to set the matrix to a rotation transformation without post-multiplying, use rotation(Quaterniondc).

        Reference: http://en.wikipedia.org

        Specified by:
        rotateAffine in interface Matrix4dc
        Parameters:
        quat - the Quaterniondc
        dest - will hold the result
        Returns:
        dest
        See Also:
        rotation(Quaterniondc)
      • rotateAffine

        public Matrix4d rotateAffine​(Quaterniondc quat)
        Apply the rotation - and possibly scaling - transformation of the given Quaterniondc to this matrix.

        This method assumes this to be affine.

        When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

        If M is this matrix and Q the rotation matrix obtained from the given quaternion, then the new matrix will be M * Q. So when transforming a vector v with the new matrix by using M * Q * v, the quaternion rotation will be applied first!

        In order to set the matrix to a rotation transformation without post-multiplying, use rotation(Quaterniondc).

        Reference: http://en.wikipedia.org

        Parameters:
        quat - the Quaterniondc
        Returns:
        this
        See Also:
        rotation(Quaterniondc)
      • rotateTranslation

        public Matrix4d rotateTranslation​(Quaterniondc quat,
                                          Matrix4d dest)
        Apply the rotation - and possibly scaling - transformation of the given Quaterniondc to this matrix, which is assumed to only contain a translation, and store the result in dest.

        This method assumes this to only contain a translation.

        When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

        If M is this matrix and Q the rotation matrix obtained from the given quaternion, then the new matrix will be M * Q. So when transforming a vector v with the new matrix by using M * Q * v, the quaternion rotation will be applied first!

        In order to set the matrix to a rotation transformation without post-multiplying, use rotation(Quaterniondc).

        Reference: http://en.wikipedia.org

        Specified by:
        rotateTranslation in interface Matrix4dc
        Parameters:
        quat - the Quaterniondc
        dest - will hold the result
        Returns:
        dest
        See Also:
        rotation(Quaterniondc)
      • rotateTranslation

        public Matrix4d rotateTranslation​(Quaternionfc quat,
                                          Matrix4d dest)
        Apply the rotation - and possibly scaling - transformation of the given Quaternionfc to this matrix, which is assumed to only contain a translation, and store the result in dest.

        This method assumes this to only contain a translation.

        When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

        If M is this matrix and Q the rotation matrix obtained from the given quaternion, then the new matrix will be M * Q. So when transforming a vector v with the new matrix by using M * Q * v, the quaternion rotation will be applied first!

        In order to set the matrix to a rotation transformation without post-multiplying, use rotation(Quaternionfc).

        Reference: http://en.wikipedia.org

        Specified by:
        rotateTranslation in interface Matrix4dc
        Parameters:
        quat - the Quaternionfc
        dest - will hold the result
        Returns:
        dest
        See Also:
        rotation(Quaternionfc)
      • rotateLocal

        public Matrix4d rotateLocal​(Quaterniondc quat,
                                    Matrix4d dest)
        Pre-multiply the rotation - and possibly scaling - transformation of the given Quaterniondc to this matrix and store the result in dest.

        When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

        If M is this matrix and Q the rotation matrix obtained from the given quaternion, then the new matrix will be Q * M. So when transforming a vector v with the new matrix by using Q * M * v, the quaternion rotation will be applied last!

        In order to set the matrix to a rotation transformation without pre-multiplying, use rotation(Quaterniondc).

        Reference: http://en.wikipedia.org

        Specified by:
        rotateLocal in interface Matrix4dc
        Parameters:
        quat - the Quaterniondc
        dest - will hold the result
        Returns:
        dest
        See Also:
        rotation(Quaterniondc)
      • rotateLocal

        public Matrix4d rotateLocal​(Quaterniondc quat)
        Pre-multiply the rotation - and possibly scaling - transformation of the given Quaterniondc to this matrix.

        When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

        If M is this matrix and Q the rotation matrix obtained from the given quaternion, then the new matrix will be Q * M. So when transforming a vector v with the new matrix by using Q * M * v, the quaternion rotation will be applied last!

        In order to set the matrix to a rotation transformation without pre-multiplying, use rotation(Quaterniondc).

        Reference: http://en.wikipedia.org

        Parameters:
        quat - the Quaterniondc
        Returns:
        this
        See Also:
        rotation(Quaterniondc)
      • rotateAffine

        public Matrix4d rotateAffine​(Quaternionfc quat,
                                     Matrix4d dest)
        Apply the rotation - and possibly scaling - transformation of the given Quaternionfc to this affine matrix and store the result in dest.

        This method assumes this to be affine.

        When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

        If M is this matrix and Q the rotation matrix obtained from the given quaternion, then the new matrix will be M * Q. So when transforming a vector v with the new matrix by using M * Q * v, the quaternion rotation will be applied first!

        In order to set the matrix to a rotation transformation without post-multiplying, use rotation(Quaternionfc).

        Reference: http://en.wikipedia.org

        Specified by:
        rotateAffine in interface Matrix4dc
        Parameters:
        quat - the Quaternionfc
        dest - will hold the result
        Returns:
        dest
        See Also:
        rotation(Quaternionfc)
      • rotateAffine

        public Matrix4d rotateAffine​(Quaternionfc quat)
        Apply the rotation - and possibly scaling - transformation of the given Quaternionfc to this matrix.

        This method assumes this to be affine.

        When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

        If M is this matrix and Q the rotation matrix obtained from the given quaternion, then the new matrix will be M * Q. So when transforming a vector v with the new matrix by using M * Q * v, the quaternion rotation will be applied first!

        In order to set the matrix to a rotation transformation without post-multiplying, use rotation(Quaternionfc).

        Reference: http://en.wikipedia.org

        Parameters:
        quat - the Quaternionfc
        Returns:
        this
        See Also:
        rotation(Quaternionfc)
      • rotateLocal

        public Matrix4d rotateLocal​(Quaternionfc quat,
                                    Matrix4d dest)
        Pre-multiply the rotation - and possibly scaling - transformation of the given Quaternionfc to this matrix and store the result in dest.

        When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

        If M is this matrix and Q the rotation matrix obtained from the given quaternion, then the new matrix will be Q * M. So when transforming a vector v with the new matrix by using Q * M * v, the quaternion rotation will be applied last!

        In order to set the matrix to a rotation transformation without pre-multiplying, use rotation(Quaternionfc).

        Reference: http://en.wikipedia.org

        Specified by:
        rotateLocal in interface Matrix4dc
        Parameters:
        quat - the Quaternionfc
        dest - will hold the result
        Returns:
        dest
        See Also:
        rotation(Quaternionfc)
      • rotateLocal

        public Matrix4d rotateLocal​(Quaternionfc quat)
        Pre-multiply the rotation - and possibly scaling - transformation of the given Quaternionfc to this matrix.

        When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

        If M is this matrix and Q the rotation matrix obtained from the given quaternion, then the new matrix will be Q * M. So when transforming a vector v with the new matrix by using Q * M * v, the quaternion rotation will be applied last!

        In order to set the matrix to a rotation transformation without pre-multiplying, use rotation(Quaternionfc).

        Reference: http://en.wikipedia.org

        Parameters:
        quat - the Quaternionfc
        Returns:
        this
        See Also:
        rotation(Quaternionfc)
      • rotate

        public Matrix4d rotate​(AxisAngle4f axisAngle)
        Apply a rotation transformation, rotating about the given AxisAngle4f, to this matrix.

        The axis described by the axis vector needs to be a unit vector.

        When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

        If M is this matrix and A the rotation matrix obtained from the given AxisAngle4f, then the new matrix will be M * A. So when transforming a vector v with the new matrix by using M * A * v, the AxisAngle4f rotation will be applied first!

        In order to set the matrix to a rotation transformation without post-multiplying, use rotation(AxisAngle4f).

        Reference: http://en.wikipedia.org

        Parameters:
        axisAngle - the AxisAngle4f (needs to be normalized)
        Returns:
        this
        See Also:
        rotate(double, double, double, double), rotation(AxisAngle4f)
      • rotate

        public Matrix4d rotate​(AxisAngle4f axisAngle,
                               Matrix4d dest)
        Apply a rotation transformation, rotating about the given AxisAngle4f and store the result in dest.

        The axis described by the axis vector needs to be a unit vector.

        When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

        If M is this matrix and A the rotation matrix obtained from the given AxisAngle4f, then the new matrix will be M * A. So when transforming a vector v with the new matrix by using M * A * v, the AxisAngle4f rotation will be applied first!

        In order to set the matrix to a rotation transformation without post-multiplying, use rotation(AxisAngle4f).

        Reference: http://en.wikipedia.org

        Specified by:
        rotate in interface Matrix4dc
        Parameters:
        axisAngle - the AxisAngle4f (needs to be normalized)
        dest - will hold the result
        Returns:
        dest
        See Also:
        rotate(double, double, double, double), rotation(AxisAngle4f)
      • rotate

        public Matrix4d rotate​(AxisAngle4d axisAngle)
        Apply a rotation transformation, rotating about the given AxisAngle4d, to this matrix.

        When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

        If M is this matrix and A the rotation matrix obtained from the given AxisAngle4d, then the new matrix will be M * A. So when transforming a vector v with the new matrix by using M * A * v, the AxisAngle4d rotation will be applied first!

        In order to set the matrix to a rotation transformation without post-multiplying, use rotation(AxisAngle4d).

        Reference: http://en.wikipedia.org

        Parameters:
        axisAngle - the AxisAngle4d (needs to be normalized)
        Returns:
        this
        See Also:
        rotate(double, double, double, double), rotation(AxisAngle4d)
      • rotate

        public Matrix4d rotate​(AxisAngle4d axisAngle,
                               Matrix4d dest)
        Apply a rotation transformation, rotating about the given AxisAngle4d and store the result in dest.

        When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

        If M is this matrix and A the rotation matrix obtained from the given AxisAngle4d, then the new matrix will be M * A. So when transforming a vector v with the new matrix by using M * A * v, the AxisAngle4d rotation will be applied first!

        In order to set the matrix to a rotation transformation without post-multiplying, use rotation(AxisAngle4d).

        Reference: http://en.wikipedia.org

        Specified by:
        rotate in interface Matrix4dc
        Parameters:
        axisAngle - the AxisAngle4d (needs to be normalized)
        dest - will hold the result
        Returns:
        dest
        See Also:
        rotate(double, double, double, double), rotation(AxisAngle4d)
      • rotate

        public Matrix4d rotate​(double angle,
                               Vector3dc axis)
        Apply a rotation transformation, rotating the given radians about the specified axis, to this matrix.

        When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

        If M is this matrix and A the rotation matrix obtained from the given angle and axis, then the new matrix will be M * A. So when transforming a vector v with the new matrix by using M * A * v, the axis-angle rotation will be applied first!

        In order to set the matrix to a rotation transformation without post-multiplying, use rotation(double, Vector3dc).

        Reference: http://en.wikipedia.org

        Parameters:
        angle - the angle in radians
        axis - the rotation axis (needs to be normalized)
        Returns:
        this
        See Also:
        rotate(double, double, double, double), rotation(double, Vector3dc)
      • rotate

        public Matrix4d rotate​(double angle,
                               Vector3dc axis,
                               Matrix4d dest)
        Apply a rotation transformation, rotating the given radians about the specified axis and store the result in dest.

        When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

        If M is this matrix and A the rotation matrix obtained from the given angle and axis, then the new matrix will be M * A. So when transforming a vector v with the new matrix by using M * A * v, the axis-angle rotation will be applied first!

        In order to set the matrix to a rotation transformation without post-multiplying, use rotation(double, Vector3dc).

        Reference: http://en.wikipedia.org

        Specified by:
        rotate in interface Matrix4dc
        Parameters:
        angle - the angle in radians
        axis - the rotation axis (needs to be normalized)
        dest - will hold the result
        Returns:
        dest
        See Also:
        rotate(double, double, double, double), rotation(double, Vector3dc)
      • rotate

        public Matrix4d rotate​(double angle,
                               Vector3fc axis)
        Apply a rotation transformation, rotating the given radians about the specified axis, to this matrix.

        When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

        If M is this matrix and A the rotation matrix obtained from the given angle and axis, then the new matrix will be M * A. So when transforming a vector v with the new matrix by using M * A * v, the axis-angle rotation will be applied first!

        In order to set the matrix to a rotation transformation without post-multiplying, use rotation(double, Vector3fc).

        Reference: http://en.wikipedia.org

        Parameters:
        angle - the angle in radians
        axis - the rotation axis (needs to be normalized)
        Returns:
        this
        See Also:
        rotate(double, double, double, double), rotation(double, Vector3fc)
      • rotate

        public Matrix4d rotate​(double angle,
                               Vector3fc axis,
                               Matrix4d dest)
        Apply a rotation transformation, rotating the given radians about the specified axis and store the result in dest.

        When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

        If M is this matrix and A the rotation matrix obtained from the given angle and axis, then the new matrix will be M * A. So when transforming a vector v with the new matrix by using M * A * v, the axis-angle rotation will be applied first!

        In order to set the matrix to a rotation transformation without post-multiplying, use rotation(double, Vector3fc).

        Reference: http://en.wikipedia.org

        Specified by:
        rotate in interface Matrix4dc
        Parameters:
        angle - the angle in radians
        axis - the rotation axis (needs to be normalized)
        dest - will hold the result
        Returns:
        dest
        See Also:
        rotate(double, double, double, double), rotation(double, Vector3fc)
      • getRow

        public Vector4d getRow​(int row,
                               Vector4d dest)
                        throws java.lang.IndexOutOfBoundsException
        Description copied from interface: Matrix4dc
        Get the row at the given row index, starting with 0.
        Specified by:
        getRow in interface Matrix4dc
        Parameters:
        row - the row index in [0..3]
        dest - will hold the row components
        Returns:
        the passed in destination
        Throws:
        java.lang.IndexOutOfBoundsException - if row is not in [0..3]
      • getRow

        public Vector3d getRow​(int row,
                               Vector3d dest)
                        throws java.lang.IndexOutOfBoundsException
        Description copied from interface: Matrix4dc
        Get the first three components of the row at the given row index, starting with 0.
        Specified by:
        getRow in interface Matrix4dc
        Parameters:
        row - the row index in [0..3]
        dest - will hold the first three row components
        Returns:
        the passed in destination
        Throws:
        java.lang.IndexOutOfBoundsException - if row is not in [0..3]
      • setRow

        public Matrix4d setRow​(int row,
                               Vector4dc src)
                        throws java.lang.IndexOutOfBoundsException
        Set the row at the given row index, starting with 0.
        Parameters:
        row - the row index in [0..3]
        src - the row components to set
        Returns:
        this
        Throws:
        java.lang.IndexOutOfBoundsException - if row is not in [0..3]
      • getColumn

        public Vector4d getColumn​(int column,
                                  Vector4d dest)
                           throws java.lang.IndexOutOfBoundsException
        Description copied from interface: Matrix4dc
        Get the column at the given column index, starting with 0.
        Specified by:
        getColumn in interface Matrix4dc
        Parameters:
        column - the column index in [0..3]
        dest - will hold the column components
        Returns:
        the passed in destination
        Throws:
        java.lang.IndexOutOfBoundsException - if column is not in [0..3]
      • getColumn

        public Vector3d getColumn​(int column,
                                  Vector3d dest)
                           throws java.lang.IndexOutOfBoundsException
        Description copied from interface: Matrix4dc
        Get the first three components of the column at the given column index, starting with 0.
        Specified by:
        getColumn in interface Matrix4dc
        Parameters:
        column - the column index in [0..3]
        dest - will hold the first three column components
        Returns:
        the passed in destination
        Throws:
        java.lang.IndexOutOfBoundsException - if column is not in [0..3]
      • setColumn

        public Matrix4d setColumn​(int column,
                                  Vector4dc src)
                           throws java.lang.IndexOutOfBoundsException
        Set the column at the given column index, starting with 0.
        Parameters:
        column - the column index in [0..3]
        src - the column components to set
        Returns:
        this
        Throws:
        java.lang.IndexOutOfBoundsException - if column is not in [0..3]
      • get

        public double get​(int column,
                          int row)
        Description copied from interface: Matrix4dc
        Get the matrix element value at the given column and row.
        Specified by:
        get in interface Matrix4dc
        Parameters:
        column - the colum index in [0..3]
        row - the row index in [0..3]
        Returns:
        the element value
      • set

        public Matrix4d set​(int column,
                            int row,
                            double value)
        Set the matrix element at the given column and row to the specified value.
        Parameters:
        column - the colum index in [0..3]
        row - the row index in [0..3]
        value - the value
        Returns:
        this
      • getRowColumn

        public double getRowColumn​(int row,
                                   int column)
        Description copied from interface: Matrix4dc
        Get the matrix element value at the given row and column.
        Specified by:
        getRowColumn in interface Matrix4dc
        Parameters:
        row - the row index in [0..3]
        column - the colum index in [0..3]
        Returns:
        the element value
      • setRowColumn

        public Matrix4d setRowColumn​(int row,
                                     int column,
                                     double value)
        Set the matrix element at the given row and column to the specified value.
        Parameters:
        row - the row index in [0..3]
        column - the colum index in [0..3]
        value - the value
        Returns:
        this
      • normal

        public Matrix4d normal()
        Compute a normal matrix from the upper left 3x3 submatrix of this and store it into the upper left 3x3 submatrix of this. All other values of this will be set to identity.

        The normal matrix of m is the transpose of the inverse of m.

        Please note that, if this is an orthogonal matrix or a matrix whose columns are orthogonal vectors, then this method need not be invoked, since in that case this itself is its normal matrix. In that case, use set3x3(Matrix4dc) to set a given Matrix4f to only the upper left 3x3 submatrix of this matrix.

        Returns:
        this
        See Also:
        set3x3(Matrix4dc)
      • normal

        public Matrix4d normal​(Matrix4d dest)
        Compute a normal matrix from the upper left 3x3 submatrix of this and store it into the upper left 3x3 submatrix of dest. All other values of dest will be set to identity.

        The normal matrix of m is the transpose of the inverse of m.

        Please note that, if this is an orthogonal matrix or a matrix whose columns are orthogonal vectors, then this method need not be invoked, since in that case this itself is its normal matrix. In that case, use set3x3(Matrix4dc) to set a given Matrix4d to only the upper left 3x3 submatrix of a given matrix.

        Specified by:
        normal in interface Matrix4dc
        Parameters:
        dest - will hold the result
        Returns:
        dest
        See Also:
        set3x3(Matrix4dc)
      • normal

        public Matrix3d normal​(Matrix3d dest)
        Compute a normal matrix from the upper left 3x3 submatrix of this and store it into dest.

        The normal matrix of m is the transpose of the inverse of m.

        Please note that, if this is an orthogonal matrix or a matrix whose columns are orthogonal vectors, then this method need not be invoked, since in that case this itself is its normal matrix. In that case, use Matrix3d.set(Matrix4dc) to set a given Matrix3d to only the upper left 3x3 submatrix of this matrix.

        Specified by:
        normal in interface Matrix4dc
        Parameters:
        dest - will hold the result
        Returns:
        dest
        See Also:
        Matrix3d.set(Matrix4dc), get3x3(Matrix3d)
      • cofactor3x3

        public Matrix4d cofactor3x3()
        Compute the cofactor matrix of the upper left 3x3 submatrix of this.

        The cofactor matrix can be used instead of normal() to transform normals when the orientation of the normals with respect to the surface should be preserved.

        Returns:
        this
      • cofactor3x3

        public Matrix3d cofactor3x3​(Matrix3d dest)
        Compute the cofactor matrix of the upper left 3x3 submatrix of this and store it into dest.

        The cofactor matrix can be used instead of normal(Matrix3d) to transform normals when the orientation of the normals with respect to the surface should be preserved.

        Specified by:
        cofactor3x3 in interface Matrix4dc
        Parameters:
        dest - will hold the result
        Returns:
        dest
      • cofactor3x3

        public Matrix4d cofactor3x3​(Matrix4d dest)
        Compute the cofactor matrix of the upper left 3x3 submatrix of this and store it into dest. All other values of dest will be set to identity.

        The cofactor matrix can be used instead of normal(Matrix4d) to transform normals when the orientation of the normals with respect to the surface should be preserved.

        Specified by:
        cofactor3x3 in interface Matrix4dc
        Parameters:
        dest - will hold the result
        Returns:
        dest
      • normalize3x3

        public Matrix4d normalize3x3()
        Normalize the upper left 3x3 submatrix of this matrix.

        The resulting matrix will map unit vectors to unit vectors, though a pair of orthogonal input unit vectors need not be mapped to a pair of orthogonal output vectors if the original matrix was not orthogonal itself (i.e. had skewing).

        Returns:
        this
      • normalize3x3

        public Matrix4d normalize3x3​(Matrix4d dest)
        Description copied from interface: Matrix4dc
        Normalize the upper left 3x3 submatrix of this matrix and store the result in dest.

        The resulting matrix will map unit vectors to unit vectors, though a pair of orthogonal input unit vectors need not be mapped to a pair of orthogonal output vectors if the original matrix was not orthogonal itself (i.e. had skewing).

        Specified by:
        normalize3x3 in interface Matrix4dc
        Parameters:
        dest - will hold the result
        Returns:
        dest
      • normalize3x3

        public Matrix3d normalize3x3​(Matrix3d dest)
        Description copied from interface: Matrix4dc
        Normalize the upper left 3x3 submatrix of this matrix and store the result in dest.

        The resulting matrix will map unit vectors to unit vectors, though a pair of orthogonal input unit vectors need not be mapped to a pair of orthogonal output vectors if the original matrix was not orthogonal itself (i.e. had skewing).

        Specified by:
        normalize3x3 in interface Matrix4dc
        Parameters:
        dest - will hold the result
        Returns:
        dest
      • unproject

        public Vector4d unproject​(double winX,
                                  double winY,
                                  double winZ,
                                  int[] viewport,
                                  Vector4d dest)
        Description copied from interface: Matrix4dc
        Unproject the given window coordinates (winX, winY, winZ) by this matrix using the specified viewport.

        This method first converts the given window coordinates to normalized device coordinates in the range [-1..1] and then transforms those NDC coordinates by the inverse of this matrix.

        The depth range of winZ is assumed to be [0..1], which is also the OpenGL default.

        As a necessary computation step for unprojecting, this method computes the inverse of this matrix. In order to avoid computing the matrix inverse with every invocation, the inverse of this matrix can be built once outside using Matrix4dc.invert(Matrix4d) and then the method unprojectInv() can be invoked on it.

        Specified by:
        unproject in interface Matrix4dc
        Parameters:
        winX - the x-coordinate in window coordinates (pixels)
        winY - the y-coordinate in window coordinates (pixels)
        winZ - the z-coordinate, which is the depth value in [0..1]
        viewport - the viewport described by [x, y, width, height]
        dest - will hold the unprojected position
        Returns:
        dest
        See Also:
        Matrix4dc.unprojectInv(double, double, double, int[], Vector4d), Matrix4dc.invert(Matrix4d)
      • unproject

        public Vector3d unproject​(double winX,
                                  double winY,
                                  double winZ,
                                  int[] viewport,
                                  Vector3d dest)
        Description copied from interface: Matrix4dc
        Unproject the given window coordinates (winX, winY, winZ) by this matrix using the specified viewport.

        This method first converts the given window coordinates to normalized device coordinates in the range [-1..1] and then transforms those NDC coordinates by the inverse of this matrix.

        The depth range of winZ is assumed to be [0..1], which is also the OpenGL default.

        As a necessary computation step for unprojecting, this method computes the inverse of this matrix. In order to avoid computing the matrix inverse with every invocation, the inverse of this matrix can be built once outside using Matrix4dc.invert(Matrix4d) and then the method unprojectInv() can be invoked on it.

        Specified by:
        unproject in interface Matrix4dc
        Parameters:
        winX - the x-coordinate in window coordinates (pixels)
        winY - the y-coordinate in window coordinates (pixels)
        winZ - the z-coordinate, which is the depth value in [0..1]
        viewport - the viewport described by [x, y, width, height]
        dest - will hold the unprojected position
        Returns:
        dest
        See Also:
        Matrix4dc.unprojectInv(double, double, double, int[], Vector3d), Matrix4dc.invert(Matrix4d)
      • unproject

        public Vector4d unproject​(Vector3dc winCoords,
                                  int[] viewport,
                                  Vector4d dest)
        Description copied from interface: Matrix4dc
        Unproject the given window coordinates winCoords by this matrix using the specified viewport.

        This method first converts the given window coordinates to normalized device coordinates in the range [-1..1] and then transforms those NDC coordinates by the inverse of this matrix.

        The depth range of winCoords.z is assumed to be [0..1], which is also the OpenGL default.

        As a necessary computation step for unprojecting, this method computes the inverse of this matrix. In order to avoid computing the matrix inverse with every invocation, the inverse of this matrix can be built once outside using Matrix4dc.invert(Matrix4d) and then the method unprojectInv() can be invoked on it.

        Specified by:
        unproject in interface Matrix4dc
        Parameters:
        winCoords - the window coordinates to unproject
        viewport - the viewport described by [x, y, width, height]
        dest - will hold the unprojected position
        Returns:
        dest
        See Also:
        Matrix4dc.unprojectInv(double, double, double, int[], Vector4d), Matrix4dc.unproject(double, double, double, int[], Vector4d), Matrix4dc.invert(Matrix4d)
      • unproject

        public Vector3d unproject​(Vector3dc winCoords,
                                  int[] viewport,
                                  Vector3d dest)
        Description copied from interface: Matrix4dc
        Unproject the given window coordinates winCoords by this matrix using the specified viewport.

        This method first converts the given window coordinates to normalized device coordinates in the range [-1..1] and then transforms those NDC coordinates by the inverse of this matrix.

        The depth range of winCoords.z is assumed to be [0..1], which is also the OpenGL default.

        As a necessary computation step for unprojecting, this method computes the inverse of this matrix. In order to avoid computing the matrix inverse with every invocation, the inverse of this matrix can be built once outside using Matrix4dc.invert(Matrix4d) and then the method unprojectInv() can be invoked on it.

        Specified by:
        unproject in interface Matrix4dc
        Parameters:
        winCoords - the window coordinates to unproject
        viewport - the viewport described by [x, y, width, height]
        dest - will hold the unprojected position
        Returns:
        dest
        See Also:
        Matrix4dc.unprojectInv(double, double, double, int[], Vector4d), Matrix4dc.unproject(double, double, double, int[], Vector4d), Matrix4dc.invert(Matrix4d)
      • unprojectRay

        public Matrix4d unprojectRay​(double winX,
                                     double winY,
                                     int[] viewport,
                                     Vector3d originDest,
                                     Vector3d dirDest)
        Description copied from interface: Matrix4dc
        Unproject the given 2D window coordinates (winX, winY) by this matrix using the specified viewport and compute the origin and the direction of the resulting ray which starts at NDC z = -1.0 and goes through NDC z = +1.0.

        This method first converts the given window coordinates to normalized device coordinates in the range [-1..1] and then transforms those NDC coordinates by the inverse of this matrix.

        As a necessary computation step for unprojecting, this method computes the inverse of this matrix. In order to avoid computing the matrix inverse with every invocation, the inverse of this matrix can be built once outside using Matrix4dc.invert(Matrix4d) and then the method unprojectInvRay() can be invoked on it.

        Specified by:
        unprojectRay in interface Matrix4dc
        Parameters:
        winX - the x-coordinate in window coordinates (pixels)
        winY - the y-coordinate in window coordinates (pixels)
        viewport - the viewport described by [x, y, width, height]
        originDest - will hold the ray origin
        dirDest - will hold the (unnormalized) ray direction
        Returns:
        this
        See Also:
        Matrix4dc.unprojectInvRay(double, double, int[], Vector3d, Vector3d), Matrix4dc.invert(Matrix4d)
      • unprojectRay

        public Matrix4d unprojectRay​(Vector2dc winCoords,
                                     int[] viewport,
                                     Vector3d originDest,
                                     Vector3d dirDest)
        Description copied from interface: Matrix4dc
        Unproject the given 2D window coordinates winCoords by this matrix using the specified viewport and compute the origin and the direction of the resulting ray which starts at NDC z = -1.0 and goes through NDC z = +1.0.

        This method first converts the given window coordinates to normalized device coordinates in the range [-1..1] and then transforms those NDC coordinates by the inverse of this matrix.

        As a necessary computation step for unprojecting, this method computes the inverse of this matrix. In order to avoid computing the matrix inverse with every invocation, the inverse of this matrix can be built once outside using Matrix4dc.invert(Matrix4d) and then the method unprojectInvRay() can be invoked on it.

        Specified by:
        unprojectRay in interface Matrix4dc
        Parameters:
        winCoords - the window coordinates to unproject
        viewport - the viewport described by [x, y, width, height]
        originDest - will hold the ray origin
        dirDest - will hold the (unnormalized) ray direction
        Returns:
        this
        See Also:
        Matrix4dc.unprojectInvRay(double, double, int[], Vector3d, Vector3d), Matrix4dc.unprojectRay(double, double, int[], Vector3d, Vector3d), Matrix4dc.invert(Matrix4d)
      • unprojectInv

        public Vector4d unprojectInv​(Vector3dc winCoords,
                                     int[] viewport,
                                     Vector4d dest)
        Description copied from interface: Matrix4dc
        Unproject the given window coordinates winCoords by this matrix using the specified viewport.

        This method differs from unproject() in that it assumes that this is already the inverse matrix of the original projection matrix. It exists to avoid recomputing the matrix inverse with every invocation.

        This method first converts the given window coordinates to normalized device coordinates in the range [-1..1] and then transforms those NDC coordinates by this matrix.

        The depth range of winCoords.z is assumed to be [0..1], which is also the OpenGL default.

        Specified by:
        unprojectInv in interface Matrix4dc
        Parameters:
        winCoords - the window coordinates to unproject
        viewport - the viewport described by [x, y, width, height]
        dest - will hold the unprojected position
        Returns:
        dest
        See Also:
        Matrix4dc.unproject(Vector3dc, int[], Vector4d)
      • unprojectInv

        public Vector4d unprojectInv​(double winX,
                                     double winY,
                                     double winZ,
                                     int[] viewport,
                                     Vector4d dest)
        Description copied from interface: Matrix4dc
        Unproject the given window coordinates (winX, winY, winZ) by this matrix using the specified viewport.

        This method differs from unproject() in that it assumes that this is already the inverse matrix of the original projection matrix. It exists to avoid recomputing the matrix inverse with every invocation.

        This method first converts the given window coordinates to normalized device coordinates in the range [-1..1] and then transforms those NDC coordinates by this matrix.

        The depth range of winZ is assumed to be [0..1], which is also the OpenGL default.

        Specified by:
        unprojectInv in interface Matrix4dc
        Parameters:
        winX - the x-coordinate in window coordinates (pixels)
        winY - the y-coordinate in window coordinates (pixels)
        winZ - the z-coordinate, which is the depth value in [0..1]
        viewport - the viewport described by [x, y, width, height]
        dest - will hold the unprojected position
        Returns:
        dest
        See Also:
        Matrix4dc.unproject(double, double, double, int[], Vector4d)
      • unprojectInv

        public Vector3d unprojectInv​(Vector3dc winCoords,
                                     int[] viewport,
                                     Vector3d dest)
        Description copied from interface: Matrix4dc
        Unproject the given window coordinates winCoords by this matrix using the specified viewport.

        This method differs from unproject() in that it assumes that this is already the inverse matrix of the original projection matrix. It exists to avoid recomputing the matrix inverse with every invocation.

        This method first converts the given window coordinates to normalized device coordinates in the range [-1..1] and then transforms those NDC coordinates by this matrix.

        The depth range of winCoords.z is assumed to be [0..1], which is also the OpenGL default.

        Specified by:
        unprojectInv in interface Matrix4dc
        Parameters:
        winCoords - the window coordinates to unproject
        viewport - the viewport described by [x, y, width, height]
        dest - will hold the unprojected position
        Returns:
        dest
        See Also:
        Matrix4dc.unproject(Vector3dc, int[], Vector3d)
      • unprojectInv

        public Vector3d unprojectInv​(double winX,
                                     double winY,
                                     double winZ,
                                     int[] viewport,
                                     Vector3d dest)
        Description copied from interface: Matrix4dc
        Unproject the given window coordinates (winX, winY, winZ) by this matrix using the specified viewport.

        This method differs from unproject() in that it assumes that this is already the inverse matrix of the original projection matrix. It exists to avoid recomputing the matrix inverse with every invocation.

        This method first converts the given window coordinates to normalized device coordinates in the range [-1..1] and then transforms those NDC coordinates by this matrix.

        The depth range of winZ is assumed to be [0..1], which is also the OpenGL default.

        Specified by:
        unprojectInv in interface Matrix4dc
        Parameters:
        winX - the x-coordinate in window coordinates (pixels)
        winY - the y-coordinate in window coordinates (pixels)
        winZ - the z-coordinate, which is the depth value in [0..1]
        viewport - the viewport described by [x, y, width, height]
        dest - will hold the unprojected position
        Returns:
        dest
        See Also:
        Matrix4dc.unproject(double, double, double, int[], Vector3d)
      • unprojectInvRay

        public Matrix4d unprojectInvRay​(Vector2dc winCoords,
                                        int[] viewport,
                                        Vector3d originDest,
                                        Vector3d dirDest)
        Description copied from interface: Matrix4dc
        Unproject the given window coordinates winCoords by this matrix using the specified viewport and compute the origin and the direction of the resulting ray which starts at NDC z = -1.0 and goes through NDC z = +1.0.

        This method differs from unprojectRay() in that it assumes that this is already the inverse matrix of the original projection matrix. It exists to avoid recomputing the matrix inverse with every invocation.

        Specified by:
        unprojectInvRay in interface Matrix4dc
        Parameters:
        winCoords - the window coordinates to unproject
        viewport - the viewport described by [x, y, width, height]
        originDest - will hold the ray origin
        dirDest - will hold the (unnormalized) ray direction
        Returns:
        this
        See Also:
        Matrix4dc.unprojectRay(Vector2dc, int[], Vector3d, Vector3d)
      • unprojectInvRay

        public Matrix4d unprojectInvRay​(double winX,
                                        double winY,
                                        int[] viewport,
                                        Vector3d originDest,
                                        Vector3d dirDest)
        Description copied from interface: Matrix4dc
        Unproject the given 2D window coordinates (winX, winY) by this matrix using the specified viewport and compute the origin and the direction of the resulting ray which starts at NDC z = -1.0 and goes through NDC z = +1.0.

        This method differs from unprojectRay() in that it assumes that this is already the inverse matrix of the original projection matrix. It exists to avoid recomputing the matrix inverse with every invocation.

        Specified by:
        unprojectInvRay in interface Matrix4dc
        Parameters:
        winX - the x-coordinate in window coordinates (pixels)
        winY - the y-coordinate in window coordinates (pixels)
        viewport - the viewport described by [x, y, width, height]
        originDest - will hold the ray origin
        dirDest - will hold the (unnormalized) ray direction
        Returns:
        this
        See Also:
        Matrix4dc.unprojectRay(double, double, int[], Vector3d, Vector3d)
      • project

        public Vector4d project​(double x,
                                double y,
                                double z,
                                int[] viewport,
                                Vector4d winCoordsDest)
        Description copied from interface: Matrix4dc
        Project the given (x, y, z) position via this matrix using the specified viewport and store the resulting window coordinates in winCoordsDest.

        This method transforms the given coordinates by this matrix including perspective division to obtain normalized device coordinates, and then translates these into window coordinates by using the given viewport settings [x, y, width, height].

        The depth range of the returned winCoordsDest.z will be [0..1], which is also the OpenGL default.

        Specified by:
        project in interface Matrix4dc
        Parameters:
        x - the x-coordinate of the position to project
        y - the y-coordinate of the position to project
        z - the z-coordinate of the position to project
        viewport - the viewport described by [x, y, width, height]
        winCoordsDest - will hold the projected window coordinates
        Returns:
        winCoordsDest
      • project

        public Vector3d project​(double x,
                                double y,
                                double z,
                                int[] viewport,
                                Vector3d winCoordsDest)
        Description copied from interface: Matrix4dc
        Project the given (x, y, z) position via this matrix using the specified viewport and store the resulting window coordinates in winCoordsDest.

        This method transforms the given coordinates by this matrix including perspective division to obtain normalized device coordinates, and then translates these into window coordinates by using the given viewport settings [x, y, width, height].

        The depth range of the returned winCoordsDest.z will be [0..1], which is also the OpenGL default.

        Specified by:
        project in interface Matrix4dc
        Parameters:
        x - the x-coordinate of the position to project
        y - the y-coordinate of the position to project
        z - the z-coordinate of the position to project
        viewport - the viewport described by [x, y, width, height]
        winCoordsDest - will hold the projected window coordinates
        Returns:
        winCoordsDest
      • project

        public Vector4d project​(Vector3dc position,
                                int[] viewport,
                                Vector4d dest)
        Description copied from interface: Matrix4dc
        Project the given position via this matrix using the specified viewport and store the resulting window coordinates in winCoordsDest.

        This method transforms the given coordinates by this matrix including perspective division to obtain normalized device coordinates, and then translates these into window coordinates by using the given viewport settings [x, y, width, height].

        The depth range of the returned winCoordsDest.z will be [0..1], which is also the OpenGL default.

        Specified by:
        project in interface Matrix4dc
        Parameters:
        position - the position to project into window coordinates
        viewport - the viewport described by [x, y, width, height]
        dest - will hold the projected window coordinates
        Returns:
        winCoordsDest
        See Also:
        Matrix4dc.project(double, double, double, int[], Vector4d)
      • project

        public Vector3d project​(Vector3dc position,
                                int[] viewport,
                                Vector3d dest)
        Description copied from interface: Matrix4dc
        Project the given position via this matrix using the specified viewport and store the resulting window coordinates in winCoordsDest.

        This method transforms the given coordinates by this matrix including perspective division to obtain normalized device coordinates, and then translates these into window coordinates by using the given viewport settings [x, y, width, height].

        The depth range of the returned winCoordsDest.z will be [0..1], which is also the OpenGL default.

        Specified by:
        project in interface Matrix4dc
        Parameters:
        position - the position to project into window coordinates
        viewport - the viewport described by [x, y, width, height]
        dest - will hold the projected window coordinates
        Returns:
        winCoordsDest
        See Also:
        Matrix4dc.project(double, double, double, int[], Vector4d)
      • reflect

        public Matrix4d reflect​(double a,
                                double b,
                                double c,
                                double d,
                                Matrix4d dest)
        Description copied from interface: Matrix4dc
        Apply a mirror/reflection transformation to this matrix that reflects about the given plane specified via the equation x*a + y*b + z*c + d = 0 and store the result in dest.

        The vector (a, b, c) must be a unit vector.

        If M is this matrix and R the reflection matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the reflection will be applied first!

        Reference: msdn.microsoft.com

        Specified by:
        reflect in interface Matrix4dc
        Parameters:
        a - the x factor in the plane equation
        b - the y factor in the plane equation
        c - the z factor in the plane equation
        d - the constant in the plane equation
        dest - will hold the result
        Returns:
        dest
      • reflect

        public Matrix4d reflect​(double a,
                                double b,
                                double c,
                                double d)
        Apply a mirror/reflection transformation to this matrix that reflects about the given plane specified via the equation x*a + y*b + z*c + d = 0.

        The vector (a, b, c) must be a unit vector.

        If M is this matrix and R the reflection matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the reflection will be applied first!

        Reference: msdn.microsoft.com

        Parameters:
        a - the x factor in the plane equation
        b - the y factor in the plane equation
        c - the z factor in the plane equation
        d - the constant in the plane equation
        Returns:
        this
      • reflect

        public Matrix4d reflect​(double nx,
                                double ny,
                                double nz,
                                double px,
                                double py,
                                double pz)
        Apply a mirror/reflection transformation to this matrix that reflects about the given plane specified via the plane normal and a point on the plane.

        If M is this matrix and R the reflection matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the reflection will be applied first!

        Parameters:
        nx - the x-coordinate of the plane normal
        ny - the y-coordinate of the plane normal
        nz - the z-coordinate of the plane normal
        px - the x-coordinate of a point on the plane
        py - the y-coordinate of a point on the plane
        pz - the z-coordinate of a point on the plane
        Returns:
        this
      • reflect

        public Matrix4d reflect​(double nx,
                                double ny,
                                double nz,
                                double px,
                                double py,
                                double pz,
                                Matrix4d dest)
        Description copied from interface: Matrix4dc
        Apply a mirror/reflection transformation to this matrix that reflects about the given plane specified via the plane normal and a point on the plane, and store the result in dest.

        If M is this matrix and R the reflection matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the reflection will be applied first!

        Specified by:
        reflect in interface Matrix4dc
        Parameters:
        nx - the x-coordinate of the plane normal
        ny - the y-coordinate of the plane normal
        nz - the z-coordinate of the plane normal
        px - the x-coordinate of a point on the plane
        py - the y-coordinate of a point on the plane
        pz - the z-coordinate of a point on the plane
        dest - will hold the result
        Returns:
        dest
      • reflect

        public Matrix4d reflect​(Vector3dc normal,
                                Vector3dc point)
        Apply a mirror/reflection transformation to this matrix that reflects about the given plane specified via the plane normal and a point on the plane.

        If M is this matrix and R the reflection matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the reflection will be applied first!

        Parameters:
        normal - the plane normal
        point - a point on the plane
        Returns:
        this
      • reflect

        public Matrix4d reflect​(Quaterniondc orientation,
                                Vector3dc point)
        Apply a mirror/reflection transformation to this matrix that reflects about a plane specified via the plane orientation and a point on the plane.

        This method can be used to build a reflection transformation based on the orientation of a mirror object in the scene. It is assumed that the default mirror plane's normal is (0, 0, 1). So, if the given Quaterniondc is the identity (does not apply any additional rotation), the reflection plane will be z=0, offset by the given point.

        If M is this matrix and R the reflection matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the reflection will be applied first!

        Parameters:
        orientation - the plane orientation relative to an implied normal vector of (0, 0, 1)
        point - a point on the plane
        Returns:
        this
      • reflect

        public Matrix4d reflect​(Quaterniondc orientation,
                                Vector3dc point,
                                Matrix4d dest)
        Description copied from interface: Matrix4dc
        Apply a mirror/reflection transformation to this matrix that reflects about a plane specified via the plane orientation and a point on the plane, and store the result in dest.

        This method can be used to build a reflection transformation based on the orientation of a mirror object in the scene. It is assumed that the default mirror plane's normal is (0, 0, 1). So, if the given Quaterniondc is the identity (does not apply any additional rotation), the reflection plane will be z=0, offset by the given point.

        If M is this matrix and R the reflection matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the reflection will be applied first!

        Specified by:
        reflect in interface Matrix4dc
        Parameters:
        orientation - the plane orientation
        point - a point on the plane
        dest - will hold the result
        Returns:
        dest
      • reflect

        public Matrix4d reflect​(Vector3dc normal,
                                Vector3dc point,
                                Matrix4d dest)
        Description copied from interface: Matrix4dc
        Apply a mirror/reflection transformation to this matrix that reflects about the given plane specified via the plane normal and a point on the plane, and store the result in dest.

        If M is this matrix and R the reflection matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the reflection will be applied first!

        Specified by:
        reflect in interface Matrix4dc
        Parameters:
        normal - the plane normal
        point - a point on the plane
        dest - will hold the result
        Returns:
        dest
      • reflection

        public Matrix4d reflection​(double a,
                                   double b,
                                   double c,
                                   double d)
        Set this matrix to a mirror/reflection transformation that reflects about the given plane specified via the equation x*a + y*b + z*c + d = 0.

        The vector (a, b, c) must be a unit vector.

        Reference: msdn.microsoft.com

        Parameters:
        a - the x factor in the plane equation
        b - the y factor in the plane equation
        c - the z factor in the plane equation
        d - the constant in the plane equation
        Returns:
        this
      • reflection

        public Matrix4d reflection​(double nx,
                                   double ny,
                                   double nz,
                                   double px,
                                   double py,
                                   double pz)
        Set this matrix to a mirror/reflection transformation that reflects about the given plane specified via the plane normal and a point on the plane.
        Parameters:
        nx - the x-coordinate of the plane normal
        ny - the y-coordinate of the plane normal
        nz - the z-coordinate of the plane normal
        px - the x-coordinate of a point on the plane
        py - the y-coordinate of a point on the plane
        pz - the z-coordinate of a point on the plane
        Returns:
        this
      • reflection

        public Matrix4d reflection​(Vector3dc normal,
                                   Vector3dc point)
        Set this matrix to a mirror/reflection transformation that reflects about the given plane specified via the plane normal and a point on the plane.
        Parameters:
        normal - the plane normal
        point - a point on the plane
        Returns:
        this
      • reflection

        public Matrix4d reflection​(Quaterniondc orientation,
                                   Vector3dc point)
        Set this matrix to a mirror/reflection transformation that reflects about a plane specified via the plane orientation and a point on the plane.

        This method can be used to build a reflection transformation based on the orientation of a mirror object in the scene. It is assumed that the default mirror plane's normal is (0, 0, 1). So, if the given Quaterniondc is the identity (does not apply any additional rotation), the reflection plane will be z=0, offset by the given point.

        Parameters:
        orientation - the plane orientation
        point - a point on the plane
        Returns:
        this
      • ortho

        public Matrix4d ortho​(double left,
                              double right,
                              double bottom,
                              double top,
                              double zNear,
                              double zFar,
                              boolean zZeroToOne,
                              Matrix4d dest)
        Apply an orthographic projection transformation for a right-handed coordinate system using the given NDC z range to this matrix and store the result in dest.

        If M is this matrix and O the orthographic projection matrix, then the new matrix will be M * O. So when transforming a vector v with the new matrix by using M * O * v, the orthographic projection transformation will be applied first!

        In order to set the matrix to an orthographic projection without post-multiplying it, use setOrtho().

        Reference: http://www.songho.ca

        Specified by:
        ortho in interface Matrix4dc
        Parameters:
        left - the distance from the center to the left frustum edge
        right - the distance from the center to the right frustum edge
        bottom - the distance from the center to the bottom frustum edge
        top - the distance from the center to the top frustum edge
        zNear - near clipping plane distance
        zFar - far clipping plane distance
        zZeroToOne - whether to use Vulkan's and Direct3D's NDC z range of [0..+1] when true or whether to use OpenGL's NDC z range of [-1..+1] when false
        dest - will hold the result
        Returns:
        dest
        See Also:
        setOrtho(double, double, double, double, double, double, boolean)
      • ortho

        public Matrix4d ortho​(double left,
                              double right,
                              double bottom,
                              double top,
                              double zNear,
                              double zFar,
                              Matrix4d dest)
        Apply an orthographic projection transformation for a right-handed coordinate system using OpenGL's NDC z range of [-1..+1] to this matrix and store the result in dest.

        If M is this matrix and O the orthographic projection matrix, then the new matrix will be M * O. So when transforming a vector v with the new matrix by using M * O * v, the orthographic projection transformation will be applied first!

        In order to set the matrix to an orthographic projection without post-multiplying it, use setOrtho().

        Reference: http://www.songho.ca

        Specified by:
        ortho in interface Matrix4dc
        Parameters:
        left - the distance from the center to the left frustum edge
        right - the distance from the center to the right frustum edge
        bottom - the distance from the center to the bottom frustum edge
        top - the distance from the center to the top frustum edge
        zNear - near clipping plane distance
        zFar - far clipping plane distance
        dest - will hold the result
        Returns:
        dest
        See Also:
        setOrtho(double, double, double, double, double, double)
      • ortho

        public Matrix4d ortho​(double left,
                              double right,
                              double bottom,
                              double top,
                              double zNear,
                              double zFar,
                              boolean zZeroToOne)
        Apply an orthographic projection transformation for a right-handed coordinate system using the given NDC z range to this matrix.

        If M is this matrix and O the orthographic projection matrix, then the new matrix will be M * O. So when transforming a vector v with the new matrix by using M * O * v, the orthographic projection transformation will be applied first!

        In order to set the matrix to an orthographic projection without post-multiplying it, use setOrtho().

        Reference: http://www.songho.ca

        Parameters:
        left - the distance from the center to the left frustum edge
        right - the distance from the center to the right frustum edge
        bottom - the distance from the center to the bottom frustum edge
        top - the distance from the center to the top frustum edge
        zNear - near clipping plane distance
        zFar - far clipping plane distance
        zZeroToOne - whether to use Vulkan's and Direct3D's NDC z range of [0..+1] when true or whether to use OpenGL's NDC z range of [-1..+1] when false
        Returns:
        this
        See Also:
        setOrtho(double, double, double, double, double, double, boolean)
      • ortho

        public Matrix4d ortho​(double left,
                              double right,
                              double bottom,
                              double top,
                              double zNear,
                              double zFar)
        Apply an orthographic projection transformation for a right-handed coordinate system using OpenGL's NDC z range of [-1..+1] to this matrix.

        If M is this matrix and O the orthographic projection matrix, then the new matrix will be M * O. So when transforming a vector v with the new matrix by using M * O * v, the orthographic projection transformation will be applied first!

        In order to set the matrix to an orthographic projection without post-multiplying it, use setOrtho().

        Reference: http://www.songho.ca

        Parameters:
        left - the distance from the center to the left frustum edge
        right - the distance from the center to the right frustum edge
        bottom - the distance from the center to the bottom frustum edge
        top - the distance from the center to the top frustum edge
        zNear - near clipping plane distance
        zFar - far clipping plane distance
        Returns:
        this
        See Also:
        setOrtho(double, double, double, double, double, double)
      • orthoLH

        public Matrix4d orthoLH​(double left,
                                double right,
                                double bottom,
                                double top,
                                double zNear,
                                double zFar,
                                boolean zZeroToOne,
                                Matrix4d dest)
        Apply an orthographic projection transformation for a left-handed coordiante system using the given NDC z range to this matrix and store the result in dest.

        If M is this matrix and O the orthographic projection matrix, then the new matrix will be M * O. So when transforming a vector v with the new matrix by using M * O * v, the orthographic projection transformation will be applied first!

        In order to set the matrix to an orthographic projection without post-multiplying it, use setOrthoLH().

        Reference: http://www.songho.ca

        Specified by:
        orthoLH in interface Matrix4dc
        Parameters:
        left - the distance from the center to the left frustum edge
        right - the distance from the center to the right frustum edge
        bottom - the distance from the center to the bottom frustum edge
        top - the distance from the center to the top frustum edge
        zNear - near clipping plane distance
        zFar - far clipping plane distance
        zZeroToOne - whether to use Vulkan's and Direct3D's NDC z range of [0..+1] when true or whether to use OpenGL's NDC z range of [-1..+1] when false
        dest - will hold the result
        Returns:
        dest
        See Also:
        setOrthoLH(double, double, double, double, double, double, boolean)
      • orthoLH

        public Matrix4d orthoLH​(double left,
                                double right,
                                double bottom,
                                double top,
                                double zNear,
                                double zFar,
                                Matrix4d dest)
        Apply an orthographic projection transformation for a left-handed coordiante system using OpenGL's NDC z range of [-1..+1] to this matrix and store the result in dest.

        If M is this matrix and O the orthographic projection matrix, then the new matrix will be M * O. So when transforming a vector v with the new matrix by using M * O * v, the orthographic projection transformation will be applied first!

        In order to set the matrix to an orthographic projection without post-multiplying it, use setOrthoLH().

        Reference: http://www.songho.ca

        Specified by:
        orthoLH in interface Matrix4dc
        Parameters:
        left - the distance from the center to the left frustum edge
        right - the distance from the center to the right frustum edge
        bottom - the distance from the center to the bottom frustum edge
        top - the distance from the center to the top frustum edge
        zNear - near clipping plane distance
        zFar - far clipping plane distance
        dest - will hold the result
        Returns:
        dest
        See Also:
        setOrthoLH(double, double, double, double, double, double)
      • orthoLH

        public Matrix4d orthoLH​(double left,
                                double right,
                                double bottom,
                                double top,
                                double zNear,
                                double zFar,
                                boolean zZeroToOne)
        Apply an orthographic projection transformation for a left-handed coordiante system using the given NDC z range to this matrix.

        If M is this matrix and O the orthographic projection matrix, then the new matrix will be M * O. So when transforming a vector v with the new matrix by using M * O * v, the orthographic projection transformation will be applied first!

        In order to set the matrix to an orthographic projection without post-multiplying it, use setOrthoLH().

        Reference: http://www.songho.ca

        Parameters:
        left - the distance from the center to the left frustum edge
        right - the distance from the center to the right frustum edge
        bottom - the distance from the center to the bottom frustum edge
        top - the distance from the center to the top frustum edge
        zNear - near clipping plane distance
        zFar - far clipping plane distance
        zZeroToOne - whether to use Vulkan's and Direct3D's NDC z range of [0..+1] when true or whether to use OpenGL's NDC z range of [-1..+1] when false
        Returns:
        this
        See Also:
        setOrthoLH(double, double, double, double, double, double, boolean)
      • orthoLH

        public Matrix4d orthoLH​(double left,
                                double right,
                                double bottom,
                                double top,
                                double zNear,
                                double zFar)
        Apply an orthographic projection transformation for a left-handed coordiante system using OpenGL's NDC z range of [-1..+1] to this matrix.

        If M is this matrix and O the orthographic projection matrix, then the new matrix will be M * O. So when transforming a vector v with the new matrix by using M * O * v, the orthographic projection transformation will be applied first!

        In order to set the matrix to an orthographic projection without post-multiplying it, use setOrthoLH().

        Reference: http://www.songho.ca

        Parameters:
        left - the distance from the center to the left frustum edge
        right - the distance from the center to the right frustum edge
        bottom - the distance from the center to the bottom frustum edge
        top - the distance from the center to the top frustum edge
        zNear - near clipping plane distance
        zFar - far clipping plane distance
        Returns:
        this
        See Also:
        setOrthoLH(double, double, double, double, double, double)
      • setOrtho

        public Matrix4d setOrtho​(double left,
                                 double right,
                                 double bottom,
                                 double top,
                                 double zNear,
                                 double zFar,
                                 boolean zZeroToOne)
        Set this matrix to be an orthographic projection transformation for a right-handed coordinate system using the given NDC z range.

        In order to apply the orthographic projection to an already existing transformation, use ortho().

        Reference: http://www.songho.ca

        Parameters:
        left - the distance from the center to the left frustum edge
        right - the distance from the center to the right frustum edge
        bottom - the distance from the center to the bottom frustum edge
        top - the distance from the center to the top frustum edge
        zNear - near clipping plane distance
        zFar - far clipping plane distance
        zZeroToOne - whether to use Vulkan's and Direct3D's NDC z range of [0..+1] when true or whether to use OpenGL's NDC z range of [-1..+1] when false
        Returns:
        this
        See Also:
        ortho(double, double, double, double, double, double, boolean)
      • setOrtho

        public Matrix4d setOrtho​(double left,
                                 double right,
                                 double bottom,
                                 double top,
                                 double zNear,
                                 double zFar)
        Set this matrix to be an orthographic projection transformation for a right-handed coordinate system using OpenGL's NDC z range of [-1..+1].

        In order to apply the orthographic projection to an already existing transformation, use ortho().

        Reference: http://www.songho.ca

        Parameters:
        left - the distance from the center to the left frustum edge
        right - the distance from the center to the right frustum edge
        bottom - the distance from the center to the bottom frustum edge
        top - the distance from the center to the top frustum edge
        zNear - near clipping plane distance
        zFar - far clipping plane distance
        Returns:
        this
        See Also:
        ortho(double, double, double, double, double, double)
      • setOrthoLH

        public Matrix4d setOrthoLH​(double left,
                                   double right,
                                   double bottom,
                                   double top,
                                   double zNear,
                                   double zFar,
                                   boolean zZeroToOne)
        Set this matrix to be an orthographic projection transformation for a left-handed coordinate system using the given NDC z range.

        In order to apply the orthographic projection to an already existing transformation, use orthoLH().

        Reference: http://www.songho.ca

        Parameters:
        left - the distance from the center to the left frustum edge
        right - the distance from the center to the right frustum edge
        bottom - the distance from the center to the bottom frustum edge
        top - the distance from the center to the top frustum edge
        zNear - near clipping plane distance
        zFar - far clipping plane distance
        zZeroToOne - whether to use Vulkan's and Direct3D's NDC z range of [0..+1] when true or whether to use OpenGL's NDC z range of [-1..+1] when false
        Returns:
        this
        See Also:
        orthoLH(double, double, double, double, double, double, boolean)
      • setOrthoLH

        public Matrix4d setOrthoLH​(double left,
                                   double right,
                                   double bottom,
                                   double top,
                                   double zNear,
                                   double zFar)
        Set this matrix to be an orthographic projection transformation for a left-handed coordinate system using OpenGL's NDC z range of [-1..+1].

        In order to apply the orthographic projection to an already existing transformation, use orthoLH().

        Reference: http://www.songho.ca

        Parameters:
        left - the distance from the center to the left frustum edge
        right - the distance from the center to the right frustum edge
        bottom - the distance from the center to the bottom frustum edge
        top - the distance from the center to the top frustum edge
        zNear - near clipping plane distance
        zFar - far clipping plane distance
        Returns:
        this
        See Also:
        orthoLH(double, double, double, double, double, double)
      • orthoSymmetric

        public Matrix4d orthoSymmetric​(double width,
                                       double height,
                                       double zNear,
                                       double zFar,
                                       boolean zZeroToOne,
                                       Matrix4d dest)
        Apply a symmetric orthographic projection transformation for a right-handed coordinate system using the given NDC z range to this matrix and store the result in dest.

        This method is equivalent to calling ortho() with left=-width/2, right=+width/2, bottom=-height/2 and top=+height/2.

        If M is this matrix and O the orthographic projection matrix, then the new matrix will be M * O. So when transforming a vector v with the new matrix by using M * O * v, the orthographic projection transformation will be applied first!

        In order to set the matrix to a symmetric orthographic projection without post-multiplying it, use setOrthoSymmetric().

        Reference: http://www.songho.ca

        Specified by:
        orthoSymmetric in interface Matrix4dc
        Parameters:
        width - the distance between the right and left frustum edges
        height - the distance between the top and bottom frustum edges
        zNear - near clipping plane distance
        zFar - far clipping plane distance
        dest - will hold the result
        zZeroToOne - whether to use Vulkan's and Direct3D's NDC z range of [0..+1] when true or whether to use OpenGL's NDC z range of [-1..+1] when false
        Returns:
        dest
        See Also:
        setOrthoSymmetric(double, double, double, double, boolean)
      • orthoSymmetric

        public Matrix4d orthoSymmetric​(double width,
                                       double height,
                                       double zNear,
                                       double zFar,
                                       Matrix4d dest)
        Apply a symmetric orthographic projection transformation for a right-handed coordinate system using OpenGL's NDC z range of [-1..+1] to this matrix and store the result in dest.

        This method is equivalent to calling ortho() with left=-width/2, right=+width/2, bottom=-height/2 and top=+height/2.

        If M is this matrix and O the orthographic projection matrix, then the new matrix will be M * O. So when transforming a vector v with the new matrix by using M * O * v, the orthographic projection transformation will be applied first!

        In order to set the matrix to a symmetric orthographic projection without post-multiplying it, use setOrthoSymmetric().

        Reference: http://www.songho.ca

        Specified by:
        orthoSymmetric in interface Matrix4dc
        Parameters:
        width - the distance between the right and left frustum edges
        height - the distance between the top and bottom frustum edges
        zNear - near clipping plane distance
        zFar - far clipping plane distance
        dest - will hold the result
        Returns:
        dest
        See Also:
        setOrthoSymmetric(double, double, double, double)
      • orthoSymmetric

        public Matrix4d orthoSymmetric​(double width,
                                       double height,
                                       double zNear,
                                       double zFar,
                                       boolean zZeroToOne)
        Apply a symmetric orthographic projection transformation for a right-handed coordinate system using the given NDC z range to this matrix.

        This method is equivalent to calling ortho() with left=-width/2, right=+width/2, bottom=-height/2 and top=+height/2.

        If M is this matrix and O the orthographic projection matrix, then the new matrix will be M * O. So when transforming a vector v with the new matrix by using M * O * v, the orthographic projection transformation will be applied first!

        In order to set the matrix to a symmetric orthographic projection without post-multiplying it, use setOrthoSymmetric().

        Reference: http://www.songho.ca

        Parameters:
        width - the distance between the right and left frustum edges
        height - the distance between the top and bottom frustum edges
        zNear - near clipping plane distance
        zFar - far clipping plane distance
        zZeroToOne - whether to use Vulkan's and Direct3D's NDC z range of [0..+1] when true or whether to use OpenGL's NDC z range of [-1..+1] when false
        Returns:
        this
        See Also:
        setOrthoSymmetric(double, double, double, double, boolean)
      • orthoSymmetric

        public Matrix4d orthoSymmetric​(double width,
                                       double height,
                                       double zNear,
                                       double zFar)
        Apply a symmetric orthographic projection transformation for a right-handed coordinate system using OpenGL's NDC z range of [-1..+1] to this matrix.

        This method is equivalent to calling ortho() with left=-width/2, right=+width/2, bottom=-height/2 and top=+height/2.

        If M is this matrix and O the orthographic projection matrix, then the new matrix will be M * O. So when transforming a vector v with the new matrix by using M * O * v, the orthographic projection transformation will be applied first!

        In order to set the matrix to a symmetric orthographic projection without post-multiplying it, use setOrthoSymmetric().

        Reference: http://www.songho.ca

        Parameters:
        width - the distance between the right and left frustum edges
        height - the distance between the top and bottom frustum edges
        zNear - near clipping plane distance
        zFar - far clipping plane distance
        Returns:
        this
        See Also:
        setOrthoSymmetric(double, double, double, double)
      • orthoSymmetricLH

        public Matrix4d orthoSymmetricLH​(double width,
                                         double height,
                                         double zNear,
                                         double zFar,
                                         boolean zZeroToOne,
                                         Matrix4d dest)
        Apply a symmetric orthographic projection transformation for a left-handed coordinate system using the given NDC z range to this matrix and store the result in dest.

        This method is equivalent to calling orthoLH() with left=-width/2, right=+width/2, bottom=-height/2 and top=+height/2.

        If M is this matrix and O the orthographic projection matrix, then the new matrix will be M * O. So when transforming a vector v with the new matrix by using M * O * v, the orthographic projection transformation will be applied first!

        In order to set the matrix to a symmetric orthographic projection without post-multiplying it, use setOrthoSymmetricLH().

        Reference: http://www.songho.ca

        Specified by:
        orthoSymmetricLH in interface Matrix4dc
        Parameters:
        width - the distance between the right and left frustum edges
        height - the distance between the top and bottom frustum edges
        zNear - near clipping plane distance
        zFar - far clipping plane distance
        dest - will hold the result
        zZeroToOne - whether to use Vulkan's and Direct3D's NDC z range of [0..+1] when true or whether to use OpenGL's NDC z range of [-1..+1] when false
        Returns:
        dest
        See Also:
        setOrthoSymmetricLH(double, double, double, double, boolean)
      • orthoSymmetricLH

        public Matrix4d orthoSymmetricLH​(double width,
                                         double height,
                                         double zNear,
                                         double zFar,
                                         Matrix4d dest)
        Apply a symmetric orthographic projection transformation for a left-handed coordinate system using OpenGL's NDC z range of [-1..+1] to this matrix and store the result in dest.

        This method is equivalent to calling orthoLH() with left=-width/2, right=+width/2, bottom=-height/2 and top=+height/2.

        If M is this matrix and O the orthographic projection matrix, then the new matrix will be M * O. So when transforming a vector v with the new matrix by using M * O * v, the orthographic projection transformation will be applied first!

        In order to set the matrix to a symmetric orthographic projection without post-multiplying it, use setOrthoSymmetricLH().

        Reference: http://www.songho.ca

        Specified by:
        orthoSymmetricLH in interface Matrix4dc
        Parameters:
        width - the distance between the right and left frustum edges
        height - the distance between the top and bottom frustum edges
        zNear - near clipping plane distance
        zFar - far clipping plane distance
        dest - will hold the result
        Returns:
        dest
        See Also: