Class Matrix4f
- java.lang.Object
-
- org.joml.Matrix4f
-
- All Implemented Interfaces:
java.io.Externalizable,java.io.Serializable,java.lang.Cloneable,Matrix4fc
- Direct Known Subclasses:
Matrix4fStack
public class Matrix4f extends java.lang.Object implements java.io.Externalizable, java.lang.Cloneable, Matrix4fc
Contains the definition of a 4x4 matrix of floats, and associated functions to transform it. The matrix is column-major to match OpenGL's interpretation, and it looks like this:m00 m10 m20 m30
m01 m11 m21 m31
m02 m12 m22 m32
m03 m13 m23 m33- Author:
- Richard Greenlees, Kai Burjack
- See Also:
- Serialized Form
-
-
Field Summary
-
Fields inherited from interface org.joml.Matrix4fc
CORNER_NXNYNZ, CORNER_NXNYPZ, CORNER_NXPYNZ, CORNER_NXPYPZ, CORNER_PXNYNZ, CORNER_PXNYPZ, CORNER_PXPYNZ, CORNER_PXPYPZ, PLANE_NX, PLANE_NY, PLANE_NZ, PLANE_PX, PLANE_PY, PLANE_PZ, PROPERTY_AFFINE, PROPERTY_IDENTITY, PROPERTY_ORTHONORMAL, PROPERTY_PERSPECTIVE, PROPERTY_TRANSLATION
-
-
Constructor Summary
Constructors Constructor Description Matrix4f()Matrix4f(float m00, float m01, float m02, float m03, float m10, float m11, float m12, float m13, float m20, float m21, float m22, float m23, float m30, float m31, float m32, float m33)Create a new 4x4 matrix using the supplied float values.Matrix4f(java.nio.FloatBuffer buffer)Create a newMatrix4fby reading its 16 float components from the givenFloatBufferat the buffer's current position.Matrix4f(Matrix3fc mat)Matrix4f(Matrix4dc mat)Create a newMatrix4fand make it a copy of the given matrix.Matrix4f(Matrix4fc mat)Create a newMatrix4fand make it a copy of the given matrix.Matrix4f(Matrix4x3fc mat)Create a newMatrix4fand set its upper 4x3 submatrix to the given matrixmatand all other elements to identity.Matrix4f(Vector4fc col0, Vector4fc col1, Vector4fc col2, Vector4fc col3)Create a newMatrix4fand initialize its four columns using the supplied vectors.
-
Method Summary
All Methods Static Methods Instance Methods Concrete Methods Modifier and Type Method Description Matrix4fadd(Matrix4fc other)Component-wise addthisandother.Matrix4fadd(Matrix4fc other, Matrix4f dest)Component-wise addthisandotherand store the result indest.Matrix4fadd4x3(Matrix4fc other)Component-wise add the upper 4x3 submatrices ofthisandother.Matrix4fadd4x3(Matrix4fc other, Matrix4f dest)Component-wise add the upper 4x3 submatrices ofthisandotherand store the result indest.Matrix4faffineSpan(Vector3f corner, Vector3f xDir, Vector3f yDir, Vector3f zDir)Compute the extents of the coordinate system before thisaffinetransformation was applied and store the resulting corner coordinates incornerand the span vectors inxDir,yDirandzDir.Matrix4farcball(float radius, float centerX, float centerY, float centerZ, float angleX, float angleY)Apply an arcball view transformation to this matrix with the givenradiusand center(centerX, centerY, centerZ)position of the arcball and the specified X and Y rotation angles.Matrix4farcball(float radius, float centerX, float centerY, float centerZ, float angleX, float angleY, Matrix4f dest)Apply an arcball view transformation to this matrix with the givenradiusand center(centerX, centerY, centerZ)position of the arcball and the specified X and Y rotation angles, and store the result indest.Matrix4farcball(float radius, Vector3fc center, float angleX, float angleY)Apply an arcball view transformation to this matrix with the givenradiusandcenterposition of the arcball and the specified X and Y rotation angles.Matrix4farcball(float radius, Vector3fc center, float angleX, float angleY, Matrix4f dest)Apply an arcball view transformation to this matrix with the givenradiusandcenterposition of the arcball and the specified X and Y rotation angles, and store the result indest.Matrix4fassume(int properties)Assume the given properties about this matrix.Matrix4fbillboardCylindrical(Vector3fc objPos, Vector3fc targetPos, Vector3fc up)Set this matrix to a cylindrical billboard transformation that rotates the local +Z axis of a given object with positionobjPostowards a target position attargetPoswhile constraining a cylindrical rotation around the givenupvector.Matrix4fbillboardSpherical(Vector3fc objPos, Vector3fc targetPos)Set this matrix to a spherical billboard transformation that rotates the local +Z axis of a given object with positionobjPostowards a target position attargetPosusing a shortest arc rotation by not preserving any up vector of the object.Matrix4fbillboardSpherical(Vector3fc objPos, Vector3fc targetPos, Vector3fc up)Set this matrix to a spherical billboard transformation that rotates the local +Z axis of a given object with positionobjPostowards a target position attargetPos.java.lang.Objectclone()Matrix4fcofactor3x3()Compute the cofactor matrix of the upper left 3x3 submatrix ofthis.Matrix3fcofactor3x3(Matrix3f dest)Compute the cofactor matrix of the upper left 3x3 submatrix ofthisand store it intodest.Matrix4fcofactor3x3(Matrix4f dest)Compute the cofactor matrix of the upper left 3x3 submatrix ofthisand store it intodest.floatdeterminant()Return the determinant of this matrix.floatdeterminant3x3()Return the determinant of the upper left 3x3 submatrix of this matrix.floatdeterminantAffine()Return the determinant of this matrix by assuming that it represents anaffinetransformation and thus its last row is equal to(0, 0, 0, 1).Matrix4fdetermineProperties()Compute and set the matrix properties returned byproperties()based on the current matrix element values.booleanequals(java.lang.Object obj)booleanequals(Matrix4fc m, float delta)Compare the matrix elements ofthismatrix with the given matrix using the givendeltaand return whether all of them are equal within a maximum difference ofdelta.Matrix4ffma4x3(Matrix4fc other, float otherFactor)Component-wise add the upper 4x3 submatrices ofthisandotherby first multiplying each component ofother's 4x3 submatrix byotherFactorand adding that result tothis.Matrix4ffma4x3(Matrix4fc other, float otherFactor, Matrix4f dest)Component-wise add the upper 4x3 submatrices ofthisandotherby first multiplying each component ofother's 4x3 submatrix byotherFactor, adding that tothisand storing the final result indest.Matrix4ffrustum(float left, float right, float bottom, float top, float zNear, float zFar)Apply an arbitrary perspective projection frustum transformation for a right-handed coordinate system using OpenGL's NDC z range of[-1..+1]to this matrix.Matrix4ffrustum(float left, float right, float bottom, float top, float zNear, float zFar, boolean zZeroToOne)Apply an arbitrary perspective projection frustum transformation for a right-handed coordinate system using the given NDC z range to this matrix.Matrix4ffrustum(float left, float right, float bottom, float top, float zNear, float zFar, boolean zZeroToOne, Matrix4f dest)Apply an arbitrary perspective projection frustum transformation for a right-handed coordinate system using the given NDC z range to this matrix and store the result indest.Matrix4ffrustum(float left, float right, float bottom, float top, float zNear, float zFar, Matrix4f dest)Apply an arbitrary perspective projection frustum transformation for a right-handed coordinate system using OpenGL's NDC z range of[-1..+1]to this matrix and store the result indest.Matrix4ffrustumAabb(Vector3f min, Vector3f max)Compute the axis-aligned bounding box of the frustum described bythismatrix and store the minimum corner coordinates in the givenminand the maximum corner coordinates in the givenmaxvector.Vector3ffrustumCorner(int corner, Vector3f point)Compute the corner coordinates of the frustum defined bythismatrix, which can be a projection matrix or a combined modelview-projection matrix, and store the result in the givenpoint.Matrix4ffrustumLH(float left, float right, float bottom, float top, float zNear, float zFar)Apply an arbitrary perspective projection frustum transformation for a left-handed coordinate system using the given NDC z range to this matrix.Matrix4ffrustumLH(float left, float right, float bottom, float top, float zNear, float zFar, boolean zZeroToOne)Apply an arbitrary perspective projection frustum transformation for a left-handed coordinate system using the given NDC z range to this matrix.Matrix4ffrustumLH(float left, float right, float bottom, float top, float zNear, float zFar, boolean zZeroToOne, Matrix4f dest)Apply an arbitrary perspective projection frustum transformation for a left-handed coordinate system using the given NDC z range to this matrix and store the result indest.Matrix4ffrustumLH(float left, float right, float bottom, float top, float zNear, float zFar, Matrix4f dest)Apply an arbitrary perspective projection frustum transformation for a left-handed coordinate system using OpenGL's NDC z range of[-1..+1]to this matrix and store the result indest.Vector4ffrustumPlane(int plane, Vector4f dest)Calculate a frustum plane ofthismatrix, which can be a projection matrix or a combined modelview-projection matrix, and store the result in the givenplaneEquation.Vector3ffrustumRayDir(float x, float y, Vector3f dir)Obtain the direction of a ray starting at the center of the coordinate system and going through the near frustum plane.float[]get(float[] arr)Store this matrix into the supplied float array in column-major order.float[]get(float[] arr, int offset)Store this matrix into the supplied float array in column-major order at the given offset.floatget(int column, int row)Get the matrix element value at the given column and row.java.nio.ByteBufferget(int index, java.nio.ByteBuffer buffer)Store this matrix in column-major order into the suppliedByteBufferstarting at the specified absolute buffer position/index.java.nio.FloatBufferget(int index, java.nio.FloatBuffer buffer)Store this matrix in column-major order into the suppliedFloatBufferstarting at the specified absolute buffer position/index.java.nio.ByteBufferget(java.nio.ByteBuffer buffer)Store this matrix in column-major order into the suppliedByteBufferat the current bufferposition.java.nio.FloatBufferget(java.nio.FloatBuffer buffer)Store this matrix in column-major order into the suppliedFloatBufferat the current bufferposition.Matrix4dget(Matrix4d dest)Get the current values ofthismatrix and store them intodest.Matrix4fget(Matrix4f dest)Get the current values ofthismatrix and store them intodest.Matrix3dget3x3(Matrix3d dest)Get the current values of the upper left 3x3 submatrix ofthismatrix and store them intodest.Matrix3fget3x3(Matrix3f dest)Get the current values of the upper left 3x3 submatrix ofthismatrix and store them intodest.java.nio.ByteBufferget3x4(int index, java.nio.ByteBuffer buffer)Store the left 3x4 submatrix in column-major order into the suppliedByteBufferstarting at the specified absolute buffer position/index.java.nio.FloatBufferget3x4(int index, java.nio.FloatBuffer buffer)Store the left 3x4 submatrix in column-major order into the suppliedFloatBufferstarting at the specified absolute buffer position/index.java.nio.ByteBufferget3x4(java.nio.ByteBuffer buffer)Store the left 3x4 submatrix in column-major order into the suppliedByteBufferat the current bufferposition.java.nio.FloatBufferget3x4(java.nio.FloatBuffer buffer)Store the left 3x4 submatrix in column-major order into the suppliedFloatBufferat the current bufferposition.java.nio.ByteBufferget4x3(int index, java.nio.ByteBuffer buffer)Store the upper 4x3 submatrix in column-major order into the suppliedByteBufferstarting at the specified absolute buffer position/index.java.nio.FloatBufferget4x3(int index, java.nio.FloatBuffer buffer)Store the upper 4x3 submatrix in column-major order into the suppliedFloatBufferstarting at the specified absolute buffer position/index.java.nio.ByteBufferget4x3(java.nio.ByteBuffer buffer)Store the upper 4x3 submatrix in column-major order into the suppliedByteBufferat the current bufferposition.java.nio.FloatBufferget4x3(java.nio.FloatBuffer buffer)Store the upper 4x3 submatrix in column-major order into the suppliedFloatBufferat the current bufferposition.Matrix4x3fget4x3(Matrix4x3f dest)Get the current values of the upper 4x3 submatrix ofthismatrix and store them intodest.java.nio.ByteBufferget4x3Transposed(int index, java.nio.ByteBuffer buffer)Store the upper 4x3 submatrix ofthismatrix in row-major order into the suppliedByteBufferstarting at the specified absolute buffer position/index.java.nio.FloatBufferget4x3Transposed(int index, java.nio.FloatBuffer buffer)Store the upper 4x3 submatrix ofthismatrix in row-major order into the suppliedFloatBufferstarting at the specified absolute buffer position/index.java.nio.ByteBufferget4x3Transposed(java.nio.ByteBuffer buffer)Store the upper 4x3 submatrix ofthismatrix in row-major order into the suppliedByteBufferat the current bufferposition.java.nio.FloatBufferget4x3Transposed(java.nio.FloatBuffer buffer)Store the upper 4x3 submatrix ofthismatrix in row-major order into the suppliedFloatBufferat the current bufferposition.Vector3fgetColumn(int column, Vector3f dest)Get the first three components of the column at the givencolumnindex, starting with0.Vector4fgetColumn(int column, Vector4f dest)Get the column at the givencolumnindex, starting with0.Vector3fgetEulerAnglesXYZ(Vector3f dest)Extract the Euler angles from the rotation represented by the upper left 3x3 submatrix ofthisand store the extracted Euler angles indest.Vector3fgetEulerAnglesZYX(Vector3f dest)Extract the Euler angles from the rotation represented by the upper left 3x3 submatrix ofthisand store the extracted Euler angles indest.QuaterniondgetNormalizedRotation(Quaterniond dest)Get the current values ofthismatrix and store the represented rotation into the givenQuaterniond.QuaternionfgetNormalizedRotation(Quaternionf dest)Get the current values ofthismatrix and store the represented rotation into the givenQuaternionf.AxisAngle4dgetRotation(AxisAngle4d dest)Get the rotational component ofthismatrix and store the represented rotation into the givenAxisAngle4d.AxisAngle4fgetRotation(AxisAngle4f dest)Get the rotational component ofthismatrix and store the represented rotation into the givenAxisAngle4f.Vector3fgetRow(int row, Vector3f dest)Get the first three components of the row at the givenrowindex, starting with0.Vector4fgetRow(int row, Vector4f dest)Get the row at the givenrowindex, starting with0.floatgetRowColumn(int row, int column)Get the matrix element value at the given row and column.Vector3fgetScale(Vector3f dest)Get the scaling factors ofthismatrix for the three base axes.Matrix4fcgetToAddress(long address)Store this matrix in column-major order at the given off-heap address.Vector3fgetTranslation(Vector3f dest)Get only the translation components(m30, m31, m32)of this matrix and store them in the given vectorxyz.java.nio.ByteBuffergetTransposed(int index, java.nio.ByteBuffer buffer)Store the transpose of this matrix in column-major order into the suppliedByteBufferstarting at the specified absolute buffer position/index.java.nio.FloatBuffergetTransposed(int index, java.nio.FloatBuffer buffer)Store the transpose of this matrix in column-major order into the suppliedFloatBufferstarting at the specified absolute buffer position/index.java.nio.ByteBuffergetTransposed(java.nio.ByteBuffer buffer)Store the transpose of this matrix in column-major order into the suppliedByteBufferat the current bufferposition.java.nio.FloatBuffergetTransposed(java.nio.FloatBuffer buffer)Store the transpose of this matrix in column-major order into the suppliedFloatBufferat the current bufferposition.QuaterniondgetUnnormalizedRotation(Quaterniond dest)Get the current values ofthismatrix and store the represented rotation into the givenQuaterniond.QuaternionfgetUnnormalizedRotation(Quaternionf dest)Get the current values ofthismatrix and store the represented rotation into the givenQuaternionf.inthashCode()Matrix4fidentity()Reset this matrix to the identity.Matrix4finvert()Invert this matrix.Matrix4finvert(Matrix4f dest)Invert this matrix and write the result intodest.Matrix4finvertAffine()Invert this matrix by assuming that it is anaffinetransformation (i.e.Matrix4finvertAffine(Matrix4f dest)Invert this matrix by assuming that it is anaffinetransformation (i.e.Matrix4finvertFrustum()Ifthisis an arbitrary perspective projection matrix obtained via one of thefrustum()methods or viasetFrustum(), then this method builds the inverse ofthis.Matrix4finvertFrustum(Matrix4f dest)Ifthisis an arbitrary perspective projection matrix obtained via one of thefrustum()methods or viasetFrustum(), then this method builds the inverse ofthisand stores it into the givendest.Matrix4finvertOrtho()Invertthisorthographic projection matrix.Matrix4finvertOrtho(Matrix4f dest)Invertthisorthographic projection matrix and store the result into the givendest.Matrix4finvertPerspective()Ifthisis a perspective projection matrix obtained via one of theperspective()methods or viasetPerspective(), that is, ifthisis a symmetrical perspective frustum transformation, then this method builds the inverse ofthis.Matrix4finvertPerspective(Matrix4f dest)Ifthisis a perspective projection matrix obtained via one of theperspective()methods or viasetPerspective(), that is, ifthisis a symmetrical perspective frustum transformation, then this method builds the inverse ofthisand stores it into the givendest.Matrix4finvertPerspectiveView(Matrix4fc view, Matrix4f dest)Ifthisis a perspective projection matrix obtained via one of theperspective()methods or viasetPerspective(), that is, ifthisis a symmetrical perspective frustum transformation and the givenviewmatrix isaffineand has unit scaling (for example by being obtained vialookAt()), then this method builds the inverse ofthis * viewand stores it into the givendest.Matrix4finvertPerspectiveView(Matrix4x3fc view, Matrix4f dest)Ifthisis a perspective projection matrix obtained via one of theperspective()methods or viasetPerspective(), that is, ifthisis a symmetrical perspective frustum transformation and the givenviewmatrix has unit scaling, then this method builds the inverse ofthis * viewand stores it into the givendest.booleanisAffine()Determine whether this matrix describes an affine transformation.booleanisFinite()Determine whether all matrix elements are finite floating-point values, that is, they are notNaNand notinfinity.Matrix4flerp(Matrix4fc other, float t)Linearly interpolatethisandotherusing the given interpolation factortand store the result inthis.Matrix4flerp(Matrix4fc other, float t, Matrix4f dest)Linearly interpolatethisandotherusing the given interpolation factortand store the result indest.Matrix4flookAlong(float dirX, float dirY, float dirZ, float upX, float upY, float upZ)Apply a rotation transformation to this matrix to make-zpoint alongdir.Matrix4flookAlong(float dirX, float dirY, float dirZ, float upX, float upY, float upZ, Matrix4f dest)Apply a rotation transformation to this matrix to make-zpoint alongdirand store the result indest.Matrix4flookAlong(Vector3fc dir, Vector3fc up)Apply a rotation transformation to this matrix to make-zpoint alongdir.Matrix4flookAlong(Vector3fc dir, Vector3fc up, Matrix4f dest)Apply a rotation transformation to this matrix to make-zpoint alongdirand store the result indest.Matrix4flookAt(float eyeX, float eyeY, float eyeZ, float centerX, float centerY, float centerZ, float upX, float upY, float upZ)Apply a "lookat" transformation to this matrix for a right-handed coordinate system, that aligns-zwithcenter - eye.Matrix4flookAt(float eyeX, float eyeY, float eyeZ, float centerX, float centerY, float centerZ, float upX, float upY, float upZ, Matrix4f dest)Apply a "lookat" transformation to this matrix for a right-handed coordinate system, that aligns-zwithcenter - eyeand store the result indest.Matrix4flookAt(Vector3fc eye, Vector3fc center, Vector3fc up)Apply a "lookat" transformation to this matrix for a right-handed coordinate system, that aligns-zwithcenter - eye.Matrix4flookAt(Vector3fc eye, Vector3fc center, Vector3fc up, Matrix4f dest)Apply a "lookat" transformation to this matrix for a right-handed coordinate system, that aligns-zwithcenter - eyeand store the result indest.Matrix4flookAtLH(float eyeX, float eyeY, float eyeZ, float centerX, float centerY, float centerZ, float upX, float upY, float upZ)Apply a "lookat" transformation to this matrix for a left-handed coordinate system, that aligns+zwithcenter - eye.Matrix4flookAtLH(float eyeX, float eyeY, float eyeZ, float centerX, float centerY, float centerZ, float upX, float upY, float upZ, Matrix4f dest)Apply a "lookat" transformation to this matrix for a left-handed coordinate system, that aligns+zwithcenter - eyeand store the result indest.Matrix4flookAtLH(Vector3fc eye, Vector3fc center, Vector3fc up)Apply a "lookat" transformation to this matrix for a left-handed coordinate system, that aligns+zwithcenter - eye.Matrix4flookAtLH(Vector3fc eye, Vector3fc center, Vector3fc up, Matrix4f dest)Apply a "lookat" transformation to this matrix for a left-handed coordinate system, that aligns+zwithcenter - eyeand store the result indest.Matrix4flookAtPerspective(float eyeX, float eyeY, float eyeZ, float centerX, float centerY, float centerZ, float upX, float upY, float upZ, Matrix4f dest)Apply a "lookat" transformation to this matrix for a right-handed coordinate system, that aligns-zwithcenter - eyeand store the result indest.Matrix4flookAtPerspectiveLH(float eyeX, float eyeY, float eyeZ, float centerX, float centerY, float centerZ, float upX, float upY, float upZ, Matrix4f dest)Apply a "lookat" transformation to this matrix for a left-handed coordinate system, that aligns+zwithcenter - eyeand store the result indest.floatm00()Return the value of the matrix element at column 0 and row 0.Matrix4fm00(float m00)Set the value of the matrix element at column 0 and row 0.floatm01()Return the value of the matrix element at column 0 and row 1.Matrix4fm01(float m01)Set the value of the matrix element at column 0 and row 1.floatm02()Return the value of the matrix element at column 0 and row 2.Matrix4fm02(float m02)Set the value of the matrix element at column 0 and row 2.floatm03()Return the value of the matrix element at column 0 and row 3.Matrix4fm03(float m03)Set the value of the matrix element at column 0 and row 3.floatm10()Return the value of the matrix element at column 1 and row 0.Matrix4fm10(float m10)Set the value of the matrix element at column 1 and row 0.floatm11()Return the value of the matrix element at column 1 and row 1.Matrix4fm11(float m11)Set the value of the matrix element at column 1 and row 1.floatm12()Return the value of the matrix element at column 1 and row 2.Matrix4fm12(float m12)Set the value of the matrix element at column 1 and row 2.floatm13()Return the value of the matrix element at column 1 and row 3.Matrix4fm13(float m13)Set the value of the matrix element at column 1 and row 3.floatm20()Return the value of the matrix element at column 2 and row 0.Matrix4fm20(float m20)Set the value of the matrix element at column 2 and row 0.floatm21()Return the value of the matrix element at column 2 and row 1.Matrix4fm21(float m21)Set the value of the matrix element at column 2 and row 1.floatm22()Return the value of the matrix element at column 2 and row 2.Matrix4fm22(float m22)Set the value of the matrix element at column 2 and row 2.floatm23()Return the value of the matrix element at column 2 and row 3.Matrix4fm23(float m23)Set the value of the matrix element at column 2 and row 3.floatm30()Return the value of the matrix element at column 3 and row 0.Matrix4fm30(float m30)Set the value of the matrix element at column 3 and row 0.floatm31()Return the value of the matrix element at column 3 and row 1.Matrix4fm31(float m31)Set the value of the matrix element at column 3 and row 1.floatm32()Return the value of the matrix element at column 3 and row 2.Matrix4fm32(float m32)Set the value of the matrix element at column 3 and row 2.floatm33()Return the value of the matrix element at column 3 and row 3.Matrix4fm33(float m33)Set the value of the matrix element at column 3 and row 3.Matrix4fmapnXnYnZ()Multiplythisby the matrixMatrix4fmapnXnYnZ(Matrix4f dest)Multiplythisby the matrixMatrix4fmapnXnYZ()Multiplythisby the matrixMatrix4fmapnXnYZ(Matrix4f dest)Multiplythisby the matrixMatrix4fmapnXnZnY()Multiplythisby the matrixMatrix4fmapnXnZnY(Matrix4f dest)Multiplythisby the matrixMatrix4fmapnXnZY()Multiplythisby the matrixMatrix4fmapnXnZY(Matrix4f dest)Multiplythisby the matrixMatrix4fmapnXYnZ()Multiplythisby the matrixMatrix4fmapnXYnZ(Matrix4f dest)Multiplythisby the matrixMatrix4fmapnXZnY()Multiplythisby the matrixMatrix4fmapnXZnY(Matrix4f dest)Multiplythisby the matrixMatrix4fmapnXZY()Multiplythisby the matrixMatrix4fmapnXZY(Matrix4f dest)Multiplythisby the matrixMatrix4fmapnYnXnZ()Multiplythisby the matrixMatrix4fmapnYnXnZ(Matrix4f dest)Multiplythisby the matrixMatrix4fmapnYnXZ()Multiplythisby the matrixMatrix4fmapnYnXZ(Matrix4f dest)Multiplythisby the matrixMatrix4fmapnYnZnX()Multiplythisby the matrixMatrix4fmapnYnZnX(Matrix4f dest)Multiplythisby the matrixMatrix4fmapnYnZX()Multiplythisby the matrixMatrix4fmapnYnZX(Matrix4f dest)Multiplythisby the matrixMatrix4fmapnYXnZ()Multiplythisby the matrixMatrix4fmapnYXnZ(Matrix4f dest)Multiplythisby the matrixMatrix4fmapnYXZ()Multiplythisby the matrixMatrix4fmapnYXZ(Matrix4f dest)Multiplythisby the matrixMatrix4fmapnYZnX()Multiplythisby the matrixMatrix4fmapnYZnX(Matrix4f dest)Multiplythisby the matrixMatrix4fmapnYZX()Multiplythisby the matrixMatrix4fmapnYZX(Matrix4f dest)Multiplythisby the matrixMatrix4fmapnZnXnY()Multiplythisby the matrixMatrix4fmapnZnXnY(Matrix4f dest)Multiplythisby the matrixMatrix4fmapnZnXY()Multiplythisby the matrixMatrix4fmapnZnXY(Matrix4f dest)Multiplythisby the matrixMatrix4fmapnZnYnX()Multiplythisby the matrixMatrix4fmapnZnYnX(Matrix4f dest)Multiplythisby the matrixMatrix4fmapnZnYX()Multiplythisby the matrixMatrix4fmapnZnYX(Matrix4f dest)Multiplythisby the matrixMatrix4fmapnZXnY()Multiplythisby the matrixMatrix4fmapnZXnY(Matrix4f dest)Multiplythisby the matrixMatrix4fmapnZXY()Multiplythisby the matrixMatrix4fmapnZXY(Matrix4f dest)Multiplythisby the matrixMatrix4fmapnZYnX()Multiplythisby the matrixMatrix4fmapnZYnX(Matrix4f dest)Multiplythisby the matrixMatrix4fmapnZYX()Multiplythisby the matrixMatrix4fmapnZYX(Matrix4f dest)Multiplythisby the matrixMatrix4fmapXnYnZ()Multiplythisby the matrixMatrix4fmapXnYnZ(Matrix4f dest)Multiplythisby the matrixMatrix4fmapXnZnY()Multiplythisby the matrixMatrix4fmapXnZnY(Matrix4f dest)Multiplythisby the matrixMatrix4fmapXnZY()Multiplythisby the matrixMatrix4fmapXnZY(Matrix4f dest)Multiplythisby the matrixMatrix4fmapXZnY()Multiplythisby the matrixMatrix4fmapXZnY(Matrix4f dest)Multiplythisby the matrixMatrix4fmapXZY()Multiplythisby the matrixMatrix4fmapXZY(Matrix4f dest)Multiplythisby the matrixMatrix4fmapYnXnZ()Multiplythisby the matrixMatrix4fmapYnXnZ(Matrix4f dest)Multiplythisby the matrixMatrix4fmapYnXZ()Multiplythisby the matrixMatrix4fmapYnXZ(Matrix4f dest)Multiplythisby the matrixMatrix4fmapYnZnX()Multiplythisby the matrixMatrix4fmapYnZnX(Matrix4f dest)Multiplythisby the matrixMatrix4fmapYnZX()Multiplythisby the matrixMatrix4fmapYnZX(Matrix4f dest)Multiplythisby the matrixMatrix4fmapYXnZ()Multiplythisby the matrixMatrix4fmapYXnZ(Matrix4f dest)Multiplythisby the matrixMatrix4fmapYXZ()Multiplythisby the matrixMatrix4fmapYXZ(Matrix4f dest)Multiplythisby the matrixMatrix4fmapYZnX()Multiplythisby the matrixMatrix4fmapYZnX(Matrix4f dest)Multiplythisby the matrixMatrix4fmapYZX()Multiplythisby the matrixMatrix4fmapYZX(Matrix4f dest)Multiplythisby the matrixMatrix4fmapZnXnY()Multiplythisby the matrixMatrix4fmapZnXnY(Matrix4f dest)Multiplythisby the matrixMatrix4fmapZnXY()Multiplythisby the matrixMatrix4fmapZnXY(Matrix4f dest)Multiplythisby the matrixMatrix4fmapZnYnX()Multiplythisby the matrixMatrix4fmapZnYnX(Matrix4f dest)Multiplythisby the matrixMatrix4fmapZnYX()Multiplythisby the matrixMatrix4fmapZnYX(Matrix4f dest)Multiplythisby the matrixMatrix4fmapZXnY()Multiplythisby the matrixMatrix4fmapZXnY(Matrix4f dest)Multiplythisby the matrixMatrix4fmapZXY()Multiplythisby the matrixMatrix4fmapZXY(Matrix4f dest)Multiplythisby the matrixMatrix4fmapZYnX()Multiplythisby the matrixMatrix4fmapZYnX(Matrix4f dest)Multiplythisby the matrixMatrix4fmapZYX()Multiplythisby the matrixMatrix4fmapZYX(Matrix4f dest)Multiplythisby the matrixMatrix4fmul(float r00, float r01, float r02, float r03, float r10, float r11, float r12, float r13, float r20, float r21, float r22, float r23, float r30, float r31, float r32, float r33)Multiply this matrix by the matrix with the supplied elements.Matrix4fmul(float r00, float r01, float r02, float r03, float r10, float r11, float r12, float r13, float r20, float r21, float r22, float r23, float r30, float r31, float r32, float r33, Matrix4f dest)Multiply this matrix by the matrix with the supplied elements and store the result indest.Matrix4fmul(Matrix3x2fc right)Multiply this matrix by the suppliedrightmatrix and store the result inthis.Matrix4fmul(Matrix3x2fc right, Matrix4f dest)Multiply this matrix by the suppliedrightmatrix and store the result indest.Matrix4fmul(Matrix4fc right)Multiply this matrix by the suppliedrightmatrix and store the result inthis.Matrix4fmul(Matrix4fc right, Matrix4f dest)Multiply this matrix by the suppliedrightmatrix and store the result indest.Matrix4fmul(Matrix4x3fc right)Multiply this matrix by the suppliedrightmatrix and store the result inthis.Matrix4fmul(Matrix4x3fc right, Matrix4f dest)Multiply this matrix by the suppliedrightmatrix and store the result indest.Matrix4fmul0(Matrix4fc right)Multiply this matrix by the suppliedrightmatrix.Matrix4fmul0(Matrix4fc right, Matrix4f dest)Multiply this matrix by the suppliedrightmatrix and store the result indest.Matrix4fmul3x3(float r00, float r01, float r02, float r10, float r11, float r12, float r20, float r21, float r22)Multiply this matrix by the 3x3 matrix with the supplied elements expanded to a 4x4 matrix with all other matrix elements set to identity.Matrix4fmul3x3(float r00, float r01, float r02, float r10, float r11, float r12, float r20, float r21, float r22, Matrix4f dest)Multiply this matrix by the 3x3 matrix with the supplied elements expanded to a 4x4 matrix with all other matrix elements set to identity, and store the result indest.Matrix4fmul4x3ComponentWise(Matrix4fc other)Component-wise multiply the upper 4x3 submatrices ofthisbyother.Matrix4fmul4x3ComponentWise(Matrix4fc other, Matrix4f dest)Component-wise multiply the upper 4x3 submatrices ofthisbyotherand store the result indest.Matrix4fmulAffine(Matrix4fc right)Multiply this matrix by the suppliedrightmatrix, both of which are assumed to beaffine, and store the result inthis.Matrix4fmulAffine(Matrix4fc right, Matrix4f dest)Multiply this matrix by the suppliedrightmatrix, both of which are assumed to beaffine, and store the result indest.Matrix4fmulAffineR(Matrix4fc right)Multiply this matrix by the suppliedrightmatrix, which is assumed to beaffine, and store the result inthis.Matrix4fmulAffineR(Matrix4fc right, Matrix4f dest)Multiply this matrix by the suppliedrightmatrix, which is assumed to beaffine, and store the result indest.Matrix4fmulComponentWise(Matrix4fc other)Component-wise multiplythisbyother.Matrix4fmulComponentWise(Matrix4fc other, Matrix4f dest)Component-wise multiplythisbyotherand store the result indest.Matrix4fmulLocal(Matrix4fc left)Pre-multiply this matrix by the suppliedleftmatrix and store the result inthis.Matrix4fmulLocal(Matrix4fc left, Matrix4f dest)Pre-multiply this matrix by the suppliedleftmatrix and store the result indest.Matrix4fmulLocalAffine(Matrix4fc left)Pre-multiply this matrix by the suppliedleftmatrix, both of which are assumed to beaffine, and store the result inthis.Matrix4fmulLocalAffine(Matrix4fc left, Matrix4f dest)Pre-multiply this matrix by the suppliedleftmatrix, both of which are assumed to beaffine, and store the result indest.Matrix4fmulOrthoAffine(Matrix4fc view)Matrix4fmulOrthoAffine(Matrix4fc view, Matrix4f dest)Multiplythisorthographic projection matrix by the suppliedaffineviewmatrix and store the result indest.Matrix4fmulPerspectiveAffine(Matrix4fc view)Matrix4fmulPerspectiveAffine(Matrix4fc view, Matrix4f dest)Multiplythissymmetric perspective projection matrix by the suppliedaffineviewmatrix and store the result indest.Matrix4fmulPerspectiveAffine(Matrix4x3fc view)Multiplythissymmetric perspective projection matrix by the suppliedviewmatrix.Matrix4fmulPerspectiveAffine(Matrix4x3fc view, Matrix4f dest)Multiplythissymmetric perspective projection matrix by the suppliedviewmatrix and store the result indest.Matrix4fmulTranslationAffine(Matrix4fc right, Matrix4f dest)Multiply this matrix, which is assumed to only contain a translation, by the suppliedrightmatrix, which is assumed to beaffine, and store the result indest.Matrix4fnegateX()Multiplythisby the matrixMatrix4fnegateX(Matrix4f dest)Multiplythisby the matrixMatrix4fnegateY()Multiplythisby the matrixMatrix4fnegateY(Matrix4f dest)Multiplythisby the matrixMatrix4fnegateZ()Multiplythisby the matrixMatrix4fnegateZ(Matrix4f dest)Multiplythisby the matrixMatrix4fnormal()Compute a normal matrix from the upper left 3x3 submatrix ofthisand store it into the upper left 3x3 submatrix ofthis.Matrix3fnormal(Matrix3f dest)Compute a normal matrix from the upper left 3x3 submatrix ofthisand store it intodest.Matrix4fnormal(Matrix4f dest)Compute a normal matrix from the upper left 3x3 submatrix ofthisand store it into the upper left 3x3 submatrix ofdest.Matrix4fnormalize3x3()Normalize the upper left 3x3 submatrix of this matrix.Matrix3fnormalize3x3(Matrix3f dest)Normalize the upper left 3x3 submatrix of this matrix and store the result indest.Matrix4fnormalize3x3(Matrix4f dest)Normalize the upper left 3x3 submatrix of this matrix and store the result indest.Vector3fnormalizedPositiveX(Vector3f dir)Obtain the direction of+Xbefore the transformation represented bythisorthogonal matrix is applied.Vector3fnormalizedPositiveY(Vector3f dir)Obtain the direction of+Ybefore the transformation represented bythisorthogonal matrix is applied.Vector3fnormalizedPositiveZ(Vector3f dir)Obtain the direction of+Zbefore the transformation represented bythisorthogonal matrix is applied.Matrix4fobliqueZ(float a, float b)Apply an oblique projection transformation to this matrix with the given values foraandb.Matrix4fobliqueZ(float a, float b, Matrix4f dest)Apply an oblique projection transformation to this matrix with the given values foraandband store the result indest.Vector3forigin(Vector3f dest)Obtain the position that gets transformed to the origin bythismatrix.Vector3foriginAffine(Vector3f origin)Obtain the position that gets transformed to the origin bythisaffinematrix.Matrix4fortho(float left, float right, float bottom, float top, float zNear, float zFar)Apply an orthographic projection transformation for a right-handed coordinate system using OpenGL's NDC z range of[-1..+1]to this matrix.Matrix4fortho(float left, float right, float bottom, float top, float zNear, float zFar, boolean zZeroToOne)Apply an orthographic projection transformation for a right-handed coordinate system using the given NDC z range to this matrix.Matrix4fortho(float left, float right, float bottom, float top, float zNear, float zFar, boolean zZeroToOne, Matrix4f dest)Apply an orthographic projection transformation for a right-handed coordinate system using the given NDC z range to this matrix and store the result indest.Matrix4fortho(float left, float right, float bottom, float top, float zNear, float zFar, Matrix4f dest)Apply an orthographic projection transformation for a right-handed coordinate system using OpenGL's NDC z range of[-1..+1]to this matrix and store the result indest.Matrix4fortho2D(float left, float right, float bottom, float top)Apply an orthographic projection transformation for a right-handed coordinate system to this matrix.Matrix4fortho2D(float left, float right, float bottom, float top, Matrix4f dest)Apply an orthographic projection transformation for a right-handed coordinate system to this matrix and store the result indest.Matrix4fortho2DLH(float left, float right, float bottom, float top)Apply an orthographic projection transformation for a left-handed coordinate system to this matrix.Matrix4fortho2DLH(float left, float right, float bottom, float top, Matrix4f dest)Apply an orthographic projection transformation for a left-handed coordinate system to this matrix and store the result indest.Matrix4forthoCrop(Matrix4fc view, Matrix4f dest)Build an ortographic projection transformation that fits the view-projection transformation represented bythisinto the given affineviewtransformation.Matrix4forthoLH(float left, float right, float bottom, float top, float zNear, float zFar)Apply an orthographic projection transformation for a left-handed coordiante system using OpenGL's NDC z range of[-1..+1]to this matrix.Matrix4forthoLH(float left, float right, float bottom, float top, float zNear, float zFar, boolean zZeroToOne)Apply an orthographic projection transformation for a left-handed coordiante system using the given NDC z range to this matrix.Matrix4forthoLH(float left, float right, float bottom, float top, float zNear, float zFar, boolean zZeroToOne, Matrix4f dest)Apply an orthographic projection transformation for a left-handed coordiante system using the given NDC z range to this matrix and store the result indest.Matrix4forthoLH(float left, float right, float bottom, float top, float zNear, float zFar, Matrix4f dest)Apply an orthographic projection transformation for a left-handed coordiante system using OpenGL's NDC z range of[-1..+1]to this matrix and store the result indest.Matrix4forthoSymmetric(float width, float height, float zNear, float zFar)Apply a symmetric orthographic projection transformation for a right-handed coordinate system using OpenGL's NDC z range of[-1..+1]to this matrix.Matrix4forthoSymmetric(float width, float height, float zNear, float zFar, boolean zZeroToOne)Apply a symmetric orthographic projection transformation for a right-handed coordinate system using the given NDC z range to this matrix.Matrix4forthoSymmetric(float width, float height, float zNear, float zFar, boolean zZeroToOne, Matrix4f dest)Apply a symmetric orthographic projection transformation for a right-handed coordinate system using the given NDC z range to this matrix and store the result indest.Matrix4forthoSymmetric(float width, float height, float zNear, float zFar, Matrix4f dest)Apply a symmetric orthographic projection transformation for a right-handed coordinate system using OpenGL's NDC z range of[-1..+1]to this matrix and store the result indest.Matrix4forthoSymmetricLH(float width, float height, float zNear, float zFar)Apply a symmetric orthographic projection transformation for a left-handed coordinate system using OpenGL's NDC z range of[-1..+1]to this matrix.Matrix4forthoSymmetricLH(float width, float height, float zNear, float zFar, boolean zZeroToOne)Apply a symmetric orthographic projection transformation for a left-handed coordinate system using the given NDC z range to this matrix.Matrix4forthoSymmetricLH(float width, float height, float zNear, float zFar, boolean zZeroToOne, Matrix4f dest)Apply a symmetric orthographic projection transformation for a left-handed coordinate system using the given NDC z range to this matrix and store the result indest.Matrix4forthoSymmetricLH(float width, float height, float zNear, float zFar, Matrix4f dest)Apply a symmetric orthographic projection transformation for a left-handed coordinate system using OpenGL's NDC z range of[-1..+1]to this matrix and store the result indest.Matrix4fperspective(float fovy, float aspect, float zNear, float zFar)Apply a symmetric perspective projection frustum transformation for a right-handed coordinate system using OpenGL's NDC z range of[-1..+1]to this matrix.Matrix4fperspective(float fovy, float aspect, float zNear, float zFar, boolean zZeroToOne)Apply a symmetric perspective projection frustum transformation using for a right-handed coordinate system using the given NDC z range to this matrix.Matrix4fperspective(float fovy, float aspect, float zNear, float zFar, boolean zZeroToOne, Matrix4f dest)Apply a symmetric perspective projection frustum transformation for a right-handed coordinate system using the given NDC z range to this matrix and store the result indest.Matrix4fperspective(float fovy, float aspect, float zNear, float zFar, Matrix4f dest)Apply a symmetric perspective projection frustum transformation for a right-handed coordinate system using OpenGL's NDC z range of[-1..+1]to this matrix and store the result indest.floatperspectiveFar()Extract the far clip plane distance fromthisperspective projection matrix.floatperspectiveFov()Return the vertical field-of-view angle in radians of this perspective transformation matrix.Matrix4fperspectiveFrustumSlice(float near, float far, Matrix4f dest)Change the near and far clip plane distances ofthisperspective frustum transformation matrix and store the result indest.Vector3fperspectiveInvOrigin(Vector3f dest)Compute the eye/origin of the inverse of the perspective frustum transformation defined bythismatrix, which can be the inverse of a projection matrix or the inverse of a combined modelview-projection matrix, and store the result in the givendest.Matrix4fperspectiveLH(float fovy, float aspect, float zNear, float zFar)Apply a symmetric perspective projection frustum transformation for a left-handed coordinate system using OpenGL's NDC z range of[-1..+1]to this matrix.Matrix4fperspectiveLH(float fovy, float aspect, float zNear, float zFar, boolean zZeroToOne)Apply a symmetric perspective projection frustum transformation for a left-handed coordinate system using the given NDC z range to this matrix.Matrix4fperspectiveLH(float fovy, float aspect, float zNear, float zFar, boolean zZeroToOne, Matrix4f dest)Apply a symmetric perspective projection frustum transformation for a left-handed coordinate system using the given NDC z range to this matrix and store the result indest.Matrix4fperspectiveLH(float fovy, float aspect, float zNear, float zFar, Matrix4f dest)Apply a symmetric perspective projection frustum transformation for a left-handed coordinate system using OpenGL's NDC z range of[-1..+1]to this matrix and store the result indest.floatperspectiveNear()Extract the near clip plane distance fromthisperspective projection matrix.Matrix4fperspectiveOffCenter(float fovy, float offAngleX, float offAngleY, float aspect, float zNear, float zFar)Apply an asymmetric off-center perspective projection frustum transformation for a right-handed coordinate system using OpenGL's NDC z range of[-1..+1]to this matrix.Matrix4fperspectiveOffCenter(float fovy, float offAngleX, float offAngleY, float aspect, float zNear, float zFar, boolean zZeroToOne)Apply an asymmetric off-center perspective projection frustum transformation using for a right-handed coordinate system using the given NDC z range to this matrix.Matrix4fperspectiveOffCenter(float fovy, float offAngleX, float offAngleY, float aspect, float zNear, float zFar, boolean zZeroToOne, Matrix4f dest)Apply an asymmetric off-center perspective projection frustum transformation for a right-handed coordinate system using the given NDC z range to this matrix and store the result indest.Matrix4fperspectiveOffCenter(float fovy, float offAngleX, float offAngleY, float aspect, float zNear, float zFar, Matrix4f dest)Apply an asymmetric off-center perspective projection frustum transformation for a right-handed coordinate system using OpenGL's NDC z range of[-1..+1]to this matrix and store the result indest.Matrix4fperspectiveOffCenterFov(float angleLeft, float angleRight, float angleDown, float angleUp, float zNear, float zFar)Apply an asymmetric off-center perspective projection frustum transformation for a right-handed coordinate system using OpenGL's NDC z range of[-1..+1]to this matrix.Matrix4fperspectiveOffCenterFov(float angleLeft, float angleRight, float angleDown, float angleUp, float zNear, float zFar, boolean zZeroToOne)Apply an asymmetric off-center perspective projection frustum transformation for a right-handed coordinate system using the given NDC z range to this matrix.Matrix4fperspectiveOffCenterFov(float angleLeft, float angleRight, float angleDown, float angleUp, float zNear, float zFar, boolean zZeroToOne, Matrix4f dest)Apply an asymmetric off-center perspective projection frustum transformation for a right-handed coordinate system using the given NDC z range to this matrix and store the result indest.Matrix4fperspectiveOffCenterFov(float angleLeft, float angleRight, float angleDown, float angleUp, float zNear, float zFar, Matrix4f dest)Apply an asymmetric off-center perspective projection frustum transformation for a right-handed coordinate system using OpenGL's NDC z range of[-1..+1]to this matrix and store the result indest.Matrix4fperspectiveOffCenterFovLH(float angleLeft, float angleRight, float angleDown, float angleUp, float zNear, float zFar)Apply an asymmetric off-center perspective projection frustum transformation for a left-handed coordinate system using OpenGL's NDC z range of[-1..+1]to this matrix.Matrix4fperspectiveOffCenterFovLH(float angleLeft, float angleRight, float angleDown, float angleUp, float zNear, float zFar, boolean zZeroToOne)Apply an asymmetric off-center perspective projection frustum transformation for a left-handed coordinate system using the given NDC z range to this matrix.Matrix4fperspectiveOffCenterFovLH(float angleLeft, float angleRight, float angleDown, float angleUp, float zNear, float zFar, boolean zZeroToOne, Matrix4f dest)Apply an asymmetric off-center perspective projection frustum transformation for a left-handed coordinate system using the given NDC z range to this matrix and store the result indest.Matrix4fperspectiveOffCenterFovLH(float angleLeft, float angleRight, float angleDown, float angleUp, float zNear, float zFar, Matrix4f dest)Apply an asymmetric off-center perspective projection frustum transformation for a left-handed coordinate system using OpenGL's NDC z range of[-1..+1]to this matrix and store the result indest.static voidperspectiveOffCenterViewFromRectangle(Vector3f eye, Vector3f p, Vector3f x, Vector3f y, float nearFarDist, boolean zeroToOne, Matrix4f projDest, Matrix4f viewDest)Create a view and off-center perspective projection matrix from a giveneyeposition, a given bottom left corner positionpof the near plane rectangle and the extents of the near plane rectangle along its localxandyaxes, and store the resulting matrices inprojDestandviewDest.Vector3fperspectiveOrigin(Vector3f origin)Compute the eye/origin of the perspective frustum transformation defined bythismatrix, which can be a projection matrix or a combined modelview-projection matrix, and store the result in the givenorigin.Matrix4fperspectiveRect(float width, float height, float zNear, float zFar)Apply a symmetric perspective projection frustum transformation for a right-handed coordinate system using OpenGL's NDC z range of[-1..+1]to this matrix.Matrix4fperspectiveRect(float width, float height, float zNear, float zFar, boolean zZeroToOne)Apply a symmetric perspective projection frustum transformation using for a right-handed coordinate system using the given NDC z range to this matrix.Matrix4fperspectiveRect(float width, float height, float zNear, float zFar, boolean zZeroToOne, Matrix4f dest)Apply a symmetric perspective projection frustum transformation for a right-handed coordinate system using the given NDC z range to this matrix and store the result indest.Matrix4fperspectiveRect(float width, float height, float zNear, float zFar, Matrix4f dest)Apply a symmetric perspective projection frustum transformation for a right-handed coordinate system using OpenGL's NDC z range of[-1..+1]to this matrix and store the result indest.Matrix4fpick(float x, float y, float width, float height, int[] viewport)Apply a picking transformation to this matrix using the given window coordinates(x, y)as the pick center and the given(width, height)as the size of the picking region in window coordinates.Matrix4fpick(float x, float y, float width, float height, int[] viewport, Matrix4f dest)Apply a picking transformation to this matrix using the given window coordinates(x, y)as the pick center and the given(width, height)as the size of the picking region in window coordinates, and store the result indest.Vector3fpositiveX(Vector3f dir)Obtain the direction of+Xbefore the transformation represented bythismatrix is applied.Vector3fpositiveY(Vector3f dir)Obtain the direction of+Ybefore the transformation represented bythismatrix is applied.Vector3fpositiveZ(Vector3f dir)Obtain the direction of+Zbefore the transformation represented bythismatrix is applied.Vector3fproject(float x, float y, float z, int[] viewport, Vector3f winCoordsDest)Project the given(x, y, z)position viathismatrix using the specified viewport and store the resulting window coordinates inwinCoordsDest.Vector4fproject(float x, float y, float z, int[] viewport, Vector4f winCoordsDest)Project the given(x, y, z)position viathismatrix using the specified viewport and store the resulting window coordinates inwinCoordsDest.Vector3fproject(Vector3fc position, int[] viewport, Vector3f winCoordsDest)Project the givenpositionviathismatrix using the specified viewport and store the resulting window coordinates inwinCoordsDest.Vector4fproject(Vector3fc position, int[] viewport, Vector4f winCoordsDest)Project the givenpositionviathismatrix using the specified viewport and store the resulting window coordinates inwinCoordsDest.Matrix4fprojectedGridRange(Matrix4fc projector, float sLower, float sUpper, Matrix4f dest)Compute the range matrix for the Projected Grid transformation as described in chapter "2.4.2 Creating the range conversion matrix" of the paper Real-time water rendering - Introducing the projected grid concept based on the inverse of the view-projection matrix which is assumed to bethis, and store that range matrix intodest.intproperties()Return the assumed properties of this matrix.voidreadExternal(java.io.ObjectInput in)Matrix4freflect(float a, float b, float c, float d)Apply a mirror/reflection transformation to this matrix that reflects about the given plane specified via the equationx*a + y*b + z*c + d = 0.Matrix4freflect(float nx, float ny, float nz, float px, float py, float pz)Apply a mirror/reflection transformation to this matrix that reflects about the given plane specified via the plane normal and a point on the plane.Matrix4freflect(float nx, float ny, float nz, float px, float py, float pz, Matrix4f dest)Apply a mirror/reflection transformation to this matrix that reflects about the given plane specified via the plane normal and a point on the plane, and store the result indest.Matrix4freflect(float a, float b, float c, float d, Matrix4f dest)Apply a mirror/reflection transformation to this matrix that reflects about the given plane specified via the equationx*a + y*b + z*c + d = 0and store the result indest.Matrix4freflect(Quaternionfc orientation, Vector3fc point)Apply a mirror/reflection transformation to this matrix that reflects about a plane specified via the plane orientation and a point on the plane.Matrix4freflect(Quaternionfc orientation, Vector3fc point, Matrix4f dest)Apply a mirror/reflection transformation to this matrix that reflects about a plane specified via the plane orientation and a point on the plane, and store the result indest.Matrix4freflect(Vector3fc normal, Vector3fc point)Apply a mirror/reflection transformation to this matrix that reflects about the given plane specified via the plane normal and a point on the plane.Matrix4freflect(Vector3fc normal, Vector3fc point, Matrix4f dest)Apply a mirror/reflection transformation to this matrix that reflects about the given plane specified via the plane normal and a point on the plane, and store the result indest.Matrix4freflection(float a, float b, float c, float d)Set this matrix to a mirror/reflection transformation that reflects about the given plane specified via the equationx*a + y*b + z*c + d = 0.Matrix4freflection(float nx, float ny, float nz, float px, float py, float pz)Set this matrix to a mirror/reflection transformation that reflects about the given plane specified via the plane normal and a point on the plane.Matrix4freflection(Quaternionfc orientation, Vector3fc point)Set this matrix to a mirror/reflection transformation that reflects about a plane specified via the plane orientation and a point on the plane.Matrix4freflection(Vector3fc normal, Vector3fc point)Set this matrix to a mirror/reflection transformation that reflects about the given plane specified via the plane normal and a point on the plane.Matrix4frotate(float ang, float x, float y, float z)Apply rotation to this matrix by rotating the given amount of radians about the specified(x, y, z)axis.Matrix4frotate(float ang, float x, float y, float z, Matrix4f dest)Apply rotation to this matrix by rotating the given amount of radians about the specified(x, y, z)axis and store the result indest.Matrix4frotate(float angle, Vector3fc axis)Apply a rotation transformation, rotating the given radians about the specified axis, to this matrix.Matrix4frotate(float angle, Vector3fc axis, Matrix4f dest)Apply a rotation transformation, rotating the given radians about the specified axis and store the result indest.Matrix4frotate(AxisAngle4f axisAngle)Apply a rotation transformation, rotating about the givenAxisAngle4f, to this matrix.Matrix4frotate(AxisAngle4f axisAngle, Matrix4f dest)Apply a rotation transformation, rotating about the givenAxisAngle4fand store the result indest.Matrix4frotate(Quaternionfc quat)Apply the rotation transformation of the givenQuaternionfcto this matrix.Matrix4frotate(Quaternionfc quat, Matrix4f dest)Apply the rotation transformation of the givenQuaternionfcto this matrix and store the result indest.Matrix4frotateAffine(float ang, float x, float y, float z)Apply rotation to thisaffinematrix by rotating the given amount of radians about the specified(x, y, z)axis.Matrix4frotateAffine(float ang, float x, float y, float z, Matrix4f dest)Apply rotation to thisaffinematrix by rotating the given amount of radians about the specified(x, y, z)axis and store the result indest.Matrix4frotateAffine(Quaternionfc quat)Apply the rotation transformation of the givenQuaternionfcto this matrix.Matrix4frotateAffine(Quaternionfc quat, Matrix4f dest)Apply the rotation transformation of the givenQuaternionfcto thisaffinematrix and store the result indest.Matrix4frotateAffineXYZ(float angleX, float angleY, float angleZ)Apply rotation ofangleXradians about the X axis, followed by a rotation ofangleYradians about the Y axis and followed by a rotation ofangleZradians about the Z axis.Matrix4frotateAffineXYZ(float angleX, float angleY, float angleZ, Matrix4f dest)Apply rotation ofangleXradians about the X axis, followed by a rotation ofangleYradians about the Y axis and followed by a rotation ofangleZradians about the Z axis and store the result indest.Matrix4frotateAffineYXZ(float angleY, float angleX, float angleZ)Apply rotation ofangleYradians about the Y axis, followed by a rotation ofangleXradians about the X axis and followed by a rotation ofangleZradians about the Z axis.Matrix4frotateAffineYXZ(float angleY, float angleX, float angleZ, Matrix4f dest)Apply rotation ofangleYradians about the Y axis, followed by a rotation ofangleXradians about the X axis and followed by a rotation ofangleZradians about the Z axis and store the result indest.Matrix4frotateAffineZYX(float angleZ, float angleY, float angleX)Apply rotation ofangleZradians about the Z axis, followed by a rotation ofangleYradians about the Y axis and followed by a rotation ofangleXradians about the X axis.Matrix4frotateAffineZYX(float angleZ, float angleY, float angleX, Matrix4f dest)Apply rotation ofangleZradians about the Z axis, followed by a rotation ofangleYradians about the Y axis and followed by a rotation ofangleXradians about the X axis and store the result indest.Matrix4frotateAround(Quaternionfc quat, float ox, float oy, float oz)Apply the rotation transformation of the givenQuaternionfcto this matrix while using(ox, oy, oz)as the rotation origin.Matrix4frotateAround(Quaternionfc quat, float ox, float oy, float oz, Matrix4f dest)Apply the rotation - and possibly scaling - transformation of the givenQuaternionfcto this matrix while using(ox, oy, oz)as the rotation origin, and store the result indest.Matrix4frotateAroundAffine(Quaternionfc quat, float ox, float oy, float oz, Matrix4f dest)Apply the rotation - and possibly scaling - transformation of the givenQuaternionfcto thisaffinematrix while using(ox, oy, oz)as the rotation origin, and store the result indest.Matrix4frotateAroundLocal(Quaternionfc quat, float ox, float oy, float oz)Pre-multiply the rotation transformation of the givenQuaternionfcto this matrix while using(ox, oy, oz)as the rotation origin.Matrix4frotateAroundLocal(Quaternionfc quat, float ox, float oy, float oz, Matrix4f dest)Pre-multiply the rotation - and possibly scaling - transformation of the givenQuaternionfcto this matrix while using(ox, oy, oz)as the rotation origin, and store the result indest.Matrix4frotateLocal(float ang, float x, float y, float z)Pre-multiply a rotation to this matrix by rotating the given amount of radians about the specified(x, y, z)axis.Matrix4frotateLocal(float ang, float x, float y, float z, Matrix4f dest)Pre-multiply a rotation to this matrix by rotating the given amount of radians about the specified(x, y, z)axis and store the result indest.Matrix4frotateLocal(Quaternionfc quat)Pre-multiply the rotation transformation of the givenQuaternionfcto this matrix.Matrix4frotateLocal(Quaternionfc quat, Matrix4f dest)Pre-multiply the rotation transformation of the givenQuaternionfcto this matrix and store the result indest.Matrix4frotateLocalX(float ang)Pre-multiply a rotation to this matrix by rotating the given amount of radians about the X axis.Matrix4frotateLocalX(float ang, Matrix4f dest)Pre-multiply a rotation around the X axis to this matrix by rotating the given amount of radians about the X axis and store the result indest.Matrix4frotateLocalY(float ang)Pre-multiply a rotation to this matrix by rotating the given amount of radians about the Y axis.Matrix4frotateLocalY(float ang, Matrix4f dest)Pre-multiply a rotation around the Y axis to this matrix by rotating the given amount of radians about the Y axis and store the result indest.Matrix4frotateLocalZ(float ang)Pre-multiply a rotation to this matrix by rotating the given amount of radians about the Z axis.Matrix4frotateLocalZ(float ang, Matrix4f dest)Pre-multiply a rotation around the Z axis to this matrix by rotating the given amount of radians about the Z axis and store the result indest.Matrix4frotateTowards(float dirX, float dirY, float dirZ, float upX, float upY, float upZ)Apply a model transformation to this matrix for a right-handed coordinate system, that aligns the local+Zaxis with(dirX, dirY, dirZ).Matrix4frotateTowards(float dirX, float dirY, float dirZ, float upX, float upY, float upZ, Matrix4f dest)Apply a model transformation to this matrix for a right-handed coordinate system, that aligns the local+Zaxis with(dirX, dirY, dirZ)and store the result indest.Matrix4frotateTowards(Vector3fc dir, Vector3fc up)Apply a model transformation to this matrix for a right-handed coordinate system, that aligns the local+Zaxis withdir.Matrix4frotateTowards(Vector3fc dir, Vector3fc up, Matrix4f dest)Apply a model transformation to this matrix for a right-handed coordinate system, that aligns the local+Zaxis withdirand store the result indest.Matrix4frotateTowardsXY(float dirX, float dirY)Apply rotation about the Z axis to align the local+Xtowards(dirX, dirY).Matrix4frotateTowardsXY(float dirX, float dirY, Matrix4f dest)Apply rotation about the Z axis to align the local+Xtowards(dirX, dirY)and store the result indest.Matrix4frotateTranslation(float ang, float x, float y, float z, Matrix4f dest)Apply rotation to this matrix, which is assumed to only contain a translation, by rotating the given amount of radians about the specified(x, y, z)axis and store the result indest.Matrix4frotateTranslation(Quaternionfc quat, Matrix4f dest)Apply the rotation transformation of the givenQuaternionfcto this matrix, which is assumed to only contain a translation, and store the result indest.Matrix4frotateX(float ang)Apply rotation about the X axis to this matrix by rotating the given amount of radians.Matrix4frotateX(float ang, Matrix4f dest)Apply rotation about the X axis to this matrix by rotating the given amount of radians and store the result indest.Matrix4frotateXYZ(float angleX, float angleY, float angleZ)Apply rotation ofangleXradians about the X axis, followed by a rotation ofangleYradians about the Y axis and followed by a rotation ofangleZradians about the Z axis.Matrix4frotateXYZ(float angleX, float angleY, float angleZ, Matrix4f dest)Apply rotation ofangleXradians about the X axis, followed by a rotation ofangleYradians about the Y axis and followed by a rotation ofangleZradians about the Z axis and store the result indest.Matrix4frotateXYZ(Vector3fc angles)Apply rotation ofangles.xradians about the X axis, followed by a rotation ofangles.yradians about the Y axis and followed by a rotation ofangles.zradians about the Z axis.Matrix4frotateY(float ang)Apply rotation about the Y axis to this matrix by rotating the given amount of radians.Matrix4frotateY(float ang, Matrix4f dest)Apply rotation about the Y axis to this matrix by rotating the given amount of radians and store the result indest.Matrix4frotateYXZ(float angleY, float angleX, float angleZ)Apply rotation ofangleYradians about the Y axis, followed by a rotation ofangleXradians about the X axis and followed by a rotation ofangleZradians about the Z axis.Matrix4frotateYXZ(float angleY, float angleX, float angleZ, Matrix4f dest)Apply rotation ofangleYradians about the Y axis, followed by a rotation ofangleXradians about the X axis and followed by a rotation ofangleZradians about the Z axis and store the result indest.Matrix4frotateYXZ(Vector3f angles)Apply rotation ofangles.yradians about the Y axis, followed by a rotation ofangles.xradians about the X axis and followed by a rotation ofangles.zradians about the Z axis.Matrix4frotateZ(float ang)Apply rotation about the Z axis to this matrix by rotating the given amount of radians.Matrix4frotateZ(float ang, Matrix4f dest)Apply rotation about the Z axis to this matrix by rotating the given amount of radians and store the result indest.Matrix4frotateZYX(float angleZ, float angleY, float angleX)Apply rotation ofangleZradians about the Z axis, followed by a rotation ofangleYradians about the Y axis and followed by a rotation ofangleXradians about the X axis.Matrix4frotateZYX(float angleZ, float angleY, float angleX, Matrix4f dest)Apply rotation ofangleZradians about the Z axis, followed by a rotation ofangleYradians about the Y axis and followed by a rotation ofangleXradians about the X axis and store the result indest.Matrix4frotateZYX(Vector3f angles)Apply rotation ofangles.zradians about the Z axis, followed by a rotation ofangles.yradians about the Y axis and followed by a rotation ofangles.xradians about the X axis.Matrix4frotation(float angle, float x, float y, float z)Set this matrix to a rotation matrix which rotates the given radians about a given axis.Matrix4frotation(float angle, Vector3fc axis)Set this matrix to a rotation matrix which rotates the given radians about a given axis.Matrix4frotation(AxisAngle4f axisAngle)Set this matrix to a rotation transformation using the givenAxisAngle4f.Matrix4frotation(Quaternionfc quat)Set this matrix to the rotation transformation of the givenQuaternionfc.Matrix4frotationAround(Quaternionfc quat, float ox, float oy, float oz)Set this matrix to a transformation composed of a rotation of the specifiedQuaternionfcwhile using(ox, oy, oz)as the rotation origin.Matrix4frotationTowards(float dirX, float dirY, float dirZ, float upX, float upY, float upZ)Set this matrix to a model transformation for a right-handed coordinate system, that aligns the local-zaxis with(dirX, dirY, dirZ).Matrix4frotationTowards(Vector3fc dir, Vector3fc up)Set this matrix to a model transformation for a right-handed coordinate system, that aligns the local-zaxis withdir.Matrix4frotationTowardsXY(float dirX, float dirY)Set this matrix to a rotation transformation about the Z axis to align the local+Xtowards(dirX, dirY).Matrix4frotationX(float ang)Set this matrix to a rotation transformation about the X axis.Matrix4frotationXYZ(float angleX, float angleY, float angleZ)Set this matrix to a rotation ofangleXradians about the X axis, followed by a rotation ofangleYradians about the Y axis and followed by a rotation ofangleZradians about the Z axis.Matrix4frotationY(float ang)Set this matrix to a rotation transformation about the Y axis.Matrix4frotationYXZ(float angleY, float angleX, float angleZ)Set this matrix to a rotation ofangleYradians about the Y axis, followed by a rotation ofangleXradians about the X axis and followed by a rotation ofangleZradians about the Z axis.Matrix4frotationZ(float ang)Set this matrix to a rotation transformation about the Z axis.Matrix4frotationZYX(float angleZ, float angleY, float angleX)Set this matrix to a rotation ofangleZradians about the Z axis, followed by a rotation ofangleYradians about the Y axis and followed by a rotation ofangleXradians about the X axis.Matrix4fscale(float xyz)Apply scaling to this matrix by uniformly scaling all base axes by the givenxyzfactor.Matrix4fscale(float x, float y, float z)Apply scaling to this matrix by scaling the base axes by the given sx, sy and sz factors.Matrix4fscale(float x, float y, float z, Matrix4f dest)Apply scaling tothismatrix by scaling the base axes by the given x, y and z factors and store the result indest.Matrix4fscale(float xyz, Matrix4f dest)Apply scaling to this matrix by uniformly scaling all base axes by the givenxyzfactor and store the result indest.Matrix4fscale(Vector3fc xyz)Apply scaling to this matrix by scaling the base axes by the givenxyz.x,xyz.yandxyz.zfactors, respectively.Matrix4fscale(Vector3fc xyz, Matrix4f dest)Apply scaling tothismatrix by scaling the base axes by the givenxyz.x,xyz.yandxyz.zfactors, respectively and store the result indest.Matrix4fscaleAround(float factor, float ox, float oy, float oz)Apply scaling to this matrix by scaling all three base axes by the givenfactorwhile using(ox, oy, oz)as the scaling origin.Matrix4fscaleAround(float sx, float sy, float sz, float ox, float oy, float oz)Apply scaling to this matrix by scaling the base axes by the given sx, sy and sz factors while using(ox, oy, oz)as the scaling origin.Matrix4fscaleAround(float sx, float sy, float sz, float ox, float oy, float oz, Matrix4f dest)Apply scaling tothismatrix by scaling the base axes by the given sx, sy and sz factors while using(ox, oy, oz)as the scaling origin, and store the result indest.Matrix4fscaleAround(float factor, float ox, float oy, float oz, Matrix4f dest)Apply scaling to this matrix by scaling all three base axes by the givenfactorwhile using(ox, oy, oz)as the scaling origin, and store the result indest.Matrix4fscaleAroundLocal(float factor, float ox, float oy, float oz)Pre-multiply scaling to this matrix by scaling all three base axes by the givenfactorwhile using(ox, oy, oz)as the scaling origin.Matrix4fscaleAroundLocal(float sx, float sy, float sz, float ox, float oy, float oz)Pre-multiply scaling to this matrix by scaling the base axes by the given sx, sy and sz factors while using(ox, oy, oz)as the scaling origin.Matrix4fscaleAroundLocal(float sx, float sy, float sz, float ox, float oy, float oz, Matrix4f dest)Pre-multiply scaling tothismatrix by scaling the base axes by the given sx, sy and sz factors while using the given(ox, oy, oz)as the scaling origin, and store the result indest.Matrix4fscaleAroundLocal(float factor, float ox, float oy, float oz, Matrix4f dest)Pre-multiply scaling to this matrix by scaling all three base axes by the givenfactorwhile using(ox, oy, oz)as the scaling origin, and store the result indest.Matrix4fscaleLocal(float xyz)Pre-multiply scaling to this matrix by scaling the base axes by the given xyz factor.Matrix4fscaleLocal(float x, float y, float z)Pre-multiply scaling to this matrix by scaling the base axes by the given x, y and z factors.Matrix4fscaleLocal(float x, float y, float z, Matrix4f dest)Pre-multiply scaling tothismatrix by scaling the base axes by the given x, y and z factors and store the result indest.Matrix4fscaleLocal(float xyz, Matrix4f dest)Pre-multiply scaling tothismatrix by scaling all base axes by the givenxyzfactor, and store the result indest.Matrix4fscaleXY(float x, float y)Apply scaling to this matrix by scaling the X axis byxand the Y axis byy.Matrix4fscaleXY(float x, float y, Matrix4f dest)Apply scaling to this matrix by by scaling the X axis byxand the Y axis byyand store the result indest.Matrix4fscaling(float factor)Set this matrix to be a simple scale matrix, which scales all axes uniformly by the given factor.Matrix4fscaling(float x, float y, float z)Set this matrix to be a simple scale matrix.Matrix4fscaling(Vector3fc xyz)Set this matrix to be a simple scale matrix which scales the base axes byxyz.x,xyz.yandxyz.zrespectively.Matrix4fset(float[] m)Set the values in the matrix using a float array that contains the matrix elements in column-major order.Matrix4fset(float[] m, int off)Set the values in the matrix using a float array that contains the matrix elements in column-major order.Matrix4fset(float m00, float m01, float m02, float m03, float m10, float m11, float m12, float m13, float m20, float m21, float m22, float m23, float m30, float m31, float m32, float m33)Set the values within this matrix to the supplied float values.Matrix4fset(int column, int row, float value)Set the matrix element at the given column and row to the specified value.Matrix4fset(int index, java.nio.ByteBuffer buffer)Set the values of this matrix by reading 16 float values from the givenByteBufferin column-major order, starting at the specified absolute buffer position/index.Matrix4fset(int index, java.nio.FloatBuffer buffer)Set the values of this matrix by reading 16 float values from the givenFloatBufferin column-major order, starting at the specified absolute buffer position/index.Matrix4fset(java.nio.ByteBuffer buffer)Set the values of this matrix by reading 16 float values from the givenByteBufferin column-major order, starting at its current position.Matrix4fset(java.nio.FloatBuffer buffer)Set the values of this matrix by reading 16 float values from the givenFloatBufferin column-major order, starting at its current position.Matrix4fset(AxisAngle4d axisAngle)Set this matrix to be equivalent to the rotation specified by the givenAxisAngle4d.Matrix4fset(AxisAngle4f axisAngle)Set this matrix to be equivalent to the rotation specified by the givenAxisAngle4f.Matrix4fset(Matrix3fc mat)Matrix4fset(Matrix4dc m)Store the values of the given matrixmintothismatrix.Matrix4fset(Matrix4fc m)Store the values of the given matrixmintothismatrix.Matrix4fset(Matrix4x3fc m)Store the values of the given matrixmintothismatrix and set the other matrix elements to identity.Matrix4fset(Quaterniondc q)Set this matrix to be equivalent to the rotation specified by the givenQuaterniondc.Matrix4fset(Quaternionfc q)Set this matrix to be equivalent to the rotation specified by the givenQuaternionfc.Matrix4fset(Vector4fc col0, Vector4fc col1, Vector4fc col2, Vector4fc col3)Set the four columns of this matrix to the supplied vectors, respectively.Matrix4fset3x3(Matrix3fc mat)Matrix4fset3x3(Matrix4f mat)Matrix4fset4x3(Matrix4f mat)Matrix4fset4x3(Matrix4x3fc mat)Set the upper 4x3 submatrix of thisMatrix4fto the givenMatrix4x3fcand don't change the other elements.Matrix4fsetColumn(int column, Vector4fc src)Set the column at the givencolumnindex, starting with0.Matrix4fsetFromAddress(long address)Set the values of this matrix by reading 16 float values from off-heap memory in column-major order, starting at the given address.Matrix4fsetFromIntrinsic(float alphaX, float alphaY, float gamma, float u0, float v0, int imgWidth, int imgHeight, float near, float far)Set this matrix to represent a perspective projection equivalent to the given intrinsic camera calibration parameters.Matrix4fsetFrustum(float left, float right, float bottom, float top, float zNear, float zFar)Set this matrix to be an arbitrary perspective projection frustum transformation for a right-handed coordinate system using OpenGL's NDC z range of[-1..+1].Matrix4fsetFrustum(float left, float right, float bottom, float top, float zNear, float zFar, boolean zZeroToOne)Set this matrix to be an arbitrary perspective projection frustum transformation for a right-handed coordinate system using the given NDC z range.Matrix4fsetFrustumLH(float left, float right, float bottom, float top, float zNear, float zFar)Set this matrix to be an arbitrary perspective projection frustum transformation for a left-handed coordinate system using OpenGL's NDC z range of[-1..+1].Matrix4fsetFrustumLH(float left, float right, float bottom, float top, float zNear, float zFar, boolean zZeroToOne)Set this matrix to be an arbitrary perspective projection frustum transformation for a left-handed coordinate system using OpenGL's NDC z range of[-1..+1].Matrix4fsetLookAlong(float dirX, float dirY, float dirZ, float upX, float upY, float upZ)Set this matrix to a rotation transformation to make-zpoint alongdir.Matrix4fsetLookAlong(Vector3fc dir, Vector3fc up)Set this matrix to a rotation transformation to make-zpoint alongdir.Matrix4fsetLookAt(float eyeX, float eyeY, float eyeZ, float centerX, float centerY, float centerZ, float upX, float upY, float upZ)Set this matrix to be a "lookat" transformation for a right-handed coordinate system, that aligns-zwithcenter - eye.Matrix4fsetLookAt(Vector3fc eye, Vector3fc center, Vector3fc up)Set this matrix to be a "lookat" transformation for a right-handed coordinate system, that aligns-zwithcenter - eye.Matrix4fsetLookAtLH(float eyeX, float eyeY, float eyeZ, float centerX, float centerY, float centerZ, float upX, float upY, float upZ)Set this matrix to be a "lookat" transformation for a left-handed coordinate system, that aligns+zwithcenter - eye.Matrix4fsetLookAtLH(Vector3fc eye, Vector3fc center, Vector3fc up)Set this matrix to be a "lookat" transformation for a left-handed coordinate system, that aligns+zwithcenter - eye.Matrix4fsetOrtho(float left, float right, float bottom, float top, float zNear, float zFar)Set this matrix to be an orthographic projection transformation for a right-handed coordinate system using OpenGL's NDC z range of[-1..+1].Matrix4fsetOrtho(float left, float right, float bottom, float top, float zNear, float zFar, boolean zZeroToOne)Set this matrix to be an orthographic projection transformation for a right-handed coordinate system using the given NDC z range.Matrix4fsetOrtho2D(float left, float right, float bottom, float top)Set this matrix to be an orthographic projection transformation for a right-handed coordinate system.Matrix4fsetOrtho2DLH(float left, float right, float bottom, float top)Set this matrix to be an orthographic projection transformation for a left-handed coordinate system.Matrix4fsetOrthoLH(float left, float right, float bottom, float top, float zNear, float zFar)Set this matrix to be an orthographic projection transformation for a left-handed coordinate system using OpenGL's NDC z range of[-1..+1].Matrix4fsetOrthoLH(float left, float right, float bottom, float top, float zNear, float zFar, boolean zZeroToOne)Set this matrix to be an orthographic projection transformation for a left-handed coordinate system using the given NDC z range.Matrix4fsetOrthoSymmetric(float width, float height, float zNear, float zFar)Set this matrix to be a symmetric orthographic projection transformation for a right-handed coordinate system using OpenGL's NDC z range of[-1..+1].Matrix4fsetOrthoSymmetric(float width, float height, float zNear, float zFar, boolean zZeroToOne)Set this matrix to be a symmetric orthographic projection transformation for a right-handed coordinate system using the given NDC z range.Matrix4fsetOrthoSymmetricLH(float width, float height, float zNear, float zFar)Set this matrix to be a symmetric orthographic projection transformation for a left-handed coordinate system using OpenGL's NDC z range of[-1..+1].Matrix4fsetOrthoSymmetricLH(float width, float height, float zNear, float zFar, boolean zZeroToOne)Set this matrix to be a symmetric orthographic projection transformation for a left-handed coordinate system using the given NDC z range.Matrix4fsetPerspective(float fovy, float aspect, float zNear, float zFar)Set this matrix to be a symmetric perspective projection frustum transformation for a right-handed coordinate system using OpenGL's NDC z range of[-1..+1].Matrix4fsetPerspective(float fovy, float aspect, float zNear, float zFar, boolean zZeroToOne)Set this matrix to be a symmetric perspective projection frustum transformation for a right-handed coordinate system using the given NDC z range.Matrix4fsetPerspectiveLH(float fovy, float aspect, float zNear, float zFar)Set this matrix to be a symmetric perspective projection frustum transformation for a left-handed coordinate system using OpenGL's NDC z range of[-1..+1].Matrix4fsetPerspectiveLH(float fovy, float aspect, float zNear, float zFar, boolean zZeroToOne)Set this matrix to be a symmetric perspective projection frustum transformation for a left-handed coordinate system using the given NDC z range of[-1..+1].Matrix4fsetPerspectiveOffCenter(float fovy, float offAngleX, float offAngleY, float aspect, float zNear, float zFar)Set this matrix to be an asymmetric off-center perspective projection frustum transformation for a right-handed coordinate system using OpenGL's NDC z range of[-1..+1].Matrix4fsetPerspectiveOffCenter(float fovy, float offAngleX, float offAngleY, float aspect, float zNear, float zFar, boolean zZeroToOne)Set this matrix to be an asymmetric off-center perspective projection frustum transformation for a right-handed coordinate system using the given NDC z range.Matrix4fsetPerspectiveOffCenterFov(float angleLeft, float angleRight, float angleDown, float angleUp, float zNear, float zFar)Set this matrix to be an asymmetric off-center perspective projection frustum transformation for a right-handed coordinate system using OpenGL's NDC z range of[-1..+1].Matrix4fsetPerspectiveOffCenterFov(float angleLeft, float angleRight, float angleDown, float angleUp, float zNear, float zFar, boolean zZeroToOne)Set this matrix to be an asymmetric off-center perspective projection frustum transformation for a right-handed coordinate system using the given NDC z range.Matrix4fsetPerspectiveOffCenterFovLH(float angleLeft, float angleRight, float angleDown, float angleUp, float zNear, float zFar)Set this matrix to be an asymmetric off-center perspective projection frustum transformation for a left-handed coordinate system using OpenGL's NDC z range of[-1..+1].Matrix4fsetPerspectiveOffCenterFovLH(float angleLeft, float angleRight, float angleDown, float angleUp, float zNear, float zFar, boolean zZeroToOne)Set this matrix to be an asymmetric off-center perspective projection frustum transformation for a left-handed coordinate system using the given NDC z range.Matrix4fsetPerspectiveRect(float width, float height, float zNear, float zFar)Set this matrix to be a symmetric perspective projection frustum transformation for a right-handed coordinate system using OpenGL's NDC z range of[-1..+1].Matrix4fsetPerspectiveRect(float width, float height, float zNear, float zFar, boolean zZeroToOne)Set this matrix to be a symmetric perspective projection frustum transformation for a right-handed coordinate system using the given NDC z range.Matrix4fsetRotationXYZ(float angleX, float angleY, float angleZ)Set only the upper left 3x3 submatrix of this matrix to a rotation ofangleXradians about the X axis, followed by a rotation ofangleYradians about the Y axis and followed by a rotation ofangleZradians about the Z axis.Matrix4fsetRotationYXZ(float angleY, float angleX, float angleZ)Set only the upper left 3x3 submatrix of this matrix to a rotation ofangleYradians about the Y axis, followed by a rotation ofangleXradians about the X axis and followed by a rotation ofangleZradians about the Z axis.Matrix4fsetRotationZYX(float angleZ, float angleY, float angleX)Set only the upper left 3x3 submatrix of this matrix to a rotation ofangleZradians about the Z axis, followed by a rotation ofangleYradians about the Y axis and followed by a rotation ofangleXradians about the X axis.Matrix4fsetRow(int row, Vector4fc src)Set the row at the givenrowindex, starting with0.Matrix4fsetRowColumn(int row, int column, float value)Set the matrix element at the given row and column to the specified value.Matrix4fsetTranslation(float x, float y, float z)Set only the translation components(m30, m31, m32)of this matrix to the given values(x, y, z).Matrix4fsetTranslation(Vector3fc xyz)Set only the translation components(m30, m31, m32)of this matrix to the values(xyz.x, xyz.y, xyz.z).Matrix4fsetTransposed(float[] m)Set the values in the matrix using a float array that contains the matrix elements in row-major order.Matrix4fsetTransposed(float[] m, int off)Set the values in the matrix using a float array that contains the matrix elements in row-major order.Matrix4fsetTransposed(java.nio.ByteBuffer buffer)Set the values of this matrix by reading 16 float values from the givenByteBufferin row-major order, starting at its current position.Matrix4fsetTransposed(java.nio.FloatBuffer buffer)Set the values of this matrix by reading 16 float values from the givenFloatBufferin row-major order, starting at its current position.Matrix4fsetTransposed(Matrix4fc m)Store the values of the transpose of the given matrixmintothismatrix.Matrix4fsetTransposedFromAddress(long address)Set the values of this matrix by reading 16 float values from off-heap memory in row-major order, starting at the given address.Matrix4fshadow(float lightX, float lightY, float lightZ, float lightW, float a, float b, float c, float d)Apply a projection transformation to this matrix that projects onto the plane specified via the general plane equationx*a + y*b + z*c + d = 0as if casting a shadow from a given light position/direction(lightX, lightY, lightZ, lightW).Matrix4fshadow(float lightX, float lightY, float lightZ, float lightW, float a, float b, float c, float d, Matrix4f dest)Apply a projection transformation to this matrix that projects onto the plane specified via the general plane equationx*a + y*b + z*c + d = 0as if casting a shadow from a given light position/direction(lightX, lightY, lightZ, lightW)and store the result indest.Matrix4fshadow(float lightX, float lightY, float lightZ, float lightW, Matrix4f planeTransform)Apply a projection transformation to this matrix that projects onto the plane with the general plane equationy = 0as if casting a shadow from a given light position/direction(lightX, lightY, lightZ, lightW).Matrix4fshadow(float lightX, float lightY, float lightZ, float lightW, Matrix4fc planeTransform, Matrix4f dest)Apply a projection transformation to this matrix that projects onto the plane with the general plane equationy = 0as if casting a shadow from a given light position/direction(lightX, lightY, lightZ, lightW)and store the result indest.Matrix4fshadow(Vector4f light, float a, float b, float c, float d)Apply a projection transformation to this matrix that projects onto the plane specified via the general plane equationx*a + y*b + z*c + d = 0as if casting a shadow from a given light position/directionlight.Matrix4fshadow(Vector4f light, float a, float b, float c, float d, Matrix4f dest)Apply a projection transformation to this matrix that projects onto the plane specified via the general plane equationx*a + y*b + z*c + d = 0as if casting a shadow from a given light position/directionlightand store the result indest.Matrix4fshadow(Vector4f light, Matrix4f planeTransform)Apply a projection transformation to this matrix that projects onto the plane with the general plane equationy = 0as if casting a shadow from a given light position/directionlight.Matrix4fshadow(Vector4f light, Matrix4fc planeTransform, Matrix4f dest)Apply a projection transformation to this matrix that projects onto the plane with the general plane equationy = 0as if casting a shadow from a given light position/directionlightand store the result indest.Matrix4fsub(Matrix4fc subtrahend)Component-wise subtractsubtrahendfromthis.Matrix4fsub(Matrix4fc subtrahend, Matrix4f dest)Component-wise subtractsubtrahendfromthisand store the result indest.Matrix4fsub4x3(Matrix4f subtrahend)Component-wise subtract the upper 4x3 submatrices ofsubtrahendfromthis.Matrix4fsub4x3(Matrix4fc subtrahend, Matrix4f dest)Component-wise subtract the upper 4x3 submatrices ofsubtrahendfromthisand store the result indest.Matrix4fswap(Matrix4f other)Exchange the values ofthismatrix with the givenothermatrix.booleantestAab(float minX, float minY, float minZ, float maxX, float maxY, float maxZ)Test whether the given axis-aligned box is partly or completely within or outside of the frustum defined bythismatrix.booleantestPoint(float x, float y, float z)Test whether the given point(x, y, z)is within the frustum defined bythismatrix.booleantestSphere(float x, float y, float z, float r)Test whether the given sphere is partly or completely within or outside of the frustum defined bythismatrix.Matrix4ftile(int x, int y, int w, int h)This method is equivalent to calling:translate(w-1-2*x, h-1-2*y, 0).scale(w, h, 1)Matrix4ftile(int x, int y, int w, int h, Matrix4f dest)This method is equivalent to calling:translate(w-1-2*x, h-1-2*y, 0, dest).scale(w, h, 1)java.lang.StringtoString()Return a string representation of this matrix.java.lang.StringtoString(java.text.NumberFormat formatter)Return a string representation of this matrix by formatting the matrix elements with the givenNumberFormat.Vector4ftransform(float x, float y, float z, float w, Vector4f dest)Transform/multiply the vector(x, y, z, w)by this matrix and store the result indest.Vector4ftransform(Vector4f v)Transform/multiply the given vector by this matrix and store the result in that vector.Vector4ftransform(Vector4fc v, Vector4f dest)Transform/multiply the given vector by this matrix and store the result indest.Matrix4ftransformAab(float minX, float minY, float minZ, float maxX, float maxY, float maxZ, Vector3f outMin, Vector3f outMax)Transform the axis-aligned box given as the minimum corner(minX, minY, minZ)and maximum corner(maxX, maxY, maxZ)bythisaffinematrix and compute the axis-aligned box of the result whose minimum corner is stored inoutMinand maximum corner stored inoutMax.Matrix4ftransformAab(Vector3fc min, Vector3fc max, Vector3f outMin, Vector3f outMax)Transform the axis-aligned box given as the minimum cornerminand maximum cornermaxbythisaffinematrix and compute the axis-aligned box of the result whose minimum corner is stored inoutMinand maximum corner stored inoutMax.Vector4ftransformAffine(float x, float y, float z, float w, Vector4f dest)Transform/multiply the 4D-vector(x, y, z, w)by assuming thatthismatrix represents anaffinetransformation (i.e.Vector4ftransformAffine(Vector4f v)Transform/multiply the given 4D-vector by assuming thatthismatrix represents anaffinetransformation (i.e.Vector4ftransformAffine(Vector4fc v, Vector4f dest)Transform/multiply the given 4D-vector by assuming thatthismatrix represents anaffinetransformation (i.e.Vector3ftransformDirection(float x, float y, float z, Vector3f dest)Transform/multiply the given 3D-vector(x, y, z), as if it was a 4D-vector with w=0, by this matrix and store the result indest.Vector3ftransformDirection(Vector3f v)Transform/multiply the given 3D-vector, as if it was a 4D-vector with w=0, by this matrix and store the result in that vector.Vector3ftransformDirection(Vector3fc v, Vector3f dest)Transform/multiply the given 3D-vector, as if it was a 4D-vector with w=0, by this matrix and store the result indest.Vector3ftransformPosition(float x, float y, float z, Vector3f dest)Transform/multiply the 3D-vector(x, y, z), as if it was a 4D-vector with w=1, by this matrix and store the result indest.Vector3ftransformPosition(Vector3f v)Transform/multiply the given 3D-vector, as if it was a 4D-vector with w=1, by this matrix and store the result in that vector.Vector3ftransformPosition(Vector3fc v, Vector3f dest)Transform/multiply the given 3D-vector, as if it was a 4D-vector with w=1, by this matrix and store the result indest.Vector3ftransformProject(float x, float y, float z, float w, Vector3f dest)Transform/multiply the vector(x, y, z, w)by this matrix, perform perspective divide and store(x, y, z)of the result indest.Vector4ftransformProject(float x, float y, float z, float w, Vector4f dest)Transform/multiply the vector(x, y, z, w)by this matrix, perform perspective divide and store the result indest.Vector3ftransformProject(float x, float y, float z, Vector3f dest)Transform/multiply the vector(x, y, z)by this matrix, perform perspective divide and store the result indest.Vector3ftransformProject(Vector3f v)Transform/multiply the given vector by this matrix, perform perspective divide and store the result in that vector.Vector3ftransformProject(Vector3fc v, Vector3f dest)Transform/multiply the given vector by this matrix, perform perspective divide and store the result indest.Vector4ftransformProject(Vector4f v)Transform/multiply the given vector by this matrix, perform perspective divide and store the result in that vector.Vector3ftransformProject(Vector4fc v, Vector3f dest)Transform/multiply the given vector by this matrix, perform perspective divide and store the result indest.Vector4ftransformProject(Vector4fc v, Vector4f dest)Transform/multiply the given vector by this matrix, perform perspective divide and store the result indest.Vector4ftransformTranspose(float x, float y, float z, float w, Vector4f dest)Transform/multiply the vector(x, y, z, w)by the transpose of this matrix and store the result indest.Vector4ftransformTranspose(Vector4f v)Transform/multiply the given vector by the transpose of this matrix and store the result in that vector.Vector4ftransformTranspose(Vector4fc v, Vector4f dest)Transform/multiply the given vector by the transpose of this matrix and store the result indest.Matrix4ftranslate(float x, float y, float z)Apply a translation to this matrix by translating by the given number of units in x, y and z.Matrix4ftranslate(float x, float y, float z, Matrix4f dest)Apply a translation to this matrix by translating by the given number of units in x, y and z and store the result indest.Matrix4ftranslate(Vector3fc offset)Apply a translation to this matrix by translating by the given number of units in x, y and z.Matrix4ftranslate(Vector3fc offset, Matrix4f dest)Apply a translation to this matrix by translating by the given number of units in x, y and z and store the result indest.Matrix4ftranslateLocal(float x, float y, float z)Pre-multiply a translation to this matrix by translating by the given number of units in x, y and z.Matrix4ftranslateLocal(float x, float y, float z, Matrix4f dest)Pre-multiply a translation to this matrix by translating by the given number of units in x, y and z and store the result indest.Matrix4ftranslateLocal(Vector3fc offset)Pre-multiply a translation to this matrix by translating by the given number of units in x, y and z.Matrix4ftranslateLocal(Vector3fc offset, Matrix4f dest)Pre-multiply a translation to this matrix by translating by the given number of units in x, y and z and store the result indest.Matrix4ftranslation(float x, float y, float z)Set this matrix to be a simple translation matrix.Matrix4ftranslation(Vector3fc offset)Set this matrix to be a simple translation matrix.Matrix4ftranslationRotate(float tx, float ty, float tz, float qx, float qy, float qz, float qw)Setthismatrix toT * R, whereTis a translation by the given(tx, ty, tz)andRis a rotation - and possibly scaling - transformation specified by the quaternion(qx, qy, qz, qw).Matrix4ftranslationRotate(float tx, float ty, float tz, Quaternionfc quat)Setthismatrix toT * R, whereTis a translation by the given(tx, ty, tz)andRis a rotation - and possibly scaling - transformation specified by the given quaternion.Matrix4ftranslationRotate(Vector3fc translation, Quaternionfc quat)Setthismatrix toT * R, whereTis the giventranslationandRis a rotation transformation specified by the given quaternion.Matrix4ftranslationRotateInvert(float tx, float ty, float tz, float qx, float qy, float qz, float qw)Setthismatrix to(T * R)-1, whereTis a translation by the given(tx, ty, tz)andRis a rotation transformation specified by the quaternion(qx, qy, qz, qw).Matrix4ftranslationRotateInvert(Vector3fc translation, Quaternionfc quat)Setthismatrix to(T * R)-1, whereTis the giventranslationandRis a rotation transformation specified by the given quaternion.Matrix4ftranslationRotateScale(float tx, float ty, float tz, float qx, float qy, float qz, float qw, float scale)Setthismatrix toT * R * S, whereTis a translation by the given(tx, ty, tz),Ris a rotation transformation specified by the quaternion(qx, qy, qz, qw), andSis a scaling transformation which scales all three axes byscale.Matrix4ftranslationRotateScale(float tx, float ty, float tz, float qx, float qy, float qz, float qw, float sx, float sy, float sz)Setthismatrix toT * R * S, whereTis a translation by the given(tx, ty, tz),Ris a rotation transformation specified by the quaternion(qx, qy, qz, qw), andSis a scaling transformation which scales the three axes x, y and z by(sx, sy, sz).Matrix4ftranslationRotateScale(Vector3fc translation, Quaternionfc quat, float scale)Setthismatrix toT * R * S, whereTis the giventranslation,Ris a rotation transformation specified by the given quaternion, andSis a scaling transformation which scales all three axes byscale.Matrix4ftranslationRotateScale(Vector3fc translation, Quaternionfc quat, Vector3fc scale)Setthismatrix toT * R * S, whereTis the giventranslation,Ris a rotation transformation specified by the given quaternion, andSis a scaling transformation which scales the axes byscale.Matrix4ftranslationRotateScaleInvert(float tx, float ty, float tz, float qx, float qy, float qz, float qw, float sx, float sy, float sz)Setthismatrix to(T * R * S)-1, whereTis a translation by the given(tx, ty, tz),Ris a rotation transformation specified by the quaternion(qx, qy, qz, qw), andSis a scaling transformation which scales the three axes x, y and z by(sx, sy, sz).Matrix4ftranslationRotateScaleInvert(Vector3fc translation, Quaternionfc quat, float scale)Setthismatrix to(T * R * S)-1, whereTis the giventranslation,Ris a rotation transformation specified by the given quaternion, andSis a scaling transformation which scales all three axes byscale.Matrix4ftranslationRotateScaleInvert(Vector3fc translation, Quaternionfc quat, Vector3fc scale)Setthismatrix to(T * R * S)-1, whereTis the giventranslation,Ris a rotation transformation specified by the given quaternion, andSis a scaling transformation which scales the axes byscale.Matrix4ftranslationRotateScaleMulAffine(float tx, float ty, float tz, float qx, float qy, float qz, float qw, float sx, float sy, float sz, Matrix4f m)Setthismatrix toT * R * S * M, whereTis a translation by the given(tx, ty, tz),Ris a rotation - and possibly scaling - transformation specified by the quaternion(qx, qy, qz, qw),Sis a scaling transformation which scales the three axes x, y and z by(sx, sy, sz)andMis anaffinematrix.Matrix4ftranslationRotateScaleMulAffine(Vector3fc translation, Quaternionfc quat, Vector3fc scale, Matrix4f m)Setthismatrix toT * R * S * M, whereTis the giventranslation,Ris a rotation - and possibly scaling - transformation specified by the given quaternion,Sis a scaling transformation which scales the axes byscaleandMis anaffinematrix.Matrix4ftranslationRotateTowards(float posX, float posY, float posZ, float dirX, float dirY, float dirZ, float upX, float upY, float upZ)Set this matrix to a model transformation for a right-handed coordinate system, that translates to the given(posX, posY, posZ)and aligns the local-zaxis with(dirX, dirY, dirZ).Matrix4ftranslationRotateTowards(Vector3fc pos, Vector3fc dir, Vector3fc up)Set this matrix to a model transformation for a right-handed coordinate system, that translates to the givenposand aligns the local-zaxis withdir.Matrix4ftranspose()Transpose this matrix.Matrix4ftranspose(Matrix4f dest)Transpose this matrix and store the result indest.Matrix4ftranspose3x3()Transpose only the upper left 3x3 submatrix of this matrix.Matrix3ftranspose3x3(Matrix3f dest)Transpose only the upper left 3x3 submatrix of this matrix and store the result indest.Matrix4ftranspose3x3(Matrix4f dest)Transpose only the upper left 3x3 submatrix of this matrix and store the result indest.Matrix4ftrapezoidCrop(float p0x, float p0y, float p1x, float p1y, float p2x, float p2y, float p3x, float p3y)Setthismatrix to a perspective transformation that maps the trapezoid spanned by the four corner coordinates(p0x, p0y),(p1x, p1y),(p2x, p2y)and(p3x, p3y)to the unit square[(-1, -1)..(+1, +1)].Vector3funproject(float winX, float winY, float winZ, int[] viewport, Vector3f dest)Unproject the given window coordinates(winX, winY, winZ)bythismatrix using the specified viewport.Vector4funproject(float winX, float winY, float winZ, int[] viewport, Vector4f dest)Unproject the given window coordinates(winX, winY, winZ)bythismatrix using the specified viewport.Vector3funproject(Vector3fc winCoords, int[] viewport, Vector3f dest)Unproject the given window coordinateswinCoordsbythismatrix using the specified viewport.Vector4funproject(Vector3fc winCoords, int[] viewport, Vector4f dest)Unproject the given window coordinateswinCoordsbythismatrix using the specified viewport.Vector3funprojectInv(float winX, float winY, float winZ, int[] viewport, Vector3f dest)Unproject the given window coordinates(winX, winY, winZ)bythismatrix using the specified viewport.Vector4funprojectInv(float winX, float winY, float winZ, int[] viewport, Vector4f dest)Unproject the given window coordinates(winX, winY, winZ)bythismatrix using the specified viewport.Vector3funprojectInv(Vector3fc winCoords, int[] viewport, Vector3f dest)Unproject the given window coordinateswinCoordsbythismatrix using the specified viewport.Vector4funprojectInv(Vector3fc winCoords, int[] viewport, Vector4f dest)Unproject the given window coordinateswinCoordsbythismatrix using the specified viewport.Matrix4funprojectInvRay(float winX, float winY, int[] viewport, Vector3f originDest, Vector3f dirDest)Unproject the given 2D window coordinates(winX, winY)bythismatrix using the specified viewport and compute the origin and the direction of the resulting ray which starts at NDCz = -1.0and goes through NDCz = +1.0.Matrix4funprojectInvRay(Vector2fc winCoords, int[] viewport, Vector3f originDest, Vector3f dirDest)Unproject the given window coordinateswinCoordsbythismatrix using the specified viewport and compute the origin and the direction of the resulting ray which starts at NDCz = -1.0and goes through NDCz = +1.0.Matrix4funprojectRay(float winX, float winY, int[] viewport, Vector3f originDest, Vector3f dirDest)Unproject the given 2D window coordinates(winX, winY)bythismatrix using the specified viewport and compute the origin and the direction of the resulting ray which starts at NDCz = -1.0and goes through NDCz = +1.0.Matrix4funprojectRay(Vector2fc winCoords, int[] viewport, Vector3f originDest, Vector3f dirDest)Unproject the given 2D window coordinateswinCoordsbythismatrix using the specified viewport and compute the origin and the direction of the resulting ray which starts at NDCz = -1.0and goes through NDCz = +1.0.Matrix4fwithLookAtUp(float upX, float upY, float upZ)Apply a transformation to this matrix to ensure that the local Y axis (as obtained bypositiveY(Vector3f)) will be coplanar to the plane spanned by the local Z axis (as obtained bypositiveZ(Vector3f)) and the given vector(upX, upY, upZ).Matrix4fwithLookAtUp(float upX, float upY, float upZ, Matrix4f dest)Apply a transformation to this matrix to ensure that the local Y axis (as obtained byMatrix4fc.positiveY(Vector3f)) will be coplanar to the plane spanned by the local Z axis (as obtained byMatrix4fc.positiveZ(Vector3f)) and the given vector(upX, upY, upZ), and store the result indest.Matrix4fwithLookAtUp(Vector3fc up)Apply a transformation to this matrix to ensure that the local Y axis (as obtained bypositiveY(Vector3f)) will be coplanar to the plane spanned by the local Z axis (as obtained bypositiveZ(Vector3f)) and the given vectorup.Matrix4fwithLookAtUp(Vector3fc up, Matrix4f dest)Apply a transformation to this matrix to ensure that the local Y axis (as obtained byMatrix4fc.positiveY(Vector3f)) will be coplanar to the plane spanned by the local Z axis (as obtained byMatrix4fc.positiveZ(Vector3f)) and the given vectorup, and store the result indest.voidwriteExternal(java.io.ObjectOutput out)Matrix4fzero()Set all the values within this matrix to0.
-
-
-
Constructor Detail
-
Matrix4f
public Matrix4f()
-
Matrix4f
public Matrix4f(Matrix3fc mat)
Create a newMatrix4fby setting its uppper left 3x3 submatrix to the values of the givenMatrix3fcand the rest to identity.- Parameters:
mat- theMatrix3fc
-
Matrix4f
public Matrix4f(Matrix4fc mat)
Create a newMatrix4fand make it a copy of the given matrix.- Parameters:
mat- theMatrix4fcto copy the values from
-
Matrix4f
public Matrix4f(Matrix4x3fc mat)
Create a newMatrix4fand set its upper 4x3 submatrix to the given matrixmatand all other elements to identity.- Parameters:
mat- theMatrix4x3fcto copy the values from
-
Matrix4f
public Matrix4f(Matrix4dc mat)
Create a newMatrix4fand make it a copy of the given matrix.Note that due to the given
Matrix4dcstoring values in double-precision and the constructedMatrix4fstoring them in single-precision, there is the possibility of losing precision.- Parameters:
mat- theMatrix4dcto copy the values from
-
Matrix4f
public Matrix4f(float m00, float m01, float m02, float m03, float m10, float m11, float m12, float m13, float m20, float m21, float m22, float m23, float m30, float m31, float m32, float m33)Create a new 4x4 matrix using the supplied float values.The matrix layout will be:
m00, m10, m20, m30
m01, m11, m21, m31
m02, m12, m22, m32
m03, m13, m23, m33- Parameters:
m00- the value of m00m01- the value of m01m02- the value of m02m03- the value of m03m10- the value of m10m11- the value of m11m12- the value of m12m13- the value of m13m20- the value of m20m21- the value of m21m22- the value of m22m23- the value of m23m30- the value of m30m31- the value of m31m32- the value of m32m33- the value of m33
-
Matrix4f
public Matrix4f(java.nio.FloatBuffer buffer)
Create a newMatrix4fby reading its 16 float components from the givenFloatBufferat the buffer's current position.That FloatBuffer is expected to hold the values in column-major order.
The buffer's position will not be changed by this method.
- Parameters:
buffer- theFloatBufferto read the matrix values from
-
-
Method Detail
-
assume
public Matrix4f assume(int properties)
Assume the given properties about this matrix.Use one or multiple of 0,
Matrix4fc.PROPERTY_IDENTITY,Matrix4fc.PROPERTY_TRANSLATION,Matrix4fc.PROPERTY_AFFINE,Matrix4fc.PROPERTY_PERSPECTIVE,Matrix4fc.PROPERTY_ORTHONORMAL.- Parameters:
properties- bitset of the properties to assume about this matrix- Returns:
- this
-
determineProperties
public Matrix4f determineProperties()
Compute and set the matrix properties returned byproperties()based on the current matrix element values.- Returns:
- this
-
properties
public int properties()
Description copied from interface:Matrix4fcReturn the assumed properties of this matrix. This is a bit-combination ofMatrix4fc.PROPERTY_IDENTITY,Matrix4fc.PROPERTY_AFFINE,Matrix4fc.PROPERTY_TRANSLATIONandMatrix4fc.PROPERTY_PERSPECTIVE.- Specified by:
propertiesin interfaceMatrix4fc- Returns:
- the properties of the matrix
-
m00
public float m00()
Description copied from interface:Matrix4fcReturn the value of the matrix element at column 0 and row 0.
-
m01
public float m01()
Description copied from interface:Matrix4fcReturn the value of the matrix element at column 0 and row 1.
-
m02
public float m02()
Description copied from interface:Matrix4fcReturn the value of the matrix element at column 0 and row 2.
-
m03
public float m03()
Description copied from interface:Matrix4fcReturn the value of the matrix element at column 0 and row 3.
-
m10
public float m10()
Description copied from interface:Matrix4fcReturn the value of the matrix element at column 1 and row 0.
-
m11
public float m11()
Description copied from interface:Matrix4fcReturn the value of the matrix element at column 1 and row 1.
-
m12
public float m12()
Description copied from interface:Matrix4fcReturn the value of the matrix element at column 1 and row 2.
-
m13
public float m13()
Description copied from interface:Matrix4fcReturn the value of the matrix element at column 1 and row 3.
-
m20
public float m20()
Description copied from interface:Matrix4fcReturn the value of the matrix element at column 2 and row 0.
-
m21
public float m21()
Description copied from interface:Matrix4fcReturn the value of the matrix element at column 2 and row 1.
-
m22
public float m22()
Description copied from interface:Matrix4fcReturn the value of the matrix element at column 2 and row 2.
-
m23
public float m23()
Description copied from interface:Matrix4fcReturn the value of the matrix element at column 2 and row 3.
-
m30
public float m30()
Description copied from interface:Matrix4fcReturn the value of the matrix element at column 3 and row 0.
-
m31
public float m31()
Description copied from interface:Matrix4fcReturn the value of the matrix element at column 3 and row 1.
-
m32
public float m32()
Description copied from interface:Matrix4fcReturn the value of the matrix element at column 3 and row 2.
-
m33
public float m33()
Description copied from interface:Matrix4fcReturn the value of the matrix element at column 3 and row 3.
-
m00
public Matrix4f m00(float m00)
Set the value of the matrix element at column 0 and row 0.- Parameters:
m00- the new value- Returns:
- this
-
m01
public Matrix4f m01(float m01)
Set the value of the matrix element at column 0 and row 1.- Parameters:
m01- the new value- Returns:
- this
-
m02
public Matrix4f m02(float m02)
Set the value of the matrix element at column 0 and row 2.- Parameters:
m02- the new value- Returns:
- this
-
m03
public Matrix4f m03(float m03)
Set the value of the matrix element at column 0 and row 3.- Parameters:
m03- the new value- Returns:
- this
-
m10
public Matrix4f m10(float m10)
Set the value of the matrix element at column 1 and row 0.- Parameters:
m10- the new value- Returns:
- this
-
m11
public Matrix4f m11(float m11)
Set the value of the matrix element at column 1 and row 1.- Parameters:
m11- the new value- Returns:
- this
-
m12
public Matrix4f m12(float m12)
Set the value of the matrix element at column 1 and row 2.- Parameters:
m12- the new value- Returns:
- this
-
m13
public Matrix4f m13(float m13)
Set the value of the matrix element at column 1 and row 3.- Parameters:
m13- the new value- Returns:
- this
-
m20
public Matrix4f m20(float m20)
Set the value of the matrix element at column 2 and row 0.- Parameters:
m20- the new value- Returns:
- this
-
m21
public Matrix4f m21(float m21)
Set the value of the matrix element at column 2 and row 1.- Parameters:
m21- the new value- Returns:
- this
-
m22
public Matrix4f m22(float m22)
Set the value of the matrix element at column 2 and row 2.- Parameters:
m22- the new value- Returns:
- this
-
m23
public Matrix4f m23(float m23)
Set the value of the matrix element at column 2 and row 3.- Parameters:
m23- the new value- Returns:
- this
-
m30
public Matrix4f m30(float m30)
Set the value of the matrix element at column 3 and row 0.- Parameters:
m30- the new value- Returns:
- this
-
m31
public Matrix4f m31(float m31)
Set the value of the matrix element at column 3 and row 1.- Parameters:
m31- the new value- Returns:
- this
-
m32
public Matrix4f m32(float m32)
Set the value of the matrix element at column 3 and row 2.- Parameters:
m32- the new value- Returns:
- this
-
m33
public Matrix4f m33(float m33)
Set the value of the matrix element at column 3 and row 3.- Parameters:
m33- the new value- Returns:
- this
-
identity
public Matrix4f identity()
Reset this matrix to the identity.Please note that if a call to
identity()is immediately followed by a call to:translate,rotate,scale,perspective,frustum,ortho,ortho2D,lookAt,lookAlong, or any of their overloads, then the call toidentity()can be omitted and the subsequent call replaced with:translation,rotation,scaling,setPerspective,setFrustum,setOrtho,setOrtho2D,setLookAt,setLookAlong, or any of their overloads.- Returns:
- this
-
set
public Matrix4f set(Matrix4fc m)
Store the values of the given matrixmintothismatrix.- Parameters:
m- the matrix to copy the values from- Returns:
- this
- See Also:
Matrix4f(Matrix4fc),get(Matrix4f)
-
setTransposed
public Matrix4f setTransposed(Matrix4fc m)
Store the values of the transpose of the given matrixmintothismatrix.- Parameters:
m- the matrix to copy the transposed values from- Returns:
- this
-
set
public Matrix4f set(Matrix4x3fc m)
Store the values of the given matrixmintothismatrix and set the other matrix elements to identity.- Parameters:
m- the matrix to copy the values from- Returns:
- this
- See Also:
Matrix4f(Matrix4x3fc)
-
set
public Matrix4f set(Matrix4dc m)
Store the values of the given matrixmintothismatrix.Note that due to the given matrix
mstoring values in double-precision andthismatrix storing them in single-precision, there is the possibility to lose precision.- Parameters:
m- the matrix to copy the values from- Returns:
- this
- See Also:
Matrix4f(Matrix4dc),get(Matrix4d)
-
set
public Matrix4f set(Matrix3fc mat)
- Parameters:
mat- theMatrix3fc- Returns:
- this
- See Also:
Matrix4f(Matrix3fc)
-
set
public Matrix4f set(AxisAngle4f axisAngle)
Set this matrix to be equivalent to the rotation specified by the givenAxisAngle4f.- Parameters:
axisAngle- theAxisAngle4f- Returns:
- this
-
set
public Matrix4f set(AxisAngle4d axisAngle)
Set this matrix to be equivalent to the rotation specified by the givenAxisAngle4d.- Parameters:
axisAngle- theAxisAngle4d- Returns:
- this
-
set
public Matrix4f set(Quaternionfc q)
Set this matrix to be equivalent to the rotation specified by the givenQuaternionfc.This method is equivalent to calling:
rotation(q)Reference: http://www.euclideanspace.com/
- Parameters:
q- theQuaternionfc- Returns:
- this
- See Also:
rotation(Quaternionfc)
-
set
public Matrix4f set(Quaterniondc q)
Set this matrix to be equivalent to the rotation specified by the givenQuaterniondc.Reference: http://www.euclideanspace.com/
- Parameters:
q- theQuaterniondc- Returns:
- this
-
set3x3
public Matrix4f set3x3(Matrix4f mat)
Set the upper left 3x3 submatrix of thisMatrix4fto that of the givenMatrix4fand don't change the other elements.- Parameters:
mat- theMatrix4f- Returns:
- this
-
set4x3
public Matrix4f set4x3(Matrix4x3fc mat)
Set the upper 4x3 submatrix of thisMatrix4fto the givenMatrix4x3fcand don't change the other elements.- Parameters:
mat- theMatrix4x3fc- Returns:
- this
- See Also:
Matrix4x3f.get(Matrix4f)
-
set4x3
public Matrix4f set4x3(Matrix4f mat)
Set the upper 4x3 submatrix of thisMatrix4fto the upper 4x3 submatrix of the givenMatrix4fand don't change the other elements.- Parameters:
mat- theMatrix4f- Returns:
- this
-
mul
public Matrix4f mul(Matrix4fc right)
Multiply this matrix by the suppliedrightmatrix and store the result inthis.If
Misthismatrix andRtherightmatrix, then the new matrix will beM * R. So when transforming a vectorvwith the new matrix by usingM * R * v, the transformation of the right matrix will be applied first!- Parameters:
right- the right operand of the matrix multiplication- Returns:
- this
-
mul
public Matrix4f mul(Matrix4fc right, Matrix4f dest)
Description copied from interface:Matrix4fcMultiply this matrix by the suppliedrightmatrix and store the result indest.If
Misthismatrix andRtherightmatrix, then the new matrix will beM * R. So when transforming a vectorvwith the new matrix by usingM * R * v, the transformation of the right matrix will be applied first!
-
mul0
public Matrix4f mul0(Matrix4fc right)
Multiply this matrix by the suppliedrightmatrix.If
Misthismatrix andRtherightmatrix, then the new matrix will beM * R. So when transforming a vectorvwith the new matrix by usingM * R * v, the transformation of the right matrix will be applied first!This method neither assumes nor checks for any matrix properties of
thisorrightand will always perform a complete 4x4 matrix multiplication. This method should only be used whenever the multiplied matrices do not have any properties for which there are optimized multiplication methods available.- Parameters:
right- the right operand of the matrix multiplication- Returns:
- this
-
mul0
public Matrix4f mul0(Matrix4fc right, Matrix4f dest)
Description copied from interface:Matrix4fcMultiply this matrix by the suppliedrightmatrix and store the result indest.If
Misthismatrix andRtherightmatrix, then the new matrix will beM * R. So when transforming a vectorvwith the new matrix by usingM * R * v, the transformation of the right matrix will be applied first!This method neither assumes nor checks for any matrix properties of
thisorrightand will always perform a complete 4x4 matrix multiplication. This method should only be used whenever the multiplied matrices do not have any properties for which there are optimized multiplication methods available.
-
mul
public Matrix4f mul(float r00, float r01, float r02, float r03, float r10, float r11, float r12, float r13, float r20, float r21, float r22, float r23, float r30, float r31, float r32, float r33)
Multiply this matrix by the matrix with the supplied elements.If
Misthismatrix andRtherightmatrix whose elements are supplied via the parameters, then the new matrix will beM * R. So when transforming a vectorvwith the new matrix by usingM * R * v, the transformation of the right matrix will be applied first!- Parameters:
r00- the m00 element of the right matrixr01- the m01 element of the right matrixr02- the m02 element of the right matrixr03- the m03 element of the right matrixr10- the m10 element of the right matrixr11- the m11 element of the right matrixr12- the m12 element of the right matrixr13- the m13 element of the right matrixr20- the m20 element of the right matrixr21- the m21 element of the right matrixr22- the m22 element of the right matrixr23- the m23 element of the right matrixr30- the m30 element of the right matrixr31- the m31 element of the right matrixr32- the m32 element of the right matrixr33- the m33 element of the right matrix- Returns:
- this
-
mul
public Matrix4f mul(float r00, float r01, float r02, float r03, float r10, float r11, float r12, float r13, float r20, float r21, float r22, float r23, float r30, float r31, float r32, float r33, Matrix4f dest)
Description copied from interface:Matrix4fcMultiply this matrix by the matrix with the supplied elements and store the result indest.If
Misthismatrix andRtherightmatrix whose elements are supplied via the parameters, then the new matrix will beM * R. So when transforming a vectorvwith the new matrix by usingM * R * v, the transformation of the right matrix will be applied first!- Specified by:
mulin interfaceMatrix4fc- Parameters:
r00- the m00 element of the right matrixr01- the m01 element of the right matrixr02- the m02 element of the right matrixr03- the m03 element of the right matrixr10- the m10 element of the right matrixr11- the m11 element of the right matrixr12- the m12 element of the right matrixr13- the m13 element of the right matrixr20- the m20 element of the right matrixr21- the m21 element of the right matrixr22- the m22 element of the right matrixr23- the m23 element of the right matrixr30- the m30 element of the right matrixr31- the m31 element of the right matrixr32- the m32 element of the right matrixr33- the m33 element of the right matrixdest- the destination matrix, which will hold the result- Returns:
- dest
-
mul3x3
public Matrix4f mul3x3(float r00, float r01, float r02, float r10, float r11, float r12, float r20, float r21, float r22)
Multiply this matrix by the 3x3 matrix with the supplied elements expanded to a 4x4 matrix with all other matrix elements set to identity.If
Misthismatrix andRtherightmatrix whose elements are supplied via the parameters, then the new matrix will beM * R. So when transforming a vectorvwith the new matrix by usingM * R * v, the transformation of the right matrix will be applied first!- Parameters:
r00- the m00 element of the right matrixr01- the m01 element of the right matrixr02- the m02 element of the right matrixr10- the m10 element of the right matrixr11- the m11 element of the right matrixr12- the m12 element of the right matrixr20- the m20 element of the right matrixr21- the m21 element of the right matrixr22- the m22 element of the right matrix- Returns:
- this
-
mul3x3
public Matrix4f mul3x3(float r00, float r01, float r02, float r10, float r11, float r12, float r20, float r21, float r22, Matrix4f dest)
Description copied from interface:Matrix4fcMultiply this matrix by the 3x3 matrix with the supplied elements expanded to a 4x4 matrix with all other matrix elements set to identity, and store the result indest.If
Misthismatrix andRtherightmatrix whose elements are supplied via the parameters, then the new matrix will beM * R. So when transforming a vectorvwith the new matrix by usingM * R * v, the transformation of the right matrix will be applied first!- Specified by:
mul3x3in interfaceMatrix4fc- Parameters:
r00- the m00 element of the right matrixr01- the m01 element of the right matrixr02- the m02 element of the right matrixr10- the m10 element of the right matrixr11- the m11 element of the right matrixr12- the m12 element of the right matrixr20- the m20 element of the right matrixr21- the m21 element of the right matrixr22- the m22 element of the right matrixdest- the destination matrix, which will hold the result- Returns:
- this
-
mulLocal
public Matrix4f mulLocal(Matrix4fc left)
Pre-multiply this matrix by the suppliedleftmatrix and store the result inthis.If
Misthismatrix andLtheleftmatrix, then the new matrix will beL * M. So when transforming a vectorvwith the new matrix by usingL * M * v, the transformation ofthismatrix will be applied first!- Parameters:
left- the left operand of the matrix multiplication- Returns:
- this
-
mulLocal
public Matrix4f mulLocal(Matrix4fc left, Matrix4f dest)
Description copied from interface:Matrix4fcPre-multiply this matrix by the suppliedleftmatrix and store the result indest.If
Misthismatrix andLtheleftmatrix, then the new matrix will beL * M. So when transforming a vectorvwith the new matrix by usingL * M * v, the transformation ofthismatrix will be applied first!
-
mulLocalAffine
public Matrix4f mulLocalAffine(Matrix4fc left)
Pre-multiply this matrix by the suppliedleftmatrix, both of which are assumed to beaffine, and store the result inthis.This method assumes that
thismatrix and the givenleftmatrix both represent anaffinetransformation (i.e. their last rows are equal to(0, 0, 0, 1)) and can be used to speed up matrix multiplication if the matrices only represent affine transformations, such as translation, rotation, scaling and shearing (in any combination).This method will not modify either the last row of
thisor the last row ofleft.If
Misthismatrix andLtheleftmatrix, then the new matrix will beL * M. So when transforming a vectorvwith the new matrix by usingL * M * v, the transformation ofthismatrix will be applied first!- Parameters:
left- the left operand of the matrix multiplication (the last row is assumed to be(0, 0, 0, 1))- Returns:
- this
-
mulLocalAffine
public Matrix4f mulLocalAffine(Matrix4fc left, Matrix4f dest)
Description copied from interface:Matrix4fcPre-multiply this matrix by the suppliedleftmatrix, both of which are assumed to beaffine, and store the result indest.This method assumes that
thismatrix and the givenleftmatrix both represent anaffinetransformation (i.e. their last rows are equal to(0, 0, 0, 1)) and can be used to speed up matrix multiplication if the matrices only represent affine transformations, such as translation, rotation, scaling and shearing (in any combination).This method will not modify either the last row of
thisor the last row ofleft.If
Misthismatrix andLtheleftmatrix, then the new matrix will beL * M. So when transforming a vectorvwith the new matrix by usingL * M * v, the transformation ofthismatrix will be applied first!- Specified by:
mulLocalAffinein interfaceMatrix4fc- Parameters:
left- the left operand of the matrix multiplication (the last row is assumed to be(0, 0, 0, 1))dest- the destination matrix, which will hold the result- Returns:
- dest
-
mul
public Matrix4f mul(Matrix4x3fc right)
Multiply this matrix by the suppliedrightmatrix and store the result inthis.If
Misthismatrix andRtherightmatrix, then the new matrix will beM * R. So when transforming a vectorvwith the new matrix by usingM * R * v, the transformation of the right matrix will be applied first!- Parameters:
right- the right operand of the matrix multiplication- Returns:
- this
-
mul
public Matrix4f mul(Matrix4x3fc right, Matrix4f dest)
Description copied from interface:Matrix4fcMultiply this matrix by the suppliedrightmatrix and store the result indest.The last row of the
rightmatrix is assumed to be(0, 0, 0, 1).If
Misthismatrix andRtherightmatrix, then the new matrix will beM * R. So when transforming a vectorvwith the new matrix by usingM * R * v, the transformation of the right matrix will be applied first!
-
mul
public Matrix4f mul(Matrix3x2fc right)
Multiply this matrix by the suppliedrightmatrix and store the result inthis.If
Misthismatrix andRtherightmatrix, then the new matrix will beM * R. So when transforming a vectorvwith the new matrix by usingM * R * v, the transformation of the right matrix will be applied first!- Parameters:
right- the right operand of the matrix multiplication- Returns:
- this
-
mul
public Matrix4f mul(Matrix3x2fc right, Matrix4f dest)
Description copied from interface:Matrix4fcMultiply this matrix by the suppliedrightmatrix and store the result indest.If
Misthismatrix andRtherightmatrix, then the new matrix will beM * R. So when transforming a vectorvwith the new matrix by usingM * R * v, the transformation of the right matrix will be applied first!
-
mulPerspectiveAffine
public Matrix4f mulPerspectiveAffine(Matrix4fc view)
Multiplythissymmetric perspective projection matrix by the suppliedaffineviewmatrix.If
Pisthismatrix andVtheviewmatrix, then the new matrix will beP * V. So when transforming a vectorvwith the new matrix by usingP * V * v, the transformation of theviewmatrix will be applied first!- Parameters:
view- theaffinematrix to multiplythissymmetric perspective projection matrix by- Returns:
- this
-
mulPerspectiveAffine
public Matrix4f mulPerspectiveAffine(Matrix4fc view, Matrix4f dest)
Description copied from interface:Matrix4fcMultiplythissymmetric perspective projection matrix by the suppliedaffineviewmatrix and store the result indest.If
Pisthismatrix andVtheviewmatrix, then the new matrix will beP * V. So when transforming a vectorvwith the new matrix by usingP * V * v, the transformation of theviewmatrix will be applied first!- Specified by:
mulPerspectiveAffinein interfaceMatrix4fc- Parameters:
view- theaffinematrix to multiplythissymmetric perspective projection matrix bydest- the destination matrix, which will hold the result- Returns:
- dest
-
mulPerspectiveAffine
public Matrix4f mulPerspectiveAffine(Matrix4x3fc view)
Multiplythissymmetric perspective projection matrix by the suppliedviewmatrix.If
Pisthismatrix andVtheviewmatrix, then the new matrix will beP * V. So when transforming a vectorvwith the new matrix by usingP * V * v, the transformation of theviewmatrix will be applied first!- Parameters:
view- the matrix to multiplythissymmetric perspective projection matrix by- Returns:
- this
-
mulPerspectiveAffine
public Matrix4f mulPerspectiveAffine(Matrix4x3fc view, Matrix4f dest)
Description copied from interface:Matrix4fcMultiplythissymmetric perspective projection matrix by the suppliedviewmatrix and store the result indest.If
Pisthismatrix andVtheviewmatrix, then the new matrix will beP * V. So when transforming a vectorvwith the new matrix by usingP * V * v, the transformation of theviewmatrix will be applied first!- Specified by:
mulPerspectiveAffinein interfaceMatrix4fc- Parameters:
view- the matrix to multiplythissymmetric perspective projection matrix bydest- the destination matrix, which will hold the result- Returns:
- dest
-
mulAffineR
public Matrix4f mulAffineR(Matrix4fc right)
Multiply this matrix by the suppliedrightmatrix, which is assumed to beaffine, and store the result inthis.This method assumes that the given
rightmatrix represents anaffinetransformation (i.e. its last row is equal to(0, 0, 0, 1)) and can be used to speed up matrix multiplication if the matrix only represents affine transformations, such as translation, rotation, scaling and shearing (in any combination).If
Misthismatrix andRtherightmatrix, then the new matrix will beM * R. So when transforming a vectorvwith the new matrix by usingM * R * v, the transformation of the right matrix will be applied first!- Parameters:
right- the right operand of the matrix multiplication (the last row is assumed to be(0, 0, 0, 1))- Returns:
- this
-
mulAffineR
public Matrix4f mulAffineR(Matrix4fc right, Matrix4f dest)
Description copied from interface:Matrix4fcMultiply this matrix by the suppliedrightmatrix, which is assumed to beaffine, and store the result indest.This method assumes that the given
rightmatrix represents anaffinetransformation (i.e. its last row is equal to(0, 0, 0, 1)) and can be used to speed up matrix multiplication if the matrix only represents affine transformations, such as translation, rotation, scaling and shearing (in any combination).If
Misthismatrix andRtherightmatrix, then the new matrix will beM * R. So when transforming a vectorvwith the new matrix by usingM * R * v, the transformation of the right matrix will be applied first!- Specified by:
mulAffineRin interfaceMatrix4fc- Parameters:
right- the right operand of the matrix multiplication (the last row is assumed to be(0, 0, 0, 1))dest- the destination matrix, which will hold the result- Returns:
- dest
-
mulAffine
public Matrix4f mulAffine(Matrix4fc right)
Multiply this matrix by the suppliedrightmatrix, both of which are assumed to beaffine, and store the result inthis.This method assumes that
thismatrix and the givenrightmatrix both represent anaffinetransformation (i.e. their last rows are equal to(0, 0, 0, 1)) and can be used to speed up matrix multiplication if the matrices only represent affine transformations, such as translation, rotation, scaling and shearing (in any combination).This method will not modify either the last row of
thisor the last row ofright.If
Misthismatrix andRtherightmatrix, then the new matrix will beM * R. So when transforming a vectorvwith the new matrix by usingM * R * v, the transformation of the right matrix will be applied first!- Parameters:
right- the right operand of the matrix multiplication (the last row is assumed to be(0, 0, 0, 1))- Returns:
- this
-
mulAffine
public Matrix4f mulAffine(Matrix4fc right, Matrix4f dest)
Description copied from interface:Matrix4fcMultiply this matrix by the suppliedrightmatrix, both of which are assumed to beaffine, and store the result indest.This method assumes that
thismatrix and the givenrightmatrix both represent anaffinetransformation (i.e. their last rows are equal to(0, 0, 0, 1)) and can be used to speed up matrix multiplication if the matrices only represent affine transformations, such as translation, rotation, scaling and shearing (in any combination).This method will not modify either the last row of
thisor the last row ofright.If
Misthismatrix andRtherightmatrix, then the new matrix will beM * R. So when transforming a vectorvwith the new matrix by usingM * R * v, the transformation of the right matrix will be applied first!
-
mulTranslationAffine
public Matrix4f mulTranslationAffine(Matrix4fc right, Matrix4f dest)
Description copied from interface:Matrix4fcMultiply this matrix, which is assumed to only contain a translation, by the suppliedrightmatrix, which is assumed to beaffine, and store the result indest.This method assumes that
thismatrix only contains a translation, and that the givenrightmatrix represents anaffinetransformation (i.e. its last row is equal to(0, 0, 0, 1)).This method will not modify either the last row of
thisor the last row ofright.If
Misthismatrix andRtherightmatrix, then the new matrix will beM * R. So when transforming a vectorvwith the new matrix by usingM * R * v, the transformation of the right matrix will be applied first!- Specified by:
mulTranslationAffinein interfaceMatrix4fc- Parameters:
right- the right operand of the matrix multiplication (the last row is assumed to be(0, 0, 0, 1))dest- the destination matrix, which will hold the result- Returns:
- dest
-
mulOrthoAffine
public Matrix4f mulOrthoAffine(Matrix4fc view)
Multiplythisorthographic projection matrix by the suppliedaffineviewmatrix.If
Misthismatrix andVtheviewmatrix, then the new matrix will beM * V. So when transforming a vectorvwith the new matrix by usingM * V * v, the transformation of theviewmatrix will be applied first!- Parameters:
view- the affine matrix which to multiplythiswith- Returns:
- this
-
mulOrthoAffine
public Matrix4f mulOrthoAffine(Matrix4fc view, Matrix4f dest)
Description copied from interface:Matrix4fcMultiplythisorthographic projection matrix by the suppliedaffineviewmatrix and store the result indest.If
Misthismatrix andVtheviewmatrix, then the new matrix will beM * V. So when transforming a vectorvwith the new matrix by usingM * V * v, the transformation of theviewmatrix will be applied first!- Specified by:
mulOrthoAffinein interfaceMatrix4fc- Parameters:
view- the affine matrix which to multiplythiswithdest- the destination matrix, which will hold the result- Returns:
- dest
-
fma4x3
public Matrix4f fma4x3(Matrix4fc other, float otherFactor)
Component-wise add the upper 4x3 submatrices ofthisandotherby first multiplying each component ofother's 4x3 submatrix byotherFactorand adding that result tothis.The matrix
otherwill not be changed.- Parameters:
other- the other matrixotherFactor- the factor to multiply each of the other matrix's 4x3 components- Returns:
- this
-
fma4x3
public Matrix4f fma4x3(Matrix4fc other, float otherFactor, Matrix4f dest)
Description copied from interface:Matrix4fcComponent-wise add the upper 4x3 submatrices ofthisandotherby first multiplying each component ofother's 4x3 submatrix byotherFactor, adding that tothisand storing the final result indest.The other components of
destwill be set to the ones ofthis.The matrices
thisandotherwill not be changed.
-
add
public Matrix4f add(Matrix4fc other)
Component-wise addthisandother.- Parameters:
other- the other addend- Returns:
- this
-
add
public Matrix4f add(Matrix4fc other, Matrix4f dest)
Description copied from interface:Matrix4fcComponent-wise addthisandotherand store the result indest.
-
sub
public Matrix4f sub(Matrix4fc subtrahend)
Component-wise subtractsubtrahendfromthis.- Parameters:
subtrahend- the subtrahend- Returns:
- this
-
sub
public Matrix4f sub(Matrix4fc subtrahend, Matrix4f dest)
Description copied from interface:Matrix4fcComponent-wise subtractsubtrahendfromthisand store the result indest.
-
mulComponentWise
public Matrix4f mulComponentWise(Matrix4fc other)
Component-wise multiplythisbyother.- Parameters:
other- the other matrix- Returns:
- this
-
mulComponentWise
public Matrix4f mulComponentWise(Matrix4fc other, Matrix4f dest)
Description copied from interface:Matrix4fcComponent-wise multiplythisbyotherand store the result indest.- Specified by:
mulComponentWisein interfaceMatrix4fc- Parameters:
other- the other matrixdest- will hold the result- Returns:
- dest
-
add4x3
public Matrix4f add4x3(Matrix4fc other)
Component-wise add the upper 4x3 submatrices ofthisandother.- Parameters:
other- the other addend- Returns:
- this
-
add4x3
public Matrix4f add4x3(Matrix4fc other, Matrix4f dest)
Description copied from interface:Matrix4fcComponent-wise add the upper 4x3 submatrices ofthisandotherand store the result indest.The other components of
destwill be set to the ones ofthis.
-
sub4x3
public Matrix4f sub4x3(Matrix4f subtrahend)
Component-wise subtract the upper 4x3 submatrices ofsubtrahendfromthis.- Parameters:
subtrahend- the subtrahend- Returns:
- this
-
sub4x3
public Matrix4f sub4x3(Matrix4fc subtrahend, Matrix4f dest)
Description copied from interface:Matrix4fcComponent-wise subtract the upper 4x3 submatrices ofsubtrahendfromthisand store the result indest.The other components of
destwill be set to the ones ofthis.
-
mul4x3ComponentWise
public Matrix4f mul4x3ComponentWise(Matrix4fc other)
Component-wise multiply the upper 4x3 submatrices ofthisbyother.- Parameters:
other- the other matrix- Returns:
- this
-
mul4x3ComponentWise
public Matrix4f mul4x3ComponentWise(Matrix4fc other, Matrix4f dest)
Description copied from interface:Matrix4fcComponent-wise multiply the upper 4x3 submatrices ofthisbyotherand store the result indest.The other components of
destwill be set to the ones ofthis.- Specified by:
mul4x3ComponentWisein interfaceMatrix4fc- Parameters:
other- the other matrixdest- will hold the result- Returns:
- dest
-
set
public Matrix4f set(float m00, float m01, float m02, float m03, float m10, float m11, float m12, float m13, float m20, float m21, float m22, float m23, float m30, float m31, float m32, float m33)
Set the values within this matrix to the supplied float values. The matrix will look like this:
m00, m10, m20, m30
m01, m11, m21, m31
m02, m12, m22, m32
m03, m13, m23, m33- Parameters:
m00- the new value of m00m01- the new value of m01m02- the new value of m02m03- the new value of m03m10- the new value of m10m11- the new value of m11m12- the new value of m12m13- the new value of m13m20- the new value of m20m21- the new value of m21m22- the new value of m22m23- the new value of m23m30- the new value of m30m31- the new value of m31m32- the new value of m32m33- the new value of m33- Returns:
- this
-
set
public Matrix4f set(float[] m, int off)
Set the values in the matrix using a float array that contains the matrix elements in column-major order.The results will look like this:
0, 4, 8, 12
1, 5, 9, 13
2, 6, 10, 14
3, 7, 11, 15- Parameters:
m- the array to read the matrix values fromoff- the offset into the array- Returns:
- this
- See Also:
set(float[])
-
set
public Matrix4f set(float[] m)
Set the values in the matrix using a float array that contains the matrix elements in column-major order.The results will look like this:
0, 4, 8, 12
1, 5, 9, 13
2, 6, 10, 14
3, 7, 11, 15- Parameters:
m- the array to read the matrix values from- Returns:
- this
- See Also:
set(float[], int)
-
setTransposed
public Matrix4f setTransposed(float[] m, int off)
Set the values in the matrix using a float array that contains the matrix elements in row-major order.The results will look like this:
0, 1, 2, 3
4, 5, 6, 7
8, 9, 10, 11
12, 13, 14, 15- Parameters:
m- the array to read the matrix values fromoff- the offset into the array- Returns:
- this
- See Also:
setTransposed(float[])
-
setTransposed
public Matrix4f setTransposed(float[] m)
Set the values in the matrix using a float array that contains the matrix elements in row-major order.The results will look like this:
0, 1, 2, 3
4, 5, 6, 7
8, 9, 10, 11
12, 13, 14, 15- Parameters:
m- the array to read the matrix values from- Returns:
- this
- See Also:
setTransposed(float[], int)
-
set
public Matrix4f set(java.nio.FloatBuffer buffer)
Set the values of this matrix by reading 16 float values from the givenFloatBufferin column-major order, starting at its current position.The FloatBuffer is expected to contain the values in column-major order.
The position of the FloatBuffer will not be changed by this method.
- Parameters:
buffer- the FloatBuffer to read the matrix values from in column-major order- Returns:
- this
-
set
public Matrix4f set(java.nio.ByteBuffer buffer)
Set the values of this matrix by reading 16 float values from the givenByteBufferin column-major order, starting at its current position.The ByteBuffer is expected to contain the values in column-major order.
The position of the ByteBuffer will not be changed by this method.
- Parameters:
buffer- the ByteBuffer to read the matrix values from in column-major order- Returns:
- this
-
set
public Matrix4f set(int index, java.nio.FloatBuffer buffer)
Set the values of this matrix by reading 16 float values from the givenFloatBufferin column-major order, starting at the specified absolute buffer position/index.The FloatBuffer is expected to contain the values in column-major order.
The position of the FloatBuffer will not be changed by this method.
- Parameters:
index- the absolute position into the FloatBufferbuffer- the FloatBuffer to read the matrix values from in column-major order- Returns:
- this
-
set
public Matrix4f set(int index, java.nio.ByteBuffer buffer)
Set the values of this matrix by reading 16 float values from the givenByteBufferin column-major order, starting at the specified absolute buffer position/index.The ByteBuffer is expected to contain the values in column-major order.
The position of the ByteBuffer will not be changed by this method.
- Parameters:
index- the absolute position into the ByteBufferbuffer- the ByteBuffer to read the matrix values from in column-major order- Returns:
- this
-
setTransposed
public Matrix4f setTransposed(java.nio.FloatBuffer buffer)
Set the values of this matrix by reading 16 float values from the givenFloatBufferin row-major order, starting at its current position.The FloatBuffer is expected to contain the values in row-major order.
The position of the FloatBuffer will not be changed by this method.
- Parameters:
buffer- the FloatBuffer to read the matrix values from in row-major order- Returns:
- this
-
setTransposed
public Matrix4f setTransposed(java.nio.ByteBuffer buffer)
Set the values of this matrix by reading 16 float values from the givenByteBufferin row-major order, starting at its current position.The ByteBuffer is expected to contain the values in row-major order.
The position of the ByteBuffer will not be changed by this method.
- Parameters:
buffer- the ByteBuffer to read the matrix values from in row-major order- Returns:
- this
-
setFromAddress
public Matrix4f setFromAddress(long address)
Set the values of this matrix by reading 16 float values from off-heap memory in column-major order, starting at the given address.This method will throw an
UnsupportedOperationExceptionwhen JOML is used with `-Djoml.nounsafe`.This method is unsafe as it can result in a crash of the JVM process when the specified address range does not belong to this process.
- Parameters:
address- the off-heap memory address to read the matrix values from in column-major order- Returns:
- this
-
setTransposedFromAddress
public Matrix4f setTransposedFromAddress(long address)
Set the values of this matrix by reading 16 float values from off-heap memory in row-major order, starting at the given address.This method will throw an
UnsupportedOperationExceptionwhen JOML is used with `-Djoml.nounsafe`.This method is unsafe as it can result in a crash of the JVM process when the specified address range does not belong to this process.
- Parameters:
address- the off-heap memory address to read the matrix values from in row-major order- Returns:
- this
-
set
public Matrix4f set(Vector4fc col0, Vector4fc col1, Vector4fc col2, Vector4fc col3)
Set the four columns of this matrix to the supplied vectors, respectively.- Parameters:
col0- the first columncol1- the second columncol2- the third columncol3- the fourth column- Returns:
- this
-
determinant
public float determinant()
Description copied from interface:Matrix4fcReturn the determinant of this matrix.If
thismatrix represents anaffinetransformation, such as translation, rotation, scaling and shearing, and thus its last row is equal to(0, 0, 0, 1), thenMatrix4fc.determinantAffine()can be used instead of this method.- Specified by:
determinantin interfaceMatrix4fc- Returns:
- the determinant
- See Also:
Matrix4fc.determinantAffine()
-
determinant3x3
public float determinant3x3()
Description copied from interface:Matrix4fcReturn the determinant of the upper left 3x3 submatrix of this matrix.- Specified by:
determinant3x3in interfaceMatrix4fc- Returns:
- the determinant
-
determinantAffine
public float determinantAffine()
Description copied from interface:Matrix4fcReturn the determinant of this matrix by assuming that it represents anaffinetransformation and thus its last row is equal to(0, 0, 0, 1).- Specified by:
determinantAffinein interfaceMatrix4fc- Returns:
- the determinant
-
invert
public Matrix4f invert(Matrix4f dest)
Description copied from interface:Matrix4fcInvert this matrix and write the result intodest.If
thismatrix represents anaffinetransformation, such as translation, rotation, scaling and shearing, and thus its last row is equal to(0, 0, 0, 1), thenMatrix4fc.invertAffine(Matrix4f)can be used instead of this method.- Specified by:
invertin interfaceMatrix4fc- Parameters:
dest- will hold the result- Returns:
- dest
- See Also:
Matrix4fc.invertAffine(Matrix4f)
-
invert
public Matrix4f invert()
Invert this matrix.If
thismatrix represents anaffinetransformation, such as translation, rotation, scaling and shearing, and thus its last row is equal to(0, 0, 0, 1), theninvertAffine()can be used instead of this method.- Returns:
- this
- See Also:
invertAffine()
-
invertPerspective
public Matrix4f invertPerspective(Matrix4f dest)
Ifthisis a perspective projection matrix obtained via one of theperspective()methods or viasetPerspective(), that is, ifthisis a symmetrical perspective frustum transformation, then this method builds the inverse ofthisand stores it into the givendest.This method can be used to quickly obtain the inverse of a perspective projection matrix when being obtained via
perspective().- Specified by:
invertPerspectivein interfaceMatrix4fc- Parameters:
dest- will hold the inverse ofthis- Returns:
- dest
- See Also:
perspective(float, float, float, float)
-
invertPerspective
public Matrix4f invertPerspective()
Ifthisis a perspective projection matrix obtained via one of theperspective()methods or viasetPerspective(), that is, ifthisis a symmetrical perspective frustum transformation, then this method builds the inverse ofthis.This method can be used to quickly obtain the inverse of a perspective projection matrix when being obtained via
perspective().- Returns:
- this
- See Also:
perspective(float, float, float, float)
-
invertFrustum
public Matrix4f invertFrustum(Matrix4f dest)
Ifthisis an arbitrary perspective projection matrix obtained via one of thefrustum()methods or viasetFrustum(), then this method builds the inverse ofthisand stores it into the givendest.This method can be used to quickly obtain the inverse of a perspective projection matrix.
If this matrix represents a symmetric perspective frustum transformation, as obtained via
perspective(), theninvertPerspective(Matrix4f)should be used instead.- Specified by:
invertFrustumin interfaceMatrix4fc- Parameters:
dest- will hold the inverse ofthis- Returns:
- dest
- See Also:
frustum(float, float, float, float, float, float),invertPerspective(Matrix4f)
-
invertFrustum
public Matrix4f invertFrustum()
Ifthisis an arbitrary perspective projection matrix obtained via one of thefrustum()methods or viasetFrustum(), then this method builds the inverse ofthis.This method can be used to quickly obtain the inverse of a perspective projection matrix.
If this matrix represents a symmetric perspective frustum transformation, as obtained via
perspective(), theninvertPerspective()should be used instead.- Returns:
- this
- See Also:
frustum(float, float, float, float, float, float),invertPerspective()
-
invertOrtho
public Matrix4f invertOrtho(Matrix4f dest)
Description copied from interface:Matrix4fcInvertthisorthographic projection matrix and store the result into the givendest.This method can be used to quickly obtain the inverse of an orthographic projection matrix.
- Specified by:
invertOrthoin interfaceMatrix4fc- Parameters:
dest- will hold the inverse ofthis- Returns:
- dest
-
invertOrtho
public Matrix4f invertOrtho()
Invertthisorthographic projection matrix.This method can be used to quickly obtain the inverse of an orthographic projection matrix.
- Returns:
- this
-
invertPerspectiveView
public Matrix4f invertPerspectiveView(Matrix4fc view, Matrix4f dest)
Ifthisis a perspective projection matrix obtained via one of theperspective()methods or viasetPerspective(), that is, ifthisis a symmetrical perspective frustum transformation and the givenviewmatrix isaffineand has unit scaling (for example by being obtained vialookAt()), then this method builds the inverse ofthis * viewand stores it into the givendest.This method can be used to quickly obtain the inverse of the combination of the view and projection matrices, when both were obtained via the common methods
perspective()andlookAt()or other methods, that build affine matrices, such astranslateandrotate(float, float, float, float), except forscale().For the special cases of the matrices
thisandviewmentioned above, this method is equivalent to the following code:dest.set(this).mul(view).invert();
- Specified by:
invertPerspectiveViewin interfaceMatrix4fc- Parameters:
view- the view transformation (must beaffineand have unit scaling)dest- will hold the inverse ofthis * view- Returns:
- dest
-
invertPerspectiveView
public Matrix4f invertPerspectiveView(Matrix4x3fc view, Matrix4f dest)
Ifthisis a perspective projection matrix obtained via one of theperspective()methods or viasetPerspective(), that is, ifthisis a symmetrical perspective frustum transformation and the givenviewmatrix has unit scaling, then this method builds the inverse ofthis * viewand stores it into the givendest.This method can be used to quickly obtain the inverse of the combination of the view and projection matrices, when both were obtained via the common methods
perspective()andlookAt()or other methods, that build affine matrices, such astranslateandrotate(float, float, float, float), except forscale().For the special cases of the matrices
thisandviewmentioned above, this method is equivalent to the following code:dest.set(this).mul(view).invert();
- Specified by:
invertPerspectiveViewin interfaceMatrix4fc- Parameters:
view- the view transformation (must have unit scaling)dest- will hold the inverse ofthis * view- Returns:
- dest
-
invertAffine
public Matrix4f invertAffine(Matrix4f dest)
Description copied from interface:Matrix4fcInvert this matrix by assuming that it is anaffinetransformation (i.e. its last row is equal to(0, 0, 0, 1)) and write the result intodest.- Specified by:
invertAffinein interfaceMatrix4fc- Parameters:
dest- will hold the result- Returns:
- dest
-
invertAffine
public Matrix4f invertAffine()
Invert this matrix by assuming that it is anaffinetransformation (i.e. its last row is equal to(0, 0, 0, 1)).- Returns:
- this
-
transpose
public Matrix4f transpose(Matrix4f dest)
Description copied from interface:Matrix4fcTranspose this matrix and store the result indest.
-
transpose3x3
public Matrix4f transpose3x3()
Transpose only the upper left 3x3 submatrix of this matrix.All other matrix elements are left unchanged.
- Returns:
- this
-
transpose3x3
public Matrix4f transpose3x3(Matrix4f dest)
Description copied from interface:Matrix4fcTranspose only the upper left 3x3 submatrix of this matrix and store the result indest.All other matrix elements are left unchanged.
- Specified by:
transpose3x3in interfaceMatrix4fc- Parameters:
dest- will hold the result- Returns:
- dest
-
transpose3x3
public Matrix3f transpose3x3(Matrix3f dest)
Description copied from interface:Matrix4fcTranspose only the upper left 3x3 submatrix of this matrix and store the result indest.- Specified by:
transpose3x3in interfaceMatrix4fc- Parameters:
dest- will hold the result- Returns:
- dest
-
transpose
public Matrix4f transpose()
Transpose this matrix.- Returns:
- this
-
translation
public Matrix4f translation(float x, float y, float z)
Set this matrix to be a simple translation matrix.The resulting matrix can be multiplied against another transformation matrix to obtain an additional translation.
In order to post-multiply a translation transformation directly to a matrix, use
translate()instead.- Parameters:
x- the offset to translate in xy- the offset to translate in yz- the offset to translate in z- Returns:
- this
- See Also:
translate(float, float, float)
-
translation
public Matrix4f translation(Vector3fc offset)
Set this matrix to be a simple translation matrix.The resulting matrix can be multiplied against another transformation matrix to obtain an additional translation.
In order to post-multiply a translation transformation directly to a matrix, use
translate()instead.- Parameters:
offset- the offsets in x, y and z to translate- Returns:
- this
- See Also:
translate(float, float, float)
-
setTranslation
public Matrix4f setTranslation(float x, float y, float z)
Set only the translation components(m30, m31, m32)of this matrix to the given values(x, y, z).Note that this will only work properly for orthogonal matrices (without any perspective).
To build a translation matrix instead, use
translation(float, float, float). To apply a translation, usetranslate(float, float, float).- Parameters:
x- the offset to translate in xy- the offset to translate in yz- the offset to translate in z- Returns:
- this
- See Also:
translation(float, float, float),translate(float, float, float)
-
setTranslation
public Matrix4f setTranslation(Vector3fc xyz)
Set only the translation components(m30, m31, m32)of this matrix to the values(xyz.x, xyz.y, xyz.z).Note that this will only work properly for orthogonal matrices (without any perspective).
To build a translation matrix instead, use
translation(Vector3fc). To apply a translation, usetranslate(Vector3fc).- Parameters:
xyz- the units to translate in(x, y, z)- Returns:
- this
- See Also:
translation(Vector3fc),translate(Vector3fc)
-
getTranslation
public Vector3f getTranslation(Vector3f dest)
Description copied from interface:Matrix4fcGet only the translation components(m30, m31, m32)of this matrix and store them in the given vectorxyz.- Specified by:
getTranslationin interfaceMatrix4fc- Parameters:
dest- will hold the translation components of this matrix- Returns:
- dest
-
getScale
public Vector3f getScale(Vector3f dest)
Description copied from interface:Matrix4fcGet the scaling factors ofthismatrix for the three base axes.
-
toString
public java.lang.String toString()
Return a string representation of this matrix.This method creates a new
DecimalFormaton every invocation with the format string "0.000E0;-".- Overrides:
toStringin classjava.lang.Object- Returns:
- the string representation
-
toString
public java.lang.String toString(java.text.NumberFormat formatter)
Return a string representation of this matrix by formatting the matrix elements with the givenNumberFormat.- Parameters:
formatter- theNumberFormatused to format the matrix values with- Returns:
- the string representation
-
get
public Matrix4f get(Matrix4f dest)
Get the current values ofthismatrix and store them intodest.This is the reverse method of
set(Matrix4fc)and allows to obtain intermediate calculation results when chaining multiple transformations.- Specified by:
getin interfaceMatrix4fc- Parameters:
dest- the destination matrix- Returns:
- the passed in destination
- See Also:
set(Matrix4fc)
-
get4x3
public Matrix4x3f get4x3(Matrix4x3f dest)
Description copied from interface:Matrix4fcGet the current values of the upper 4x3 submatrix ofthismatrix and store them intodest.- Specified by:
get4x3in interfaceMatrix4fc- Parameters:
dest- the destination matrix- Returns:
- the passed in destination
- See Also:
Matrix4x3f.set(Matrix4fc)
-
get
public Matrix4d get(Matrix4d dest)
Get the current values ofthismatrix and store them intodest.This is the reverse method of
set(Matrix4dc)and allows to obtain intermediate calculation results when chaining multiple transformations.- Specified by:
getin interfaceMatrix4fc- Parameters:
dest- the destination matrix- Returns:
- the passed in destination
- See Also:
set(Matrix4dc)
-
get3x3
public Matrix3f get3x3(Matrix3f dest)
Description copied from interface:Matrix4fcGet the current values of the upper left 3x3 submatrix ofthismatrix and store them intodest.- Specified by:
get3x3in interfaceMatrix4fc- Parameters:
dest- the destination matrix- Returns:
- the passed in destination
- See Also:
Matrix3f.set(Matrix4fc)
-
get3x3
public Matrix3d get3x3(Matrix3d dest)
Description copied from interface:Matrix4fcGet the current values of the upper left 3x3 submatrix ofthismatrix and store them intodest.- Specified by:
get3x3in interfaceMatrix4fc- Parameters:
dest- the destination matrix- Returns:
- the passed in destination
- See Also:
Matrix3d.set(Matrix4fc)
-
getRotation
public AxisAngle4f getRotation(AxisAngle4f dest)
Description copied from interface:Matrix4fcGet the rotational component ofthismatrix and store the represented rotation into the givenAxisAngle4f.- Specified by:
getRotationin interfaceMatrix4fc- Parameters:
dest- the destinationAxisAngle4f- Returns:
- the passed in destination
- See Also:
AxisAngle4f.set(Matrix4fc)
-
getRotation
public AxisAngle4d getRotation(AxisAngle4d dest)
Description copied from interface:Matrix4fcGet the rotational component ofthismatrix and store the represented rotation into the givenAxisAngle4d.- Specified by:
getRotationin interfaceMatrix4fc- Parameters:
dest- the destinationAxisAngle4d- Returns:
- the passed in destination
- See Also:
AxisAngle4f.set(Matrix4fc)
-
getUnnormalizedRotation
public Quaternionf getUnnormalizedRotation(Quaternionf dest)
Description copied from interface:Matrix4fcGet the current values ofthismatrix and store the represented rotation into the givenQuaternionf.This method assumes that the first three column vectors of the upper left 3x3 submatrix are not normalized and thus allows to ignore any additional scaling factor that is applied to the matrix.
- Specified by:
getUnnormalizedRotationin interfaceMatrix4fc- Parameters:
dest- the destinationQuaternionf- Returns:
- the passed in destination
- See Also:
Quaternionf.setFromUnnormalized(Matrix4fc)
-
getNormalizedRotation
public Quaternionf getNormalizedRotation(Quaternionf dest)
Description copied from interface:Matrix4fcGet the current values ofthismatrix and store the represented rotation into the givenQuaternionf.This method assumes that the first three column vectors of the upper left 3x3 submatrix are normalized.
- Specified by:
getNormalizedRotationin interfaceMatrix4fc- Parameters:
dest- the destinationQuaternionf- Returns:
- the passed in destination
- See Also:
Quaternionf.setFromNormalized(Matrix4fc)
-
getUnnormalizedRotation
public Quaterniond getUnnormalizedRotation(Quaterniond dest)
Description copied from interface:Matrix4fcGet the current values ofthismatrix and store the represented rotation into the givenQuaterniond.This method assumes that the first three column vectors of the upper left 3x3 submatrix are not normalized and thus allows to ignore any additional scaling factor that is applied to the matrix.
- Specified by:
getUnnormalizedRotationin interfaceMatrix4fc- Parameters:
dest- the destinationQuaterniond- Returns:
- the passed in destination
- See Also:
Quaterniond.setFromUnnormalized(Matrix4fc)
-
getNormalizedRotation
public Quaterniond getNormalizedRotation(Quaterniond dest)
Description copied from interface:Matrix4fcGet the current values ofthismatrix and store the represented rotation into the givenQuaterniond.This method assumes that the first three column vectors of the upper left 3x3 submatrix are normalized.
- Specified by:
getNormalizedRotationin interfaceMatrix4fc- Parameters:
dest- the destinationQuaterniond- Returns:
- the passed in destination
- See Also:
Quaterniond.setFromNormalized(Matrix4fc)
-
get
public java.nio.FloatBuffer get(java.nio.FloatBuffer buffer)
Description copied from interface:Matrix4fcStore this matrix in column-major order into the suppliedFloatBufferat the current bufferposition.This method will not increment the position of the given FloatBuffer.
In order to specify the offset into the FloatBuffer at which the matrix is stored, use
Matrix4fc.get(int, FloatBuffer), taking the absolute position as parameter.- Specified by:
getin interfaceMatrix4fc- Parameters:
buffer- will receive the values of this matrix in column-major order at its current position- Returns:
- the passed in buffer
- See Also:
Matrix4fc.get(int, FloatBuffer)
-
get
public java.nio.FloatBuffer get(int index, java.nio.FloatBuffer buffer)Description copied from interface:Matrix4fcStore this matrix in column-major order into the suppliedFloatBufferstarting at the specified absolute buffer position/index.This method will not increment the position of the given FloatBuffer.
-
get
public java.nio.ByteBuffer get(java.nio.ByteBuffer buffer)
Description copied from interface:Matrix4fcStore this matrix in column-major order into the suppliedByteBufferat the current bufferposition.This method will not increment the position of the given ByteBuffer.
In order to specify the offset into the ByteBuffer at which the matrix is stored, use
Matrix4fc.get(int, ByteBuffer), taking the absolute position as parameter.- Specified by:
getin interfaceMatrix4fc- Parameters:
buffer- will receive the values of this matrix in column-major order at its current position- Returns:
- the passed in buffer
- See Also:
Matrix4fc.get(int, ByteBuffer)
-
get
public java.nio.ByteBuffer get(int index, java.nio.ByteBuffer buffer)Description copied from interface:Matrix4fcStore this matrix in column-major order into the suppliedByteBufferstarting at the specified absolute buffer position/index.This method will not increment the position of the given ByteBuffer.
-
get4x3
public java.nio.FloatBuffer get4x3(java.nio.FloatBuffer buffer)
Description copied from interface:Matrix4fcStore the upper 4x3 submatrix in column-major order into the suppliedFloatBufferat the current bufferposition.This method will not increment the position of the given FloatBuffer.
In order to specify the offset into the FloatBuffer at which the matrix is stored, use
Matrix4fc.get(int, FloatBuffer), taking the absolute position as parameter.- Specified by:
get4x3in interfaceMatrix4fc- Parameters:
buffer- will receive the values of the upper 4x3 submatrix in column-major order at its current position- Returns:
- the passed in buffer
- See Also:
Matrix4fc.get(int, FloatBuffer)
-
get4x3
public java.nio.FloatBuffer get4x3(int index, java.nio.FloatBuffer buffer)Description copied from interface:Matrix4fcStore the upper 4x3 submatrix in column-major order into the suppliedFloatBufferstarting at the specified absolute buffer position/index.This method will not increment the position of the given FloatBuffer.
-
get4x3
public java.nio.ByteBuffer get4x3(java.nio.ByteBuffer buffer)
Description copied from interface:Matrix4fcStore the upper 4x3 submatrix in column-major order into the suppliedByteBufferat the current bufferposition.This method will not increment the position of the given ByteBuffer.
In order to specify the offset into the ByteBuffer at which the matrix is stored, use
Matrix4fc.get(int, ByteBuffer), taking the absolute position as parameter.- Specified by:
get4x3in interfaceMatrix4fc- Parameters:
buffer- will receive the values of the upper 4x3 submatrix in column-major order at its current position- Returns:
- the passed in buffer
- See Also:
Matrix4fc.get(int, ByteBuffer)
-
get4x3
public java.nio.ByteBuffer get4x3(int index, java.nio.ByteBuffer buffer)Description copied from interface:Matrix4fcStore the upper 4x3 submatrix in column-major order into the suppliedByteBufferstarting at the specified absolute buffer position/index.This method will not increment the position of the given ByteBuffer.
-
get3x4
public java.nio.FloatBuffer get3x4(java.nio.FloatBuffer buffer)
Description copied from interface:Matrix4fcStore the left 3x4 submatrix in column-major order into the suppliedFloatBufferat the current bufferposition.This method will not increment the position of the given FloatBuffer.
In order to specify the offset into the FloatBuffer at which the matrix is stored, use
Matrix4fc.get3x4(int, FloatBuffer), taking the absolute position as parameter.- Specified by:
get3x4in interfaceMatrix4fc- Parameters:
buffer- will receive the values of the left 3x4 submatrix in column-major order at its current position- Returns:
- the passed in buffer
- See Also:
Matrix4fc.get3x4(int, FloatBuffer)
-
get3x4
public java.nio.FloatBuffer get3x4(int index, java.nio.FloatBuffer buffer)Description copied from interface:Matrix4fcStore the left 3x4 submatrix in column-major order into the suppliedFloatBufferstarting at the specified absolute buffer position/index.This method will not increment the position of the given FloatBuffer.
-
get3x4
public java.nio.ByteBuffer get3x4(java.nio.ByteBuffer buffer)
Description copied from interface:Matrix4fcStore the left 3x4 submatrix in column-major order into the suppliedByteBufferat the current bufferposition.This method will not increment the position of the given ByteBuffer.
In order to specify the offset into the ByteBuffer at which the matrix is stored, use
Matrix4fc.get3x4(int, ByteBuffer), taking the absolute position as parameter.- Specified by:
get3x4in interfaceMatrix4fc- Parameters:
buffer- will receive the values of the left 3x4 submatrix in column-major order at its current position- Returns:
- the passed in buffer
- See Also:
Matrix4fc.get3x4(int, ByteBuffer)
-
get3x4
public java.nio.ByteBuffer get3x4(int index, java.nio.ByteBuffer buffer)Description copied from interface:Matrix4fcStore the left 3x4 submatrix in column-major order into the suppliedByteBufferstarting at the specified absolute buffer position/index.This method will not increment the position of the given ByteBuffer.
-
getTransposed
public java.nio.FloatBuffer getTransposed(java.nio.FloatBuffer buffer)
Description copied from interface:Matrix4fcStore the transpose of this matrix in column-major order into the suppliedFloatBufferat the current bufferposition.This method will not increment the position of the given FloatBuffer.
In order to specify the offset into the FloatBuffer at which the matrix is stored, use
Matrix4fc.getTransposed(int, FloatBuffer), taking the absolute position as parameter.- Specified by:
getTransposedin interfaceMatrix4fc- Parameters:
buffer- will receive the values of this matrix in column-major order at its current position- Returns:
- the passed in buffer
- See Also:
Matrix4fc.getTransposed(int, FloatBuffer)
-
getTransposed
public java.nio.FloatBuffer getTransposed(int index, java.nio.FloatBuffer buffer)Description copied from interface:Matrix4fcStore the transpose of this matrix in column-major order into the suppliedFloatBufferstarting at the specified absolute buffer position/index.This method will not increment the position of the given FloatBuffer.
- Specified by:
getTransposedin interfaceMatrix4fc- Parameters:
index- the absolute position into the FloatBufferbuffer- will receive the values of this matrix in column-major order- Returns:
- the passed in buffer
-
getTransposed
public java.nio.ByteBuffer getTransposed(java.nio.ByteBuffer buffer)
Description copied from interface:Matrix4fcStore the transpose of this matrix in column-major order into the suppliedByteBufferat the current bufferposition.This method will not increment the position of the given ByteBuffer.
In order to specify the offset into the ByteBuffer at which the matrix is stored, use
Matrix4fc.getTransposed(int, ByteBuffer), taking the absolute position as parameter.- Specified by:
getTransposedin interfaceMatrix4fc- Parameters:
buffer- will receive the values of this matrix in column-major order at its current position- Returns:
- the passed in buffer
- See Also:
Matrix4fc.getTransposed(int, ByteBuffer)
-
getTransposed
public java.nio.ByteBuffer getTransposed(int index, java.nio.ByteBuffer buffer)Description copied from interface:Matrix4fcStore the transpose of this matrix in column-major order into the suppliedByteBufferstarting at the specified absolute buffer position/index.This method will not increment the position of the given ByteBuffer.
- Specified by:
getTransposedin interfaceMatrix4fc- Parameters:
index- the absolute position into the ByteBufferbuffer- will receive the values of this matrix in column-major order- Returns:
- the passed in buffer
-
get4x3Transposed
public java.nio.FloatBuffer get4x3Transposed(java.nio.FloatBuffer buffer)
Description copied from interface:Matrix4fcStore the upper 4x3 submatrix ofthismatrix in row-major order into the suppliedFloatBufferat the current bufferposition.This method will not increment the position of the given FloatBuffer.
In order to specify the offset into the FloatBuffer at which the matrix is stored, use
Matrix4fc.get4x3Transposed(int, FloatBuffer), taking the absolute position as parameter.- Specified by:
get4x3Transposedin interfaceMatrix4fc- Parameters:
buffer- will receive the values of the upper 4x3 submatrix in row-major order at its current position- Returns:
- the passed in buffer
- See Also:
Matrix4fc.get4x3Transposed(int, FloatBuffer)
-
get4x3Transposed
public java.nio.FloatBuffer get4x3Transposed(int index, java.nio.FloatBuffer buffer)Description copied from interface:Matrix4fcStore the upper 4x3 submatrix ofthismatrix in row-major order into the suppliedFloatBufferstarting at the specified absolute buffer position/index.This method will not increment the position of the given FloatBuffer.
- Specified by:
get4x3Transposedin interfaceMatrix4fc- Parameters:
index- the absolute position into the FloatBufferbuffer- will receive the values of the upper 4x3 submatrix in row-major order- Returns:
- the passed in buffer
-
get4x3Transposed
public java.nio.ByteBuffer get4x3Transposed(java.nio.ByteBuffer buffer)
Description copied from interface:Matrix4fcStore the upper 4x3 submatrix ofthismatrix in row-major order into the suppliedByteBufferat the current bufferposition.This method will not increment the position of the given ByteBuffer.
In order to specify the offset into the ByteBuffer at which the matrix is stored, use
Matrix4fc.get4x3Transposed(int, ByteBuffer), taking the absolute position as parameter.- Specified by:
get4x3Transposedin interfaceMatrix4fc- Parameters:
buffer- will receive the values of the upper 4x3 submatrix in row-major order at its current position- Returns:
- the passed in buffer
- See Also:
Matrix4fc.get4x3Transposed(int, ByteBuffer)
-
get4x3Transposed
public java.nio.ByteBuffer get4x3Transposed(int index, java.nio.ByteBuffer buffer)Description copied from interface:Matrix4fcStore the upper 4x3 submatrix ofthismatrix in row-major order into the suppliedByteBufferstarting at the specified absolute buffer position/index.This method will not increment the position of the given ByteBuffer.
- Specified by:
get4x3Transposedin interfaceMatrix4fc- Parameters:
index- the absolute position into the ByteBufferbuffer- will receive the values of the upper 4x3 submatrix in row-major order- Returns:
- the passed in buffer
-
getToAddress
public Matrix4fc getToAddress(long address)
Description copied from interface:Matrix4fcStore this matrix in column-major order at the given off-heap address.This method will throw an
UnsupportedOperationExceptionwhen JOML is used with `-Djoml.nounsafe`.This method is unsafe as it can result in a crash of the JVM process when the specified address range does not belong to this process.
- Specified by:
getToAddressin interfaceMatrix4fc- Parameters:
address- the off-heap address where to store this matrix- Returns:
- this
-
get
public float[] get(float[] arr, int offset)Description copied from interface:Matrix4fcStore this matrix into the supplied float array in column-major order at the given offset.
-
get
public float[] get(float[] arr)
Description copied from interface:Matrix4fcStore this matrix into the supplied float array in column-major order.In order to specify an explicit offset into the array, use the method
Matrix4fc.get(float[], int).- Specified by:
getin interfaceMatrix4fc- Parameters:
arr- the array to write the matrix values into- Returns:
- the passed in array
- See Also:
Matrix4fc.get(float[], int)
-
zero
public Matrix4f zero()
Set all the values within this matrix to0.- Returns:
- this
-
scaling
public Matrix4f scaling(float factor)
Set this matrix to be a simple scale matrix, which scales all axes uniformly by the given factor.The resulting matrix can be multiplied against another transformation matrix to obtain an additional scaling.
In order to post-multiply a scaling transformation directly to a matrix, use
scale()instead.- Parameters:
factor- the scale factor in x, y and z- Returns:
- this
- See Also:
scale(float)
-
scaling
public Matrix4f scaling(float x, float y, float z)
Set this matrix to be a simple scale matrix.The resulting matrix can be multiplied against another transformation matrix to obtain an additional scaling.
In order to post-multiply a scaling transformation directly to a matrix, use
scale()instead.- Parameters:
x- the scale in xy- the scale in yz- the scale in z- Returns:
- this
- See Also:
scale(float, float, float)
-
scaling
public Matrix4f scaling(Vector3fc xyz)
Set this matrix to be a simple scale matrix which scales the base axes byxyz.x,xyz.yandxyz.zrespectively.The resulting matrix can be multiplied against another transformation matrix to obtain an additional scaling.
In order to post-multiply a scaling transformation directly to a matrix use
scale()instead.- Parameters:
xyz- the scale in x, y and z respectively- Returns:
- this
- See Also:
scale(Vector3fc)
-
rotation
public Matrix4f rotation(float angle, Vector3fc axis)
Set this matrix to a rotation matrix which rotates the given radians about a given axis.The axis described by the
axisvector needs to be a unit vector.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
The resulting matrix can be multiplied against another transformation matrix to obtain an additional rotation.
In order to post-multiply a rotation transformation directly to a matrix, use
rotate()instead.- Parameters:
angle- the angle in radiansaxis- the axis to rotate about (needs to benormalized)- Returns:
- this
- See Also:
rotate(float, Vector3fc)
-
rotation
public Matrix4f rotation(AxisAngle4f axisAngle)
Set this matrix to a rotation transformation using the givenAxisAngle4f.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
The resulting matrix can be multiplied against another transformation matrix to obtain an additional rotation.
In order to apply the rotation transformation to an existing transformation, use
rotate()instead.Reference: http://en.wikipedia.org
- Parameters:
axisAngle- theAxisAngle4f(needs to benormalized)- Returns:
- this
- See Also:
rotate(AxisAngle4f)
-
rotation
public Matrix4f rotation(float angle, float x, float y, float z)
Set this matrix to a rotation matrix which rotates the given radians about a given axis.The axis described by the three components needs to be a unit vector.
When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
The resulting matrix can be multiplied against another transformation matrix to obtain an additional rotation.
In order to apply the rotation transformation to an existing transformation, use
rotate()instead.Reference: http://en.wikipedia.org
- Parameters:
angle- the angle in radiansx- the x-component of the rotation axisy- the y-component of the rotation axisz- the z-component of the rotation axis- Returns:
- this
- See Also:
rotate(float, float, float, float)
-
rotationX
public Matrix4f rotationX(float ang)
Set this matrix to a rotation transformation about the X axis.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
Reference: http://en.wikipedia.org
- Parameters:
ang- the angle in radians- Returns:
- this
-
rotationY
public Matrix4f rotationY(float ang)
Set this matrix to a rotation transformation about the Y axis.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
Reference: http://en.wikipedia.org
- Parameters:
ang- the angle in radians- Returns:
- this
-
rotationZ
public Matrix4f rotationZ(float ang)
Set this matrix to a rotation transformation about the Z axis.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
Reference: http://en.wikipedia.org
- Parameters:
ang- the angle in radians- Returns:
- this
-
rotationTowardsXY
public Matrix4f rotationTowardsXY(float dirX, float dirY)
Set this matrix to a rotation transformation about the Z axis to align the local+Xtowards(dirX, dirY).The vector
(dirX, dirY)must be a unit vector.- Parameters:
dirX- the x component of the normalized directiondirY- the y component of the normalized direction- Returns:
- this
-
rotationXYZ
public Matrix4f rotationXYZ(float angleX, float angleY, float angleZ)
Set this matrix to a rotation ofangleXradians about the X axis, followed by a rotation ofangleYradians about the Y axis and followed by a rotation ofangleZradians about the Z axis.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
This method is equivalent to calling:
rotationX(angleX).rotateY(angleY).rotateZ(angleZ)- Parameters:
angleX- the angle to rotate about XangleY- the angle to rotate about YangleZ- the angle to rotate about Z- Returns:
- this
-
rotationZYX
public Matrix4f rotationZYX(float angleZ, float angleY, float angleX)
Set this matrix to a rotation ofangleZradians about the Z axis, followed by a rotation ofangleYradians about the Y axis and followed by a rotation ofangleXradians about the X axis.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
This method is equivalent to calling:
rotationZ(angleZ).rotateY(angleY).rotateX(angleX)- Parameters:
angleZ- the angle to rotate about ZangleY- the angle to rotate about YangleX- the angle to rotate about X- Returns:
- this
-
rotationYXZ
public Matrix4f rotationYXZ(float angleY, float angleX, float angleZ)
Set this matrix to a rotation ofangleYradians about the Y axis, followed by a rotation ofangleXradians about the X axis and followed by a rotation ofangleZradians about the Z axis.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
This method is equivalent to calling:
rotationY(angleY).rotateX(angleX).rotateZ(angleZ)- Parameters:
angleY- the angle to rotate about YangleX- the angle to rotate about XangleZ- the angle to rotate about Z- Returns:
- this
-
setRotationXYZ
public Matrix4f setRotationXYZ(float angleX, float angleY, float angleZ)
Set only the upper left 3x3 submatrix of this matrix to a rotation ofangleXradians about the X axis, followed by a rotation ofangleYradians about the Y axis and followed by a rotation ofangleZradians about the Z axis.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
- Parameters:
angleX- the angle to rotate about XangleY- the angle to rotate about YangleZ- the angle to rotate about Z- Returns:
- this
-
setRotationZYX
public Matrix4f setRotationZYX(float angleZ, float angleY, float angleX)
Set only the upper left 3x3 submatrix of this matrix to a rotation ofangleZradians about the Z axis, followed by a rotation ofangleYradians about the Y axis and followed by a rotation ofangleXradians about the X axis.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
- Parameters:
angleZ- the angle to rotate about ZangleY- the angle to rotate about YangleX- the angle to rotate about X- Returns:
- this
-
setRotationYXZ
public Matrix4f setRotationYXZ(float angleY, float angleX, float angleZ)
Set only the upper left 3x3 submatrix of this matrix to a rotation ofangleYradians about the Y axis, followed by a rotation ofangleXradians about the X axis and followed by a rotation ofangleZradians about the Z axis.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
- Parameters:
angleY- the angle to rotate about YangleX- the angle to rotate about XangleZ- the angle to rotate about Z- Returns:
- this
-
rotation
public Matrix4f rotation(Quaternionfc quat)
Set this matrix to the rotation transformation of the givenQuaternionfc.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
The resulting matrix can be multiplied against another transformation matrix to obtain an additional rotation.
In order to apply the rotation transformation to an existing transformation, use
rotate()instead.Reference: http://en.wikipedia.org
- Parameters:
quat- theQuaternionfc- Returns:
- this
- See Also:
rotate(Quaternionfc)
-
translationRotateScale
public Matrix4f translationRotateScale(float tx, float ty, float tz, float qx, float qy, float qz, float qw, float sx, float sy, float sz)
Setthismatrix toT * R * S, whereTis a translation by the given(tx, ty, tz),Ris a rotation transformation specified by the quaternion(qx, qy, qz, qw), andSis a scaling transformation which scales the three axes x, y and z by(sx, sy, sz).When transforming a vector by the resulting matrix the scaling transformation will be applied first, then the rotation and at last the translation.
When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
This method is equivalent to calling:
translation(tx, ty, tz).rotate(quat).scale(sx, sy, sz)- Parameters:
tx- the number of units by which to translate the x-componentty- the number of units by which to translate the y-componenttz- the number of units by which to translate the z-componentqx- the x-coordinate of the vector part of the quaternionqy- the y-coordinate of the vector part of the quaternionqz- the z-coordinate of the vector part of the quaternionqw- the scalar part of the quaternionsx- the scaling factor for the x-axissy- the scaling factor for the y-axissz- the scaling factor for the z-axis- Returns:
- this
- See Also:
translation(float, float, float),rotate(Quaternionfc),scale(float, float, float)
-
translationRotateScale
public Matrix4f translationRotateScale(Vector3fc translation, Quaternionfc quat, Vector3fc scale)
Setthismatrix toT * R * S, whereTis the giventranslation,Ris a rotation transformation specified by the given quaternion, andSis a scaling transformation which scales the axes byscale.When transforming a vector by the resulting matrix the scaling transformation will be applied first, then the rotation and at last the translation.
When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
This method is equivalent to calling:
translation(translation).rotate(quat).scale(scale)- Parameters:
translation- the translationquat- the quaternion representing a rotationscale- the scaling factors- Returns:
- this
- See Also:
translation(Vector3fc),rotate(Quaternionfc),scale(Vector3fc)
-
translationRotateScale
public Matrix4f translationRotateScale(float tx, float ty, float tz, float qx, float qy, float qz, float qw, float scale)
Setthismatrix toT * R * S, whereTis a translation by the given(tx, ty, tz),Ris a rotation transformation specified by the quaternion(qx, qy, qz, qw), andSis a scaling transformation which scales all three axes byscale.When transforming a vector by the resulting matrix the scaling transformation will be applied first, then the rotation and at last the translation.
When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
This method is equivalent to calling:
translation(tx, ty, tz).rotate(quat).scale(scale)- Parameters:
tx- the number of units by which to translate the x-componentty- the number of units by which to translate the y-componenttz- the number of units by which to translate the z-componentqx- the x-coordinate of the vector part of the quaternionqy- the y-coordinate of the vector part of the quaternionqz- the z-coordinate of the vector part of the quaternionqw- the scalar part of the quaternionscale- the scaling factor for all three axes- Returns:
- this
- See Also:
translation(float, float, float),rotate(Quaternionfc),scale(float)
-
translationRotateScale
public Matrix4f translationRotateScale(Vector3fc translation, Quaternionfc quat, float scale)
Setthismatrix toT * R * S, whereTis the giventranslation,Ris a rotation transformation specified by the given quaternion, andSis a scaling transformation which scales all three axes byscale.When transforming a vector by the resulting matrix the scaling transformation will be applied first, then the rotation and at last the translation.
When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
This method is equivalent to calling:
translation(translation).rotate(quat).scale(scale)- Parameters:
translation- the translationquat- the quaternion representing a rotationscale- the scaling factors- Returns:
- this
- See Also:
translation(Vector3fc),rotate(Quaternionfc),scale(float)
-
translationRotateScaleInvert
public Matrix4f translationRotateScaleInvert(float tx, float ty, float tz, float qx, float qy, float qz, float qw, float sx, float sy, float sz)
Setthismatrix to(T * R * S)-1, whereTis a translation by the given(tx, ty, tz),Ris a rotation transformation specified by the quaternion(qx, qy, qz, qw), andSis a scaling transformation which scales the three axes x, y and z by(sx, sy, sz).This method is equivalent to calling:
translationRotateScale(...).invert()- Parameters:
tx- the number of units by which to translate the x-componentty- the number of units by which to translate the y-componenttz- the number of units by which to translate the z-componentqx- the x-coordinate of the vector part of the quaternionqy- the y-coordinate of the vector part of the quaternionqz- the z-coordinate of the vector part of the quaternionqw- the scalar part of the quaternionsx- the scaling factor for the x-axissy- the scaling factor for the y-axissz- the scaling factor for the z-axis- Returns:
- this
- See Also:
translationRotateScale(float, float, float, float, float, float, float, float, float, float),invert()
-
translationRotateScaleInvert
public Matrix4f translationRotateScaleInvert(Vector3fc translation, Quaternionfc quat, Vector3fc scale)
Setthismatrix to(T * R * S)-1, whereTis the giventranslation,Ris a rotation transformation specified by the given quaternion, andSis a scaling transformation which scales the axes byscale.This method is equivalent to calling:
translationRotateScale(...).invert()- Parameters:
translation- the translationquat- the quaternion representing a rotationscale- the scaling factors- Returns:
- this
- See Also:
translationRotateScale(Vector3fc, Quaternionfc, Vector3fc),invert()
-
translationRotateScaleInvert
public Matrix4f translationRotateScaleInvert(Vector3fc translation, Quaternionfc quat, float scale)
Setthismatrix to(T * R * S)-1, whereTis the giventranslation,Ris a rotation transformation specified by the given quaternion, andSis a scaling transformation which scales all three axes byscale.This method is equivalent to calling:
translationRotateScale(...).invert()- Parameters:
translation- the translationquat- the quaternion representing a rotationscale- the scaling factors- Returns:
- this
- See Also:
translationRotateScale(Vector3fc, Quaternionfc, float),invert()
-
translationRotateScaleMulAffine
public Matrix4f translationRotateScaleMulAffine(float tx, float ty, float tz, float qx, float qy, float qz, float qw, float sx, float sy, float sz, Matrix4f m)
Setthismatrix toT * R * S * M, whereTis a translation by the given(tx, ty, tz),Ris a rotation - and possibly scaling - transformation specified by the quaternion(qx, qy, qz, qw),Sis a scaling transformation which scales the three axes x, y and z by(sx, sy, sz)andMis anaffinematrix.When transforming a vector by the resulting matrix the transformation described by
Mwill be applied first, then the scaling, then rotation and at last the translation.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
This method is equivalent to calling:
translation(tx, ty, tz).rotate(quat).scale(sx, sy, sz).mulAffine(m)- Parameters:
tx- the number of units by which to translate the x-componentty- the number of units by which to translate the y-componenttz- the number of units by which to translate the z-componentqx- the x-coordinate of the vector part of the quaternionqy- the y-coordinate of the vector part of the quaternionqz- the z-coordinate of the vector part of the quaternionqw- the scalar part of the quaternionsx- the scaling factor for the x-axissy- the scaling factor for the y-axissz- the scaling factor for the z-axism- theaffinematrix to multiply by- Returns:
- this
- See Also:
translation(float, float, float),rotate(Quaternionfc),scale(float, float, float),mulAffine(Matrix4fc)
-
translationRotateScaleMulAffine
public Matrix4f translationRotateScaleMulAffine(Vector3fc translation, Quaternionfc quat, Vector3fc scale, Matrix4f m)
Setthismatrix toT * R * S * M, whereTis the giventranslation,Ris a rotation - and possibly scaling - transformation specified by the given quaternion,Sis a scaling transformation which scales the axes byscaleandMis anaffinematrix.When transforming a vector by the resulting matrix the transformation described by
Mwill be applied first, then the scaling, then rotation and at last the translation.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
This method is equivalent to calling:
translation(translation).rotate(quat).scale(scale).mulAffine(m)- Parameters:
translation- the translationquat- the quaternion representing a rotationscale- the scaling factorsm- theaffinematrix to multiply by- Returns:
- this
- See Also:
translation(Vector3fc),rotate(Quaternionfc),mulAffine(Matrix4fc)
-
translationRotate
public Matrix4f translationRotate(float tx, float ty, float tz, float qx, float qy, float qz, float qw)
Setthismatrix toT * R, whereTis a translation by the given(tx, ty, tz)andRis a rotation - and possibly scaling - transformation specified by the quaternion(qx, qy, qz, qw).When transforming a vector by the resulting matrix the rotation - and possibly scaling - transformation will be applied first and then the translation.
When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
This method is equivalent to calling:
translation(tx, ty, tz).rotate(quat)- Parameters:
tx- the number of units by which to translate the x-componentty- the number of units by which to translate the y-componenttz- the number of units by which to translate the z-componentqx- the x-coordinate of the vector part of the quaternionqy- the y-coordinate of the vector part of the quaternionqz- the z-coordinate of the vector part of the quaternionqw- the scalar part of the quaternion- Returns:
- this
- See Also:
translation(float, float, float),rotate(Quaternionfc)
-
translationRotate
public Matrix4f translationRotate(float tx, float ty, float tz, Quaternionfc quat)
Setthismatrix toT * R, whereTis a translation by the given(tx, ty, tz)andRis a rotation - and possibly scaling - transformation specified by the given quaternion.When transforming a vector by the resulting matrix the rotation - and possibly scaling - transformation will be applied first and then the translation.
When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
This method is equivalent to calling:
translation(tx, ty, tz).rotate(quat)- Parameters:
tx- the number of units by which to translate the x-componentty- the number of units by which to translate the y-componenttz- the number of units by which to translate the z-componentquat- the quaternion representing a rotation- Returns:
- this
- See Also:
translation(float, float, float),rotate(Quaternionfc)
-
translationRotate
public Matrix4f translationRotate(Vector3fc translation, Quaternionfc quat)
Setthismatrix toT * R, whereTis the giventranslationandRis a rotation transformation specified by the given quaternion.When transforming a vector by the resulting matrix the scaling transformation will be applied first, then the rotation and at last the translation.
When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
This method is equivalent to calling:
translation(translation).rotate(quat)- Parameters:
translation- the translationquat- the quaternion representing a rotation- Returns:
- this
- See Also:
translation(Vector3fc),rotate(Quaternionfc)
-
translationRotateInvert
public Matrix4f translationRotateInvert(float tx, float ty, float tz, float qx, float qy, float qz, float qw)
Setthismatrix to(T * R)-1, whereTis a translation by the given(tx, ty, tz)andRis a rotation transformation specified by the quaternion(qx, qy, qz, qw).This method is equivalent to calling:
translationRotate(...).invert()- Parameters:
tx- the number of units by which to translate the x-componentty- the number of units by which to translate the y-componenttz- the number of units by which to translate the z-componentqx- the x-coordinate of the vector part of the quaternionqy- the y-coordinate of the vector part of the quaternionqz- the z-coordinate of the vector part of the quaternionqw- the scalar part of the quaternion- Returns:
- this
- See Also:
translationRotate(float, float, float, float, float, float, float),invert()
-
translationRotateInvert
public Matrix4f translationRotateInvert(Vector3fc translation, Quaternionfc quat)
Setthismatrix to(T * R)-1, whereTis the giventranslationandRis a rotation transformation specified by the given quaternion.This method is equivalent to calling:
translationRotate(...).invert()- Parameters:
translation- the translationquat- the quaternion representing a rotation- Returns:
- this
- See Also:
translationRotate(Vector3fc, Quaternionfc),invert()
-
set3x3
public Matrix4f set3x3(Matrix3fc mat)
Set the upper left 3x3 submatrix of thisMatrix4fto the givenMatrix3fcand don't change the other elements.- Parameters:
mat- the 3x3 matrix- Returns:
- this
-
transform
public Vector4f transform(Vector4f v)
Description copied from interface:Matrix4fcTransform/multiply the given vector by this matrix and store the result in that vector.- Specified by:
transformin interfaceMatrix4fc- Parameters:
v- the vector to transform and to hold the final result- Returns:
- v
- See Also:
Vector4f.mul(Matrix4fc)
-
transform
public Vector4f transform(Vector4fc v, Vector4f dest)
Description copied from interface:Matrix4fcTransform/multiply the given vector by this matrix and store the result indest.- Specified by:
transformin interfaceMatrix4fc- Parameters:
v- the vector to transformdest- will contain the result- Returns:
- dest
- See Also:
Vector4f.mul(Matrix4fc, Vector4f)
-
transform
public Vector4f transform(float x, float y, float z, float w, Vector4f dest)
Description copied from interface:Matrix4fcTransform/multiply the vector(x, y, z, w)by this matrix and store the result indest.
-
transformTranspose
public Vector4f transformTranspose(Vector4f v)
Description copied from interface:Matrix4fcTransform/multiply the given vector by the transpose of this matrix and store the result in that vector.- Specified by:
transformTransposein interfaceMatrix4fc- Parameters:
v- the vector to transform and to hold the final result- Returns:
- v
- See Also:
Vector4f.mulTranspose(Matrix4fc)
-
transformTranspose
public Vector4f transformTranspose(Vector4fc v, Vector4f dest)
Description copied from interface:Matrix4fcTransform/multiply the given vector by the transpose of this matrix and store the result indest.- Specified by:
transformTransposein interfaceMatrix4fc- Parameters:
v- the vector to transformdest- will contain the result- Returns:
- dest
- See Also:
Vector4f.mulTranspose(Matrix4fc, Vector4f)
-
transformTranspose
public Vector4f transformTranspose(float x, float y, float z, float w, Vector4f dest)
Description copied from interface:Matrix4fcTransform/multiply the vector(x, y, z, w)by the transpose of this matrix and store the result indest.- Specified by:
transformTransposein interfaceMatrix4fc- Parameters:
x- the x coordinate of the vector to transformy- the y coordinate of the vector to transformz- the z coordinate of the vector to transformw- the w coordinate of the vector to transformdest- will contain the result- Returns:
- dest
-
transformProject
public Vector4f transformProject(Vector4f v)
Description copied from interface:Matrix4fcTransform/multiply the given vector by this matrix, perform perspective divide and store the result in that vector.- Specified by:
transformProjectin interfaceMatrix4fc- Parameters:
v- the vector to transform and to hold the final result- Returns:
- v
- See Also:
Vector4f.mulProject(Matrix4fc)
-
transformProject
public Vector4f transformProject(Vector4fc v, Vector4f dest)
Description copied from interface:Matrix4fcTransform/multiply the given vector by this matrix, perform perspective divide and store the result indest.- Specified by:
transformProjectin interfaceMatrix4fc- Parameters:
v- the vector to transformdest- will contain the result- Returns:
- dest
- See Also:
Vector4f.mulProject(Matrix4fc, Vector4f)
-
transformProject
public Vector4f transformProject(float x, float y, float z, float w, Vector4f dest)
Description copied from interface:Matrix4fcTransform/multiply the vector(x, y, z, w)by this matrix, perform perspective divide and store the result indest.- Specified by:
transformProjectin interfaceMatrix4fc- Parameters:
x- the x coordinate of the vector to transformy- the y coordinate of the vector to transformz- the z coordinate of the vector to transformw- the w coordinate of the vector to transformdest- will contain the result- Returns:
- dest
-
transformProject
public Vector3f transformProject(Vector4fc v, Vector3f dest)
Description copied from interface:Matrix4fcTransform/multiply the given vector by this matrix, perform perspective divide and store the result indest.- Specified by:
transformProjectin interfaceMatrix4fc- Parameters:
v- the vector to transformdest- will contain the(x, y, z)components of the result- Returns:
- dest
- See Also:
Vector4f.mulProject(Matrix4fc, Vector4f)
-
transformProject
public Vector3f transformProject(float x, float y, float z, float w, Vector3f dest)
Description copied from interface:Matrix4fcTransform/multiply the vector(x, y, z, w)by this matrix, perform perspective divide and store(x, y, z)of the result indest.- Specified by:
transformProjectin interfaceMatrix4fc- Parameters:
x- the x coordinate of the vector to transformy- the y coordinate of the vector to transformz- the z coordinate of the vector to transformw- the w coordinate of the vector to transformdest- will contain the(x, y, z)components of the result- Returns:
- dest
-
transformProject
public Vector3f transformProject(Vector3f v)
Description copied from interface:Matrix4fcTransform/multiply the given vector by this matrix, perform perspective divide and store the result in that vector.This method uses
w=1.0as the fourth vector component.- Specified by:
transformProjectin interfaceMatrix4fc- Parameters:
v- the vector to transform and to hold the final result- Returns:
- v
- See Also:
Vector3f.mulProject(Matrix4fc)
-
transformProject
public Vector3f transformProject(Vector3fc v, Vector3f dest)
Description copied from interface:Matrix4fcTransform/multiply the given vector by this matrix, perform perspective divide and store the result indest.This method uses
w=1.0as the fourth vector component.- Specified by:
transformProjectin interfaceMatrix4fc- Parameters:
v- the vector to transformdest- will contain the result- Returns:
- dest
- See Also:
Vector3f.mulProject(Matrix4fc, Vector3f)
-
transformProject
public Vector3f transformProject(float x, float y, float z, Vector3f dest)
Description copied from interface:Matrix4fcTransform/multiply the vector(x, y, z)by this matrix, perform perspective divide and store the result indest.This method uses
w=1.0as the fourth vector component.- Specified by:
transformProjectin interfaceMatrix4fc- Parameters:
x- the x coordinate of the vector to transformy- the y coordinate of the vector to transformz- the z coordinate of the vector to transformdest- will contain the result- Returns:
- dest
-
transformPosition
public Vector3f transformPosition(Vector3f v)
Description copied from interface:Matrix4fcTransform/multiply the given 3D-vector, as if it was a 4D-vector with w=1, by this matrix and store the result in that vector.The given 3D-vector is treated as a 4D-vector with its w-component being 1.0, so it will represent a position/location in 3D-space rather than a direction. This method is therefore not suited for perspective projection transformations as it will not save the
wcomponent of the transformed vector. For perspective projection useMatrix4fc.transform(Vector4f)orMatrix4fc.transformProject(Vector3f)when perspective divide should be applied, too.In order to store the result in another vector, use
Matrix4fc.transformPosition(Vector3fc, Vector3f).- Specified by:
transformPositionin interfaceMatrix4fc- Parameters:
v- the vector to transform and to hold the final result- Returns:
- v
- See Also:
Matrix4fc.transformPosition(Vector3fc, Vector3f),Matrix4fc.transform(Vector4f),Matrix4fc.transformProject(Vector3f)
-
transformPosition
public Vector3f transformPosition(Vector3fc v, Vector3f dest)
Description copied from interface:Matrix4fcTransform/multiply the given 3D-vector, as if it was a 4D-vector with w=1, by this matrix and store the result indest.The given 3D-vector is treated as a 4D-vector with its w-component being 1.0, so it will represent a position/location in 3D-space rather than a direction. This method is therefore not suited for perspective projection transformations as it will not save the
wcomponent of the transformed vector. For perspective projection useMatrix4fc.transform(Vector4fc, Vector4f)orMatrix4fc.transformProject(Vector3fc, Vector3f)when perspective divide should be applied, too.In order to store the result in the same vector, use
Matrix4fc.transformPosition(Vector3f).- Specified by:
transformPositionin interfaceMatrix4fc- Parameters:
v- the vector to transformdest- will hold the result- Returns:
- dest
- See Also:
Matrix4fc.transformPosition(Vector3f),Matrix4fc.transform(Vector4fc, Vector4f),Matrix4fc.transformProject(Vector3fc, Vector3f)
-
transformPosition
public Vector3f transformPosition(float x, float y, float z, Vector3f dest)
Description copied from interface:Matrix4fcTransform/multiply the 3D-vector(x, y, z), as if it was a 4D-vector with w=1, by this matrix and store the result indest.The given 3D-vector is treated as a 4D-vector with its w-component being 1.0, so it will represent a position/location in 3D-space rather than a direction. This method is therefore not suited for perspective projection transformations as it will not save the
wcomponent of the transformed vector. For perspective projection useMatrix4fc.transform(float, float, float, float, Vector4f)orMatrix4fc.transformProject(float, float, float, Vector3f)when perspective divide should be applied, too.- Specified by:
transformPositionin interfaceMatrix4fc- Parameters:
x- the x coordinate of the positiony- the y coordinate of the positionz- the z coordinate of the positiondest- will hold the result- Returns:
- dest
- See Also:
Matrix4fc.transform(float, float, float, float, Vector4f),Matrix4fc.transformProject(float, float, float, Vector3f)
-
transformDirection
public Vector3f transformDirection(Vector3f v)
Description copied from interface:Matrix4fcTransform/multiply the given 3D-vector, as if it was a 4D-vector with w=0, by this matrix and store the result in that vector.The given 3D-vector is treated as a 4D-vector with its w-component being
0.0, so it will represent a direction in 3D-space rather than a position. This method will therefore not take the translation part of the matrix into account.In order to store the result in another vector, use
Matrix4fc.transformDirection(Vector3fc, Vector3f).- Specified by:
transformDirectionin interfaceMatrix4fc- Parameters:
v- the vector to transform and to hold the final result- Returns:
- v
- See Also:
Matrix4fc.transformDirection(Vector3fc, Vector3f)
-
transformDirection
public Vector3f transformDirection(Vector3fc v, Vector3f dest)
Description copied from interface:Matrix4fcTransform/multiply the given 3D-vector, as if it was a 4D-vector with w=0, by this matrix and store the result indest.The given 3D-vector is treated as a 4D-vector with its w-component being
0.0, so it will represent a direction in 3D-space rather than a position. This method will therefore not take the translation part of the matrix into account.In order to store the result in the same vector, use
Matrix4fc.transformDirection(Vector3f).- Specified by:
transformDirectionin interfaceMatrix4fc- Parameters:
v- the vector to transform and to hold the final resultdest- will hold the result- Returns:
- dest
- See Also:
Matrix4fc.transformDirection(Vector3f)
-
transformDirection
public Vector3f transformDirection(float x, float y, float z, Vector3f dest)
Description copied from interface:Matrix4fcTransform/multiply the given 3D-vector(x, y, z), as if it was a 4D-vector with w=0, by this matrix and store the result indest.The given 3D-vector is treated as a 4D-vector with its w-component being
0.0, so it will represent a direction in 3D-space rather than a position. This method will therefore not take the translation part of the matrix into account.- Specified by:
transformDirectionin interfaceMatrix4fc- Parameters:
x- the x coordinate of the direction to transformy- the y coordinate of the direction to transformz- the z coordinate of the direction to transformdest- will hold the result- Returns:
- dest
-
transformAffine
public Vector4f transformAffine(Vector4f v)
Description copied from interface:Matrix4fcTransform/multiply the given 4D-vector by assuming thatthismatrix represents anaffinetransformation (i.e. its last row is equal to(0, 0, 0, 1)).In order to store the result in another vector, use
Matrix4fc.transformAffine(Vector4fc, Vector4f).- Specified by:
transformAffinein interfaceMatrix4fc- Parameters:
v- the vector to transform and to hold the final result- Returns:
- v
- See Also:
Matrix4fc.transformAffine(Vector4fc, Vector4f)
-
transformAffine
public Vector4f transformAffine(Vector4fc v, Vector4f dest)
Description copied from interface:Matrix4fcTransform/multiply the given 4D-vector by assuming thatthismatrix represents anaffinetransformation (i.e. its last row is equal to(0, 0, 0, 1)) and store the result indest.In order to store the result in the same vector, use
Matrix4fc.transformAffine(Vector4f).- Specified by:
transformAffinein interfaceMatrix4fc- Parameters:
v- the vector to transform and to hold the final resultdest- will hold the result- Returns:
- dest
- See Also:
Matrix4fc.transformAffine(Vector4f)
-
transformAffine
public Vector4f transformAffine(float x, float y, float z, float w, Vector4f dest)
Description copied from interface:Matrix4fcTransform/multiply the 4D-vector(x, y, z, w)by assuming thatthismatrix represents anaffinetransformation (i.e. its last row is equal to(0, 0, 0, 1)) and store the result indest.- Specified by:
transformAffinein interfaceMatrix4fc- Parameters:
x- the x coordinate of the direction to transformy- the y coordinate of the direction to transformz- the z coordinate of the direction to transformw- the w coordinate of the direction to transformdest- will hold the result- Returns:
- dest
-
scale
public Matrix4f scale(Vector3fc xyz, Matrix4f dest)
Description copied from interface:Matrix4fcApply scaling tothismatrix by scaling the base axes by the givenxyz.x,xyz.yandxyz.zfactors, respectively and store the result indest.If
Misthismatrix andSthe scaling matrix, then the new matrix will beM * S. So when transforming a vectorvwith the new matrix by usingM * S * v, the scaling will be applied first!
-
scale
public Matrix4f scale(Vector3fc xyz)
Apply scaling to this matrix by scaling the base axes by the givenxyz.x,xyz.yandxyz.zfactors, respectively.If
Misthismatrix andSthe scaling matrix, then the new matrix will beM * S. So when transforming a vectorvwith the new matrix by usingM * S * v, the scaling will be applied first!- Parameters:
xyz- the factors of the x, y and z component, respectively- Returns:
- this
-
scale
public Matrix4f scale(float xyz, Matrix4f dest)
Description copied from interface:Matrix4fcApply scaling to this matrix by uniformly scaling all base axes by the givenxyzfactor and store the result indest.If
Misthismatrix andSthe scaling matrix, then the new matrix will beM * S. So when transforming a vectorvwith the new matrix by usingM * S * v, the scaling will be applied first!Individual scaling of all three axes can be applied using
Matrix4fc.scale(float, float, float, Matrix4f).- Specified by:
scalein interfaceMatrix4fc- Parameters:
xyz- the factor for all componentsdest- will hold the result- Returns:
- dest
- See Also:
Matrix4fc.scale(float, float, float, Matrix4f)
-
scale
public Matrix4f scale(float xyz)
Apply scaling to this matrix by uniformly scaling all base axes by the givenxyzfactor.If
Misthismatrix andSthe scaling matrix, then the new matrix will beM * S. So when transforming a vectorvwith the new matrix by usingM * S * v, the scaling will be applied first!Individual scaling of all three axes can be applied using
scale(float, float, float).- Parameters:
xyz- the factor for all components- Returns:
- this
- See Also:
scale(float, float, float)
-
scaleXY
public Matrix4f scaleXY(float x, float y, Matrix4f dest)
Description copied from interface:Matrix4fcApply scaling to this matrix by by scaling the X axis byxand the Y axis byyand store the result indest.If
Misthismatrix andSthe scaling matrix, then the new matrix will beM * S. So when transforming a vectorvwith the new matrix by usingM * S * v, the scaling will be applied first!
-
scaleXY
public Matrix4f scaleXY(float x, float y)
Apply scaling to this matrix by scaling the X axis byxand the Y axis byy.If
Misthismatrix andSthe scaling matrix, then the new matrix will beM * S. So when transforming a vectorvwith the new matrix by usingM * S * v, the scaling will be applied first!- Parameters:
x- the factor of the x componenty- the factor of the y component- Returns:
- this
-
scale
public Matrix4f scale(float x, float y, float z, Matrix4f dest)
Description copied from interface:Matrix4fcApply scaling tothismatrix by scaling the base axes by the given x, y and z factors and store the result indest.If
Misthismatrix andSthe scaling matrix, then the new matrix will beM * S. So when transforming a vectorvwith the new matrix by usingM * S * v, the scaling will be applied first!
-
scale
public Matrix4f scale(float x, float y, float z)
Apply scaling to this matrix by scaling the base axes by the given sx, sy and sz factors.If
Misthismatrix andSthe scaling matrix, then the new matrix will beM * S. So when transforming a vectorvwith the new matrix by usingM * S * v, the scaling will be applied first!- Parameters:
x- the factor of the x componenty- the factor of the y componentz- the factor of the z component- Returns:
- this
-
scaleAround
public Matrix4f scaleAround(float sx, float sy, float sz, float ox, float oy, float oz, Matrix4f dest)
Description copied from interface:Matrix4fcApply scaling tothismatrix by scaling the base axes by the given sx, sy and sz factors while using(ox, oy, oz)as the scaling origin, and store the result indest.If
Misthismatrix andSthe scaling matrix, then the new matrix will beM * S. So when transforming a vectorvwith the new matrix by usingM * S * v, the scaling will be applied first!This method is equivalent to calling:
translate(ox, oy, oz, dest).scale(sx, sy, sz).translate(-ox, -oy, -oz)- Specified by:
scaleAroundin interfaceMatrix4fc- Parameters:
sx- the scaling factor of the x componentsy- the scaling factor of the y componentsz- the scaling factor of the z componentox- the x coordinate of the scaling originoy- the y coordinate of the scaling originoz- the z coordinate of the scaling origindest- will hold the result- Returns:
- dest
-
scaleAround
public Matrix4f scaleAround(float sx, float sy, float sz, float ox, float oy, float oz)
Apply scaling to this matrix by scaling the base axes by the given sx, sy and sz factors while using(ox, oy, oz)as the scaling origin.If
Misthismatrix andSthe scaling matrix, then the new matrix will beM * S. So when transforming a vectorvwith the new matrix by usingM * S * v, the scaling will be applied first!This method is equivalent to calling:
translate(ox, oy, oz).scale(sx, sy, sz).translate(-ox, -oy, -oz)- Parameters:
sx- the scaling factor of the x componentsy- the scaling factor of the y componentsz- the scaling factor of the z componentox- the x coordinate of the scaling originoy- the y coordinate of the scaling originoz- the z coordinate of the scaling origin- Returns:
- this
-
scaleAround
public Matrix4f scaleAround(float factor, float ox, float oy, float oz)
Apply scaling to this matrix by scaling all three base axes by the givenfactorwhile using(ox, oy, oz)as the scaling origin.If
Misthismatrix andSthe scaling matrix, then the new matrix will beM * S. So when transforming a vectorvwith the new matrix by usingM * S * v, the scaling will be applied first!This method is equivalent to calling:
translate(ox, oy, oz).scale(factor).translate(-ox, -oy, -oz)- Parameters:
factor- the scaling factor for all three axesox- the x coordinate of the scaling originoy- the y coordinate of the scaling originoz- the z coordinate of the scaling origin- Returns:
- this
-
scaleAround
public Matrix4f scaleAround(float factor, float ox, float oy, float oz, Matrix4f dest)
Description copied from interface:Matrix4fcApply scaling to this matrix by scaling all three base axes by the givenfactorwhile using(ox, oy, oz)as the scaling origin, and store the result indest.If
Misthismatrix andSthe scaling matrix, then the new matrix will beM * S. So when transforming a vectorvwith the new matrix by usingM * S * v, the scaling will be applied first!This method is equivalent to calling:
translate(ox, oy, oz, dest).scale(factor).translate(-ox, -oy, -oz)- Specified by:
scaleAroundin interfaceMatrix4fc- Parameters:
factor- the scaling factor for all three axesox- the x coordinate of the scaling originoy- the y coordinate of the scaling originoz- the z coordinate of the scaling origindest- will hold the result- Returns:
- this
-
scaleLocal
public Matrix4f scaleLocal(float x, float y, float z, Matrix4f dest)
Description copied from interface:Matrix4fcPre-multiply scaling tothismatrix by scaling the base axes by the given x, y and z factors and store the result indest.If
Misthismatrix andSthe scaling matrix, then the new matrix will beS * M. So when transforming a vectorvwith the new matrix by usingS * M * v, the scaling will be applied last!- Specified by:
scaleLocalin interfaceMatrix4fc- Parameters:
x- the factor of the x componenty- the factor of the y componentz- the factor of the z componentdest- will hold the result- Returns:
- dest
-
scaleLocal
public Matrix4f scaleLocal(float xyz, Matrix4f dest)
Description copied from interface:Matrix4fcPre-multiply scaling tothismatrix by scaling all base axes by the givenxyzfactor, and store the result indest.If
Misthismatrix andSthe scaling matrix, then the new matrix will beS * M. So when transforming a vectorvwith the new matrix by usingS * M * v, the scaling will be applied last!- Specified by:
scaleLocalin interfaceMatrix4fc- Parameters:
xyz- the factor to scale all three base axes bydest- will hold the result- Returns:
- dest
-
scaleLocal
public Matrix4f scaleLocal(float xyz)
Pre-multiply scaling to this matrix by scaling the base axes by the given xyz factor.If
Misthismatrix andSthe scaling matrix, then the new matrix will beS * M. So when transforming a vectorvwith the new matrix by usingS * M * v, the scaling will be applied last!- Parameters:
xyz- the factor of the x, y and z component- Returns:
- this
-
scaleLocal
public Matrix4f scaleLocal(float x, float y, float z)
Pre-multiply scaling to this matrix by scaling the base axes by the given x, y and z factors.If
Misthismatrix andSthe scaling matrix, then the new matrix will beS * M. So when transforming a vectorvwith the new matrix by usingS * M * v, the scaling will be applied last!- Parameters:
x- the factor of the x componenty- the factor of the y componentz- the factor of the z component- Returns:
- this
-
scaleAroundLocal
public Matrix4f scaleAroundLocal(float sx, float sy, float sz, float ox, float oy, float oz, Matrix4f dest)
Description copied from interface:Matrix4fcPre-multiply scaling tothismatrix by scaling the base axes by the given sx, sy and sz factors while using the given(ox, oy, oz)as the scaling origin, and store the result indest.If
Misthismatrix andSthe scaling matrix, then the new matrix will beS * M. So when transforming a vectorvwith the new matrix by usingS * M * v, the scaling will be applied last!This method is equivalent to calling:
new Matrix4f().translate(ox, oy, oz).scale(sx, sy, sz).translate(-ox, -oy, -oz).mul(this, dest)- Specified by:
scaleAroundLocalin interfaceMatrix4fc- Parameters:
sx- the scaling factor of the x componentsy- the scaling factor of the y componentsz- the scaling factor of the z componentox- the x coordinate of the scaling originoy- the y coordinate of the scaling originoz- the z coordinate of the scaling origindest- will hold the result- Returns:
- dest
-
scaleAroundLocal
public Matrix4f scaleAroundLocal(float sx, float sy, float sz, float ox, float oy, float oz)
Pre-multiply scaling to this matrix by scaling the base axes by the given sx, sy and sz factors while using(ox, oy, oz)as the scaling origin.If
Misthismatrix andSthe scaling matrix, then the new matrix will beS * M. So when transforming a vectorvwith the new matrix by usingS * M * v, the scaling will be applied last!This method is equivalent to calling:
new Matrix4f().translate(ox, oy, oz).scale(sx, sy, sz).translate(-ox, -oy, -oz).mul(this, this)- Parameters:
sx- the scaling factor of the x componentsy- the scaling factor of the y componentsz- the scaling factor of the z componentox- the x coordinate of the scaling originoy- the y coordinate of the scaling originoz- the z coordinate of the scaling origin- Returns:
- this
-
scaleAroundLocal
public Matrix4f scaleAroundLocal(float factor, float ox, float oy, float oz)
Pre-multiply scaling to this matrix by scaling all three base axes by the givenfactorwhile using(ox, oy, oz)as the scaling origin.If
Misthismatrix andSthe scaling matrix, then the new matrix will beS * M. So when transforming a vectorvwith the new matrix by usingS * M * v, the scaling will be applied last!This method is equivalent to calling:
new Matrix4f().translate(ox, oy, oz).scale(factor).translate(-ox, -oy, -oz).mul(this, this)- Parameters:
factor- the scaling factor for all three axesox- the x coordinate of the scaling originoy- the y coordinate of the scaling originoz- the z coordinate of the scaling origin- Returns:
- this
-
scaleAroundLocal
public Matrix4f scaleAroundLocal(float factor, float ox, float oy, float oz, Matrix4f dest)
Description copied from interface:Matrix4fcPre-multiply scaling to this matrix by scaling all three base axes by the givenfactorwhile using(ox, oy, oz)as the scaling origin, and store the result indest.If
Misthismatrix andSthe scaling matrix, then the new matrix will beS * M. So when transforming a vectorvwith the new matrix by usingS * M * v, the scaling will be applied last!This method is equivalent to calling:
new Matrix4f().translate(ox, oy, oz).scale(factor).translate(-ox, -oy, -oz).mul(this, dest)- Specified by:
scaleAroundLocalin interfaceMatrix4fc- Parameters:
factor- the scaling factor for all three axesox- the x coordinate of the scaling originoy- the y coordinate of the scaling originoz- the z coordinate of the scaling origindest- will hold the result- Returns:
- this
-
rotateX
public Matrix4f rotateX(float ang, Matrix4f dest)
Description copied from interface:Matrix4fcApply rotation about the X axis to this matrix by rotating the given amount of radians and store the result indest.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
Misthismatrix andRthe rotation matrix, then the new matrix will beM * R. So when transforming a vectorvwith the new matrix by usingM * R * v, the rotation will be applied first!Reference: http://en.wikipedia.org
-
rotateX
public Matrix4f rotateX(float ang)
Apply rotation about the X axis to this matrix by rotating the given amount of radians.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
Misthismatrix andRthe rotation matrix, then the new matrix will beM * R. So when transforming a vectorvwith the new matrix by usingM * R * v, the rotation will be applied first!Reference: http://en.wikipedia.org
- Parameters:
ang- the angle in radians- Returns:
- this
-
rotateY
public Matrix4f rotateY(float ang, Matrix4f dest)
Description copied from interface:Matrix4fcApply rotation about the Y axis to this matrix by rotating the given amount of radians and store the result indest.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
Misthismatrix andRthe rotation matrix, then the new matrix will beM * R. So when transforming a vectorvwith the new matrix by usingM * R * v, the rotation will be applied first!Reference: http://en.wikipedia.org
-
rotateY
public Matrix4f rotateY(float ang)
Apply rotation about the Y axis to this matrix by rotating the given amount of radians.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
Misthismatrix andRthe rotation matrix, then the new matrix will beM * R. So when transforming a vectorvwith the new matrix by usingM * R * v, the rotation will be applied first!Reference: http://en.wikipedia.org
- Parameters:
ang- the angle in radians- Returns:
- this
-
rotateZ
public Matrix4f rotateZ(float ang, Matrix4f dest)
Description copied from interface:Matrix4fcApply rotation about the Z axis to this matrix by rotating the given amount of radians and store the result indest.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
Misthismatrix andRthe rotation matrix, then the new matrix will beM * R. So when transforming a vectorvwith the new matrix by usingM * R * v, the rotation will be applied first!Reference: http://en.wikipedia.org
-
rotateZ
public Matrix4f rotateZ(float ang)
Apply rotation about the Z axis to this matrix by rotating the given amount of radians.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
Misthismatrix andRthe rotation matrix, then the new matrix will beM * R. So when transforming a vectorvwith the new matrix by usingM * R * v, the rotation will be applied first!Reference: http://en.wikipedia.org
- Parameters:
ang- the angle in radians- Returns:
- this
-
rotateTowardsXY
public Matrix4f rotateTowardsXY(float dirX, float dirY)
Apply rotation about the Z axis to align the local+Xtowards(dirX, dirY).If
Misthismatrix andRthe rotation matrix, then the new matrix will beM * R. So when transforming a vectorvwith the new matrix by usingM * R * v, the rotation will be applied first!The vector
(dirX, dirY)must be a unit vector.- Parameters:
dirX- the x component of the normalized directiondirY- the y component of the normalized direction- Returns:
- this
-
rotateTowardsXY
public Matrix4f rotateTowardsXY(float dirX, float dirY, Matrix4f dest)
Description copied from interface:Matrix4fcApply rotation about the Z axis to align the local+Xtowards(dirX, dirY)and store the result indest.If
Misthismatrix andRthe rotation matrix, then the new matrix will beM * R. So when transforming a vectorvwith the new matrix by usingM * R * v, the rotation will be applied first!The vector
(dirX, dirY)must be a unit vector.- Specified by:
rotateTowardsXYin interfaceMatrix4fc- Parameters:
dirX- the x component of the normalized directiondirY- the y component of the normalized directiondest- will hold the result- Returns:
- this
-
rotateXYZ
public Matrix4f rotateXYZ(Vector3fc angles)
Apply rotation ofangles.xradians about the X axis, followed by a rotation ofangles.yradians about the Y axis and followed by a rotation ofangles.zradians about the Z axis.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
Misthismatrix andRthe rotation matrix, then the new matrix will beM * R. So when transforming a vectorvwith the new matrix by usingM * R * v, the rotation will be applied first!This method is equivalent to calling:
rotateX(angles.x()).rotateY(angles.y()).rotateZ(angles.z())- Parameters:
angles- the Euler angles- Returns:
- this
-
rotateXYZ
public Matrix4f rotateXYZ(float angleX, float angleY, float angleZ)
Apply rotation ofangleXradians about the X axis, followed by a rotation ofangleYradians about the Y axis and followed by a rotation ofangleZradians about the Z axis.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
Misthismatrix andRthe rotation matrix, then the new matrix will beM * R. So when transforming a vectorvwith the new matrix by usingM * R * v, the rotation will be applied first!This method is equivalent to calling:
rotateX(angleX).rotateY(angleY).rotateZ(angleZ)- Parameters:
angleX- the angle to rotate about XangleY- the angle to rotate about YangleZ- the angle to rotate about Z- Returns:
- this
-
rotateXYZ
public Matrix4f rotateXYZ(float angleX, float angleY, float angleZ, Matrix4f dest)
Description copied from interface:Matrix4fcApply rotation ofangleXradians about the X axis, followed by a rotation ofangleYradians about the Y axis and followed by a rotation ofangleZradians about the Z axis and store the result indest.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
Misthismatrix andRthe rotation matrix, then the new matrix will beM * R. So when transforming a vectorvwith the new matrix by usingM * R * v, the rotation will be applied first!This method is equivalent to calling:
rotateX(angleX, dest).rotateY(angleY).rotateZ(angleZ)
-
rotateAffineXYZ
public Matrix4f rotateAffineXYZ(float angleX, float angleY, float angleZ)
Apply rotation ofangleXradians about the X axis, followed by a rotation ofangleYradians about the Y axis and followed by a rotation ofangleZradians about the Z axis.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
This method assumes that
thismatrix represents anaffinetransformation (i.e. its last row is equal to(0, 0, 0, 1)) and can be used to speed up matrix multiplication if the matrix only represents affine transformations, such as translation, rotation, scaling and shearing (in any combination).If
Misthismatrix andRthe rotation matrix, then the new matrix will beM * R. So when transforming a vectorvwith the new matrix by usingM * R * v, the rotation will be applied first!This method is equivalent to calling:
rotateX(angleX).rotateY(angleY).rotateZ(angleZ)- Parameters:
angleX- the angle to rotate about XangleY- the angle to rotate about YangleZ- the angle to rotate about Z- Returns:
- this
-
rotateAffineXYZ
public Matrix4f rotateAffineXYZ(float angleX, float angleY, float angleZ, Matrix4f dest)
Description copied from interface:Matrix4fcApply rotation ofangleXradians about the X axis, followed by a rotation ofangleYradians about the Y axis and followed by a rotation ofangleZradians about the Z axis and store the result indest.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
This method assumes that
thismatrix represents anaffinetransformation (i.e. its last row is equal to(0, 0, 0, 1)) and can be used to speed up matrix multiplication if the matrix only represents affine transformations, such as translation, rotation, scaling and shearing (in any combination).If
Misthismatrix andRthe rotation matrix, then the new matrix will beM * R. So when transforming a vectorvwith the new matrix by usingM * R * v, the rotation will be applied first!- Specified by:
rotateAffineXYZin interfaceMatrix4fc- Parameters:
angleX- the angle to rotate about XangleY- the angle to rotate about YangleZ- the angle to rotate about Zdest- will hold the result- Returns:
- dest
-
rotateZYX
public Matrix4f rotateZYX(Vector3f angles)
Apply rotation ofangles.zradians about the Z axis, followed by a rotation ofangles.yradians about the Y axis and followed by a rotation ofangles.xradians about the X axis.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
Misthismatrix andRthe rotation matrix, then the new matrix will beM * R. So when transforming a vectorvwith the new matrix by usingM * R * v, the rotation will be applied first!This method is equivalent to calling:
rotateZ(angles.z).rotateY(angles.y).rotateX(angles.x)- Parameters:
angles- the Euler angles- Returns:
- this
-
rotateZYX
public Matrix4f rotateZYX(float angleZ, float angleY, float angleX)
Apply rotation ofangleZradians about the Z axis, followed by a rotation ofangleYradians about the Y axis and followed by a rotation ofangleXradians about the X axis.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
Misthismatrix andRthe rotation matrix, then the new matrix will beM * R. So when transforming a vectorvwith the new matrix by usingM * R * v, the rotation will be applied first!This method is equivalent to calling:
rotateZ(angleZ).rotateY(angleY).rotateX(angleX)- Parameters:
angleZ- the angle to rotate about ZangleY- the angle to rotate about YangleX- the angle to rotate about X- Returns:
- this
-
rotateZYX
public Matrix4f rotateZYX(float angleZ, float angleY, float angleX, Matrix4f dest)
Description copied from interface:Matrix4fcApply rotation ofangleZradians about the Z axis, followed by a rotation ofangleYradians about the Y axis and followed by a rotation ofangleXradians about the X axis and store the result indest.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
Misthismatrix andRthe rotation matrix, then the new matrix will beM * R. So when transforming a vectorvwith the new matrix by usingM * R * v, the rotation will be applied first!This method is equivalent to calling:
rotateZ(angleZ, dest).rotateY(angleY).rotateX(angleX)
-
rotateAffineZYX
public Matrix4f rotateAffineZYX(float angleZ, float angleY, float angleX)
Apply rotation ofangleZradians about the Z axis, followed by a rotation ofangleYradians about the Y axis and followed by a rotation ofangleXradians about the X axis.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
This method assumes that
thismatrix represents anaffinetransformation (i.e. its last row is equal to(0, 0, 0, 1)) and can be used to speed up matrix multiplication if the matrix only represents affine transformations, such as translation, rotation, scaling and shearing (in any combination).If
Misthismatrix andRthe rotation matrix, then the new matrix will beM * R. So when transforming a vectorvwith the new matrix by usingM * R * v, the rotation will be applied first!- Parameters:
angleZ- the angle to rotate about ZangleY- the angle to rotate about YangleX- the angle to rotate about X- Returns:
- this
-
rotateAffineZYX
public Matrix4f rotateAffineZYX(float angleZ, float angleY, float angleX, Matrix4f dest)
Description copied from interface:Matrix4fcApply rotation ofangleZradians about the Z axis, followed by a rotation ofangleYradians about the Y axis and followed by a rotation ofangleXradians about the X axis and store the result indest.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
This method assumes that
thismatrix represents anaffinetransformation (i.e. its last row is equal to(0, 0, 0, 1)) and can be used to speed up matrix multiplication if the matrix only represents affine transformations, such as translation, rotation, scaling and shearing (in any combination).If
Misthismatrix andRthe rotation matrix, then the new matrix will beM * R. So when transforming a vectorvwith the new matrix by usingM * R * v, the rotation will be applied first!- Specified by:
rotateAffineZYXin interfaceMatrix4fc- Parameters:
angleZ- the angle to rotate about ZangleY- the angle to rotate about YangleX- the angle to rotate about Xdest- will hold the result- Returns:
- dest
-
rotateYXZ
public Matrix4f rotateYXZ(Vector3f angles)
Apply rotation ofangles.yradians about the Y axis, followed by a rotation ofangles.xradians about the X axis and followed by a rotation ofangles.zradians about the Z axis.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
Misthismatrix andRthe rotation matrix, then the new matrix will beM * R. So when transforming a vectorvwith the new matrix by usingM * R * v, the rotation will be applied first!This method is equivalent to calling:
rotateY(angles.y).rotateX(angles.x).rotateZ(angles.z)- Parameters:
angles- the Euler angles- Returns:
- this
-
rotateYXZ
public Matrix4f rotateYXZ(float angleY, float angleX, float angleZ)
Apply rotation ofangleYradians about the Y axis, followed by a rotation ofangleXradians about the X axis and followed by a rotation ofangleZradians about the Z axis.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
Misthismatrix andRthe rotation matrix, then the new matrix will beM * R. So when transforming a vectorvwith the new matrix by usingM * R * v, the rotation will be applied first!This method is equivalent to calling:
rotateY(angleY).rotateX(angleX).rotateZ(angleZ)- Parameters:
angleY- the angle to rotate about YangleX- the angle to rotate about XangleZ- the angle to rotate about Z- Returns:
- this
-
rotateYXZ
public Matrix4f rotateYXZ(float angleY, float angleX, float angleZ, Matrix4f dest)
Description copied from interface:Matrix4fcApply rotation ofangleYradians about the Y axis, followed by a rotation ofangleXradians about the X axis and followed by a rotation ofangleZradians about the Z axis and store the result indest.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
Misthismatrix andRthe rotation matrix, then the new matrix will beM * R. So when transforming a vectorvwith the new matrix by usingM * R * v, the rotation will be applied first!This method is equivalent to calling:
rotateY(angleY, dest).rotateX(angleX).rotateZ(angleZ)
-
rotateAffineYXZ
public Matrix4f rotateAffineYXZ(float angleY, float angleX, float angleZ)
Apply rotation ofangleYradians about the Y axis, followed by a rotation ofangleXradians about the X axis and followed by a rotation ofangleZradians about the Z axis.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
This method assumes that
thismatrix represents anaffinetransformation (i.e. its last row is equal to(0, 0, 0, 1)) and can be used to speed up matrix multiplication if the matrix only represents affine transformations, such as translation, rotation, scaling and shearing (in any combination).If
Misthismatrix andRthe rotation matrix, then the new matrix will beM * R. So when transforming a vectorvwith the new matrix by usingM * R * v, the rotation will be applied first!- Parameters:
angleY- the angle to rotate about YangleX- the angle to rotate about XangleZ- the angle to rotate about Z- Returns:
- this
-
rotateAffineYXZ
public Matrix4f rotateAffineYXZ(float angleY, float angleX, float angleZ, Matrix4f dest)
Description copied from interface:Matrix4fcApply rotation ofangleYradians about the Y axis, followed by a rotation ofangleXradians about the X axis and followed by a rotation ofangleZradians about the Z axis and store the result indest.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
This method assumes that
thismatrix represents anaffinetransformation (i.e. its last row is equal to(0, 0, 0, 1)) and can be used to speed up matrix multiplication if the matrix only represents affine transformations, such as translation, rotation, scaling and shearing (in any combination).If
Misthismatrix andRthe rotation matrix, then the new matrix will beM * R. So when transforming a vectorvwith the new matrix by usingM * R * v, the rotation will be applied first!- Specified by:
rotateAffineYXZin interfaceMatrix4fc- Parameters:
angleY- the angle to rotate about YangleX- the angle to rotate about XangleZ- the angle to rotate about Zdest- will hold the result- Returns:
- dest
-
rotate
public Matrix4f rotate(float ang, float x, float y, float z, Matrix4f dest)
Apply rotation to this matrix by rotating the given amount of radians about the specified(x, y, z)axis and store the result indest.The axis described by the three components needs to be a unit vector.
When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
Misthismatrix andRthe rotation matrix, then the new matrix will beM * R. So when transforming a vectorvwith the new matrix by usingM * R * v, the rotation will be applied first!In order to set the matrix to a rotation matrix without post-multiplying the rotation transformation, use
rotation().Reference: http://en.wikipedia.org
- Specified by:
rotatein interfaceMatrix4fc- Parameters:
ang- the angle in radiansx- the x component of the axisy- the y component of the axisz- the z component of the axisdest- will hold the result- Returns:
- dest
- See Also:
rotation(float, float, float, float)
-
rotate
public Matrix4f rotate(float ang, float x, float y, float z)
Apply rotation to this matrix by rotating the given amount of radians about the specified(x, y, z)axis.The axis described by the three components needs to be a unit vector.
When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
Misthismatrix andRthe rotation matrix, then the new matrix will beM * R. So when transforming a vectorvwith the new matrix by usingM * R * v, the rotation will be applied first!In order to set the matrix to a rotation matrix without post-multiplying the rotation transformation, use
rotation().Reference: http://en.wikipedia.org
- Parameters:
ang- the angle in radiansx- the x component of the axisy- the y component of the axisz- the z component of the axis- Returns:
- this
- See Also:
rotation(float, float, float, float)
-
rotateTranslation
public Matrix4f rotateTranslation(float ang, float x, float y, float z, Matrix4f dest)
Apply rotation to this matrix, which is assumed to only contain a translation, by rotating the given amount of radians about the specified(x, y, z)axis and store the result indest.This method assumes
thisto only contain a translation.The axis described by the three components needs to be a unit vector.
When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
Misthismatrix andRthe rotation matrix, then the new matrix will beM * R. So when transforming a vectorvwith the new matrix by usingM * R * v, the rotation will be applied first!In order to set the matrix to a rotation matrix without post-multiplying the rotation transformation, use
rotation().Reference: http://en.wikipedia.org
- Specified by:
rotateTranslationin interfaceMatrix4fc- Parameters:
ang- the angle in radiansx- the x component of the axisy- the y component of the axisz- the z component of the axisdest- will hold the result- Returns:
- dest
- See Also:
rotation(float, float, float, float)
-
rotateAffine
public Matrix4f rotateAffine(float ang, float x, float y, float z, Matrix4f dest)
Apply rotation to thisaffinematrix by rotating the given amount of radians about the specified(x, y, z)axis and store the result indest.This method assumes
thisto beaffine.The axis described by the three components needs to be a unit vector.
When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
Misthismatrix andRthe rotation matrix, then the new matrix will beM * R. So when transforming a vectorvwith the new matrix by usingM * R * v, the rotation will be applied first!In order to set the matrix to a rotation matrix without post-multiplying the rotation transformation, use
rotation().Reference: http://en.wikipedia.org
- Specified by:
rotateAffinein interfaceMatrix4fc- Parameters:
ang- the angle in radiansx- the x component of the axisy- the y component of the axisz- the z component of the axisdest- will hold the result- Returns:
- dest
- See Also:
rotation(float, float, float, float)
-
rotateAffine
public Matrix4f rotateAffine(float ang, float x, float y, float z)
Apply rotation to thisaffinematrix by rotating the given amount of radians about the specified(x, y, z)axis.This method assumes
thisto beaffine.The axis described by the three components needs to be a unit vector.
When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
Misthismatrix andRthe rotation matrix, then the new matrix will beM * R. So when transforming a vectorvwith the new matrix by usingM * R * v, the rotation will be applied first!In order to set the matrix to a rotation matrix without post-multiplying the rotation transformation, use
rotation().Reference: http://en.wikipedia.org
- Parameters:
ang- the angle in radiansx- the x component of the axisy- the y component of the axisz- the z component of the axis- Returns:
- this
- See Also:
rotation(float, float, float, float)
-
rotateLocal
public Matrix4f rotateLocal(float ang, float x, float y, float z, Matrix4f dest)
Pre-multiply a rotation to this matrix by rotating the given amount of radians about the specified(x, y, z)axis and store the result indest.The axis described by the three components needs to be a unit vector.
When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
Misthismatrix andRthe rotation matrix, then the new matrix will beR * M. So when transforming a vectorvwith the new matrix by usingR * M * v, the rotation will be applied last!In order to set the matrix to a rotation matrix without pre-multiplying the rotation transformation, use
rotation().Reference: http://en.wikipedia.org
- Specified by:
rotateLocalin interfaceMatrix4fc- Parameters:
ang- the angle in radiansx- the x component of the axisy- the y component of the axisz- the z component of the axisdest- will hold the result- Returns:
- dest
- See Also:
rotation(float, float, float, float)
-
rotateLocal
public Matrix4f rotateLocal(float ang, float x, float y, float z)
Pre-multiply a rotation to this matrix by rotating the given amount of radians about the specified(x, y, z)axis.The axis described by the three components needs to be a unit vector.
When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
Misthismatrix andRthe rotation matrix, then the new matrix will beR * M. So when transforming a vectorvwith the new matrix by usingR * M * v, the rotation will be applied last!In order to set the matrix to a rotation matrix without pre-multiplying the rotation transformation, use
rotation().Reference: http://en.wikipedia.org
- Parameters:
ang- the angle in radiansx- the x component of the axisy- the y component of the axisz- the z component of the axis- Returns:
- this
- See Also:
rotation(float, float, float, float)
-
rotateLocalX
public Matrix4f rotateLocalX(float ang, Matrix4f dest)
Pre-multiply a rotation around the X axis to this matrix by rotating the given amount of radians about the X axis and store the result indest.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
Misthismatrix andRthe rotation matrix, then the new matrix will beR * M. So when transforming a vectorvwith the new matrix by usingR * M * v, the rotation will be applied last!In order to set the matrix to a rotation matrix without pre-multiplying the rotation transformation, use
rotationX().Reference: http://en.wikipedia.org
- Specified by:
rotateLocalXin interfaceMatrix4fc- Parameters:
ang- the angle in radians to rotate about the X axisdest- will hold the result- Returns:
- dest
- See Also:
rotationX(float)
-
rotateLocalX
public Matrix4f rotateLocalX(float ang)
Pre-multiply a rotation to this matrix by rotating the given amount of radians about the X axis.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
Misthismatrix andRthe rotation matrix, then the new matrix will beR * M. So when transforming a vectorvwith the new matrix by usingR * M * v, the rotation will be applied last!In order to set the matrix to a rotation matrix without pre-multiplying the rotation transformation, use
rotationX().Reference: http://en.wikipedia.org
- Parameters:
ang- the angle in radians to rotate about the X axis- Returns:
- this
- See Also:
rotationX(float)
-
rotateLocalY
public Matrix4f rotateLocalY(float ang, Matrix4f dest)
Pre-multiply a rotation around the Y axis to this matrix by rotating the given amount of radians about the Y axis and store the result indest.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
Misthismatrix andRthe rotation matrix, then the new matrix will beR * M. So when transforming a vectorvwith the new matrix by usingR * M * v, the rotation will be applied last!In order to set the matrix to a rotation matrix without pre-multiplying the rotation transformation, use
rotationY().Reference: http://en.wikipedia.org
- Specified by:
rotateLocalYin interfaceMatrix4fc- Parameters:
ang- the angle in radians to rotate about the Y axisdest- will hold the result- Returns:
- dest
- See Also:
rotationY(float)
-
rotateLocalY
public Matrix4f rotateLocalY(float ang)
Pre-multiply a rotation to this matrix by rotating the given amount of radians about the Y axis.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
Misthismatrix andRthe rotation matrix, then the new matrix will beR * M. So when transforming a vectorvwith the new matrix by usingR * M * v, the rotation will be applied last!In order to set the matrix to a rotation matrix without pre-multiplying the rotation transformation, use
rotationY().Reference: http://en.wikipedia.org
- Parameters:
ang- the angle in radians to rotate about the Y axis- Returns:
- this
- See Also:
rotationY(float)
-
rotateLocalZ
public Matrix4f rotateLocalZ(float ang, Matrix4f dest)
Pre-multiply a rotation around the Z axis to this matrix by rotating the given amount of radians about the Z axis and store the result indest.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
Misthismatrix andRthe rotation matrix, then the new matrix will beR * M. So when transforming a vectorvwith the new matrix by usingR * M * v, the rotation will be applied last!In order to set the matrix to a rotation matrix without pre-multiplying the rotation transformation, use
rotationZ().Reference: http://en.wikipedia.org
- Specified by:
rotateLocalZin interfaceMatrix4fc- Parameters:
ang- the angle in radians to rotate about the Z axisdest- will hold the result- Returns:
- dest
- See Also:
rotationZ(float)
-
rotateLocalZ
public Matrix4f rotateLocalZ(float ang)
Pre-multiply a rotation to this matrix by rotating the given amount of radians about the Z axis.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
Misthismatrix andRthe rotation matrix, then the new matrix will beR * M. So when transforming a vectorvwith the new matrix by usingR * M * v, the rotation will be applied last!In order to set the matrix to a rotation matrix without pre-multiplying the rotation transformation, use
rotationY().Reference: http://en.wikipedia.org
- Parameters:
ang- the angle in radians to rotate about the Z axis- Returns:
- this
- See Also:
rotationY(float)
-
translate
public Matrix4f translate(Vector3fc offset)
Apply a translation to this matrix by translating by the given number of units in x, y and z.If
Misthismatrix andTthe translation matrix, then the new matrix will beM * T. So when transforming a vectorvwith the new matrix by usingM * T * v, the translation will be applied first!In order to set the matrix to a translation transformation without post-multiplying it, use
translation(Vector3fc).- Parameters:
offset- the number of units in x, y and z by which to translate- Returns:
- this
- See Also:
translation(Vector3fc)
-
translate
public Matrix4f translate(Vector3fc offset, Matrix4f dest)
Apply a translation to this matrix by translating by the given number of units in x, y and z and store the result indest.If
Misthismatrix andTthe translation matrix, then the new matrix will beM * T. So when transforming a vectorvwith the new matrix by usingM * T * v, the translation will be applied first!In order to set the matrix to a translation transformation without post-multiplying it, use
translation(Vector3fc).- Specified by:
translatein interfaceMatrix4fc- Parameters:
offset- the number of units in x, y and z by which to translatedest- will hold the result- Returns:
- dest
- See Also:
translation(Vector3fc)
-
translate
public Matrix4f translate(float x, float y, float z, Matrix4f dest)
Apply a translation to this matrix by translating by the given number of units in x, y and z and store the result indest.If
Misthismatrix andTthe translation matrix, then the new matrix will beM * T. So when transforming a vectorvwith the new matrix by usingM * T * v, the translation will be applied first!In order to set the matrix to a translation transformation without post-multiplying it, use
translation(float, float, float).- Specified by:
translatein interfaceMatrix4fc- Parameters:
x- the offset to translate in xy- the offset to translate in yz- the offset to translate in zdest- will hold the result- Returns:
- dest
- See Also:
translation(float, float, float)
-
translate
public Matrix4f translate(float x, float y, float z)
Apply a translation to this matrix by translating by the given number of units in x, y and z.If
Misthismatrix andTthe translation matrix, then the new matrix will beM * T. So when transforming a vectorvwith the new matrix by usingM * T * v, the translation will be applied first!In order to set the matrix to a translation transformation without post-multiplying it, use
translation(float, float, float).- Parameters:
x- the offset to translate in xy- the offset to translate in yz- the offset to translate in z- Returns:
- this
- See Also:
translation(float, float, float)
-
translateLocal
public Matrix4f translateLocal(Vector3fc offset)
Pre-multiply a translation to this matrix by translating by the given number of units in x, y and z.If
Misthismatrix andTthe translation matrix, then the new matrix will beT * M. So when transforming a vectorvwith the new matrix by usingT * M * v, the translation will be applied last!In order to set the matrix to a translation transformation without pre-multiplying it, use
translation(Vector3fc).- Parameters:
offset- the number of units in x, y and z by which to translate- Returns:
- this
- See Also:
translation(Vector3fc)
-
translateLocal
public Matrix4f translateLocal(Vector3fc offset, Matrix4f dest)
Pre-multiply a translation to this matrix by translating by the given number of units in x, y and z and store the result indest.If
Misthismatrix andTthe translation matrix, then the new matrix will beT * M. So when transforming a vectorvwith the new matrix by usingT * M * v, the translation will be applied last!In order to set the matrix to a translation transformation without pre-multiplying it, use
translation(Vector3fc).- Specified by:
translateLocalin interfaceMatrix4fc- Parameters:
offset- the number of units in x, y and z by which to translatedest- will hold the result- Returns:
- dest
- See Also:
translation(Vector3fc)
-
translateLocal
public Matrix4f translateLocal(float x, float y, float z, Matrix4f dest)
Pre-multiply a translation to this matrix by translating by the given number of units in x, y and z and store the result indest.If
Misthismatrix andTthe translation matrix, then the new matrix will beT * M. So when transforming a vectorvwith the new matrix by usingT * M * v, the translation will be applied last!In order to set the matrix to a translation transformation without pre-multiplying it, use
translation(float, float, float).- Specified by:
translateLocalin interfaceMatrix4fc- Parameters:
x- the offset to translate in xy- the offset to translate in yz- the offset to translate in zdest- will hold the result- Returns:
- dest
- See Also:
translation(float, float, float)
-
translateLocal
public Matrix4f translateLocal(float x, float y, float z)
Pre-multiply a translation to this matrix by translating by the given number of units in x, y and z.If
Misthismatrix andTthe translation matrix, then the new matrix will beT * M. So when transforming a vectorvwith the new matrix by usingT * M * v, the translation will be applied last!In order to set the matrix to a translation transformation without pre-multiplying it, use
translation(float, float, float).- Parameters:
x- the offset to translate in xy- the offset to translate in yz- the offset to translate in z- Returns:
- this
- See Also:
translation(float, float, float)
-
writeExternal
public void writeExternal(java.io.ObjectOutput out) throws java.io.IOException- Specified by:
writeExternalin interfacejava.io.Externalizable- Throws:
java.io.IOException
-
readExternal
public void readExternal(java.io.ObjectInput in) throws java.io.IOException- Specified by:
readExternalin interfacejava.io.Externalizable- Throws:
java.io.IOException
-
ortho
public Matrix4f ortho(float left, float right, float bottom, float top, float zNear, float zFar, boolean zZeroToOne, Matrix4f dest)
Apply an orthographic projection transformation for a right-handed coordinate system using the given NDC z range to this matrix and store the result indest.If
Misthismatrix andOthe orthographic projection matrix, then the new matrix will beM * O. So when transforming a vectorvwith the new matrix by usingM * O * v, the orthographic projection transformation will be applied first!In order to set the matrix to an orthographic projection without post-multiplying it, use
setOrtho().Reference: http://www.songho.ca
- Specified by:
orthoin interfaceMatrix4fc- Parameters:
left- the distance from the center to the left frustum edgeright- the distance from the center to the right frustum edgebottom- the distance from the center to the bottom frustum edgetop- the distance from the center to the top frustum edgezNear- near clipping plane distancezFar- far clipping plane distancezZeroToOne- whether to use Vulkan's and Direct3D's NDC z range of[0..+1]whentrueor whether to use OpenGL's NDC z range of[-1..+1]whenfalsedest- will hold the result- Returns:
- dest
- See Also:
setOrtho(float, float, float, float, float, float, boolean)
-
ortho
public Matrix4f ortho(float left, float right, float bottom, float top, float zNear, float zFar, Matrix4f dest)
Apply an orthographic projection transformation for a right-handed coordinate system using OpenGL's NDC z range of[-1..+1]to this matrix and store the result indest.If
Misthismatrix andOthe orthographic projection matrix, then the new matrix will beM * O. So when transforming a vectorvwith the new matrix by usingM * O * v, the orthographic projection transformation will be applied first!In order to set the matrix to an orthographic projection without post-multiplying it, use
setOrtho().Reference: http://www.songho.ca
- Specified by:
orthoin interfaceMatrix4fc- Parameters:
left- the distance from the center to the left frustum edgeright- the distance from the center to the right frustum edgebottom- the distance from the center to the bottom frustum edgetop- the distance from the center to the top frustum edgezNear- near clipping plane distancezFar- far clipping plane distancedest- will hold the result- Returns:
- dest
- See Also:
setOrtho(float, float, float, float, float, float)
-
ortho
public Matrix4f ortho(float left, float right, float bottom, float top, float zNear, float zFar, boolean zZeroToOne)
Apply an orthographic projection transformation for a right-handed coordinate system using the given NDC z range to this matrix.If
Misthismatrix andOthe orthographic projection matrix, then the new matrix will beM * O. So when transforming a vectorvwith the new matrix by usingM * O * v, the orthographic projection transformation will be applied first!In order to set the matrix to an orthographic projection without post-multiplying it, use
setOrtho().Reference: http://www.songho.ca
- Parameters:
left- the distance from the center to the left frustum edgeright- the distance from the center to the right frustum edgebottom- the distance from the center to the bottom frustum edgetop- the distance from the center to the top frustum edgezNear- near clipping plane distancezFar- far clipping plane distancezZeroToOne- whether to use Vulkan's and Direct3D's NDC z range of[0..+1]whentrueor whether to use OpenGL's NDC z range of[-1..+1]whenfalse- Returns:
- this
- See Also:
setOrtho(float, float, float, float, float, float, boolean)
-
ortho
public Matrix4f ortho(float left, float right, float bottom, float top, float zNear, float zFar)
Apply an orthographic projection transformation for a right-handed coordinate system using OpenGL's NDC z range of[-1..+1]to this matrix.If
Misthismatrix andOthe orthographic projection matrix, then the new matrix will beM * O. So when transforming a vectorvwith the new matrix by usingM * O * v, the orthographic projection transformation will be applied first!In order to set the matrix to an orthographic projection without post-multiplying it, use
setOrtho().Reference: http://www.songho.ca
- Parameters:
left- the distance from the center to the left frustum edgeright- the distance from the center to the right frustum edgebottom- the distance from the center to the bottom frustum edgetop- the distance from the center to the top frustum edgezNear- near clipping plane distancezFar- far clipping plane distance- Returns:
- this
- See Also:
setOrtho(float, float, float, float, float, float)
-
orthoLH
public Matrix4f orthoLH(float left, float right, float bottom, float top, float zNear, float zFar, boolean zZeroToOne, Matrix4f dest)
Apply an orthographic projection transformation for a left-handed coordiante system using the given NDC z range to this matrix and store the result indest.If
Misthismatrix andOthe orthographic projection matrix, then the new matrix will beM * O. So when transforming a vectorvwith the new matrix by usingM * O * v, the orthographic projection transformation will be applied first!In order to set the matrix to an orthographic projection without post-multiplying it, use
setOrthoLH().Reference: http://www.songho.ca
- Specified by:
orthoLHin interfaceMatrix4fc- Parameters:
left- the distance from the center to the left frustum edgeright- the distance from the center to the right frustum edgebottom- the distance from the center to the bottom frustum edgetop- the distance from the center to the top frustum edgezNear- near clipping plane distancezFar- far clipping plane distancezZeroToOne- whether to use Vulkan's and Direct3D's NDC z range of[0..+1]whentrueor whether to use OpenGL's NDC z range of[-1..+1]whenfalsedest- will hold the result- Returns:
- dest
- See Also:
setOrthoLH(float, float, float, float, float, float, boolean)
-
orthoLH
public Matrix4f orthoLH(float left, float right, float bottom, float top, float zNear, float zFar, Matrix4f dest)
Apply an orthographic projection transformation for a left-handed coordiante system using OpenGL's NDC z range of[-1..+1]to this matrix and store the result indest.If
Misthismatrix andOthe orthographic projection matrix, then the new matrix will beM * O. So when transforming a vectorvwith the new matrix by usingM * O * v, the orthographic projection transformation will be applied first!In order to set the matrix to an orthographic projection without post-multiplying it, use
setOrthoLH().Reference: http://www.songho.ca
- Specified by:
orthoLHin interfaceMatrix4fc- Parameters:
left- the distance from the center to the left frustum edgeright- the distance from the center to the right frustum edgebottom- the distance from the center to the bottom frustum edgetop- the distance from the center to the top frustum edgezNear- near clipping plane distancezFar- far clipping plane distancedest- will hold the result- Returns:
- dest
- See Also:
setOrthoLH(float, float, float, float, float, float)
-
orthoLH
public Matrix4f orthoLH(float left, float right, float bottom, float top, float zNear, float zFar, boolean zZeroToOne)
Apply an orthographic projection transformation for a left-handed coordiante system using the given NDC z range to this matrix.If
Misthismatrix andOthe orthographic projection matrix, then the new matrix will beM * O. So when transforming a vectorvwith the new matrix by usingM * O * v, the orthographic projection transformation will be applied first!In order to set the matrix to an orthographic projection without post-multiplying it, use
setOrthoLH().Reference: http://www.songho.ca
- Parameters:
left- the distance from the center to the left frustum edgeright- the distance from the center to the right frustum edgebottom- the distance from the center to the bottom frustum edgetop- the distance from the center to the top frustum edgezNear- near clipping plane distancezFar- far clipping plane distancezZeroToOne- whether to use Vulkan's and Direct3D's NDC z range of[0..+1]whentrueor whether to use OpenGL's NDC z range of[-1..+1]whenfalse- Returns:
- this
- See Also:
setOrthoLH(float, float, float, float, float, float, boolean)
-
orthoLH
public Matrix4f orthoLH(float left, float right, float bottom, float top, float zNear, float zFar)
Apply an orthographic projection transformation for a left-handed coordiante system using OpenGL's NDC z range of[-1..+1]to this matrix.If
Misthismatrix andOthe orthographic projection matrix, then the new matrix will beM * O. So when transforming a vectorvwith the new matrix by usingM * O * v, the orthographic projection transformation will be applied first!In order to set the matrix to an orthographic projection without post-multiplying it, use
setOrthoLH().Reference: http://www.songho.ca
- Parameters:
left- the distance from the center to the left frustum edgeright- the distance from the center to the right frustum edgebottom- the distance from the center to the bottom frustum edgetop- the distance from the center to the top frustum edgezNear- near clipping plane distancezFar- far clipping plane distance- Returns:
- this
- See Also:
setOrthoLH(float, float, float, float, float, float)
-
setOrtho
public Matrix4f setOrtho(float left, float right, float bottom, float top, float zNear, float zFar, boolean zZeroToOne)
Set this matrix to be an orthographic projection transformation for a right-handed coordinate system using the given NDC z range.In order to apply the orthographic projection to an already existing transformation, use
ortho().Reference: http://www.songho.ca
- Parameters:
left- the distance from the center to the left frustum edgeright- the distance from the center to the right frustum edgebottom- the distance from the center to the bottom frustum edgetop- the distance from the center to the top frustum edgezNear- near clipping plane distancezFar- far clipping plane distancezZeroToOne- whether to use Vulkan's and Direct3D's NDC z range of[0..+1]whentrueor whether to use OpenGL's NDC z range of[-1..+1]whenfalse- Returns:
- this
- See Also:
ortho(float, float, float, float, float, float, boolean)
-
setOrtho
public Matrix4f setOrtho(float left, float right, float bottom, float top, float zNear, float zFar)
Set this matrix to be an orthographic projection transformation for a right-handed coordinate system using OpenGL's NDC z range of[-1..+1].In order to apply the orthographic projection to an already existing transformation, use
ortho().Reference: http://www.songho.ca
- Parameters:
left- the distance from the center to the left frustum edgeright- the distance from the center to the right frustum edgebottom- the distance from the center to the bottom frustum edgetop- the distance from the center to the top frustum edgezNear- near clipping plane distancezFar- far clipping plane distance- Returns:
- this
- See Also:
ortho(float, float, float, float, float, float)
-
setOrthoLH
public Matrix4f setOrthoLH(float left, float right, float bottom, float top, float zNear, float zFar, boolean zZeroToOne)
Set this matrix to be an orthographic projection transformation for a left-handed coordinate system using the given NDC z range.In order to apply the orthographic projection to an already existing transformation, use
orthoLH().Reference: http://www.songho.ca
- Parameters:
left- the distance from the center to the left frustum edgeright- the distance from the center to the right frustum edgebottom- the distance from the center to the bottom frustum edgetop- the distance from the center to the top frustum edgezNear- near clipping plane distancezFar- far clipping plane distancezZeroToOne- whether to use Vulkan's and Direct3D's NDC z range of[0..+1]whentrueor whether to use OpenGL's NDC z range of[-1..+1]whenfalse- Returns:
- this
- See Also:
orthoLH(float, float, float, float, float, float, boolean)
-
setOrthoLH
public Matrix4f setOrthoLH(float left, float right, float bottom, float top, float zNear, float zFar)
Set this matrix to be an orthographic projection transformation for a left-handed coordinate system using OpenGL's NDC z range of[-1..+1].In order to apply the orthographic projection to an already existing transformation, use
orthoLH().Reference: http://www.songho.ca
- Parameters:
left- the distance from the center to the left frustum edgeright- the distance from the center to the right frustum edgebottom- the distance from the center to the bottom frustum edgetop- the distance from the center to the top frustum edgezNear- near clipping plane distancezFar- far clipping plane distance- Returns:
- this
- See Also:
orthoLH(float, float, float, float, float, float)
-
orthoSymmetric
public Matrix4f orthoSymmetric(float width, float height, float zNear, float zFar, boolean zZeroToOne, Matrix4f dest)
Apply a symmetric orthographic projection transformation for a right-handed coordinate system using the given NDC z range to this matrix and store the result indest.This method is equivalent to calling
ortho()withleft=-width/2,right=+width/2,bottom=-height/2andtop=+height/2.If
Misthismatrix andOthe orthographic projection matrix, then the new matrix will beM * O. So when transforming a vectorvwith the new matrix by usingM * O * v, the orthographic projection transformation will be applied first!In order to set the matrix to a symmetric orthographic projection without post-multiplying it, use
setOrthoSymmetric().Reference: http://www.songho.ca
- Specified by:
orthoSymmetricin interfaceMatrix4fc- Parameters:
width- the distance between the right and left frustum edgesheight- the distance between the top and bottom frustum edgeszNear- near clipping plane distancezFar- far clipping plane distancedest- will hold the resultzZeroToOne- whether to use Vulkan's and Direct3D's NDC z range of[0..+1]whentrueor whether to use OpenGL's NDC z range of[-1..+1]whenfalse- Returns:
- dest
- See Also:
setOrthoSymmetric(float, float, float, float, boolean)
-
orthoSymmetric
public Matrix4f orthoSymmetric(float width, float height, float zNear, float zFar, Matrix4f dest)
Apply a symmetric orthographic projection transformation for a right-handed coordinate system using OpenGL's NDC z range of[-1..+1]to this matrix and store the result indest.This method is equivalent to calling
ortho()withleft=-width/2,right=+width/2,bottom=-height/2andtop=+height/2.If
Misthismatrix andOthe orthographic projection matrix, then the new matrix will beM * O. So when transforming a vectorvwith the new matrix by usingM * O * v, the orthographic projection transformation will be applied first!In order to set the matrix to a symmetric orthographic projection without post-multiplying it, use
setOrthoSymmetric().Reference: http://www.songho.ca
- Specified by:
orthoSymmetricin interfaceMatrix4fc- Parameters:
width- the distance between the right and left frustum edgesheight- the distance between the top and bottom frustum edgeszNear- near clipping plane distancezFar- far clipping plane distancedest- will hold the result- Returns:
- dest
- See Also:
setOrthoSymmetric(float, float, float, float)
-
orthoSymmetric
public Matrix4f orthoSymmetric(float width, float height, float zNear, float zFar, boolean zZeroToOne)
Apply a symmetric orthographic projection transformation for a right-handed coordinate system using the given NDC z range to this matrix.This method is equivalent to calling
ortho()withleft=-width/2,right=+width/2,bottom=-height/2andtop=+height/2.If
Misthismatrix andOthe orthographic projection matrix, then the new matrix will beM * O. So when transforming a vectorvwith the new matrix by usingM * O * v, the orthographic projection transformation will be applied first!In order to set the matrix to a symmetric orthographic projection without post-multiplying it, use
setOrthoSymmetric().Reference: http://www.songho.ca
- Parameters:
width- the distance between the right and left frustum edgesheight- the distance between the top and bottom frustum edgeszNear- near clipping plane distancezFar- far clipping plane distancezZeroToOne- whether to use Vulkan's and Direct3D's NDC z range of[0..+1]whentrueor whether to use OpenGL's NDC z range of[-1..+1]whenfalse- Returns:
- this
- See Also:
setOrthoSymmetric(float, float, float, float, boolean)
-
orthoSymmetric
public Matrix4f orthoSymmetric(float width, float height, float zNear, float zFar)
Apply a symmetric orthographic projection transformation for a right-handed coordinate system using OpenGL's NDC z range of[-1..+1]to this matrix.This method is equivalent to calling
ortho()withleft=-width/2,right=+width/2,bottom=-height/2andtop=+height/2.If
Misthismatrix andOthe orthographic projection matrix, then the new matrix will beM * O. So when transforming a vectorvwith the new matrix by usingM * O * v, the orthographic projection transformation will be applied first!In order to set the matrix to a symmetric orthographic projection without post-multiplying it, use
setOrthoSymmetric().Reference: http://www.songho.ca
- Parameters:
width- the distance between the right and left frustum edgesheight- the distance between the top and bottom frustum edgeszNear- near clipping plane distancezFar- far clipping plane distance- Returns:
- this
- See Also:
setOrthoSymmetric(float, float, float, float)
-
orthoSymmetricLH
public Matrix4f orthoSymmetricLH(float width, float height, float zNear, float zFar, boolean zZeroToOne, Matrix4f dest)
Apply a symmetric orthographic projection transformation for a left-handed coordinate system using the given NDC z range to this matrix and store the result indest.This method is equivalent to calling
orthoLH()withleft=-width/2,right=+width/2,bottom=-height/2andtop=+height/2.If
Misthismatrix andOthe orthographic projection matrix, then the new matrix will beM * O. So when transforming a vectorvwith the new matrix by usingM * O * v, the orthographic projection transformation will be applied first!In order to set the matrix to a symmetric orthographic projection without post-multiplying it, use
setOrthoSymmetricLH().Reference: http://www.songho.ca
- Specified by:
orthoSymmetricLHin interfaceMatrix4fc- Parameters:
width- the distance between the right and left frustum edgesheight- the distance between the top and bottom frustum edgeszNear- near clipping plane distancezFar- far clipping plane distancedest- will hold the resultzZeroToOne- whether to use Vulkan's and Direct3D's NDC z range of[0..+1]whentrueor whether to use OpenGL's NDC z range of[-1..+1]whenfalse- Returns:
- dest
- See Also:
setOrthoSymmetricLH(float, float, float, float, boolean)
-
orthoSymmetricLH
public Matrix4f orthoSymmetricLH(float width, float height, float zNear, float zFar, Matrix4f dest)
Apply a symmetric orthographic projection transformation for a left-handed coordinate system using OpenGL's NDC z range of[-1..+1]to this matrix and store the result indest.This method is equivalent to calling
orthoLH()withleft=-width/2,right=+width/2,bottom=-height/2andtop=+height/2.If
Misthismatrix andOthe orthographic projection matrix, then the new matrix will beM * O. So when transforming a vectorvwith the new matrix by usingM * O * v, the orthographic projection transformation will be applied first!In order to set the matrix to a symmetric orthographic projection without post-multiplying it, use
setOrthoSymmetricLH().Reference: http://www.songho.ca
- Specified by:
orthoSymmetricLHin interfaceMatrix4fc- Parameters:
width- the distance between the right and left frustum edgesheight- the distance between the top and bottom frustum edgeszNear- near clipping plane distancezFar- far clipping plane distancedest- will hold the result- Returns:
- dest
- See Also:
setOrthoSymmetricLH(float, float, float, float)
-
orthoSymmetricLH
public Matrix4f orthoSymmetricLH(float width, float height, float zNear, float zFar, boolean zZeroToOne)
Apply a symmetric orthographic projection transformation for a left-handed coordinate system using the given NDC z range to this matrix.This method is equivalent to calling
orthoLH()withleft=-width/2,right=+width/2,bottom=-height/2andtop=+height/2.If
Misthismatrix andOthe orthographic projection matrix, then the new matrix will beM * O. So when transforming a vectorvwith the new matrix by usingM * O * v, the orthographic projection transformation will be applied first!In order to set the matrix to a symmetric orthographic projection without post-multiplying it, use
setOrthoSymmetricLH().Reference: http://www.songho.ca
- Parameters:
width- the distance between the right and left frustum edgesheight- the distance between the top and bottom frustum edgeszNear- near clipping plane distancezFar- far clipping plane distancezZeroToOne- whether to use Vulkan's and Direct3D's NDC z range of[0..+1]whentrueor whether to use OpenGL's NDC z range of[-1..+1]whenfalse- Returns:
- this
- See Also:
setOrthoSymmetricLH(float, float, float, float, boolean)
-
orthoSymmetricLH
public Matrix4f orthoSymmetricLH(float width, float height, float zNear, float zFar)
Apply a symmetric orthographic projection transformation for a left-handed coordinate system using OpenGL's NDC z range of[-1..+1]to this matrix.This method is equivalent to calling
orthoLH()withleft=-width/2,right=+width/2,bottom=-height/2andtop=+height/2.If
Misthismatrix andOthe orthographic projection matrix, then the new matrix will beM * O. So when transforming a vectorvwith the new matrix by usingM * O * v, the orthographic projection transformation will be applied first!In order to set the matrix to a symmetric orthographic projection without post-multiplying it, use
setOrthoSymmetricLH().Reference: http://www.songho.ca
- Parameters:
width- the distance between the right and left frustum edgesheight- the distance between the top and bottom frustum edgeszNear- near clipping plane distancezFar- far clipping plane distance- Returns:
- this
- See Also:
setOrthoSymmetricLH(float, float, float, float)
-
setOrthoSymmetric
public Matrix4f setOrthoSymmetric(float width, float height, float zNear, float zFar, boolean zZeroToOne)
Set this matrix to be a symmetric orthographic projection transformation for a right-handed coordinate system using the given NDC z range.This method is equivalent to calling
setOrtho()withleft=-width/2,right=+width/2,bottom=-height/2andtop=+height/2.In order to apply the symmetric orthographic projection to an already existing transformation, use
orthoSymmetric().Reference: http://www.songho.ca
- Parameters:
width- the distance between the right and left frustum edgesheight- the distance between the top and bottom frustum edgeszNear- near clipping plane distancezFar- far clipping plane distancezZeroToOne- whether to use Vulkan's and Direct3D's NDC z range of[0..+1]whentrueor whether to use OpenGL's NDC z range of[-1..+1]whenfalse- Returns:
- this
- See Also:
orthoSymmetric(float, float, float, float, boolean)
-
setOrthoSymmetric
public Matrix4f setOrthoSymmetric(float width, float height, float zNear, float zFar)
Set this matrix to be a symmetric orthographic projection transformation for a right-handed coordinate system using OpenGL's NDC z range of[-1..+1].This method is equivalent to calling
setOrtho()withleft=-width/2,right=+width/2,bottom=-height/2andtop=+height/2.In order to apply the symmetric orthographic projection to an already existing transformation, use
orthoSymmetric().Reference: http://www.songho.ca
- Parameters:
width- the distance between the right and left frustum edgesheight- the distance between the top and bottom frustum edgeszNear- near clipping plane distancezFar- far clipping plane distance- Returns:
- this
- See Also:
orthoSymmetric(float, float, float, float)
-
setOrthoSymmetricLH
public Matrix4f setOrthoSymmetricLH(float width, float height, float zNear, float zFar, boolean zZeroToOne)
Set this matrix to be a symmetric orthographic projection transformation for a left-handed coordinate system using the given NDC z range.This method is equivalent to calling
setOrtho()withleft=-width/2,right=+width/2,bottom=-height/2andtop=+height/2.In order to apply the symmetric orthographic projection to an already existing transformation, use
orthoSymmetricLH().Reference: http://www.songho.ca
- Parameters:
width- the distance between the right and left frustum edgesheight- the distance between the top and bottom frustum edgeszNear- near clipping plane distancezFar- far clipping plane distancezZeroToOne- whether to use Vulkan's and Direct3D's NDC z range of[0..+1]whentrueor whether to use OpenGL's NDC z range of[-1..+1]whenfalse- Returns:
- this
- See Also:
orthoSymmetricLH(float, float, float, float, boolean)
-
setOrthoSymmetricLH
public Matrix4f setOrthoSymmetricLH(float width, float height, float zNear, float zFar)
Set this matrix to be a symmetric orthographic projection transformation for a left-handed coordinate system using OpenGL's NDC z range of[-1..+1].This method is equivalent to calling
setOrthoLH()withleft=-width/2,right=+width/2,bottom=-height/2andtop=+height/2.In order to apply the symmetric orthographic projection to an already existing transformation, use
orthoSymmetricLH().Reference: http://www.songho.ca
- Parameters:
width- the distance between the right and left frustum edgesheight- the distance between the top and bottom frustum edgeszNear- near clipping plane distancezFar- far clipping plane distance- Returns:
- this
- See Also:
orthoSymmetricLH(float, float, float, float)
-
ortho2D
public Matrix4f ortho2D(float left, float right, float bottom, float top, Matrix4f dest)
Apply an orthographic projection transformation for a right-handed coordinate system to this matrix and store the result indest.This method is equivalent to calling
ortho()withzNear=-1andzFar=+1.If
Misthismatrix andOthe orthographic projection matrix, then the new matrix will beM * O. So when transforming a vectorvwith the new matrix by usingM * O * v, the orthographic projection transformation will be applied first!In order to set the matrix to an orthographic projection without post-multiplying it, use
setOrtho().Reference: http://www.songho.ca
- Specified by:
ortho2Din interfaceMatrix4fc- Parameters:
left- the distance from the center to the left frustum edgeright- the distance from the center to the right frustum edgebottom- the distance from the center to the bottom frustum edgetop- the distance from the center to the top frustum edgedest- will hold the result- Returns:
- dest
- See Also:
ortho(float, float, float, float, float, float, Matrix4f),setOrtho2D(float, float, float, float)
-
ortho2D
public Matrix4f ortho2D(float left, float right, float bottom, float top)
Apply an orthographic projection transformation for a right-handed coordinate system to this matrix.This method is equivalent to calling
ortho()withzNear=-1andzFar=+1.If
Misthismatrix andOthe orthographic projection matrix, then the new matrix will beM * O. So when transforming a vectorvwith the new matrix by usingM * O * v, the orthographic projection transformation will be applied first!In order to set the matrix to an orthographic projection without post-multiplying it, use
setOrtho2D().Reference: http://www.songho.ca
- Parameters:
left- the distance from the center to the left frustum edgeright- the distance from the center to the right frustum edgebottom- the distance from the center to the bottom frustum edgetop- the distance from the center to the top frustum edge- Returns:
- this
- See Also:
ortho(float, float, float, float, float, float),setOrtho2D(float, float, float, float)
-
ortho2DLH
public Matrix4f ortho2DLH(float left, float right, float bottom, float top, Matrix4f dest)
Apply an orthographic projection transformation for a left-handed coordinate system to this matrix and store the result indest.This method is equivalent to calling
orthoLH()withzNear=-1andzFar=+1.If
Misthismatrix andOthe orthographic projection matrix, then the new matrix will beM * O. So when transforming a vectorvwith the new matrix by usingM * O * v, the orthographic projection transformation will be applied first!In order to set the matrix to an orthographic projection without post-multiplying it, use
setOrthoLH().Reference: http://www.songho.ca
- Specified by:
ortho2DLHin interfaceMatrix4fc- Parameters:
left- the distance from the center to the left frustum edgeright- the distance from the center to the right frustum edgebottom- the distance from the center to the bottom frustum edgetop- the distance from the center to the top frustum edgedest- will hold the result- Returns:
- dest
- See Also:
orthoLH(float, float, float, float, float, float, Matrix4f),setOrtho2DLH(float, float, float, float)
-
ortho2DLH
public Matrix4f ortho2DLH(float left, float right, float bottom, float top)
Apply an orthographic projection transformation for a left-handed coordinate system to this matrix.This method is equivalent to calling
orthoLH()withzNear=-1andzFar=+1.If
Misthismatrix andOthe orthographic projection matrix, then the new matrix will beM * O. So when transforming a vectorvwith the new matrix by usingM * O * v, the orthographic projection transformation will be applied first!In order to set the matrix to an orthographic projection without post-multiplying it, use
setOrtho2DLH().Reference: http://www.songho.ca
- Parameters:
left- the distance from the center to the left frustum edgeright- the distance from the center to the right frustum edgebottom- the distance from the center to the bottom frustum edgetop- the distance from the center to the top frustum edge- Returns:
- this
- See Also:
orthoLH(float, float, float, float, float, float),setOrtho2DLH(float, float, float, float)
-
setOrtho2D
public Matrix4f setOrtho2D(float left, float right, float bottom, float top)
Set this matrix to be an orthographic projection transformation for a right-handed coordinate system.This method is equivalent to calling
setOrtho()withzNear=-1andzFar=+1.In order to apply the orthographic projection to an already existing transformation, use
ortho2D().Reference: http://www.songho.ca
- Parameters:
left- the distance from the center to the left frustum edgeright- the distance from the center to the right frustum edgebottom- the distance from the center to the bottom frustum edgetop- the distance from the center to the top frustum edge- Returns:
- this
- See Also:
setOrtho(float, float, float, float, float, float),ortho2D(float, float, float, float)
-
setOrtho2DLH
public Matrix4f setOrtho2DLH(float left, float right, float bottom, float top)
Set this matrix to be an orthographic projection transformation for a left-handed coordinate system.This method is equivalent to calling
setOrthoLH()withzNear=-1andzFar=+1.In order to apply the orthographic projection to an already existing transformation, use
ortho2DLH().Reference: http://www.songho.ca
- Parameters:
left- the distance from the center to the left frustum edgeright- the distance from the center to the right frustum edgebottom- the distance from the center to the bottom frustum edgetop- the distance from the center to the top frustum edge- Returns:
- this
- See Also:
setOrthoLH(float, float, float, float, float, float),ortho2DLH(float, float, float, float)
-
lookAlong
public Matrix4f lookAlong(Vector3fc dir, Vector3fc up)
Apply a rotation transformation to this matrix to make-zpoint alongdir.If
Misthismatrix andLthe lookalong rotation matrix, then the new matrix will beM * L. So when transforming a vectorvwith the new matrix by usingM * L * v, the lookalong rotation transformation will be applied first!This is equivalent to calling
lookAtwitheye = (0, 0, 0)andcenter = dir.In order to set the matrix to a lookalong transformation without post-multiplying it, use
setLookAlong().- Parameters:
dir- the direction in space to look alongup- the direction of 'up'- Returns:
- this
- See Also:
lookAlong(float, float, float, float, float, float),lookAt(Vector3fc, Vector3fc, Vector3fc),setLookAlong(Vector3fc, Vector3fc)
-
lookAlong
public Matrix4f lookAlong(Vector3fc dir, Vector3fc up, Matrix4f dest)
Apply a rotation transformation to this matrix to make-zpoint alongdirand store the result indest.If
Misthismatrix andLthe lookalong rotation matrix, then the new matrix will beM * L. So when transforming a vectorvwith the new matrix by usingM * L * v, the lookalong rotation transformation will be applied first!This is equivalent to calling
lookAtwitheye = (0, 0, 0)andcenter = dir.In order to set the matrix to a lookalong transformation without post-multiplying it, use
setLookAlong().- Specified by:
lookAlongin interfaceMatrix4fc- Parameters:
dir- the direction in space to look alongup- the direction of 'up'dest- will hold the result- Returns:
- dest
- See Also:
lookAlong(float, float, float, float, float, float),lookAt(Vector3fc, Vector3fc, Vector3fc),setLookAlong(Vector3fc, Vector3fc)
-
lookAlong
public Matrix4f lookAlong(float dirX, float dirY, float dirZ, float upX, float upY, float upZ, Matrix4f dest)
Apply a rotation transformation to this matrix to make-zpoint alongdirand store the result indest.If
Misthismatrix andLthe lookalong rotation matrix, then the new matrix will beM * L. So when transforming a vectorvwith the new matrix by usingM * L * v, the lookalong rotation transformation will be applied first!This is equivalent to calling
lookAt()witheye = (0, 0, 0)andcenter = dir.In order to set the matrix to a lookalong transformation without post-multiplying it, use
setLookAlong()- Specified by:
lookAlongin interfaceMatrix4fc- Parameters:
dirX- the x-coordinate of the direction to look alongdirY- the y-coordinate of the direction to look alongdirZ- the z-coordinate of the direction to look alongupX- the x-coordinate of the up vectorupY- the y-coordinate of the up vectorupZ- the z-coordinate of the up vectordest- will hold the result- Returns:
- dest
- See Also:
lookAt(float, float, float, float, float, float, float, float, float),setLookAlong(float, float, float, float, float, float)
-
lookAlong
public Matrix4f lookAlong(float dirX, float dirY, float dirZ, float upX, float upY, float upZ)
Apply a rotation transformation to this matrix to make-zpoint alongdir.If
Misthismatrix andLthe lookalong rotation matrix, then the new matrix will beM * L. So when transforming a vectorvwith the new matrix by usingM * L * v, the lookalong rotation transformation will be applied first!This is equivalent to calling
lookAt()witheye = (0, 0, 0)andcenter = dir.In order to set the matrix to a lookalong transformation without post-multiplying it, use
setLookAlong()- Parameters:
dirX- the x-coordinate of the direction to look alongdirY- the y-coordinate of the direction to look alongdirZ- the z-coordinate of the direction to look alongupX- the x-coordinate of the up vectorupY- the y-coordinate of the up vectorupZ- the z-coordinate of the up vector- Returns:
- this
- See Also:
lookAt(float, float, float, float, float, float, float, float, float),setLookAlong(float, float, float, float, float, float)
-
setLookAlong
public Matrix4f setLookAlong(Vector3fc dir, Vector3fc up)
Set this matrix to a rotation transformation to make-zpoint alongdir.This is equivalent to calling
setLookAt()witheye = (0, 0, 0)andcenter = dir.In order to apply the lookalong transformation to any previous existing transformation, use
lookAlong(Vector3fc, Vector3fc).- Parameters:
dir- the direction in space to look alongup- the direction of 'up'- Returns:
- this
- See Also:
setLookAlong(Vector3fc, Vector3fc),lookAlong(Vector3fc, Vector3fc)
-
setLookAlong
public Matrix4f setLookAlong(float dirX, float dirY, float dirZ, float upX, float upY, float upZ)
Set this matrix to a rotation transformation to make-zpoint alongdir.This is equivalent to calling
setLookAt()witheye = (0, 0, 0)andcenter = dir.In order to apply the lookalong transformation to any previous existing transformation, use
lookAlong()- Parameters:
dirX- the x-coordinate of the direction to look alongdirY- the y-coordinate of the direction to look alongdirZ- the z-coordinate of the direction to look alongupX- the x-coordinate of the up vectorupY- the y-coordinate of the up vectorupZ- the z-coordinate of the up vector- Returns:
- this
- See Also:
setLookAlong(float, float, float, float, float, float),lookAlong(float, float, float, float, float, float)
-
setLookAt
public Matrix4f setLookAt(Vector3fc eye, Vector3fc center, Vector3fc up)
Set this matrix to be a "lookat" transformation for a right-handed coordinate system, that aligns-zwithcenter - eye.In order to not make use of vectors to specify
eye,centerandupbut use primitives, like in the GLU function, usesetLookAt()instead.In order to apply the lookat transformation to a previous existing transformation, use
lookAt().- Parameters:
eye- the position of the cameracenter- the point in space to look atup- the direction of 'up'- Returns:
- this
- See Also:
setLookAt(float, float, float, float, float, float, float, float, float),lookAt(Vector3fc, Vector3fc, Vector3fc)
-
setLookAt
public Matrix4f setLookAt(float eyeX, float eyeY, float eyeZ, float centerX, float centerY, float centerZ, float upX, float upY, float upZ)
Set this matrix to be a "lookat" transformation for a right-handed coordinate system, that aligns-zwithcenter - eye.In order to apply the lookat transformation to a previous existing transformation, use
lookAt.- Parameters:
eyeX- the x-coordinate of the eye/camera locationeyeY- the y-coordinate of the eye/camera locationeyeZ- the z-coordinate of the eye/camera locationcenterX- the x-coordinate of the point to look atcenterY- the y-coordinate of the point to look atcenterZ- the z-coordinate of the point to look atupX- the x-coordinate of the up vectorupY- the y-coordinate of the up vectorupZ- the z-coordinate of the up vector- Returns:
- this
- See Also:
setLookAt(Vector3fc, Vector3fc, Vector3fc),lookAt(float, float, float, float, float, float, float, float, float)
-
lookAt
public Matrix4f lookAt(Vector3fc eye, Vector3fc center, Vector3fc up, Matrix4f dest)
Apply a "lookat" transformation to this matrix for a right-handed coordinate system, that aligns-zwithcenter - eyeand store the result indest.If
Misthismatrix andLthe lookat matrix, then the new matrix will beM * L. So when transforming a vectorvwith the new matrix by usingM * L * v, the lookat transformation will be applied first!In order to set the matrix to a lookat transformation without post-multiplying it, use
setLookAt(Vector3fc, Vector3fc, Vector3fc).- Specified by:
lookAtin interfaceMatrix4fc- Parameters:
eye- the position of the cameracenter- the point in space to look atup- the direction of 'up'dest- will hold the result- Returns:
- dest
- See Also:
lookAt(float, float, float, float, float, float, float, float, float),setLookAlong(Vector3fc, Vector3fc)
-
lookAt
public Matrix4f lookAt(Vector3fc eye, Vector3fc center, Vector3fc up)
Apply a "lookat" transformation to this matrix for a right-handed coordinate system, that aligns-zwithcenter - eye.If
Misthismatrix andLthe lookat matrix, then the new matrix will beM * L. So when transforming a vectorvwith the new matrix by usingM * L * v, the lookat transformation will be applied first!In order to set the matrix to a lookat transformation without post-multiplying it, use
setLookAt(Vector3fc, Vector3fc, Vector3fc).- Parameters:
eye- the position of the cameracenter- the point in space to look atup- the direction of 'up'- Returns:
- this
- See Also:
lookAt(float, float, float, float, float, float, float, float, float),setLookAlong(Vector3fc, Vector3fc)
-
lookAt
public Matrix4f lookAt(float eyeX, float eyeY, float eyeZ, float centerX, float centerY, float centerZ, float upX, float upY, float upZ, Matrix4f dest)
Apply a "lookat" transformation to this matrix for a right-handed coordinate system, that aligns-zwithcenter - eyeand store the result indest.If
Misthismatrix andLthe lookat matrix, then the new matrix will beM * L. So when transforming a vectorvwith the new matrix by usingM * L * v, the lookat transformation will be applied first!In order to set the matrix to a lookat transformation without post-multiplying it, use
setLookAt().- Specified by:
lookAtin interfaceMatrix4fc- Parameters:
eyeX- the x-coordinate of the eye/camera locationeyeY- the y-coordinate of the eye/camera locationeyeZ- the z-coordinate of the eye/camera locationcenterX- the x-coordinate of the point to look atcenterY- the y-coordinate of the point to look atcenterZ- the z-coordinate of the point to look atupX- the x-coordinate of the up vectorupY- the y-coordinate of the up vectorupZ- the z-coordinate of the up vectordest- will hold the result- Returns:
- dest
- See Also:
lookAt(Vector3fc, Vector3fc, Vector3fc),setLookAt(float, float, float, float, float, float, float, float, float)
-
lookAtPerspective
public Matrix4f lookAtPerspective(float eyeX, float eyeY, float eyeZ, float centerX, float centerY, float centerZ, float upX, float upY, float upZ, Matrix4f dest)
Apply a "lookat" transformation to this matrix for a right-handed coordinate system, that aligns-zwithcenter - eyeand store the result indest.This method assumes
thisto be a perspective transformation, obtained viafrustum()orperspective()or one of their overloads.If
Misthismatrix andLthe lookat matrix, then the new matrix will beM * L. So when transforming a vectorvwith the new matrix by usingM * L * v, the lookat transformation will be applied first!In order to set the matrix to a lookat transformation without post-multiplying it, use
setLookAt().- Specified by:
lookAtPerspectivein interfaceMatrix4fc- Parameters:
eyeX- the x-coordinate of the eye/camera locationeyeY- the y-coordinate of the eye/camera locationeyeZ- the z-coordinate of the eye/camera locationcenterX- the x-coordinate of the point to look atcenterY- the y-coordinate of the point to look atcenterZ- the z-coordinate of the point to look atupX- the x-coordinate of the up vectorupY- the y-coordinate of the up vectorupZ- the z-coordinate of the up vectordest- will hold the result- Returns:
- dest
- See Also:
setLookAt(float, float, float, float, float, float, float, float, float)
-
lookAt
public Matrix4f lookAt(float eyeX, float eyeY, float eyeZ, float centerX, float centerY, float centerZ, float upX, float upY, float upZ)
Apply a "lookat" transformation to this matrix for a right-handed coordinate system, that aligns-zwithcenter - eye.If
Misthismatrix andLthe lookat matrix, then the new matrix will beM * L. So when transforming a vectorvwith the new matrix by usingM * L * v, the lookat transformation will be applied first!In order to set the matrix to a lookat transformation without post-multiplying it, use
setLookAt().- Parameters:
eyeX- the x-coordinate of the eye/camera locationeyeY- the y-coordinate of the eye/camera locationeyeZ- the z-coordinate of the eye/camera locationcenterX- the x-coordinate of the point to look atcenterY- the y-coordinate of the point to look atcenterZ- the z-coordinate of the point to look atupX- the x-coordinate of the up vectorupY- the y-coordinate of the up vectorupZ- the z-coordinate of the up vector- Returns:
- this
- See Also:
lookAt(Vector3fc, Vector3fc, Vector3fc),setLookAt(float, float, float, float, float, float, float, float, float)
-
setLookAtLH
public Matrix4f setLookAtLH(Vector3fc eye, Vector3fc center, Vector3fc up)
Set this matrix to be a "lookat" transformation for a left-handed coordinate system, that aligns+zwithcenter - eye.In order to not make use of vectors to specify
eye,centerandupbut use primitives, like in the GLU function, usesetLookAtLH()instead.In order to apply the lookat transformation to a previous existing transformation, use
lookAt().- Parameters:
eye- the position of the cameracenter- the point in space to look atup- the direction of 'up'- Returns:
- this
- See Also:
setLookAtLH(float, float, float, float, float, float, float, float, float),lookAtLH(Vector3fc, Vector3fc, Vector3fc)
-
setLookAtLH
public Matrix4f setLookAtLH(float eyeX, float eyeY, float eyeZ, float centerX, float centerY, float centerZ, float upX, float upY, float upZ)
Set this matrix to be a "lookat" transformation for a left-handed coordinate system, that aligns+zwithcenter - eye.In order to apply the lookat transformation to a previous existing transformation, use
lookAtLH.- Parameters:
eyeX- the x-coordinate of the eye/camera locationeyeY- the y-coordinate of the eye/camera locationeyeZ- the z-coordinate of the eye/camera locationcenterX- the x-coordinate of the point to look atcenterY- the y-coordinate of the point to look atcenterZ- the z-coordinate of the point to look atupX- the x-coordinate of the up vectorupY- the y-coordinate of the up vectorupZ- the z-coordinate of the up vector- Returns:
- this
- See Also:
setLookAtLH(Vector3fc, Vector3fc, Vector3fc),lookAtLH(float, float, float, float, float, float, float, float, float)
-
lookAtLH
public Matrix4f lookAtLH(Vector3fc eye, Vector3fc center, Vector3fc up, Matrix4f dest)
Apply a "lookat" transformation to this matrix for a left-handed coordinate system, that aligns+zwithcenter - eyeand store the result indest.If
Misthismatrix andLthe lookat matrix, then the new matrix will beM * L. So when transforming a vectorvwith the new matrix by usingM * L * v, the lookat transformation will be applied first!In order to set the matrix to a lookat transformation without post-multiplying it, use
setLookAtLH(Vector3fc, Vector3fc, Vector3fc).- Specified by:
lookAtLHin interfaceMatrix4fc- Parameters:
eye- the position of the cameracenter- the point in space to look atup- the direction of 'up'dest- will hold the result- Returns:
- dest
- See Also:
lookAtLH(float, float, float, float, float, float, float, float, float)
-
lookAtLH
public Matrix4f lookAtLH(Vector3fc eye, Vector3fc center, Vector3fc up)
Apply a "lookat" transformation to this matrix for a left-handed coordinate system, that aligns+zwithcenter - eye.If
Misthismatrix andLthe lookat matrix, then the new matrix will beM * L. So when transforming a vectorvwith the new matrix by usingM * L * v, the lookat transformation will be applied first!In order to set the matrix to a lookat transformation without post-multiplying it, use
setLookAtLH(Vector3fc, Vector3fc, Vector3fc).- Parameters:
eye- the position of the cameracenter- the point in space to look atup- the direction of 'up'- Returns:
- this
- See Also:
lookAtLH(float, float, float, float, float, float, float, float, float)
-
lookAtLH
public Matrix4f lookAtLH(float eyeX, float eyeY, float eyeZ, float centerX, float centerY, float centerZ, float upX, float upY, float upZ, Matrix4f dest)
Apply a "lookat" transformation to this matrix for a left-handed coordinate system, that aligns+zwithcenter - eyeand store the result indest.If
Misthismatrix andLthe lookat matrix, then the new matrix will beM * L. So when transforming a vectorvwith the new matrix by usingM * L * v, the lookat transformation will be applied first!In order to set the matrix to a lookat transformation without post-multiplying it, use
setLookAtLH().- Specified by:
lookAtLHin interfaceMatrix4fc- Parameters:
eyeX- the x-coordinate of the eye/camera locationeyeY- the y-coordinate of the eye/camera locationeyeZ- the z-coordinate of the eye/camera locationcenterX- the x-coordinate of the point to look atcenterY- the y-coordinate of the point to look atcenterZ- the z-coordinate of the point to look atupX- the x-coordinate of the up vectorupY- the y-coordinate of the up vectorupZ- the z-coordinate of the up vectordest- will hold the result- Returns:
- dest
- See Also:
lookAtLH(Vector3fc, Vector3fc, Vector3fc),setLookAtLH(float, float, float, float, float, float, float, float, float)
-
lookAtLH
public Matrix4f lookAtLH(float eyeX, float eyeY, float eyeZ, float centerX, float centerY, float centerZ, float upX, float upY, float upZ)
Apply a "lookat" transformation to this matrix for a left-handed coordinate system, that aligns+zwithcenter - eye.If
Misthismatrix andLthe lookat matrix, then the new matrix will beM * L. So when transforming a vectorvwith the new matrix by usingM * L * v, the lookat transformation will be applied first!In order to set the matrix to a lookat transformation without post-multiplying it, use
setLookAtLH().- Parameters:
eyeX- the x-coordinate of the eye/camera locationeyeY- the y-coordinate of the eye/camera locationeyeZ- the z-coordinate of the eye/camera locationcenterX- the x-coordinate of the point to look atcenterY- the y-coordinate of the point to look atcenterZ- the z-coordinate of the point to look atupX- the x-coordinate of the up vectorupY- the y-coordinate of the up vectorupZ- the z-coordinate of the up vector- Returns:
- this
- See Also:
lookAtLH(Vector3fc, Vector3fc, Vector3fc),setLookAtLH(float, float, float, float, float, float, float, float, float)
-
lookAtPerspectiveLH
public Matrix4f lookAtPerspectiveLH(float eyeX, float eyeY, float eyeZ, float centerX, float centerY, float centerZ, float upX, float upY, float upZ, Matrix4f dest)
Apply a "lookat" transformation to this matrix for a left-handed coordinate system, that aligns+zwithcenter - eyeand store the result indest.This method assumes
thisto be a perspective transformation, obtained viafrustumLH()orperspectiveLH()or one of their overloads.If
Misthismatrix andLthe lookat matrix, then the new matrix will beM * L. So when transforming a vectorvwith the new matrix by usingM * L * v, the lookat transformation will be applied first!In order to set the matrix to a lookat transformation without post-multiplying it, use
setLookAtLH().- Specified by:
lookAtPerspectiveLHin interfaceMatrix4fc- Parameters:
eyeX- the x-coordinate of the eye/camera locationeyeY- the y-coordinate of the eye/camera locationeyeZ- the z-coordinate of the eye/camera locationcenterX- the x-coordinate of the point to look atcenterY- the y-coordinate of the point to look atcenterZ- the z-coordinate of the point to look atupX- the x-coordinate of the up vectorupY- the y-coordinate of the up vectorupZ- the z-coordinate of the up vectordest- will hold the result- Returns:
- dest
- See Also:
setLookAtLH(float, float, float, float, float, float, float, float, float)
-
tile
public Matrix4f tile(int x, int y, int w, int h)
This method is equivalent to calling:translate(w-1-2*x, h-1-2*y, 0).scale(w, h, 1)If
Misthismatrix andTthe created transformation matrix, then the new matrix will beM * T. So when transforming a vectorvwith the new matrix by usingM * T * v, the created transformation will be applied first!- Parameters:
x- the tile's x coordinate/index (should be in[0..w))y- the tile's y coordinate/index (should be in[0..h))w- the number of tiles along the x axish- the number of tiles along the y axis- Returns:
- this
-
tile
public Matrix4f tile(int x, int y, int w, int h, Matrix4f dest)
Description copied from interface:Matrix4fcThis method is equivalent to calling:translate(w-1-2*x, h-1-2*y, 0, dest).scale(w, h, 1)If
Misthismatrix andTthe created transformation matrix, then the new matrix will beM * T. So when transforming a vectorvwith the new matrix by usingM * T * v, the created transformation will be applied first!
-
perspective
public Matrix4f perspective(float fovy, float aspect, float zNear, float zFar, boolean zZeroToOne, Matrix4f dest)
Apply a symmetric perspective projection frustum transformation for a right-handed coordinate system using the given NDC z range to this matrix and store the result indest.If
Misthismatrix andPthe perspective projection matrix, then the new matrix will beM * P. So when transforming a vectorvwith the new matrix by usingM * P * v, the perspective projection will be applied first!In order to set the matrix to a perspective frustum transformation without post-multiplying, use
setPerspective.- Specified by:
perspectivein interfaceMatrix4fc- Parameters:
fovy- the vertical field of view in radians (must be greater than zero and less thanPI)aspect- the aspect ratio (i.e. width / height; must be greater than zero)zNear- near clipping plane distance. This value must be greater than zero. If the special valueFloat.POSITIVE_INFINITYis used, the near clipping plane will be at positive infinity. In that case,zFarmay not also beFloat.POSITIVE_INFINITY.zFar- far clipping plane distance. This value must be greater than zero. If the special valueFloat.POSITIVE_INFINITYis used, the far clipping plane will be at positive infinity. In that case,zNearmay not also beFloat.POSITIVE_INFINITY.dest- will hold the resultzZeroToOne- whether to use Vulkan's and Direct3D's NDC z range of[0..+1]whentrueor whether to use OpenGL's NDC z range of[-1..+1]whenfalse- Returns:
- dest
- See Also:
setPerspective(float, float, float, float, boolean)
-
perspective
public Matrix4f perspective(float fovy, float aspect, float zNear, float zFar, Matrix4f dest)
Apply a symmetric perspective projection frustum transformation for a right-handed coordinate system using OpenGL's NDC z range of[-1..+1]to this matrix and store the result indest.If
Misthismatrix andPthe perspective projection matrix, then the new matrix will beM * P. So when transforming a vectorvwith the new matrix by usingM * P * v, the perspective projection will be applied first!In order to set the matrix to a perspective frustum transformation without post-multiplying, use
setPerspective.- Specified by:
perspectivein interfaceMatrix4fc- Parameters:
fovy- the vertical field of view in radians (must be greater than zero and less thanPI)aspect- the aspect ratio (i.e. width / height; must be greater than zero)zNear- near clipping plane distance. This value must be greater than zero. If the special valueFloat.POSITIVE_INFINITYis used, the near clipping plane will be at positive infinity. In that case,zFarmay not also beFloat.POSITIVE_INFINITY.zFar- far clipping plane distance. This value must be greater than zero. If the special valueFloat.POSITIVE_INFINITYis used, the far clipping plane will be at positive infinity. In that case,zNearmay not also beFloat.POSITIVE_INFINITY.dest- will hold the result- Returns:
- dest
- See Also:
setPerspective(float, float, float, float)
-
perspective
public Matrix4f perspective(float fovy, float aspect, float zNear, float zFar, boolean zZeroToOne)
Apply a symmetric perspective projection frustum transformation using for a right-handed coordinate system using the given NDC z range to this matrix.If
Misthismatrix andPthe perspective projection matrix, then the new matrix will beM * P. So when transforming a vectorvwith the new matrix by usingM * P * v, the perspective projection will be applied first!In order to set the matrix to a perspective frustum transformation without post-multiplying, use
setPerspective.- Parameters:
fovy- the vertical field of view in radians (must be greater than zero and less thanPI)aspect- the aspect ratio (i.e. width / height; must be greater than zero)zNear- near clipping plane distance. This value must be greater than zero. If the special valueFloat.POSITIVE_INFINITYis used, the near clipping plane will be at positive infinity. In that case,zFarmay not also beFloat.POSITIVE_INFINITY.zFar- far clipping plane distance. This value must be greater than zero. If the special valueFloat.POSITIVE_INFINITYis used, the far clipping plane will be at positive infinity. In that case,zNearmay not also beFloat.POSITIVE_INFINITY.zZeroToOne- whether to use Vulkan's and Direct3D's NDC z range of[0..+1]whentrueor whether to use OpenGL's NDC z range of[-1..+1]whenfalse- Returns:
- this
- See Also:
setPerspective(float, float, float, float, boolean)
-
perspective
public Matrix4f perspective(float fovy, float aspect, float zNear, float zFar)
Apply a symmetric perspective projection frustum transformation for a right-handed coordinate system using OpenGL's NDC z range of[-1..+1]to this matrix.If
Misthismatrix andPthe perspective projection matrix, then the new matrix will beM * P. So when transforming a vectorvwith the new matrix by usingM * P * v, the perspective projection will be applied first!In order to set the matrix to a perspective frustum transformation without post-multiplying, use
setPerspective.- Parameters:
fovy- the vertical field of view in radians (must be greater than zero and less thanPI)aspect- the aspect ratio (i.e. width / height; must be greater than zero)zNear- near clipping plane distance. This value must be greater than zero. If the special valueFloat.POSITIVE_INFINITYis used, the near clipping plane will be at positive infinity. In that case,zFarmay not also beFloat.POSITIVE_INFINITY.zFar- far clipping plane distance. This value must be greater than zero. If the special valueFloat.POSITIVE_INFINITYis used, the far clipping plane will be at positive infinity. In that case,zNearmay not also beFloat.POSITIVE_INFINITY.- Returns:
- this
- See Also:
setPerspective(float, float, float, float)
-
perspectiveRect
public Matrix4f perspectiveRect(float width, float height, float zNear, float zFar, boolean zZeroToOne, Matrix4f dest)
Apply a symmetric perspective projection frustum transformation for a right-handed coordinate system using the given NDC z range to this matrix and store the result indest.If
Misthismatrix andPthe perspective projection matrix, then the new matrix will beM * P. So when transforming a vectorvwith the new matrix by usingM * P * v, the perspective projection will be applied first!In order to set the matrix to a perspective frustum transformation without post-multiplying, use
setPerspectiveRect.- Specified by:
perspectiveRectin interfaceMatrix4fc- Parameters:
width- the width of the near frustum planeheight- the height of the near frustum planezNear- near clipping plane distance. This value must be greater than zero. If the special valueFloat.POSITIVE_INFINITYis used, the near clipping plane will be at positive infinity. In that case,zFarmay not also beFloat.POSITIVE_INFINITY.zFar- far clipping plane distance. This value must be greater than zero. If the special valueFloat.POSITIVE_INFINITYis used, the far clipping plane will be at positive infinity. In that case,zNearmay not also beFloat.POSITIVE_INFINITY.dest- will hold the resultzZeroToOne- whether to use Vulkan's and Direct3D's NDC z range of[0..+1]whentrueor whether to use OpenGL's NDC z range of[-1..+1]whenfalse- Returns:
- dest
- See Also:
setPerspectiveRect(float, float, float, float, boolean)
-
perspectiveRect
public Matrix4f perspectiveRect(float width, float height, float zNear, float zFar, Matrix4f dest)
Apply a symmetric perspective projection frustum transformation for a right-handed coordinate system using OpenGL's NDC z range of[-1..+1]to this matrix and store the result indest.If
Misthismatrix andPthe perspective projection matrix, then the new matrix will beM * P. So when transforming a vectorvwith the new matrix by usingM * P * v, the perspective projection will be applied first!In order to set the matrix to a perspective frustum transformation without post-multiplying, use
setPerspectiveRect.- Specified by:
perspectiveRectin interfaceMatrix4fc- Parameters:
width- the width of the near frustum planeheight- the height of the near frustum planezNear- near clipping plane distance. This value must be greater than zero. If the special valueFloat.POSITIVE_INFINITYis used, the near clipping plane will be at positive infinity. In that case,zFarmay not also beFloat.POSITIVE_INFINITY.zFar- far clipping plane distance. This value must be greater than zero. If the special valueFloat.POSITIVE_INFINITYis used, the far clipping plane will be at positive infinity. In that case,zNearmay not also beFloat.POSITIVE_INFINITY.dest- will hold the result- Returns:
- dest
- See Also:
setPerspectiveRect(float, float, float, float)
-
perspectiveRect
public Matrix4f perspectiveRect(float width, float height, float zNear, float zFar, boolean zZeroToOne)
Apply a symmetric perspective projection frustum transformation using for a right-handed coordinate system using the given NDC z range to this matrix.If
Misthismatrix andPthe perspective projection matrix, then the new matrix will beM * P. So when transforming a vectorvwith the new matrix by usingM * P * v, the perspective projection will be applied first!In order to set the matrix to a perspective frustum transformation without post-multiplying, use
setPerspectiveRect.- Parameters:
width- the width of the near frustum planeheight- the height of the near frustum planezNear- near clipping plane distance. This value must be greater than zero. If the special valueFloat.POSITIVE_INFINITYis used, the near clipping plane will be at positive infinity. In that case,zFarmay not also beFloat.POSITIVE_INFINITY.zFar- far clipping plane distance. This value must be greater than zero. If the special valueFloat.POSITIVE_INFINITYis used, the far clipping plane will be at positive infinity. In that case,zNearmay not also beFloat.POSITIVE_INFINITY.zZeroToOne- whether to use Vulkan's and Direct3D's NDC z range of[0..+1]whentrueor whether to use OpenGL's NDC z range of[-1..+1]whenfalse- Returns:
- this
- See Also:
setPerspectiveRect(float, float, float, float, boolean)
-
perspectiveRect
public Matrix4f perspectiveRect(float width, float height, float zNear, float zFar)
Apply a symmetric perspective projection frustum transformation for a right-handed coordinate system using OpenGL's NDC z range of[-1..+1]to this matrix.If
Misthismatrix andPthe perspective projection matrix, then the new matrix will beM * P. So when transforming a vectorvwith the new matrix by usingM * P * v, the perspective projection will be applied first!In order to set the matrix to a perspective frustum transformation without post-multiplying, use
setPerspectiveRect.- Parameters:
width- the width of the near frustum planeheight- the height of the near frustum planezNear- near clipping plane distance. This value must be greater than zero. If the special valueFloat.POSITIVE_INFINITYis used, the near clipping plane will be at positive infinity. In that case,zFarmay not also beFloat.POSITIVE_INFINITY.zFar- far clipping plane distance. This value must be greater than zero. If the special valueFloat.POSITIVE_INFINITYis used, the far clipping plane will be at positive infinity. In that case,zNearmay not also beFloat.POSITIVE_INFINITY.- Returns:
- this
- See Also:
setPerspectiveRect(float, float, float, float)
-
perspectiveOffCenter
public Matrix4f perspectiveOffCenter(float fovy, float offAngleX, float offAngleY, float aspect, float zNear, float zFar, boolean zZeroToOne, Matrix4f dest)
Apply an asymmetric off-center perspective projection frustum transformation for a right-handed coordinate system using the given NDC z range to this matrix and store the result indest.The given angles
offAngleXandoffAngleYare the horizontal and vertical angles between the line of sight and the line given by the center of the near and far frustum planes. So, whenoffAngleYis justfovy/2then the projection frustum is rotated towards +Y and the bottom frustum plane is parallel to the XZ-plane.If
Misthismatrix andPthe perspective projection matrix, then the new matrix will beM * P. So when transforming a vectorvwith the new matrix by usingM * P * v, the perspective projection will be applied first!In order to set the matrix to a perspective frustum transformation without post-multiplying, use
setPerspectiveOffCenter.- Specified by:
perspectiveOffCenterin interfaceMatrix4fc- Parameters:
fovy- the vertical field of view in radians (must be greater than zero and less thanPI)offAngleX- the horizontal angle between the line of sight and the line crossing the center of the near and far frustum planesoffAngleY- the vertical angle between the line of sight and the line crossing the center of the near and far frustum planesaspect- the aspect ratio (i.e. width / height; must be greater than zero)zNear- near clipping plane distance. This value must be greater than zero. If the special valueFloat.POSITIVE_INFINITYis used, the near clipping plane will be at positive infinity. In that case,zFarmay not also beFloat.POSITIVE_INFINITY.zFar- far clipping plane distance. This value must be greater than zero. If the special valueFloat.POSITIVE_INFINITYis used, the far clipping plane will be at positive infinity. In that case,zNearmay not also beFloat.POSITIVE_INFINITY.dest- will hold the resultzZeroToOne- whether to use Vulkan's and Direct3D's NDC z range of[0..+1]whentrueor whether to use OpenGL's NDC z range of[-1..+1]whenfalse- Returns:
- dest
- See Also:
setPerspectiveOffCenter(float, float, float, float, float, float, boolean)
-
perspectiveOffCenter
public Matrix4f perspectiveOffCenter(float fovy, float offAngleX, float offAngleY, float aspect, float zNear, float zFar, Matrix4f dest)
Apply an asymmetric off-center perspective projection frustum transformation for a right-handed coordinate system using OpenGL's NDC z range of[-1..+1]to this matrix and store the result indest.The given angles
offAngleXandoffAngleYare the horizontal and vertical angles between the line of sight and the line given by the center of the near and far frustum planes. So, whenoffAngleYis justfovy/2then the projection frustum is rotated towards +Y and the bottom frustum plane is parallel to the XZ-plane.If
Misthismatrix andPthe perspective projection matrix, then the new matrix will beM * P. So when transforming a vectorvwith the new matrix by usingM * P * v, the perspective projection will be applied first!In order to set the matrix to a perspective frustum transformation without post-multiplying, use
setPerspectiveOffCenter.- Specified by:
perspectiveOffCenterin interfaceMatrix4fc- Parameters:
fovy- the vertical field of view in radians (must be greater than zero and less thanPI)offAngleX- the horizontal angle between the line of sight and the line crossing the center of the near and far frustum planesoffAngleY- the vertical angle between the line of sight and the line crossing the center of the near and far frustum planesaspect- the aspect ratio (i.e. width / height; must be greater than zero)zNear- near clipping plane distance. This value must be greater than zero. If the special valueFloat.POSITIVE_INFINITYis used, the near clipping plane will be at positive infinity. In that case,zFarmay not also beFloat.POSITIVE_INFINITY.zFar- far clipping plane distance. This value must be greater than zero. If the special valueFloat.POSITIVE_INFINITYis used, the far clipping plane will be at positive infinity. In that case,zNearmay not also beFloat.POSITIVE_INFINITY.dest- will hold the result- Returns:
- dest
- See Also:
setPerspectiveOffCenter(float, float, float, float, float, float)
-
perspectiveOffCenter
public Matrix4f perspectiveOffCenter(float fovy, float offAngleX, float offAngleY, float aspect, float zNear, float zFar, boolean zZeroToOne)
Apply an asymmetric off-center perspective projection frustum transformation using for a right-handed coordinate system using the given NDC z range to this matrix.The given angles
offAngleXandoffAngleYare the horizontal and vertical angles between the line of sight and the line given by the center of the near and far frustum planes. So, whenoffAngleYis justfovy/2then the projection frustum is rotated towards +Y and the bottom frustum plane is parallel to the XZ-plane.If
Misthismatrix andPthe perspective projection matrix, then the new matrix will beM * P. So when transforming a vectorvwith the new matrix by usingM * P * v, the perspective projection will be applied first!In order to set the matrix to a perspective frustum transformation without post-multiplying, use
setPerspectiveOffCenter.- Parameters:
fovy- the vertical field of view in radians (must be greater than zero and less thanPI)offAngleX- the horizontal angle between the line of sight and the line crossing the center of the near and far frustum planesoffAngleY- the vertical angle between the line of sight and the line crossing the center of the near and far frustum planesaspect- the aspect ratio (i.e. width / height; must be greater than zero)zNear- near clipping plane distance. This value must be greater than zero. If the special valueFloat.POSITIVE_INFINITYis used, the near clipping plane will be at positive infinity. In that case,zFarmay not also beFloat.POSITIVE_INFINITY.zFar- far clipping plane distance. This value must be greater than zero. If the special valueFloat.POSITIVE_INFINITYis used, the far clipping plane will be at positive infinity. In that case,zNearmay not also beFloat.POSITIVE_INFINITY.zZeroToOne- whether to use Vulkan's and Direct3D's NDC z range of[0..+1]whentrueor whether to use OpenGL's NDC z range of[-1..+1]whenfalse- Returns:
- this
- See Also:
setPerspectiveOffCenter(float, float, float, float, float, float, boolean)
-
perspectiveOffCenter
public Matrix4f perspectiveOffCenter(float fovy, float offAngleX, float offAngleY, float aspect, float zNear, float zFar)
Apply an asymmetric off-center perspective projection frustum transformation for a right-handed coordinate system using OpenGL's NDC z range of[-1..+1]to this matrix.The given angles
offAngleXandoffAngleYare the horizontal and vertical angles between the line of sight and the line given by the center of the near and far frustum planes. So, whenoffAngleYis justfovy/2then the projection frustum is rotated towards +Y and the bottom frustum plane is parallel to the XZ-plane.If
Misthismatrix andPthe perspective projection matrix, then the new matrix will beM * P. So when transforming a vectorvwith the new matrix by usingM * P * v, the perspective projection will be applied first!In order to set the matrix to a perspective frustum transformation without post-multiplying, use
setPerspectiveOffCenter.- Parameters:
fovy- the vertical field of view in radians (must be greater than zero and less thanPI)offAngleX- the horizontal angle between the line of sight and the line crossing the center of the near and far frustum planesoffAngleY- the vertical angle between the line of sight and the line crossing the center of the near and far frustum planesaspect- the aspect ratio (i.e. width / height; must be greater than zero)zNear- near clipping plane distance. This value must be greater than zero. If the special valueFloat.POSITIVE_INFINITYis used, the near clipping plane will be at positive infinity. In that case,zFarmay not also beFloat.POSITIVE_INFINITY.zFar- far clipping plane distance. This value must be greater than zero. If the special valueFloat.POSITIVE_INFINITYis used, the far clipping plane will be at positive infinity. In that case,zNearmay not also beFloat.POSITIVE_INFINITY.- Returns:
- this
- See Also:
setPerspectiveOffCenter(float, float, float, float, float, float)
-
perspectiveOffCenterFov
public Matrix4f perspectiveOffCenterFov(float angleLeft, float angleRight, float angleDown, float angleUp, float zNear, float zFar, boolean zZeroToOne)
Apply an asymmetric off-center perspective projection frustum transformation for a right-handed coordinate system using the given NDC z range to this matrix.The given angles
angleLeftandangleRightare the horizontal angles between the left and right frustum planes, respectively, and a line perpendicular to the near and far frustum planes. The anglesangleDownandangleUpare the vertical angles between the bottom and top frustum planes, respectively, and a line perpendicular to the near and far frustum planes.If
Misthismatrix andPthe perspective projection matrix, then the new matrix will beM * P. So when transforming a vectorvwith the new matrix by usingM * P * v, the perspective projection will be applied first!In order to set the matrix to a perspective frustum transformation without post-multiplying, use
setPerspectiveOffCenterFov.- Parameters:
angleLeft- the horizontal angle between left frustum plane and a line perpendicular to the near/far frustum planes. For a symmetric frustum, this value is negative.angleRight- the horizontal angle between right frustum plane and a line perpendicular to the near/far frustum planesangleDown- the vertical angle between bottom frustum plane and a line perpendicular to the near/far frustum planes. For a symmetric frustum, this value is negative.angleUp- the vertical angle between top frustum plane and a line perpendicular to the near/far frustum planeszNear- near clipping plane distance. This value must be greater than zero. If the special valueFloat.POSITIVE_INFINITYis used, the near clipping plane will be at positive infinity. In that case,zFarmay not also beFloat.POSITIVE_INFINITY.zFar- far clipping plane distance. This value must be greater than zero. If the special valueFloat.POSITIVE_INFINITYis used, the far clipping plane will be at positive infinity. In that case,zNearmay not also beFloat.POSITIVE_INFINITY.zZeroToOne- whether to use Vulkan's and Direct3D's NDC z range of[0..+1]whentrueor whether to use OpenGL's NDC z range of[-1..+1]whenfalse- Returns:
- this
- See Also:
setPerspectiveOffCenterFov(float, float, float, float, float, float, boolean)
-
perspectiveOffCenterFov
public Matrix4f perspectiveOffCenterFov(float angleLeft, float angleRight, float angleDown, float angleUp, float zNear, float zFar, boolean zZeroToOne, Matrix4f dest)
Description copied from interface:Matrix4fcApply an asymmetric off-center perspective projection frustum transformation for a right-handed coordinate system using the given NDC z range to this matrix and store the result indest.The given angles
angleLeftandangleRightare the horizontal angles between the left and right frustum planes, respectively, and a line perpendicular to the near and far frustum planes. The anglesangleDownandangleUpare the vertical angles between the bottom and top frustum planes, respectively, and a line perpendicular to the near and far frustum planes.If
Misthismatrix andPthe perspective projection matrix, then the new matrix will beM * P. So when transforming a vectorvwith the new matrix by usingM * P * v, the perspective projection will be applied first!- Specified by:
perspectiveOffCenterFovin interfaceMatrix4fc- Parameters:
angleLeft- the horizontal angle between left frustum plane and a line perpendicular to the near/far frustum planes. For a symmetric frustum, this value is negative.angleRight- the horizontal angle between right frustum plane and a line perpendicular to the near/far frustum planesangleDown- the vertical angle between bottom frustum plane and a line perpendicular to the near/far frustum planes. For a symmetric frustum, this value is negative.angleUp- the vertical angle between top frustum plane and a line perpendicular to the near/far frustum planeszNear- near clipping plane distance. This value must be greater than zero. If the special valueFloat.POSITIVE_INFINITYis used, the near clipping plane will be at positive infinity. In that case,zFarmay not also beFloat.POSITIVE_INFINITY.zFar- far clipping plane distance. This value must be greater than zero. If the special valueFloat.POSITIVE_INFINITYis used, the far clipping plane will be at positive infinity. In that case,zNearmay not also beFloat.POSITIVE_INFINITY.zZeroToOne- whether to use Vulkan's and Direct3D's NDC z range of[0..+1]whentrueor whether to use OpenGL's NDC z range of[-1..+1]whenfalsedest- will hold the result- Returns:
- dest
-
perspectiveOffCenterFov
public Matrix4f perspectiveOffCenterFov(float angleLeft, float angleRight, float angleDown, float angleUp, float zNear, float zFar)
Apply an asymmetric off-center perspective projection frustum transformation for a right-handed coordinate system using OpenGL's NDC z range of[-1..+1]to this matrix.The given angles
angleLeftandangleRightare the horizontal angles between the left and right frustum planes, respectively, and a line perpendicular to the near and far frustum planes. The anglesangleDownandangleUpare the vertical angles between the bottom and top frustum planes, respectively, and a line perpendicular to the near and far frustum planes.If
Misthismatrix andPthe perspective projection matrix, then the new matrix will beM * P. So when transforming a vectorvwith the new matrix by usingM * P * v, the perspective projection will be applied first!In order to set the matrix to a perspective frustum transformation without post-multiplying, use
setPerspectiveOffCenterFov.- Parameters:
angleLeft- the horizontal angle between left frustum plane and a line perpendicular to the near/far frustum planes. For a symmetric frustum, this value is negative.angleRight- the horizontal angle between right frustum plane and a line perpendicular to the near/far frustum planesangleDown- the vertical angle between bottom frustum plane and a line perpendicular to the near/far frustum planes. For a symmetric frustum, this value is negative.angleUp- the vertical angle between top frustum plane and a line perpendicular to the near/far frustum planeszNear- near clipping plane distance. This value must be greater than zero. If the special valueFloat.POSITIVE_INFINITYis used, the near clipping plane will be at positive infinity. In that case,zFarmay not also beFloat.POSITIVE_INFINITY.zFar- far clipping plane distance. This value must be greater than zero. If the special valueFloat.POSITIVE_INFINITYis used, the far clipping plane will be at positive infinity. In that case,zNearmay not also beFloat.POSITIVE_INFINITY.- Returns:
- this
- See Also:
setPerspectiveOffCenterFov(float, float, float, float, float, float)
-
perspectiveOffCenterFov
public Matrix4f perspectiveOffCenterFov(float angleLeft, float angleRight, float angleDown, float angleUp, float zNear, float zFar, Matrix4f dest)
Description copied from interface:Matrix4fcApply an asymmetric off-center perspective projection frustum transformation for a right-handed coordinate system using OpenGL's NDC z range of[-1..+1]to this matrix and store the result indest.The given angles
angleLeftandangleRightare the horizontal angles between the left and right frustum planes, respectively, and a line perpendicular to the near and far frustum planes. The anglesangleDownandangleUpare the vertical angles between the bottom and top frustum planes, respectively, and a line perpendicular to the near and far frustum planes.If
Misthismatrix andPthe perspective projection matrix, then the new matrix will beM * P. So when transforming a vectorvwith the new matrix by usingM * P * v, the perspective projection will be applied first!- Specified by:
perspectiveOffCenterFovin interfaceMatrix4fc- Parameters:
angleLeft- the horizontal angle between left frustum plane and a line perpendicular to the near/far frustum planes. For a symmetric frustum, this value is negative.angleRight- the horizontal angle between right frustum plane and a line perpendicular to the near/far frustum planesangleDown- the vertical angle between bottom frustum plane and a line perpendicular to the near/far frustum planes. For a symmetric frustum, this value is negative.angleUp- the vertical angle between top frustum plane and a line perpendicular to the near/far frustum planeszNear- near clipping plane distance. This value must be greater than zero. If the special valueFloat.POSITIVE_INFINITYis used, the near clipping plane will be at positive infinity. In that case,zFarmay not also beFloat.POSITIVE_INFINITY.zFar- far clipping plane distance. This value must be greater than zero. If the special valueFloat.POSITIVE_INFINITYis used, the far clipping plane will be at positive infinity. In that case,zNearmay not also beFloat.POSITIVE_INFINITY.dest- will hold the result- Returns:
- dest
-
perspectiveOffCenterFovLH
public Matrix4f perspectiveOffCenterFovLH(float angleLeft, float angleRight, float angleDown, float angleUp, float zNear, float zFar, boolean zZeroToOne)
Apply an asymmetric off-center perspective projection frustum transformation for a left-handed coordinate system using the given NDC z range to this matrix.The given angles
angleLeftandangleRightare the horizontal angles between the left and right frustum planes, respectively, and a line perpendicular to the near and far frustum planes. The anglesangleDownandangleUpare the vertical angles between the bottom and top frustum planes, respectively, and a line perpendicular to the near and far frustum planes.If
Misthismatrix andPthe perspective projection matrix, then the new matrix will beM * P. So when transforming a vectorvwith the new matrix by usingM * P * v, the perspective projection will be applied first!In order to set the matrix to a perspective frustum transformation without post-multiplying, use
setPerspectiveOffCenterFovLH.- Parameters:
angleLeft- the horizontal angle between left frustum plane and a line perpendicular to the near/far frustum planes. For a symmetric frustum, this value is negative.angleRight- the horizontal angle between right frustum plane and a line perpendicular to the near/far frustum planesangleDown- the vertical angle between bottom frustum plane and a line perpendicular to the near/far frustum planes. For a symmetric frustum, this value is negative.angleUp- the vertical angle between top frustum plane and a line perpendicular to the near/far frustum planeszNear- near clipping plane distance. This value must be greater than zero. If the special valueFloat.POSITIVE_INFINITYis used, the near clipping plane will be at positive infinity. In that case,zFarmay not also beFloat.POSITIVE_INFINITY.zFar- far clipping plane distance. This value must be greater than zero. If the special valueFloat.POSITIVE_INFINITYis used, the far clipping plane will be at positive infinity. In that case,zNearmay not also beFloat.POSITIVE_INFINITY.zZeroToOne- whether to use Vulkan's and Direct3D's NDC z range of[0..+1]whentrueor whether to use OpenGL's NDC z range of[-1..+1]whenfalse- Returns:
- this
- See Also:
setPerspectiveOffCenterFovLH(float, float, float, float, float, float, boolean)
-
perspectiveOffCenterFovLH
public Matrix4f perspectiveOffCenterFovLH(float angleLeft, float angleRight, float angleDown, float angleUp, float zNear, float zFar, boolean zZeroToOne, Matrix4f dest)
Description copied from interface:Matrix4fcApply an asymmetric off-center perspective projection frustum transformation for a left-handed coordinate system using the given NDC z range to this matrix and store the result indest.The given angles
angleLeftandangleRightare the horizontal angles between the left and right frustum planes, respectively, and a line perpendicular to the near and far frustum planes. The anglesangleDownandangleUpare the vertical angles between the bottom and top frustum planes, respectively, and a line perpendicular to the near and far frustum planes.If
Misthismatrix andPthe perspective projection matrix, then the new matrix will beM * P. So when transforming a vectorvwith the new matrix by usingM * P * v, the perspective projection will be applied first!- Specified by:
perspectiveOffCenterFovLHin interfaceMatrix4fc- Parameters:
angleLeft- the horizontal angle between left frustum plane and a line perpendicular to the near/far frustum planes. For a symmetric frustum, this value is negative.angleRight- the horizontal angle between right frustum plane and a line perpendicular to the near/far frustum planesangleDown- the vertical angle between bottom frustum plane and a line perpendicular to the near/far frustum planes. For a symmetric frustum, this value is negative.angleUp- the vertical angle between top frustum plane and a line perpendicular to the near/far frustum planeszNear- near clipping plane distance. This value must be greater than zero. If the special valueFloat.POSITIVE_INFINITYis used, the near clipping plane will be at positive infinity. In that case,zFarmay not also beFloat.POSITIVE_INFINITY.zFar- far clipping plane distance. This value must be greater than zero. If the special valueFloat.POSITIVE_INFINITYis used, the far clipping plane will be at positive infinity. In that case,zNearmay not also beFloat.POSITIVE_INFINITY.zZeroToOne- whether to use Vulkan's and Direct3D's NDC z range of[0..+1]whentrueor whether to use OpenGL's NDC z range of[-1..+1]whenfalsedest- will hold the result- Returns:
- dest
-
perspectiveOffCenterFovLH
public Matrix4f perspectiveOffCenterFovLH(float angleLeft, float angleRight, float angleDown, float angleUp, float zNear, float zFar)
Apply an asymmetric off-center perspective projection frustum transformation for a left-handed coordinate system using OpenGL's NDC z range of[-1..+1]to this matrix.The given angles
angleLeftandangleRightare the horizontal angles between the left and right frustum planes, respectively, and a line perpendicular to the near and far frustum planes. The anglesangleDownandangleUpare the vertical angles between the bottom and top frustum planes, respectively, and a line perpendicular to the near and far frustum planes.If
Misthismatrix andPthe perspective projection matrix, then the new matrix will beM * P. So when transforming a vectorvwith the new matrix by usingM * P * v, the perspective projection will be applied first!In order to set the matrix to a perspective frustum transformation without post-multiplying, use
setPerspectiveOffCenterFovLH.- Parameters:
angleLeft- the horizontal angle between left frustum plane and a line perpendicular to the near/far frustum planes. For a symmetric frustum, this value is negative.angleRight- the horizontal angle between right frustum plane and a line perpendicular to the near/far frustum planesangleDown- the vertical angle between bottom frustum plane and a line perpendicular to the near/far frustum planes. For a symmetric frustum, this value is negative.angleUp- the vertical angle between top frustum plane and a line perpendicular to the near/far frustum planeszNear- near clipping plane distance. This value must be greater than zero. If the special valueFloat.POSITIVE_INFINITYis used, the near clipping plane will be at positive infinity. In that case,zFarmay not also beFloat.POSITIVE_INFINITY.zFar- far clipping plane distance. This value must be greater than zero. If the special valueFloat.POSITIVE_INFINITYis used, the far clipping plane will be at positive infinity. In that case,zNearmay not also beFloat.POSITIVE_INFINITY.- Returns:
- this
- See Also:
setPerspectiveOffCenterFovLH(float, float, float, float, float, float)
-
perspectiveOffCenterFovLH
public Matrix4f perspectiveOffCenterFovLH(float angleLeft, float angleRight, float angleDown, float angleUp, float zNear, float zFar, Matrix4f dest)
Description copied from interface:Matrix4fcApply an asymmetric off-center perspective projection frustum transformation for a left-handed coordinate system using OpenGL's NDC z range of[-1..+1]to this matrix and store the result indest.The given angles
angleLeftandangleRightare the horizontal angles between the left and right frustum planes, respectively, and a line perpendicular to the near and far frustum planes. The anglesangleDownandangleUpare the vertical angles between the bottom and top frustum planes, respectively, and a line perpendicular to the near and far frustum planes.If
Misthismatrix andPthe perspective projection matrix, then the new matrix will beM * P. So when transforming a vectorvwith the new matrix by usingM * P * v, the perspective projection will be applied first!- Specified by:
perspectiveOffCenterFovLHin interfaceMatrix4fc- Parameters:
angleLeft- the horizontal angle between left frustum plane and a line perpendicular to the near/far frustum planes. For a symmetric frustum, this value is negative.angleRight- the horizontal angle between right frustum plane and a line perpendicular to the near/far frustum planesangleDown- the vertical angle between bottom frustum plane and a line perpendicular to the near/far frustum planes. For a symmetric frustum, this value is negative.angleUp- the vertical angle between top frustum plane and a line perpendicular to the near/far frustum planeszNear- near clipping plane distance. This value must be greater than zero. If the special valueFloat.POSITIVE_INFINITYis used, the near clipping plane will be at positive infinity. In that case,zFarmay not also beFloat.POSITIVE_INFINITY.zFar- far clipping plane distance. This value must be greater than zero. If the special valueFloat.POSITIVE_INFINITYis used, the far clipping plane will be at positive infinity. In that case,zNearmay not also beFloat.POSITIVE_INFINITY.dest- will hold the result- Returns:
- dest
-
setPerspective
public Matrix4f setPerspective(float fovy, float aspect, float zNear, float zFar, boolean zZeroToOne)
Set this matrix to be a symmetric perspective projection frustum transformation for a right-handed coordinate system using the given NDC z range.In order to apply the perspective projection transformation to an existing transformation, use
perspective().- Parameters:
fovy- the vertical field of view in radians (must be greater than zero and less thanPI)aspect- the aspect ratio (i.e. width / height; must be greater than zero)zNear- near clipping plane distance. This value must be greater than zero. If the special valueFloat.POSITIVE_INFINITYis used, the near clipping plane will be at positive infinity. In that case,zFarmay not also beFloat.POSITIVE_INFINITY.zFar- far clipping plane distance. This value must be greater than zero. If the special valueFloat.POSITIVE_INFINITYis used, the far clipping plane will be at positive infinity. In that case,zNearmay not also beFloat.POSITIVE_INFINITY.zZeroToOne- whether to use Vulkan's and Direct3D's NDC z range of[0..+1]whentrueor whether to use OpenGL's NDC z range of[-1..+1]whenfalse- Returns:
- this
- See Also:
perspective(float, float, float, float, boolean)
-
setPerspective
public Matrix4f setPerspective(float fovy, float aspect, float zNear, float zFar)
Set this matrix to be a symmetric perspective projection frustum transformation for a right-handed coordinate system using OpenGL's NDC z range of[-1..+1].In order to apply the perspective projection transformation to an existing transformation, use
perspective().- Parameters:
fovy- the vertical field of view in radians (must be greater than zero and less thanPI)aspect- the aspect ratio (i.e. width / height; must be greater than zero)zNear- near clipping plane distance. This value must be greater than zero. If the special valueFloat.POSITIVE_INFINITYis used, the near clipping plane will be at positive infinity. In that case,zFarmay not also beFloat.POSITIVE_INFINITY.zFar- far clipping plane distance. This value must be greater than zero. If the special valueFloat.POSITIVE_INFINITYis used, the far clipping plane will be at positive infinity. In that case,zNearmay not also beFloat.POSITIVE_INFINITY.- Returns:
- this
- See Also:
perspective(float, float, float, float)
-
setPerspectiveRect
public Matrix4f setPerspectiveRect(float width, float height, float zNear, float zFar, boolean zZeroToOne)
Set this matrix to be a symmetric perspective projection frustum transformation for a right-handed coordinate system using the given NDC z range.In order to apply the perspective projection transformation to an existing transformation, use
perspectiveRect().- Parameters:
width- the width of the near frustum planeheight- the height of the near frustum planezNear- near clipping plane distance. This value must be greater than zero. If the special valueFloat.POSITIVE_INFINITYis used, the near clipping plane will be at positive infinity. In that case,zFarmay not also beFloat.POSITIVE_INFINITY.zFar- far clipping plane distance. This value must be greater than zero. If the special valueFloat.POSITIVE_INFINITYis used, the far clipping plane will be at positive infinity. In that case,zNearmay not also beFloat.POSITIVE_INFINITY.zZeroToOne- whether to use Vulkan's and Direct3D's NDC z range of[0..+1]whentrueor whether to use OpenGL's NDC z range of[-1..+1]whenfalse- Returns:
- this
- See Also:
perspectiveRect(float, float, float, float, boolean)
-
setPerspectiveRect
public Matrix4f setPerspectiveRect(float width, float height, float zNear, float zFar)
Set this matrix to be a symmetric perspective projection frustum transformation for a right-handed coordinate system using OpenGL's NDC z range of[-1..+1].In order to apply the perspective projection transformation to an existing transformation, use
perspectiveRect().- Parameters:
width- the width of the near frustum planeheight- the height of the near frustum planezNear- near clipping plane distance. This value must be greater than zero. If the special valueFloat.POSITIVE_INFINITYis used, the near clipping plane will be at positive infinity. In that case,zFarmay not also beFloat.POSITIVE_INFINITY.zFar- far clipping plane distance. This value must be greater than zero. If the special valueFloat.POSITIVE_INFINITYis used, the far clipping plane will be at positive infinity. In that case,zNearmay not also beFloat.POSITIVE_INFINITY.- Returns:
- this
- See Also:
perspectiveRect(float, float, float, float)
-
setPerspectiveOffCenter
public Matrix4f setPerspectiveOffCenter(float fovy, float offAngleX, float offAngleY, float aspect, float zNear, float zFar)
Set this matrix to be an asymmetric off-center perspective projection frustum transformation for a right-handed coordinate system using OpenGL's NDC z range of[-1..+1].The given angles
offAngleXandoffAngleYare the horizontal and vertical angles between the line of sight and the line given by the center of the near and far frustum planes. So, whenoffAngleYis justfovy/2then the projection frustum is rotated towards +Y and the bottom frustum plane is parallel to the XZ-plane.In order to apply the perspective projection transformation to an existing transformation, use
perspectiveOffCenter().- Parameters:
fovy- the vertical field of view in radians (must be greater than zero and less thanPI)offAngleX- the horizontal angle between the line of sight and the line crossing the center of the near and far frustum planesoffAngleY- the vertical angle between the line of sight and the line crossing the center of the near and far frustum planesaspect- the aspect ratio (i.e. width / height; must be greater than zero)zNear- near clipping plane distance. This value must be greater than zero. If the special valueFloat.POSITIVE_INFINITYis used, the near clipping plane will be at positive infinity. In that case,zFarmay not also beFloat.POSITIVE_INFINITY.zFar- far clipping plane distance. This value must be greater than zero. If the special valueFloat.POSITIVE_INFINITYis used, the far clipping plane will be at positive infinity. In that case,zNearmay not also beFloat.POSITIVE_INFINITY.- Returns:
- this
- See Also:
perspectiveOffCenter(float, float, float, float, float, float)
-
setPerspectiveOffCenter
public Matrix4f setPerspectiveOffCenter(float fovy, float offAngleX, float offAngleY, float aspect, float zNear, float zFar, boolean zZeroToOne)
Set this matrix to be an asymmetric off-center perspective projection frustum transformation for a right-handed coordinate system using the given NDC z range.The given angles
offAngleXandoffAngleYare the horizontal and vertical angles between the line of sight and the line given by the center of the near and far frustum planes. So, whenoffAngleYis justfovy/2then the projection frustum is rotated towards +Y and the bottom frustum plane is parallel to the XZ-plane.In order to apply the perspective projection transformation to an existing transformation, use
perspectiveOffCenter().- Parameters:
fovy- the vertical field of view in radians (must be greater than zero and less thanPI)offAngleX- the horizontal angle between the line of sight and the line crossing the center of the near and far frustum planesoffAngleY- the vertical angle between the line of sight and the line crossing the center of the near and far frustum planesaspect- the aspect ratio (i.e. width / height; must be greater than zero)zNear- near clipping plane distance. This value must be greater than zero. If the special valueFloat.POSITIVE_INFINITYis used, the near clipping plane will be at positive infinity. In that case,zFarmay not also beFloat.POSITIVE_INFINITY.zFar- far clipping plane distance. This value must be greater than zero. If the special valueFloat.POSITIVE_INFINITYis used, the far clipping plane will be at positive infinity. In that case,zNearmay not also beFloat.POSITIVE_INFINITY.zZeroToOne- whether to use Vulkan's and Direct3D's NDC z range of[0..+1]whentrueor whether to use OpenGL's NDC z range of[-1..+1]whenfalse- Returns:
- this
- See Also:
perspectiveOffCenter(float, float, float, float, float, float)
-
setPerspectiveOffCenterFov
public Matrix4f setPerspectiveOffCenterFov(float angleLeft, float angleRight, float angleDown, float angleUp, float zNear, float zFar)
Set this matrix to be an asymmetric off-center perspective projection frustum transformation for a right-handed coordinate system using OpenGL's NDC z range of[-1..+1].The given angles
angleLeftandangleRightare the horizontal angles between the left and right frustum planes, respectively, and a line perpendicular to the near and far frustum planes. The anglesangleDownandangleUpare the vertical angles between the bottom and top frustum planes, respectively, and a line perpendicular to the near and far frustum planes.In order to apply the perspective projection transformation to an existing transformation, use
perspectiveOffCenterFov().- Parameters:
angleLeft- the horizontal angle between left frustum plane and a line perpendicular to the near/far frustum planes. For a symmetric frustum, this value is negative.angleRight- the horizontal angle between right frustum plane and a line perpendicular to the near/far frustum planesangleDown- the vertical angle between bottom frustum plane and a line perpendicular to the near/far frustum planes. For a symmetric frustum, this value is negative.angleUp- the vertical angle between top frustum plane and a line perpendicular to the near/far frustum planeszNear- near clipping plane distance. This value must be greater than zero. If the special valueFloat.POSITIVE_INFINITYis used, the near clipping plane will be at positive infinity. In that case,zFarmay not also beFloat.POSITIVE_INFINITY.zFar- far clipping plane distance. This value must be greater than zero. If the special valueFloat.POSITIVE_INFINITYis used, the far clipping plane will be at positive infinity. In that case,zNearmay not also beFloat.POSITIVE_INFINITY.- Returns:
- this
- See Also:
perspectiveOffCenterFov(float, float, float, float, float, float)
-
setPerspectiveOffCenterFov
public Matrix4f setPerspectiveOffCenterFov(float angleLeft, float angleRight, float angleDown, float angleUp, float zNear, float zFar, boolean zZeroToOne)
Set this matrix to be an asymmetric off-center perspective projection frustum transformation for a right-handed coordinate system using the given NDC z range.The given angles
angleLeftandangleRightare the horizontal angles between the left and right frustum planes, respectively, and a line perpendicular to the near and far frustum planes. The anglesangleDownandangleUpare the vertical angles between the bottom and top frustum planes, respectively, and a line perpendicular to the near and far frustum planes.In order to apply the perspective projection transformation to an existing transformation, use
perspectiveOffCenterFov().- Parameters:
angleLeft- the horizontal angle between left frustum plane and a line perpendicular to the near/far frustum planes. For a symmetric frustum, this value is negative.angleRight- the horizontal angle between right frustum plane and a line perpendicular to the near/far frustum planesangleDown- the vertical angle between bottom frustum plane and a line perpendicular to the near/far frustum planes. For a symmetric frustum, this value is negative.angleUp- the vertical angle between top frustum plane and a line perpendicular to the near/far frustum planeszNear- near clipping plane distance. This value must be greater than zero. If the special valueFloat.POSITIVE_INFINITYis used, the near clipping plane will be at positive infinity. In that case,zFarmay not also beFloat.POSITIVE_INFINITY.zFar- far clipping plane distance. This value must be greater than zero. If the special valueFloat.POSITIVE_INFINITYis used, the far clipping plane will be at positive infinity. In that case,zNearmay not also beFloat.POSITIVE_INFINITY.zZeroToOne- whether to use Vulkan's and Direct3D's NDC z range of[0..+1]whentrueor whether to use OpenGL's NDC z range of[-1..+1]whenfalse- Returns:
- this
- See Also:
perspectiveOffCenterFov(float, float, float, float, float, float, boolean)
-
setPerspectiveOffCenterFovLH
public Matrix4f setPerspectiveOffCenterFovLH(float angleLeft, float angleRight, float angleDown, float angleUp, float zNear, float zFar)
Set this matrix to be an asymmetric off-center perspective projection frustum transformation for a left-handed coordinate system using OpenGL's NDC z range of[-1..+1].The given angles
angleLeftandangleRightare the horizontal angles between the left and right frustum planes, respectively, and a line perpendicular to the near and far frustum planes. The anglesangleDownandangleUpare the vertical angles between the bottom and top frustum planes, respectively, and a line perpendicular to the near and far frustum planes.In order to apply the perspective projection transformation to an existing transformation, use
perspectiveOffCenterFovLH().- Parameters:
angleLeft- the horizontal angle between left frustum plane and a line perpendicular to the near/far frustum planes. For a symmetric frustum, this value is negative.angleRight- the horizontal angle between right frustum plane and a line perpendicular to the near/far frustum planesangleDown- the vertical angle between bottom frustum plane and a line perpendicular to the near/far frustum planes. For a symmetric frustum, this value is negative.angleUp- the vertical angle between top frustum plane and a line perpendicular to the near/far frustum planeszNear- near clipping plane distance. This value must be greater than zero. If the special valueFloat.POSITIVE_INFINITYis used, the near clipping plane will be at positive infinity. In that case,zFarmay not also beFloat.POSITIVE_INFINITY.zFar- far clipping plane distance. This value must be greater than zero. If the special valueFloat.POSITIVE_INFINITYis used, the far clipping plane will be at positive infinity. In that case,zNearmay not also beFloat.POSITIVE_INFINITY.- Returns:
- this
- See Also:
perspectiveOffCenterFovLH(float, float, float, float, float, float)
-
setPerspectiveOffCenterFovLH
public Matrix4f setPerspectiveOffCenterFovLH(float angleLeft, float angleRight, float angleDown, float angleUp, float zNear, float zFar, boolean zZeroToOne)
Set this matrix to be an asymmetric off-center perspective projection frustum transformation for a left-handed coordinate system using the given NDC z range.The given angles
angleLeftandangleRightare the horizontal angles between the left and right frustum planes, respectively, and a line perpendicular to the near and far frustum planes. The anglesangleDownandangleUpare the vertical angles between the bottom and top frustum planes, respectively, and a line perpendicular to the near and far frustum planes.In order to apply the perspective projection transformation to an existing transformation, use
perspectiveOffCenterFovLH().- Parameters:
angleLeft- the horizontal angle between left frustum plane and a line perpendicular to the near/far frustum planes. For a symmetric frustum, this value is negative.angleRight- the horizontal angle between right frustum plane and a line perpendicular to the near/far frustum planesangleDown- the vertical angle between bottom frustum plane and a line perpendicular to the near/far frustum planes. For a symmetric frustum, this value is negative.angleUp- the vertical angle between top frustum plane and a line perpendicular to the near/far frustum planeszNear- near clipping plane distance. This value must be greater than zero. If the special valueFloat.POSITIVE_INFINITYis used, the near clipping plane will be at positive infinity. In that case,zFarmay not also beFloat.POSITIVE_INFINITY.zFar- far clipping plane distance. This value must be greater than zero. If the special valueFloat.POSITIVE_INFINITYis used, the far clipping plane will be at positive infinity. In that case,zNearmay not also beFloat.POSITIVE_INFINITY.zZeroToOne- whether to use Vulkan's and Direct3D's NDC z range of[0..+1]whentrueor whether to use OpenGL's NDC z range of[-1..+1]whenfalse- Returns:
- this
- See Also:
perspectiveOffCenterFovLH(float, float, float, float, float, float, boolean)
-
perspectiveLH
public Matrix4f perspectiveLH(float fovy, float aspect, float zNear, float zFar, boolean zZeroToOne, Matrix4f dest)
Apply a symmetric perspective projection frustum transformation for a left-handed coordinate system using the given NDC z range to this matrix and store the result indest.If
Misthismatrix andPthe perspective projection matrix, then the new matrix will beM * P. So when transforming a vectorvwith the new matrix by usingM * P * v, the perspective projection will be applied first!In order to set the matrix to a perspective frustum transformation without post-multiplying, use
setPerspectiveLH.- Specified by:
perspectiveLHin interfaceMatrix4fc- Parameters:
fovy- the vertical field of view in radians (must be greater than zero and less thanPI)aspect- the aspect ratio (i.e. width / height; must be greater than zero)zNear- near clipping plane distance. This value must be greater than zero. If the special valueFloat.POSITIVE_INFINITYis used, the near clipping plane will be at positive infinity. In that case,zFarmay not also beFloat.POSITIVE_INFINITY.zFar- far clipping plane distance. This value must be greater than zero. If the special valueFloat.POSITIVE_INFINITYis used, the far clipping plane will be at positive infinity. In that case,zNearmay not also beFloat.POSITIVE_INFINITY.zZeroToOne- whether to use Vulkan's and Direct3D's NDC z range of[0..+1]whentrueor whether to use OpenGL's NDC z range of[-1..+1]whenfalsedest- will hold the result- Returns:
- dest
- See Also:
setPerspectiveLH(float, float, float, float, boolean)
-
perspectiveLH
public Matrix4f perspectiveLH(float fovy, float aspect, float zNear, float zFar, boolean zZeroToOne)
Apply a symmetric perspective projection frustum transformation for a left-handed coordinate system using the given NDC z range to this matrix.If
Misthismatrix andPthe perspective projection matrix, then the new matrix will beM * P. So when transforming a vectorvwith the new matrix by usingM * P * v, the perspective projection will be applied first!In order to set the matrix to a perspective frustum transformation without post-multiplying, use
setPerspectiveLH.- Parameters:
fovy- the vertical field of view in radians (must be greater than zero and less thanPI)aspect- the aspect ratio (i.e. width / height; must be greater than zero)zNear- near clipping plane distance. This value must be greater than zero. If the special valueFloat.POSITIVE_INFINITYis used, the near clipping plane will be at positive infinity. In that case,zFarmay not also beFloat.POSITIVE_INFINITY.zFar- far clipping plane distance. This value must be greater than zero. If the special valueFloat.POSITIVE_INFINITYis used, the far clipping plane will be at positive infinity. In that case,zNearmay not also beFloat.POSITIVE_INFINITY.zZeroToOne- whether to use Vulkan's and Direct3D's NDC z range of[0..+1]whentrueor whether to use OpenGL's NDC z range of[-1..+1]whenfalse- Returns:
- this
- See Also:
setPerspectiveLH(float, float, float, float, boolean)
-
perspectiveLH
public Matrix4f perspectiveLH(float fovy, float aspect, float zNear, float zFar, Matrix4f dest)
Apply a symmetric perspective projection frustum transformation for a left-handed coordinate system using OpenGL's NDC z range of[-1..+1]to this matrix and store the result indest.If
Misthismatrix andPthe perspective projection matrix, then the new matrix will beM * P. So when transforming a vectorvwith the new matrix by usingM * P * v, the perspective projection will be applied first!In order to set the matrix to a perspective frustum transformation without post-multiplying, use
setPerspectiveLH.- Specified by:
perspectiveLHin interfaceMatrix4fc- Parameters:
fovy- the vertical field of view in radians (must be greater than zero and less thanPI)aspect- the aspect ratio (i.e. width / height; must be greater than zero)zNear- near clipping plane distance. This value must be greater than zero. If the special valueFloat.POSITIVE_INFINITYis used, the near clipping plane will be at positive infinity. In that case,zFarmay not also beFloat.POSITIVE_INFINITY.zFar- far clipping plane distance. This value must be greater than zero. If the special valueFloat.POSITIVE_INFINITYis used, the far clipping plane will be at positive infinity. In that case,zNearmay not also beFloat.POSITIVE_INFINITY.dest- will hold the result- Returns:
- dest
- See Also:
setPerspectiveLH(float, float, float, float)
-
perspectiveLH
public Matrix4f perspectiveLH(float fovy, float aspect, float zNear, float zFar)
Apply a symmetric perspective projection frustum transformation for a left-handed coordinate system using OpenGL's NDC z range of[-1..+1]to this matrix.If
Misthismatrix andPthe perspective projection matrix, then the new matrix will beM * P. So when transforming a vectorvwith the new matrix by usingM * P * v, the perspective projection will be applied first!In order to set the matrix to a perspective frustum transformation without post-multiplying, use
setPerspectiveLH.- Parameters:
fovy- the vertical field of view in radians (must be greater than zero and less thanPI)aspect- the aspect ratio (i.e. width / height; must be greater than zero)zNear- near clipping plane distance. This value must be greater than zero. If the special valueFloat.POSITIVE_INFINITYis used, the near clipping plane will be at positive infinity. In that case,zFarmay not also beFloat.POSITIVE_INFINITY.zFar- far clipping plane distance. This value must be greater than zero. If the special valueFloat.POSITIVE_INFINITYis used, the far clipping plane will be at positive infinity. In that case,zNearmay not also beFloat.POSITIVE_INFINITY.- Returns:
- this
- See Also:
setPerspectiveLH(float, float, float, float)
-
setPerspectiveLH
public Matrix4f setPerspectiveLH(float fovy, float aspect, float zNear, float zFar, boolean zZeroToOne)
Set this matrix to be a symmetric perspective projection frustum transformation for a left-handed coordinate system using the given NDC z range of[-1..+1].In order to apply the perspective projection transformation to an existing transformation, use
perspectiveLH().- Parameters:
fovy- the vertical field of view in radians (must be greater than zero and less thanPI)aspect- the aspect ratio (i.e. width / height; must be greater than zero)zNear- near clipping plane distance. This value must be greater than zero. If the special valueFloat.POSITIVE_INFINITYis used, the near clipping plane will be at positive infinity. In that case,zFarmay not also beFloat.POSITIVE_INFINITY.zFar- far clipping plane distance. This value must be greater than zero. If the special valueFloat.POSITIVE_INFINITYis used, the far clipping plane will be at positive infinity. In that case,zNearmay not also beFloat.POSITIVE_INFINITY.zZeroToOne- whether to use Vulkan's and Direct3D's NDC z range of[0..+1]whentrueor whether to use OpenGL's NDC z range of[-1..+1]whenfalse- Returns:
- this
- See Also:
perspectiveLH(float, float, float, float, boolean)
-
setPerspectiveLH
public Matrix4f setPerspectiveLH(float fovy, float aspect, float zNear, float zFar)
Set this matrix to be a symmetric perspective projection frustum transformation for a left-handed coordinate system using OpenGL's NDC z range of[-1..+1].In order to apply the perspective projection transformation to an existing transformation, use
perspectiveLH().- Parameters:
fovy- the vertical field of view in radians (must be greater than zero and less thanPI)aspect- the aspect ratio (i.e. width / height; must be greater than zero)zNear- near clipping plane distance. This value must be greater than zero. If the special valueFloat.POSITIVE_INFINITYis used, the near clipping plane will be at positive infinity. In that case,zFarmay not also beFloat.POSITIVE_INFINITY.zFar- far clipping plane distance. This value must be greater than zero. If the special valueFloat.POSITIVE_INFINITYis used, the far clipping plane will be at positive infinity. In that case,zNearmay not also beFloat.POSITIVE_INFINITY.- Returns:
- this
- See Also:
perspectiveLH(float, float, float, float)
-
frustum
public Matrix4f frustum(float left, float right, float bottom, float top, float zNear, float zFar, boolean zZeroToOne, Matrix4f dest)
Apply an arbitrary perspective projection frustum transformation for a right-handed coordinate system using the given NDC z range to this matrix and store the result indest.If
Misthismatrix andFthe frustum matrix, then the new matrix will beM * F. So when transforming a vectorvwith the new matrix by usingM * F * v, the frustum transformation will be applied first!In order to set the matrix to a perspective frustum transformation without post-multiplying, use
setFrustum().Reference: http://www.songho.ca
- Specified by:
frustumin interfaceMatrix4fc- Parameters:
left- the distance along the x-axis to the left frustum edgeright- the distance along the x-axis to the right frustum edgebottom- the distance along the y-axis to the bottom frustum edgetop- the distance along the y-axis to the top frustum edgezNear- near clipping plane distance. This value must be greater than zero. If the special valueFloat.POSITIVE_INFINITYis used, the near clipping plane will be at positive infinity. In that case,zFarmay not also beFloat.POSITIVE_INFINITY.zFar- far clipping plane distance. This value must be greater than zero. If the special valueFloat.POSITIVE_INFINITYis used, the far clipping plane will be at positive infinity. In that case,zNearmay not also beFloat.POSITIVE_INFINITY.zZeroToOne- whether to use Vulkan's and Direct3D's NDC z range of[0..+1]whentrueor whether to use OpenGL's NDC z range of[-1..+1]whenfalsedest- will hold the result- Returns:
- dest
- See Also:
setFrustum(float, float, float, float, float, float, boolean)
-
frustum
public Matrix4f frustum(float left, float right, float bottom, float top, float zNear, float zFar, Matrix4f dest)
Apply an arbitrary perspective projection frustum transformation for a right-handed coordinate system using OpenGL's NDC z range of[-1..+1]to this matrix and store the result indest.If
Misthismatrix andFthe frustum matrix, then the new matrix will beM * F. So when transforming a vectorvwith the new matrix by usingM * F * v, the frustum transformation will be applied first!In order to set the matrix to a perspective frustum transformation without post-multiplying, use
setFrustum().Reference: http://www.songho.ca
- Specified by:
frustumin interfaceMatrix4fc- Parameters:
left- the distance along the x-axis to the left frustum edgeright- the distance along the x-axis to the right frustum edgebottom- the distance along the y-axis to the bottom frustum edgetop- the distance along the y-axis to the top frustum edgezNear- near clipping plane distance. This value must be greater than zero. If the special valueFloat.POSITIVE_INFINITYis used, the near clipping plane will be at positive infinity. In that case,zFarmay not also beFloat.POSITIVE_INFINITY.zFar- far clipping plane distance. This value must be greater than zero. If the special valueFloat.POSITIVE_INFINITYis used, the far clipping plane will be at positive infinity. In that case,zNearmay not also beFloat.POSITIVE_INFINITY.dest- will hold the result- Returns:
- dest
- See Also:
setFrustum(float, float, float, float, float, float)
-
frustum
public Matrix4f frustum(float left, float right, float bottom, float top, float zNear, float zFar, boolean zZeroToOne)
Apply an arbitrary perspective projection frustum transformation for a right-handed coordinate system using the given NDC z range to this matrix.If
Misthismatrix andFthe frustum matrix, then the new matrix will beM * F. So when transforming a vectorvwith the new matrix by usingM * F * v, the frustum transformation will be applied first!In order to set the matrix to a perspective frustum transformation without post-multiplying, use
setFrustum().Reference: http://www.songho.ca
- Parameters:
left- the distance along the x-axis to the left frustum edgeright- the distance along the x-axis to the right frustum edgebottom- the distance along the y-axis to the bottom frustum edgetop- the distance along the y-axis to the top frustum edgezNear- near clipping plane distance. This value must be greater than zero. If the special valueFloat.POSITIVE_INFINITYis used, the near clipping plane will be at positive infinity. In that case,zFarmay not also beFloat.POSITIVE_INFINITY.zFar- far clipping plane distance. This value must be greater than zero. If the special valueFloat.POSITIVE_INFINITYis used, the far clipping plane will be at positive infinity. In that case,zNearmay not also beFloat.POSITIVE_INFINITY.zZeroToOne- whether to use Vulkan's and Direct3D's NDC z range of[0..+1]whentrueor whether to use OpenGL's NDC z range of[-1..+1]whenfalse- Returns:
- this
- See Also:
setFrustum(float, float, float, float, float, float, boolean)
-
frustum
public Matrix4f frustum(float left, float right, float bottom, float top, float zNear, float zFar)
Apply an arbitrary perspective projection frustum transformation for a right-handed coordinate system using OpenGL's NDC z range of[-1..+1]to this matrix.If
Misthismatrix andFthe frustum matrix, then the new matrix will beM * F. So when transforming a vectorvwith the new matrix by usingM * F * v, the frustum transformation will be applied first!In order to set the matrix to a perspective frustum transformation without post-multiplying, use
setFrustum().Reference: http://www.songho.ca
- Parameters:
left- the distance along the x-axis to the left frustum edgeright- the distance along the x-axis to the right frustum edgebottom- the distance along the y-axis to the bottom frustum edgetop- the distance along the y-axis to the top frustum edgezNear- near clipping plane distance. This value must be greater than zero. If the special valueFloat.POSITIVE_INFINITYis used, the near clipping plane will be at positive infinity. In that case,zFarmay not also beFloat.POSITIVE_INFINITY.zFar- far clipping plane distance. This value must be greater than zero. If the special valueFloat.POSITIVE_INFINITYis used, the far clipping plane will be at positive infinity. In that case,zNearmay not also beFloat.POSITIVE_INFINITY.- Returns:
- this
- See Also:
setFrustum(float, float, float, float, float, float)
-
setFrustum
public Matrix4f setFrustum(float left, float right, float bottom, float top, float zNear, float zFar, boolean zZeroToOne)
Set this matrix to be an arbitrary perspective projection frustum transformation for a right-handed coordinate system using the given NDC z range.In order to apply the perspective frustum transformation to an existing transformation, use
frustum().Reference: http://www.songho.ca
- Parameters:
left- the distance along the x-axis to the left frustum edgeright- the distance along the x-axis to the right frustum edgebottom- the distance along the y-axis to the bottom frustum edgetop- the distance along the y-axis to the top frustum edgezNear- near clipping plane distance. This value must be greater than zero. If the special valueFloat.POSITIVE_INFINITYis used, the near clipping plane will be at positive infinity. In that case,zFarmay not also beFloat.POSITIVE_INFINITY.zFar- far clipping plane distance. This value must be greater than zero. If the special valueFloat.POSITIVE_INFINITYis used, the far clipping plane will be at positive infinity. In that case,zNearmay not also beFloat.POSITIVE_INFINITY.zZeroToOne- whether to use Vulkan's and Direct3D's NDC z range of[0..+1]whentrueor whether to use OpenGL's NDC z range of[-1..+1]whenfalse- Returns:
- this
- See Also:
frustum(float, float, float, float, float, float, boolean)
-
setFrustum
public Matrix4f setFrustum(float left, float right, float bottom, float top, float zNear, float zFar)
Set this matrix to be an arbitrary perspective projection frustum transformation for a right-handed coordinate system using OpenGL's NDC z range of[-1..+1].In order to apply the perspective frustum transformation to an existing transformation, use
frustum().Reference: http://www.songho.ca
- Parameters:
left- the distance along the x-axis to the left frustum edgeright- the distance along the x-axis to the right frustum edgebottom- the distance along the y-axis to the bottom frustum edgetop- the distance along the y-axis to the top frustum edgezNear- near clipping plane distance. This value must be greater than zero. If the special valueFloat.POSITIVE_INFINITYis used, the near clipping plane will be at positive infinity. In that case,zFarmay not also beFloat.POSITIVE_INFINITY.zFar- far clipping plane distance. This value must be greater than zero. If the special valueFloat.POSITIVE_INFINITYis used, the far clipping plane will be at positive infinity. In that case,zNearmay not also beFloat.POSITIVE_INFINITY.- Returns:
- this
- See Also:
frustum(float, float, float, float, float, float)
-
frustumLH
public Matrix4f frustumLH(float left, float right, float bottom, float top, float zNear, float zFar, boolean zZeroToOne, Matrix4f dest)
Apply an arbitrary perspective projection frustum transformation for a left-handed coordinate system using the given NDC z range to this matrix and store the result indest.If
Misthismatrix andFthe frustum matrix, then the new matrix will beM * F. So when transforming a vectorvwith the new matrix by usingM * F * v, the frustum transformation will be applied first!In order to set the matrix to a perspective frustum transformation without post-multiplying, use
setFrustumLH().Reference: http://www.songho.ca
- Specified by:
frustumLHin interfaceMatrix4fc- Parameters:
left- the distance along the x-axis to the left frustum edgeright- the distance along the x-axis to the right frustum edgebottom- the distance along the y-axis to the bottom frustum edgetop- the distance along the y-axis to the top frustum edgezNear- near clipping plane distance. This value must be greater than zero. If the special valueFloat.POSITIVE_INFINITYis used, the near clipping plane will be at positive infinity. In that case,zFarmay not also beFloat.POSITIVE_INFINITY.zFar- far clipping plane distance. This value must be greater than zero. If the special valueFloat.POSITIVE_INFINITYis used, the far clipping plane will be at positive infinity. In that case,zNearmay not also beFloat.POSITIVE_INFINITY.zZeroToOne- whether to use Vulkan's and Direct3D's NDC z range of[0..+1]whentrueor whether to use OpenGL's NDC z range of[-1..+1]whenfalsedest- will hold the result- Returns:
- dest
- See Also:
setFrustumLH(float, float, float, float, float, float, boolean)
-
frustumLH
public Matrix4f frustumLH(float left, float right, float bottom, float top, float zNear, float zFar, boolean zZeroToOne)
Apply an arbitrary perspective projection frustum transformation for a left-handed coordinate system using the given NDC z range to this matrix.If
Misthismatrix andFthe frustum matrix, then the new matrix will beM * F. So when transforming a vectorvwith the new matrix by usingM * F * v, the frustum transformation will be applied first!In order to set the matrix to a perspective frustum transformation without post-multiplying, use
setFrustumLH().Reference: http://www.songho.ca
- Parameters:
left- the distance along the x-axis to the left frustum edgeright- the distance along the x-axis to the right frustum edgebottom- the distance along the y-axis to the bottom frustum edgetop- the distance along the y-axis to the top frustum edgezNear- near clipping plane distance. This value must be greater than zero. If the special valueFloat.POSITIVE_INFINITYis used, the near clipping plane will be at positive infinity. In that case,zFarmay not also beFloat.POSITIVE_INFINITY.zFar- far clipping plane distance. This value must be greater than zero. If the special valueFloat.POSITIVE_INFINITYis used, the far clipping plane will be at positive infinity. In that case,zNearmay not also beFloat.POSITIVE_INFINITY.zZeroToOne- whether to use Vulkan's and Direct3D's NDC z range of[0..+1]whentrueor whether to use OpenGL's NDC z range of[-1..+1]whenfalse- Returns:
- this
- See Also:
setFrustumLH(float, float, float, float, float, float, boolean)
-
frustumLH
public Matrix4f frustumLH(float left, float right, float bottom, float top, float zNear, float zFar, Matrix4f dest)
Apply an arbitrary perspective projection frustum transformation for a left-handed coordinate system using OpenGL's NDC z range of[-1..+1]to this matrix and store the result indest.If
Misthismatrix andFthe frustum matrix, then the new matrix will beM * F. So when transforming a vectorvwith the new matrix by usingM * F * v, the frustum transformation will be applied first!In order to set the matrix to a perspective frustum transformation without post-multiplying, use
setFrustumLH().Reference: http://www.songho.ca
- Specified by:
frustumLHin interfaceMatrix4fc- Parameters:
left- the distance along the x-axis to the left frustum edgeright- the distance along the x-axis to the right frustum edgebottom- the distance along the y-axis to the bottom frustum edgetop- the distance along the y-axis to the top frustum edgezNear- near clipping plane distance. This value must be greater than zero. If the special valueFloat.POSITIVE_INFINITYis used, the near clipping plane will be at positive infinity. In that case,zFarmay not also beFloat.POSITIVE_INFINITY.zFar- far clipping plane distance. This value must be greater than zero. If the special valueFloat.POSITIVE_INFINITYis used, the far clipping plane will be at positive infinity. In that case,zNearmay not also beFloat.POSITIVE_INFINITY.dest- will hold the result- Returns:
- dest
- See Also:
setFrustumLH(float, float, float, float, float, float)
-
frustumLH
public Matrix4f frustumLH(float left, float right, float bottom, float top, float zNear, float zFar)
Apply an arbitrary perspective projection frustum transformation for a left-handed coordinate system using the given NDC z range to this matrix.If
Misthismatrix andFthe frustum matrix, then the new matrix will beM * F. So when transforming a vectorvwith the new matrix by usingM * F * v, the frustum transformation will be applied first!In order to set the matrix to a perspective frustum transformation without post-multiplying, use
setFrustumLH().Reference: http://www.songho.ca
- Parameters:
left- the distance along the x-axis to the left frustum edgeright- the distance along the x-axis to the right frustum edgebottom- the distance along the y-axis to the bottom frustum edgetop- the distance along the y-axis to the top frustum edgezNear- near clipping plane distance. This value must be greater than zero. If the special valueFloat.POSITIVE_INFINITYis used, the near clipping plane will be at positive infinity. In that case,zFarmay not also beFloat.POSITIVE_INFINITY.zFar- far clipping plane distance. This value must be greater than zero. If the special valueFloat.POSITIVE_INFINITYis used, the far clipping plane will be at positive infinity. In that case,zNearmay not also beFloat.POSITIVE_INFINITY.- Returns:
- this
- See Also:
setFrustumLH(float, float, float, float, float, float)
-
setFrustumLH
public Matrix4f setFrustumLH(float left, float right, float bottom, float top, float zNear, float zFar, boolean zZeroToOne)
Set this matrix to be an arbitrary perspective projection frustum transformation for a left-handed coordinate system using OpenGL's NDC z range of[-1..+1].In order to apply the perspective frustum transformation to an existing transformation, use
frustumLH().Reference: http://www.songho.ca
- Parameters:
left- the distance along the x-axis to the left frustum edgeright- the distance along the x-axis to the right frustum edgebottom- the distance along the y-axis to the bottom frustum edgetop- the distance along the y-axis to the top frustum edgezNear- near clipping plane distance. This value must be greater than zero. If the special valueFloat.POSITIVE_INFINITYis used, the near clipping plane will be at positive infinity. In that case,zFarmay not also beFloat.POSITIVE_INFINITY.zFar- far clipping plane distance. This value must be greater than zero. If the special valueFloat.POSITIVE_INFINITYis used, the far clipping plane will be at positive infinity. In that case,zNearmay not also beFloat.POSITIVE_INFINITY.zZeroToOne- whether to use Vulkan's and Direct3D's NDC z range of[0..+1]whentrueor whether to use OpenGL's NDC z range of[-1..+1]whenfalse- Returns:
- this
- See Also:
frustumLH(float, float, float, float, float, float, boolean)
-
setFrustumLH
public Matrix4f setFrustumLH(float left, float right, float bottom, float top, float zNear, float zFar)
Set this matrix to be an arbitrary perspective projection frustum transformation for a left-handed coordinate system using OpenGL's NDC z range of[-1..+1].In order to apply the perspective frustum transformation to an existing transformation, use
frustumLH().Reference: http://www.songho.ca
- Parameters:
left- the distance along the x-axis to the left frustum edgeright- the distance along the x-axis to the right frustum edgebottom- the distance along the y-axis to the bottom frustum edgetop- the distance along the y-axis to the top frustum edgezNear- near clipping plane distance. This value must be greater than zero. If the special valueFloat.POSITIVE_INFINITYis used, the near clipping plane will be at positive infinity. In that case,zFarmay not also beFloat.POSITIVE_INFINITY.zFar- far clipping plane distance. This value must be greater than zero. If the special valueFloat.POSITIVE_INFINITYis used, the far clipping plane will be at positive infinity. In that case,zNearmay not also beFloat.POSITIVE_INFINITY.- Returns:
- this
- See Also:
frustumLH(float, float, float, float, float, float)
-
setFromIntrinsic
public Matrix4f setFromIntrinsic(float alphaX, float alphaY, float gamma, float u0, float v0, int imgWidth, int imgHeight, float near, float far)
Set this matrix to represent a perspective projection equivalent to the given intrinsic camera calibration parameters. The resulting matrix will be suited for a right-handed coordinate system using OpenGL's NDC z range of[-1..+1].See: https://en.wikipedia.org/
Reference: http://ksimek.github.io/
- Parameters:
alphaX- specifies the focal length and scale along the X axisalphaY- specifies the focal length and scale along the Y axisgamma- the skew coefficient between the X and Y axis (may be0)u0- the X coordinate of the principal point in image/sensor unitsv0- the Y coordinate of the principal point in image/sensor unitsimgWidth- the width of the sensor/image image/sensor unitsimgHeight- the height of the sensor/image image/sensor unitsnear- the distance to the near planefar- the distance to the far plane- Returns:
- this
-
rotate
public Matrix4f rotate(Quaternionfc quat, Matrix4f dest)
Apply the rotation transformation of the givenQuaternionfcto this matrix and store the result indest.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
Misthismatrix andQthe rotation matrix obtained from the given quaternion, then the new matrix will beM * Q. So when transforming a vectorvwith the new matrix by usingM * Q * v, the quaternion rotation will be applied first!In order to set the matrix to a rotation transformation without post-multiplying, use
rotation(Quaternionfc).Reference: http://en.wikipedia.org
- Specified by:
rotatein interfaceMatrix4fc- Parameters:
quat- theQuaternionfcdest- will hold the result- Returns:
- dest
- See Also:
rotation(Quaternionfc)
-
rotate
public Matrix4f rotate(Quaternionfc quat)
Apply the rotation transformation of the givenQuaternionfcto this matrix.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
Misthismatrix andQthe rotation matrix obtained from the given quaternion, then the new matrix will beM * Q. So when transforming a vectorvwith the new matrix by usingM * Q * v, the quaternion rotation will be applied first!In order to set the matrix to a rotation transformation without post-multiplying, use
rotation(Quaternionfc).Reference: http://en.wikipedia.org
- Parameters:
quat- theQuaternionfc- Returns:
- this
- See Also:
rotation(Quaternionfc)
-
rotateAffine
public Matrix4f rotateAffine(Quaternionfc quat, Matrix4f dest)
Apply the rotation transformation of the givenQuaternionfcto thisaffinematrix and store the result indest.This method assumes
thisto beaffine.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
Misthismatrix andQthe rotation matrix obtained from the given quaternion, then the new matrix will beM * Q. So when transforming a vectorvwith the new matrix by usingM * Q * v, the quaternion rotation will be applied first!In order to set the matrix to a rotation transformation without post-multiplying, use
rotation(Quaternionfc).Reference: http://en.wikipedia.org
- Specified by:
rotateAffinein interfaceMatrix4fc- Parameters:
quat- theQuaternionfcdest- will hold the result- Returns:
- dest
- See Also:
rotation(Quaternionfc)
-
rotateAffine
public Matrix4f rotateAffine(Quaternionfc quat)
Apply the rotation transformation of the givenQuaternionfcto this matrix.This method assumes
thisto beaffine.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
Misthismatrix andQthe rotation matrix obtained from the given quaternion, then the new matrix will beM * Q. So when transforming a vectorvwith the new matrix by usingM * Q * v, the quaternion rotation will be applied first!In order to set the matrix to a rotation transformation without post-multiplying, use
rotation(Quaternionfc).Reference: http://en.wikipedia.org
- Parameters:
quat- theQuaternionfc- Returns:
- this
- See Also:
rotation(Quaternionfc)
-
rotateTranslation
public Matrix4f rotateTranslation(Quaternionfc quat, Matrix4f dest)
Apply the rotation transformation of the givenQuaternionfcto this matrix, which is assumed to only contain a translation, and store the result indest.This method assumes
thisto only contain a translation.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
Misthismatrix andQthe rotation matrix obtained from the given quaternion, then the new matrix will beM * Q. So when transforming a vectorvwith the new matrix by usingM * Q * v, the quaternion rotation will be applied first!In order to set the matrix to a rotation transformation without post-multiplying, use
rotation(Quaternionfc).Reference: http://en.wikipedia.org
- Specified by:
rotateTranslationin interfaceMatrix4fc- Parameters:
quat- theQuaternionfcdest- will hold the result- Returns:
- dest
- See Also:
rotation(Quaternionfc)
-
rotateAround
public Matrix4f rotateAround(Quaternionfc quat, float ox, float oy, float oz)
Apply the rotation transformation of the givenQuaternionfcto this matrix while using(ox, oy, oz)as the rotation origin.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
Misthismatrix andQthe rotation matrix obtained from the given quaternion, then the new matrix will beM * Q. So when transforming a vectorvwith the new matrix by usingM * Q * v, the quaternion rotation will be applied first!This method is equivalent to calling:
translate(ox, oy, oz).rotate(quat).translate(-ox, -oy, -oz)Reference: http://en.wikipedia.org
- Parameters:
quat- theQuaternionfcox- the x coordinate of the rotation originoy- the y coordinate of the rotation originoz- the z coordinate of the rotation origin- Returns:
- this
-
rotateAroundAffine
public Matrix4f rotateAroundAffine(Quaternionfc quat, float ox, float oy, float oz, Matrix4f dest)
Description copied from interface:Matrix4fcApply the rotation - and possibly scaling - transformation of the givenQuaternionfcto thisaffinematrix while using(ox, oy, oz)as the rotation origin, and store the result indest.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
Misthismatrix andQthe rotation matrix obtained from the given quaternion, then the new matrix will beM * Q. So when transforming a vectorvwith the new matrix by usingM * Q * v, the quaternion rotation will be applied first!This method is only applicable if
thisis anaffinematrix.This method is equivalent to calling:
translate(ox, oy, oz, dest).rotate(quat).translate(-ox, -oy, -oz)Reference: http://en.wikipedia.org
- Specified by:
rotateAroundAffinein interfaceMatrix4fc- Parameters:
quat- theQuaternionfcox- the x coordinate of the rotation originoy- the y coordinate of the rotation originoz- the z coordinate of the rotation origindest- will hold the result- Returns:
- dest
-
rotateAround
public Matrix4f rotateAround(Quaternionfc quat, float ox, float oy, float oz, Matrix4f dest)
Description copied from interface:Matrix4fcApply the rotation - and possibly scaling - transformation of the givenQuaternionfcto this matrix while using(ox, oy, oz)as the rotation origin, and store the result indest.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
Misthismatrix andQthe rotation matrix obtained from the given quaternion, then the new matrix will beM * Q. So when transforming a vectorvwith the new matrix by usingM * Q * v, the quaternion rotation will be applied first!This method is equivalent to calling:
translate(ox, oy, oz, dest).rotate(quat).translate(-ox, -oy, -oz)Reference: http://en.wikipedia.org
- Specified by:
rotateAroundin interfaceMatrix4fc- Parameters:
quat- theQuaternionfcox- the x coordinate of the rotation originoy- the y coordinate of the rotation originoz- the z coordinate of the rotation origindest- will hold the result- Returns:
- dest
-
rotationAround
public Matrix4f rotationAround(Quaternionfc quat, float ox, float oy, float oz)
Set this matrix to a transformation composed of a rotation of the specifiedQuaternionfcwhile using(ox, oy, oz)as the rotation origin.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
This method is equivalent to calling:
translation(ox, oy, oz).rotate(quat).translate(-ox, -oy, -oz)Reference: http://en.wikipedia.org
- Parameters:
quat- theQuaternionfcox- the x coordinate of the rotation originoy- the y coordinate of the rotation originoz- the z coordinate of the rotation origin- Returns:
- this
-
rotateLocal
public Matrix4f rotateLocal(Quaternionfc quat, Matrix4f dest)
Pre-multiply the rotation transformation of the givenQuaternionfcto this matrix and store the result indest.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
Misthismatrix andQthe rotation matrix obtained from the given quaternion, then the new matrix will beQ * M. So when transforming a vectorvwith the new matrix by usingQ * M * v, the quaternion rotation will be applied last!In order to set the matrix to a rotation transformation without pre-multiplying, use
rotation(Quaternionfc).Reference: http://en.wikipedia.org
- Specified by:
rotateLocalin interfaceMatrix4fc- Parameters:
quat- theQuaternionfcdest- will hold the result- Returns:
- dest
- See Also:
rotation(Quaternionfc)
-
rotateLocal
public Matrix4f rotateLocal(Quaternionfc quat)
Pre-multiply the rotation transformation of the givenQuaternionfcto this matrix.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
Misthismatrix andQthe rotation matrix obtained from the given quaternion, then the new matrix will beQ * M. So when transforming a vectorvwith the new matrix by usingQ * M * v, the quaternion rotation will be applied last!In order to set the matrix to a rotation transformation without pre-multiplying, use
rotation(Quaternionfc).Reference: http://en.wikipedia.org
- Parameters:
quat- theQuaternionfc- Returns:
- this
- See Also:
rotation(Quaternionfc)
-
rotateAroundLocal
public Matrix4f rotateAroundLocal(Quaternionfc quat, float ox, float oy, float oz, Matrix4f dest)
Description copied from interface:Matrix4fcPre-multiply the rotation - and possibly scaling - transformation of the givenQuaternionfcto this matrix while using(ox, oy, oz)as the rotation origin, and store the result indest.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
Misthismatrix andQthe rotation matrix obtained from the given quaternion, then the new matrix will beQ * M. So when transforming a vectorvwith the new matrix by usingQ * M * v, the quaternion rotation will be applied last!This method is equivalent to calling:
translateLocal(-ox, -oy, -oz, dest).rotateLocal(quat).translateLocal(ox, oy, oz)Reference: http://en.wikipedia.org
- Specified by:
rotateAroundLocalin interfaceMatrix4fc- Parameters:
quat- theQuaternionfcox- the x coordinate of the rotation originoy- the y coordinate of the rotation originoz- the z coordinate of the rotation origindest- will hold the result- Returns:
- dest
-
rotateAroundLocal
public Matrix4f rotateAroundLocal(Quaternionfc quat, float ox, float oy, float oz)
Pre-multiply the rotation transformation of the givenQuaternionfcto this matrix while using(ox, oy, oz)as the rotation origin.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
Misthismatrix andQthe rotation matrix obtained from the given quaternion, then the new matrix will beQ * M. So when transforming a vectorvwith the new matrix by usingQ * M * v, the quaternion rotation will be applied last!This method is equivalent to calling:
translateLocal(-ox, -oy, -oz).rotateLocal(quat).translateLocal(ox, oy, oz)Reference: http://en.wikipedia.org
- Parameters:
quat- theQuaternionfcox- the x coordinate of the rotation originoy- the y coordinate of the rotation originoz- the z coordinate of the rotation origin- Returns:
- this
-
rotate
public Matrix4f rotate(AxisAngle4f axisAngle)
Apply a rotation transformation, rotating about the givenAxisAngle4f, to this matrix.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
Misthismatrix andAthe rotation matrix obtained from the givenAxisAngle4f, then the new matrix will beM * A. So when transforming a vectorvwith the new matrix by usingM * A * v, theAxisAngle4frotation will be applied first!In order to set the matrix to a rotation transformation without post-multiplying, use
rotation(AxisAngle4f).Reference: http://en.wikipedia.org
- Parameters:
axisAngle- theAxisAngle4f(needs to benormalized)- Returns:
- this
- See Also:
rotate(float, float, float, float),rotation(AxisAngle4f)
-
rotate
public Matrix4f rotate(AxisAngle4f axisAngle, Matrix4f dest)
Apply a rotation transformation, rotating about the givenAxisAngle4fand store the result indest.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
Misthismatrix andAthe rotation matrix obtained from the givenAxisAngle4f, then the new matrix will beM * A. So when transforming a vectorvwith the new matrix by usingM * A * v, theAxisAngle4frotation will be applied first!In order to set the matrix to a rotation transformation without post-multiplying, use
rotation(AxisAngle4f).Reference: http://en.wikipedia.org
- Specified by:
rotatein interfaceMatrix4fc- Parameters:
axisAngle- theAxisAngle4f(needs to benormalized)dest- will hold the result- Returns:
- dest
- See Also:
rotate(float, float, float, float),rotation(AxisAngle4f)
-
rotate
public Matrix4f rotate(float angle, Vector3fc axis)
Apply a rotation transformation, rotating the given radians about the specified axis, to this matrix.The axis described by the
axisvector needs to be a unit vector.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
Misthismatrix andAthe rotation matrix obtained from the given axis-angle, then the new matrix will beM * A. So when transforming a vectorvwith the new matrix by usingM * A * v, the axis-angle rotation will be applied first!In order to set the matrix to a rotation transformation without post-multiplying, use
rotation(float, Vector3fc).Reference: http://en.wikipedia.org
- Parameters:
angle- the angle in radiansaxis- the rotation axis (needs to benormalized)- Returns:
- this
- See Also:
rotate(float, float, float, float),rotation(float, Vector3fc)
-
rotate
public Matrix4f rotate(float angle, Vector3fc axis, Matrix4f dest)
Apply a rotation transformation, rotating the given radians about the specified axis and store the result indest.The axis described by the
axisvector needs to be a unit vector.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
Misthismatrix andAthe rotation matrix obtained from the given axis-angle, then the new matrix will beM * A. So when transforming a vectorvwith the new matrix by usingM * A * v, the axis-angle rotation will be applied first!In order to set the matrix to a rotation transformation without post-multiplying, use
rotation(float, Vector3fc).Reference: http://en.wikipedia.org
- Specified by:
rotatein interfaceMatrix4fc- Parameters:
angle- the angle in radiansaxis- the rotation axis (needs to benormalized)dest- will hold the result- Returns:
- dest
- See Also:
rotate(float, float, float, float),rotation(float, Vector3fc)
-
unproject
public Vector4f unproject(float winX, float winY, float winZ, int[] viewport, Vector4f dest)
Description copied from interface:Matrix4fcUnproject the given window coordinates(winX, winY, winZ)bythismatrix using the specified viewport.This method first converts the given window coordinates to normalized device coordinates in the range
[-1..1]and then transforms those NDC coordinates by the inverse ofthismatrix.The depth range of
winZis assumed to be[0..1], which is also the OpenGL default.As a necessary computation step for unprojecting, this method computes the inverse of
thismatrix. In order to avoid computing the matrix inverse with every invocation, the inverse ofthismatrix can be built once outside usingMatrix4fc.invert(Matrix4f)and then the methodunprojectInv()can be invoked on it.- Specified by:
unprojectin interfaceMatrix4fc- Parameters:
winX- the x-coordinate in window coordinates (pixels)winY- the y-coordinate in window coordinates (pixels)winZ- the z-coordinate, which is the depth value in[0..1]viewport- the viewport described by[x, y, width, height]dest- will hold the unprojected position- Returns:
- dest
- See Also:
Matrix4fc.unprojectInv(float, float, float, int[], Vector4f),Matrix4fc.invert(Matrix4f)
-
unproject
public Vector3f unproject(float winX, float winY, float winZ, int[] viewport, Vector3f dest)
Description copied from interface:Matrix4fcUnproject the given window coordinates(winX, winY, winZ)bythismatrix using the specified viewport.This method first converts the given window coordinates to normalized device coordinates in the range
[-1..1]and then transforms those NDC coordinates by the inverse ofthismatrix.The depth range of
winZis assumed to be[0..1], which is also the OpenGL default.As a necessary computation step for unprojecting, this method computes the inverse of
thismatrix. In order to avoid computing the matrix inverse with every invocation, the inverse ofthismatrix can be built once outside usingMatrix4fc.invert(Matrix4f)and then the methodunprojectInv()can be invoked on it.- Specified by:
unprojectin interfaceMatrix4fc- Parameters:
winX- the x-coordinate in window coordinates (pixels)winY- the y-coordinate in window coordinates (pixels)winZ- the z-coordinate, which is the depth value in[0..1]viewport- the viewport described by[x, y, width, height]dest- will hold the unprojected position- Returns:
- dest
- See Also:
Matrix4fc.unprojectInv(float, float, float, int[], Vector3f),Matrix4fc.invert(Matrix4f)
-
unproject
public Vector4f unproject(Vector3fc winCoords, int[] viewport, Vector4f dest)
Description copied from interface:Matrix4fcUnproject the given window coordinateswinCoordsbythismatrix using the specified viewport.This method first converts the given window coordinates to normalized device coordinates in the range
[-1..1]and then transforms those NDC coordinates by the inverse ofthismatrix.The depth range of
winCoords.zis assumed to be[0..1], which is also the OpenGL default.As a necessary computation step for unprojecting, this method computes the inverse of
thismatrix. In order to avoid computing the matrix inverse with every invocation, the inverse ofthismatrix can be built once outside usingMatrix4fc.invert(Matrix4f)and then the methodunprojectInv()can be invoked on it.- Specified by:
unprojectin interfaceMatrix4fc- Parameters:
winCoords- the window coordinates to unprojectviewport- the viewport described by[x, y, width, height]dest- will hold the unprojected position- Returns:
- dest
- See Also:
Matrix4fc.unprojectInv(float, float, float, int[], Vector4f),Matrix4fc.unproject(float, float, float, int[], Vector4f),Matrix4fc.invert(Matrix4f)
-
unproject
public Vector3f unproject(Vector3fc winCoords, int[] viewport, Vector3f dest)
Description copied from interface:Matrix4fcUnproject the given window coordinateswinCoordsbythismatrix using the specified viewport.This method first converts the given window coordinates to normalized device coordinates in the range
[-1..1]and then transforms those NDC coordinates by the inverse ofthismatrix.The depth range of
winCoords.zis assumed to be[0..1], which is also the OpenGL default.As a necessary computation step for unprojecting, this method computes the inverse of
thismatrix. In order to avoid computing the matrix inverse with every invocation, the inverse ofthismatrix can be built once outside usingMatrix4fc.invert(Matrix4f)and then the methodunprojectInv()can be invoked on it.- Specified by:
unprojectin interfaceMatrix4fc- Parameters:
winCoords- the window coordinates to unprojectviewport- the viewport described by[x, y, width, height]dest- will hold the unprojected position- Returns:
- dest
- See Also:
Matrix4fc.unprojectInv(float, float, float, int[], Vector3f),Matrix4fc.unproject(float, float, float, int[], Vector3f),Matrix4fc.invert(Matrix4f)
-
unprojectRay
public Matrix4f unprojectRay(float winX, float winY, int[] viewport, Vector3f originDest, Vector3f dirDest)
Description copied from interface:Matrix4fcUnproject the given 2D window coordinates(winX, winY)bythismatrix using the specified viewport and compute the origin and the direction of the resulting ray which starts at NDCz = -1.0and goes through NDCz = +1.0.This method first converts the given window coordinates to normalized device coordinates in the range
[-1..1]and then transforms those NDC coordinates by the inverse ofthismatrix.As a necessary computation step for unprojecting, this method computes the inverse of
thismatrix. In order to avoid computing the matrix inverse with every invocation, the inverse ofthismatrix can be built once outside usingMatrix4fc.invert(Matrix4f)and then the methodunprojectInvRay()can be invoked on it.- Specified by:
unprojectRayin interfaceMatrix4fc- Parameters:
winX- the x-coordinate in window coordinates (pixels)winY- the y-coordinate in window coordinates (pixels)viewport- the viewport described by[x, y, width, height]originDest- will hold the ray origindirDest- will hold the (unnormalized) ray direction- Returns:
- this
- See Also:
Matrix4fc.unprojectInvRay(float, float, int[], Vector3f, Vector3f),Matrix4fc.invert(Matrix4f)
-
unprojectRay
public Matrix4f unprojectRay(Vector2fc winCoords, int[] viewport, Vector3f originDest, Vector3f dirDest)
Description copied from interface:Matrix4fcUnproject the given 2D window coordinateswinCoordsbythismatrix using the specified viewport and compute the origin and the direction of the resulting ray which starts at NDCz = -1.0and goes through NDCz = +1.0.This method first converts the given window coordinates to normalized device coordinates in the range
[-1..1]and then transforms those NDC coordinates by the inverse ofthismatrix.As a necessary computation step for unprojecting, this method computes the inverse of
thismatrix. In order to avoid computing the matrix inverse with every invocation, the inverse ofthismatrix can be built once outside usingMatrix4fc.invert(Matrix4f)and then the methodunprojectInvRay()can be invoked on it.- Specified by:
unprojectRayin interfaceMatrix4fc- Parameters:
winCoords- the window coordinates to unprojectviewport- the viewport described by[x, y, width, height]originDest- will hold the ray origindirDest- will hold the (unnormalized) ray direction- Returns:
- this
- See Also:
Matrix4fc.unprojectInvRay(float, float, int[], Vector3f, Vector3f),Matrix4fc.unprojectRay(float, float, int[], Vector3f, Vector3f),Matrix4fc.invert(Matrix4f)
-
unprojectInv
public Vector4f unprojectInv(Vector3fc winCoords, int[] viewport, Vector4f dest)
Description copied from interface:Matrix4fcUnproject the given window coordinateswinCoordsbythismatrix using the specified viewport.This method differs from
unproject()in that it assumes thatthisis already the inverse matrix of the original projection matrix. It exists to avoid recomputing the matrix inverse with every invocation.The depth range of
winCoords.zis assumed to be[0..1], which is also the OpenGL default.This method reads the four viewport parameters from the given int[].
- Specified by:
unprojectInvin interfaceMatrix4fc- Parameters:
winCoords- the window coordinates to unprojectviewport- the viewport described by[x, y, width, height]dest- will hold the unprojected position- Returns:
- dest
- See Also:
Matrix4fc.unproject(Vector3fc, int[], Vector4f)
-
unprojectInv
public Vector4f unprojectInv(float winX, float winY, float winZ, int[] viewport, Vector4f dest)
Description copied from interface:Matrix4fcUnproject the given window coordinates(winX, winY, winZ)bythismatrix using the specified viewport.This method differs from
unproject()in that it assumes thatthisis already the inverse matrix of the original projection matrix. It exists to avoid recomputing the matrix inverse with every invocation.The depth range of
winZis assumed to be[0..1], which is also the OpenGL default.- Specified by:
unprojectInvin interfaceMatrix4fc- Parameters:
winX- the x-coordinate in window coordinates (pixels)winY- the y-coordinate in window coordinates (pixels)winZ- the z-coordinate, which is the depth value in[0..1]viewport- the viewport described by[x, y, width, height]dest- will hold the unprojected position- Returns:
- dest
- See Also:
Matrix4fc.unproject(float, float, float, int[], Vector4f)
-
unprojectInvRay
public Matrix4f unprojectInvRay(Vector2fc winCoords, int[] viewport, Vector3f originDest, Vector3f dirDest)
Description copied from interface:Matrix4fcUnproject the given window coordinateswinCoordsbythismatrix using the specified viewport and compute the origin and the direction of the resulting ray which starts at NDCz = -1.0and goes through NDCz = +1.0.This method differs from
unprojectRay()in that it assumes thatthisis already the inverse matrix of the original projection matrix. It exists to avoid recomputing the matrix inverse with every invocation.- Specified by:
unprojectInvRayin interfaceMatrix4fc- Parameters:
winCoords- the window coordinates to unprojectviewport- the viewport described by[x, y, width, height]originDest- will hold the ray origindirDest- will hold the (unnormalized) ray direction- Returns:
- this
- See Also:
Matrix4fc.unprojectRay(Vector2fc, int[], Vector3f, Vector3f)
-
unprojectInvRay
public Matrix4f unprojectInvRay(float winX, float winY, int[] viewport, Vector3f originDest, Vector3f dirDest)
Description copied from interface:Matrix4fcUnproject the given 2D window coordinates(winX, winY)bythismatrix using the specified viewport and compute the origin and the direction of the resulting ray which starts at NDCz = -1.0and goes through NDCz = +1.0.This method differs from
unprojectRay()in that it assumes thatthisis already the inverse matrix of the original projection matrix. It exists to avoid recomputing the matrix inverse with every invocation.- Specified by:
unprojectInvRayin interfaceMatrix4fc- Parameters:
winX- the x-coordinate in window coordinates (pixels)winY- the y-coordinate in window coordinates (pixels)viewport- the viewport described by[x, y, width, height]originDest- will hold the ray origindirDest- will hold the (unnormalized) ray direction- Returns:
- this
- See Also:
Matrix4fc.unprojectRay(float, float, int[], Vector3f, Vector3f)
-
unprojectInv
public Vector3f unprojectInv(Vector3fc winCoords, int[] viewport, Vector3f dest)
Description copied from interface:Matrix4fcUnproject the given window coordinateswinCoordsbythismatrix using the specified viewport.This method differs from
unproject()in that it assumes thatthisis already the inverse matrix of the original projection matrix. It exists to avoid recomputing the matrix inverse with every invocation.The depth range of
winCoords.zis assumed to be[0..1], which is also the OpenGL default.- Specified by:
unprojectInvin interfaceMatrix4fc- Parameters:
winCoords- the window coordinates to unprojectviewport- the viewport described by[x, y, width, height]dest- will hold the unprojected position- Returns:
- dest
- See Also:
Matrix4fc.unproject(Vector3fc, int[], Vector3f)
-
unprojectInv
public Vector3f unprojectInv(float winX, float winY, float winZ, int[] viewport, Vector3f dest)
Description copied from interface:Matrix4fcUnproject the given window coordinates(winX, winY, winZ)bythismatrix using the specified viewport.This method differs from
unproject()in that it assumes thatthisis already the inverse matrix of the original projection matrix. It exists to avoid recomputing the matrix inverse with every invocation.The depth range of
winZis assumed to be[0..1], which is also the OpenGL default.- Specified by:
unprojectInvin interfaceMatrix4fc- Parameters:
winX- the x-coordinate in window coordinates (pixels)winY- the y-coordinate in window coordinates (pixels)winZ- the z-coordinate, which is the depth value in[0..1]viewport- the viewport described by[x, y, width, height]dest- will hold the unprojected position- Returns:
- dest
- See Also:
Matrix4fc.unproject(float, float, float, int[], Vector3f)
-
project
public Vector4f project(float x, float y, float z, int[] viewport, Vector4f winCoordsDest)
Description copied from interface:Matrix4fcProject the given(x, y, z)position viathismatrix using the specified viewport and store the resulting window coordinates inwinCoordsDest.This method transforms the given coordinates by
thismatrix including perspective division to obtain normalized device coordinates, and then translates these into window coordinates by using the givenviewportsettings[x, y, width, height].The depth range of the returned
winCoordsDest.zwill be[0..1], which is also the OpenGL default.- Specified by:
projectin interfaceMatrix4fc- Parameters:
x- the x-coordinate of the position to projecty- the y-coordinate of the position to projectz- the z-coordinate of the position to projectviewport- the viewport described by[x, y, width, height]winCoordsDest- will hold the projected window coordinates- Returns:
- winCoordsDest
-
project
public Vector3f project(float x, float y, float z, int[] viewport, Vector3f winCoordsDest)
Description copied from interface:Matrix4fcProject the given(x, y, z)position viathismatrix using the specified viewport and store the resulting window coordinates inwinCoordsDest.This method transforms the given coordinates by
thismatrix including perspective division to obtain normalized device coordinates, and then translates these into window coordinates by using the givenviewportsettings[x, y, width, height].The depth range of the returned
winCoordsDest.zwill be[0..1], which is also the OpenGL default.- Specified by:
projectin interfaceMatrix4fc- Parameters:
x- the x-coordinate of the position to projecty- the y-coordinate of the position to projectz- the z-coordinate of the position to projectviewport- the viewport described by[x, y, width, height]winCoordsDest- will hold the projected window coordinates- Returns:
- winCoordsDest
-
project
public Vector4f project(Vector3fc position, int[] viewport, Vector4f winCoordsDest)
Description copied from interface:Matrix4fcProject the givenpositionviathismatrix using the specified viewport and store the resulting window coordinates inwinCoordsDest.This method transforms the given coordinates by
thismatrix including perspective division to obtain normalized device coordinates, and then translates these into window coordinates by using the givenviewportsettings[x, y, width, height].The depth range of the returned
winCoordsDest.zwill be[0..1], which is also the OpenGL default.- Specified by:
projectin interfaceMatrix4fc- Parameters:
position- the position to project into window coordinatesviewport- the viewport described by[x, y, width, height]winCoordsDest- will hold the projected window coordinates- Returns:
- winCoordsDest
- See Also:
Matrix4fc.project(float, float, float, int[], Vector4f)
-
project
public Vector3f project(Vector3fc position, int[] viewport, Vector3f winCoordsDest)
Description copied from interface:Matrix4fcProject the givenpositionviathismatrix using the specified viewport and store the resulting window coordinates inwinCoordsDest.This method transforms the given coordinates by
thismatrix including perspective division to obtain normalized device coordinates, and then translates these into window coordinates by using the givenviewportsettings[x, y, width, height].The depth range of the returned
winCoordsDest.zwill be[0..1], which is also the OpenGL default.- Specified by:
projectin interfaceMatrix4fc- Parameters:
position- the position to project into window coordinatesviewport- the viewport described by[x, y, width, height]winCoordsDest- will hold the projected window coordinates- Returns:
- winCoordsDest
- See Also:
Matrix4fc.project(float, float, float, int[], Vector4f)
-
reflect
public Matrix4f reflect(float a, float b, float c, float d, Matrix4f dest)
Description copied from interface:Matrix4fcApply a mirror/reflection transformation to this matrix that reflects about the given plane specified via the equationx*a + y*b + z*c + d = 0and store the result indest.The vector
(a, b, c)must be a unit vector.If
Misthismatrix andRthe reflection matrix, then the new matrix will beM * R. So when transforming a vectorvwith the new matrix by usingM * R * v, the reflection will be applied first!Reference: msdn.microsoft.com
-
reflect
public Matrix4f reflect(float a, float b, float c, float d)
Apply a mirror/reflection transformation to this matrix that reflects about the given plane specified via the equationx*a + y*b + z*c + d = 0.The vector
(a, b, c)must be a unit vector.If
Misthismatrix andRthe reflection matrix, then the new matrix will beM * R. So when transforming a vectorvwith the new matrix by usingM * R * v, the reflection will be applied first!Reference: msdn.microsoft.com
- Parameters:
a- the x factor in the plane equationb- the y factor in the plane equationc- the z factor in the plane equationd- the constant in the plane equation- Returns:
- this
-
reflect
public Matrix4f reflect(float nx, float ny, float nz, float px, float py, float pz)
Apply a mirror/reflection transformation to this matrix that reflects about the given plane specified via the plane normal and a point on the plane.If
Misthismatrix andRthe reflection matrix, then the new matrix will beM * R. So when transforming a vectorvwith the new matrix by usingM * R * v, the reflection will be applied first!- Parameters:
nx- the x-coordinate of the plane normalny- the y-coordinate of the plane normalnz- the z-coordinate of the plane normalpx- the x-coordinate of a point on the planepy- the y-coordinate of a point on the planepz- the z-coordinate of a point on the plane- Returns:
- this
-
reflect
public Matrix4f reflect(float nx, float ny, float nz, float px, float py, float pz, Matrix4f dest)
Description copied from interface:Matrix4fcApply a mirror/reflection transformation to this matrix that reflects about the given plane specified via the plane normal and a point on the plane, and store the result indest.If
Misthismatrix andRthe reflection matrix, then the new matrix will beM * R. So when transforming a vectorvwith the new matrix by usingM * R * v, the reflection will be applied first!- Specified by:
reflectin interfaceMatrix4fc- Parameters:
nx- the x-coordinate of the plane normalny- the y-coordinate of the plane normalnz- the z-coordinate of the plane normalpx- the x-coordinate of a point on the planepy- the y-coordinate of a point on the planepz- the z-coordinate of a point on the planedest- will hold the result- Returns:
- dest
-
reflect
public Matrix4f reflect(Vector3fc normal, Vector3fc point)
Apply a mirror/reflection transformation to this matrix that reflects about the given plane specified via the plane normal and a point on the plane.If
Misthismatrix andRthe reflection matrix, then the new matrix will beM * R. So when transforming a vectorvwith the new matrix by usingM * R * v, the reflection will be applied first!- Parameters:
normal- the plane normalpoint- a point on the plane- Returns:
- this
-
reflect
public Matrix4f reflect(Quaternionfc orientation, Vector3fc point)
Apply a mirror/reflection transformation to this matrix that reflects about a plane specified via the plane orientation and a point on the plane.This method can be used to build a reflection transformation based on the orientation of a mirror object in the scene. It is assumed that the default mirror plane's normal is
(0, 0, 1). So, if the givenQuaternionfcis the identity (does not apply any additional rotation), the reflection plane will bez=0, offset by the givenpoint.If
Misthismatrix andRthe reflection matrix, then the new matrix will beM * R. So when transforming a vectorvwith the new matrix by usingM * R * v, the reflection will be applied first!- Parameters:
orientation- the plane orientationpoint- a point on the plane- Returns:
- this
-
reflect
public Matrix4f reflect(Quaternionfc orientation, Vector3fc point, Matrix4f dest)
Description copied from interface:Matrix4fcApply a mirror/reflection transformation to this matrix that reflects about a plane specified via the plane orientation and a point on the plane, and store the result indest.This method can be used to build a reflection transformation based on the orientation of a mirror object in the scene. It is assumed that the default mirror plane's normal is
(0, 0, 1). So, if the givenQuaternionfcis the identity (does not apply any additional rotation), the reflection plane will bez=0, offset by the givenpoint.If
Misthismatrix andRthe reflection matrix, then the new matrix will beM * R. So when transforming a vectorvwith the new matrix by usingM * R * v, the reflection will be applied first!
-
reflect
public Matrix4f reflect(Vector3fc normal, Vector3fc point, Matrix4f dest)
Description copied from interface:Matrix4fcApply a mirror/reflection transformation to this matrix that reflects about the given plane specified via the plane normal and a point on the plane, and store the result indest.If
Misthismatrix andRthe reflection matrix, then the new matrix will beM * R. So when transforming a vectorvwith the new matrix by usingM * R * v, the reflection will be applied first!
-
reflection
public Matrix4f reflection(float a, float b, float c, float d)
Set this matrix to a mirror/reflection transformation that reflects about the given plane specified via the equationx*a + y*b + z*c + d = 0.The vector
(a, b, c)must be a unit vector.Reference: msdn.microsoft.com
- Parameters:
a- the x factor in the plane equationb- the y factor in the plane equationc- the z factor in the plane equationd- the constant in the plane equation- Returns:
- this
-
reflection
public Matrix4f reflection(float nx, float ny, float nz, float px, float py, float pz)
Set this matrix to a mirror/reflection transformation that reflects about the given plane specified via the plane normal and a point on the plane.- Parameters:
nx- the x-coordinate of the plane normalny- the y-coordinate of the plane normalnz- the z-coordinate of the plane normalpx- the x-coordinate of a point on the planepy- the y-coordinate of a point on the planepz- the z-coordinate of a point on the plane- Returns:
- this
-
reflection
public Matrix4f reflection(Vector3fc normal, Vector3fc point)
Set this matrix to a mirror/reflection transformation that reflects about the given plane specified via the plane normal and a point on the plane.- Parameters:
normal- the plane normalpoint- a point on the plane- Returns:
- this
-
reflection
public Matrix4f reflection(Quaternionfc orientation, Vector3fc point)
Set this matrix to a mirror/reflection transformation that reflects about a plane specified via the plane orientation and a point on the plane.This method can be used to build a reflection transformation based on the orientation of a mirror object in the scene. It is assumed that the default mirror plane's normal is
(0, 0, 1). So, if the givenQuaternionfcis the identity (does not apply any additional rotation), the reflection plane will bez=0, offset by the givenpoint.- Parameters:
orientation- the plane orientationpoint- a point on the plane- Returns:
- this
-
getRow
public Vector4f getRow(int row, Vector4f dest) throws java.lang.IndexOutOfBoundsException
Description copied from interface:Matrix4fcGet the row at the givenrowindex, starting with0.
-
getRow
public Vector3f getRow(int row, Vector3f dest) throws java.lang.IndexOutOfBoundsException
Description copied from interface:Matrix4fcGet the first three components of the row at the givenrowindex, starting with0.
-
setRow
public Matrix4f setRow(int row, Vector4fc src) throws java.lang.IndexOutOfBoundsException
Set the row at the givenrowindex, starting with0.- Parameters:
row- the row index in[0..3]src- the row components to set- Returns:
- this
- Throws:
java.lang.IndexOutOfBoundsException- ifrowis not in[0..3]
-
getColumn
public Vector4f getColumn(int column, Vector4f dest) throws java.lang.IndexOutOfBoundsException
Description copied from interface:Matrix4fcGet the column at the givencolumnindex, starting with0.
-
getColumn
public Vector3f getColumn(int column, Vector3f dest) throws java.lang.IndexOutOfBoundsException
Description copied from interface:Matrix4fcGet the first three components of the column at the givencolumnindex, starting with0.
-
setColumn
public Matrix4f setColumn(int column, Vector4fc src) throws java.lang.IndexOutOfBoundsException
Set the column at the givencolumnindex, starting with0.- Parameters:
column- the column index in[0..3]src- the column components to set- Returns:
- this
- Throws:
java.lang.IndexOutOfBoundsException- ifcolumnis not in[0..3]
-
get
public float get(int column, int row)Description copied from interface:Matrix4fcGet the matrix element value at the given column and row.
-
set
public Matrix4f set(int column, int row, float value)
Set the matrix element at the given column and row to the specified value.- Parameters:
column- the colum index in[0..3]row- the row index in[0..3]value- the value- Returns:
- this
-
getRowColumn
public float getRowColumn(int row, int column)Description copied from interface:Matrix4fcGet the matrix element value at the given row and column.- Specified by:
getRowColumnin interfaceMatrix4fc- Parameters:
row- the row index in[0..3]column- the colum index in[0..3]- Returns:
- the element value
-
setRowColumn
public Matrix4f setRowColumn(int row, int column, float value)
Set the matrix element at the given row and column to the specified value.- Parameters:
row- the row index in[0..3]column- the colum index in[0..3]value- the value- Returns:
- this
-
normal
public Matrix4f normal()
Compute a normal matrix from the upper left 3x3 submatrix ofthisand store it into the upper left 3x3 submatrix ofthis. All other values ofthiswill be set toidentity.The normal matrix of
mis the transpose of the inverse ofm.Please note that, if
thisis an orthogonal matrix or a matrix whose columns are orthogonal vectors, then this method need not be invoked, since in that casethisitself is its normal matrix. In that case, useset3x3(Matrix4f)to set a given Matrix4f to only the upper left 3x3 submatrix of this matrix.- Returns:
- this
- See Also:
set3x3(Matrix4f)
-
normal
public Matrix4f normal(Matrix4f dest)
Compute a normal matrix from the upper left 3x3 submatrix ofthisand store it into the upper left 3x3 submatrix ofdest. All other values ofdestwill be set toidentity.The normal matrix of
mis the transpose of the inverse ofm.Please note that, if
thisis an orthogonal matrix or a matrix whose columns are orthogonal vectors, then this method need not be invoked, since in that casethisitself is its normal matrix. In that case, useset3x3(Matrix4f)to set a given Matrix4f to only the upper left 3x3 submatrix of this matrix.- Specified by:
normalin interfaceMatrix4fc- Parameters:
dest- will hold the result- Returns:
- dest
- See Also:
set3x3(Matrix4f)
-
normal
public Matrix3f normal(Matrix3f dest)
Compute a normal matrix from the upper left 3x3 submatrix ofthisand store it intodest.The normal matrix of
mis the transpose of the inverse ofm.Please note that, if
thisis an orthogonal matrix or a matrix whose columns are orthogonal vectors, then this method need not be invoked, since in that casethisitself is its normal matrix. In that case, useMatrix3f.set(Matrix4fc)to set a given Matrix3f to only the upper left 3x3 submatrix of this matrix.- Specified by:
normalin interfaceMatrix4fc- Parameters:
dest- will hold the result- Returns:
- dest
- See Also:
Matrix3f.set(Matrix4fc),get3x3(Matrix3f)
-
cofactor3x3
public Matrix4f cofactor3x3()
Compute the cofactor matrix of the upper left 3x3 submatrix ofthis.The cofactor matrix can be used instead of
normal()to transform normals when the orientation of the normals with respect to the surface should be preserved.- Returns:
- this
-
cofactor3x3
public Matrix3f cofactor3x3(Matrix3f dest)
Compute the cofactor matrix of the upper left 3x3 submatrix ofthisand store it intodest.The cofactor matrix can be used instead of
normal(Matrix3f)to transform normals when the orientation of the normals with respect to the surface should be preserved.- Specified by:
cofactor3x3in interfaceMatrix4fc- Parameters:
dest- will hold the result- Returns:
- dest
-
cofactor3x3
public Matrix4f cofactor3x3(Matrix4f dest)
Compute the cofactor matrix of the upper left 3x3 submatrix ofthisand store it intodest. All other values ofdestwill be set toidentity.The cofactor matrix can be used instead of
normal(Matrix4f)to transform normals when the orientation of the normals with respect to the surface should be preserved.- Specified by:
cofactor3x3in interfaceMatrix4fc- Parameters:
dest- will hold the result- Returns:
- dest
-
normalize3x3
public Matrix4f normalize3x3()
Normalize the upper left 3x3 submatrix of this matrix.The resulting matrix will map unit vectors to unit vectors, though a pair of orthogonal input unit vectors need not be mapped to a pair of orthogonal output vectors if the original matrix was not orthogonal itself (i.e. had skewing).
- Returns:
- this
-
normalize3x3
public Matrix4f normalize3x3(Matrix4f dest)
Description copied from interface:Matrix4fcNormalize the upper left 3x3 submatrix of this matrix and store the result indest.The resulting matrix will map unit vectors to unit vectors, though a pair of orthogonal input unit vectors need not be mapped to a pair of orthogonal output vectors if the original matrix was not orthogonal itself (i.e. had skewing).
- Specified by:
normalize3x3in interfaceMatrix4fc- Parameters:
dest- will hold the result- Returns:
- dest
-
normalize3x3
public Matrix3f normalize3x3(Matrix3f dest)
Description copied from interface:Matrix4fcNormalize the upper left 3x3 submatrix of this matrix and store the result indest.The resulting matrix will map unit vectors to unit vectors, though a pair of orthogonal input unit vectors need not be mapped to a pair of orthogonal output vectors if the original matrix was not orthogonal itself (i.e. had skewing).
- Specified by:
normalize3x3in interfaceMatrix4fc- Parameters:
dest- will hold the result- Returns:
- dest
-
frustumPlane
public Vector4f frustumPlane(int plane, Vector4f dest)
Description copied from interface:Matrix4fcCalculate a frustum plane ofthismatrix, which can be a projection matrix or a combined modelview-projection matrix, and store the result in the givenplaneEquation.Generally, this method computes the frustum plane in the local frame of any coordinate system that existed before
thistransformation was applied to it in order to yield homogeneous clipping space.The frustum plane will be given in the form of a general plane equation:
a*x + b*y + c*z + d = 0, where the givenVector4fcomponents will hold the(a, b, c, d)values of the equation.The plane normal, which is
(a, b, c), is directed "inwards" of the frustum. Any plane/point test usinga*x + b*y + c*z + dtherefore will yield a result greater than zero if the point is within the frustum (i.e. at the positive side of the frustum plane).For performing frustum culling, the class
FrustumIntersectionshould be used instead of manually obtaining the frustum planes and testing them against points, spheres or axis-aligned boxes.Reference: Fast Extraction of Viewing Frustum Planes from the World-View-Projection Matrix
- Specified by:
frustumPlanein interfaceMatrix4fc- Parameters:
plane- one of the six possible planes, given as numeric constantsMatrix4fc.PLANE_NX,Matrix4fc.PLANE_PX,Matrix4fc.PLANE_NY,Matrix4fc.PLANE_PY,Matrix4fc.PLANE_NZandMatrix4fc.PLANE_PZdest- will hold the computed plane equation. The plane equation will be normalized, meaning that(a, b, c)will be a unit vector- Returns:
- planeEquation
-
frustumCorner
public Vector3f frustumCorner(int corner, Vector3f point)
Description copied from interface:Matrix4fcCompute the corner coordinates of the frustum defined bythismatrix, which can be a projection matrix or a combined modelview-projection matrix, and store the result in the givenpoint.Generally, this method computes the frustum corners in the local frame of any coordinate system that existed before
thistransformation was applied to it in order to yield homogeneous clipping space.Reference: http://geomalgorithms.com
Reference: Fast Extraction of Viewing Frustum Planes from the World-View-Projection Matrix
- Specified by:
frustumCornerin interfaceMatrix4fc- Parameters:
corner- one of the eight possible corners, given as numeric constantsMatrix4fc.CORNER_NXNYNZ,Matrix4fc.CORNER_PXNYNZ,Matrix4fc.CORNER_PXPYNZ,Matrix4fc.CORNER_NXPYNZ,Matrix4fc.CORNER_PXNYPZ,Matrix4fc.CORNER_NXNYPZ,Matrix4fc.CORNER_NXPYPZ,Matrix4fc.CORNER_PXPYPZpoint- will hold the resulting corner point coordinates- Returns:
- point
-
perspectiveOrigin
public Vector3f perspectiveOrigin(Vector3f origin)
Compute the eye/origin of the perspective frustum transformation defined bythismatrix, which can be a projection matrix or a combined modelview-projection matrix, and store the result in the givenorigin.Note that this method will only work using perspective projections obtained via one of the perspective methods, such as
perspective()orfrustum().Generally, this method computes the origin in the local frame of any coordinate system that existed before
thistransformation was applied to it in order to yield homogeneous clipping space.This method is equivalent to calling:
invert(new Matrix4f()).transformProject(0, 0, -1, 0, origin)and in the case of an already available inverse ofthismatrix, the methodperspectiveInvOrigin(Vector3f)on the inverse of the matrix should be used instead.Reference: http://geomalgorithms.com
Reference: Fast Extraction of Viewing Frustum Planes from the World-View-Projection Matrix
- Specified by:
perspectiveOriginin interfaceMatrix4fc- Parameters:
origin- will hold the origin of the coordinate system before applyingthisperspective projection transformation- Returns:
- origin
- See Also:
perspectiveInvOrigin(Vector3f)
-
perspectiveInvOrigin
public Vector3f perspectiveInvOrigin(Vector3f dest)
Compute the eye/origin of the inverse of the perspective frustum transformation defined bythismatrix, which can be the inverse of a projection matrix or the inverse of a combined modelview-projection matrix, and store the result in the givendest.Note that this method will only work using perspective projections obtained via one of the perspective methods, such as
perspective()orfrustum().If the inverse of the modelview-projection matrix is not available, then calling
perspectiveOrigin(Vector3f)on the original modelview-projection matrix is preferred.- Specified by:
perspectiveInvOriginin interfaceMatrix4fc- Parameters:
dest- will hold the result- Returns:
- dest
- See Also:
perspectiveOrigin(Vector3f)
-
perspectiveFov
public float perspectiveFov()
Return the vertical field-of-view angle in radians of this perspective transformation matrix.Note that this method will only work using perspective projections obtained via one of the perspective methods, such as
perspective()orfrustum().For orthogonal transformations this method will return
0.0.Reference: Fast Extraction of Viewing Frustum Planes from the World-View-Projection Matrix
- Specified by:
perspectiveFovin interfaceMatrix4fc- Returns:
- the vertical field-of-view angle in radians
-
perspectiveNear
public float perspectiveNear()
Extract the near clip plane distance fromthisperspective projection matrix.This method only works if
thisis a perspective projection matrix, for example obtained viaperspective(float, float, float, float).- Specified by:
perspectiveNearin interfaceMatrix4fc- Returns:
- the near clip plane distance
-
perspectiveFar
public float perspectiveFar()
Extract the far clip plane distance fromthisperspective projection matrix.This method only works if
thisis a perspective projection matrix, for example obtained viaperspective(float, float, float, float).- Specified by:
perspectiveFarin interfaceMatrix4fc- Returns:
- the far clip plane distance
-
frustumRayDir
public Vector3f frustumRayDir(float x, float y, Vector3f dir)
Description copied from interface:Matrix4fcObtain the direction of a ray starting at the center of the coordinate system and going through the near frustum plane.This method computes the
dirvector in the local frame of any coordinate system that existed beforethistransformation was applied to it in order to yield homogeneous clipping space.The parameters
xandyare used to interpolate the generated ray direction from the bottom-left to the top-right frustum corners.For optimal efficiency when building many ray directions over the whole frustum, it is recommended to use this method only in order to compute the four corner rays at
(0, 0),(1, 0),(0, 1)and(1, 1)and then bilinearly interpolating between them; or to use theFrustumRayBuilder.Reference: Fast Extraction of Viewing Frustum Planes from the World-View-Projection Matrix
- Specified by:
frustumRayDirin interfaceMatrix4fc- Parameters:
x- the interpolation factor along the left-to-right frustum planes, within[0..1]y- the interpolation factor along the bottom-to-top frustum planes, within[0..1]dir- will hold the normalized ray direction in the local frame of the coordinate system before transforming to homogeneous clipping space usingthismatrix- Returns:
- dir
-
positiveZ
public Vector3f positiveZ(Vector3f dir)
Description copied from interface:Matrix4fcObtain the direction of+Zbefore the transformation represented bythismatrix is applied.This method uses the rotation component of the upper left 3x3 submatrix to obtain the direction that is transformed to
+Zbythismatrix.This method is equivalent to the following code:
Matrix4f inv = new Matrix4f(this).invert(); inv.transformDirection(dir.set(0, 0, 1)).normalize();
Ifthisis already an orthogonal matrix, then consider usingMatrix4fc.normalizedPositiveZ(Vector3f)instead.Reference: http://www.euclideanspace.com
-
normalizedPositiveZ
public Vector3f normalizedPositiveZ(Vector3f dir)
Description copied from interface:Matrix4fcObtain the direction of+Zbefore the transformation represented bythisorthogonal matrix is applied. This method only produces correct results ifthisis an orthogonal matrix.This method uses the rotation component of the upper left 3x3 submatrix to obtain the direction that is transformed to
+Zbythismatrix.This method is equivalent to the following code:
Matrix4f inv = new Matrix4f(this).transpose(); inv.transformDirection(dir.set(0, 0, 1));
Reference: http://www.euclideanspace.com
- Specified by:
normalizedPositiveZin interfaceMatrix4fc- Parameters:
dir- will hold the direction of+Z- Returns:
- dir
-
positiveX
public Vector3f positiveX(Vector3f dir)
Description copied from interface:Matrix4fcObtain the direction of+Xbefore the transformation represented bythismatrix is applied.This method uses the rotation component of the upper left 3x3 submatrix to obtain the direction that is transformed to
+Xbythismatrix.This method is equivalent to the following code:
Matrix4f inv = new Matrix4f(this).invert(); inv.transformDirection(dir.set(1, 0, 0)).normalize();
Ifthisis already an orthogonal matrix, then consider usingMatrix4fc.normalizedPositiveX(Vector3f)instead.Reference: http://www.euclideanspace.com
-
normalizedPositiveX
public Vector3f normalizedPositiveX(Vector3f dir)
Description copied from interface:Matrix4fcObtain the direction of+Xbefore the transformation represented bythisorthogonal matrix is applied. This method only produces correct results ifthisis an orthogonal matrix.This method uses the rotation component of the upper left 3x3 submatrix to obtain the direction that is transformed to
+Xbythismatrix.This method is equivalent to the following code:
Matrix4f inv = new Matrix4f(this).transpose(); inv.transformDirection(dir.set(1, 0, 0));
Reference: http://www.euclideanspace.com
- Specified by:
normalizedPositiveXin interfaceMatrix4fc- Parameters:
dir- will hold the direction of+X- Returns:
- dir
-
positiveY
public Vector3f positiveY(Vector3f dir)
Description copied from interface:Matrix4fcObtain the direction of+Ybefore the transformation represented bythismatrix is applied.This method uses the rotation component of the upper left 3x3 submatrix to obtain the direction that is transformed to
+Ybythismatrix.This method is equivalent to the following code:
Matrix4f inv = new Matrix4f(this).invert(); inv.transformDirection(dir.set(0, 1, 0)).normalize();
Ifthisis already an orthogonal matrix, then consider usingMatrix4fc.normalizedPositiveY(Vector3f)instead.Reference: http://www.euclideanspace.com
-
normalizedPositiveY
public Vector3f normalizedPositiveY(Vector3f dir)
Description copied from interface:Matrix4fcObtain the direction of+Ybefore the transformation represented bythisorthogonal matrix is applied. This method only produces correct results ifthisis an orthogonal matrix.This method uses the rotation component of the upper left 3x3 submatrix to obtain the direction that is transformed to
+Ybythismatrix.This method is equivalent to the following code:
Matrix4f inv = new Matrix4f(this).transpose(); inv.transformDirection(dir.set(0, 1, 0));
Reference: http://www.euclideanspace.com
- Specified by:
normalizedPositiveYin interfaceMatrix4fc- Parameters:
dir- will hold the direction of+Y- Returns:
- dir
-
originAffine
public Vector3f originAffine(Vector3f origin)
Description copied from interface:Matrix4fcObtain the position that gets transformed to the origin bythisaffinematrix. This can be used to get the position of the "camera" from a given view transformation matrix.This method only works with
affinematrices.This method is equivalent to the following code:
Matrix4f inv = new Matrix4f(this).invertAffine(); inv.transformPosition(origin.set(0, 0, 0));
- Specified by:
originAffinein interfaceMatrix4fc- Parameters:
origin- will hold the position transformed to the origin- Returns:
- origin
-
origin
public Vector3f origin(Vector3f dest)
Description copied from interface:Matrix4fcObtain the position that gets transformed to the origin bythismatrix. This can be used to get the position of the "camera" from a given view/projection transformation matrix.This method is equivalent to the following code:
Matrix4f inv = new Matrix4f(this).invert(); inv.transformPosition(origin.set(0, 0, 0));
-
shadow
public Matrix4f shadow(Vector4f light, float a, float b, float c, float d)
Apply a projection transformation to this matrix that projects onto the plane specified via the general plane equationx*a + y*b + z*c + d = 0as if casting a shadow from a given light position/directionlight.If
light.wis0.0the light is being treated as a directional light; if it is1.0it is a point light.If
Misthismatrix andSthe shadow matrix, then the new matrix will beM * S. So when transforming a vectorvwith the new matrix by usingM * S * v, the shadow projection will be applied first!Reference: ftp.sgi.com
- Parameters:
light- the light's vectora- the x factor in the plane equationb- the y factor in the plane equationc- the z factor in the plane equationd- the constant in the plane equation- Returns:
- this
-
shadow
public Matrix4f shadow(Vector4f light, float a, float b, float c, float d, Matrix4f dest)
Description copied from interface:Matrix4fcApply a projection transformation to this matrix that projects onto the plane specified via the general plane equationx*a + y*b + z*c + d = 0as if casting a shadow from a given light position/directionlightand store the result indest.If
light.wis0.0the light is being treated as a directional light; if it is1.0it is a point light.If
Misthismatrix andSthe shadow matrix, then the new matrix will beM * S. So when transforming a vectorvwith the new matrix by usingM * S * v, the shadow projection will be applied first!Reference: ftp.sgi.com
-
shadow
public Matrix4f shadow(float lightX, float lightY, float lightZ, float lightW, float a, float b, float c, float d)
Apply a projection transformation to this matrix that projects onto the plane specified via the general plane equationx*a + y*b + z*c + d = 0as if casting a shadow from a given light position/direction(lightX, lightY, lightZ, lightW).If
lightWis0.0the light is being treated as a directional light; if it is1.0it is a point light.If
Misthismatrix andSthe shadow matrix, then the new matrix will beM * S. So when transforming a vectorvwith the new matrix by usingM * S * v, the shadow projection will be applied first!Reference: ftp.sgi.com
- Parameters:
lightX- the x-component of the light's vectorlightY- the y-component of the light's vectorlightZ- the z-component of the light's vectorlightW- the w-component of the light's vectora- the x factor in the plane equationb- the y factor in the plane equationc- the z factor in the plane equationd- the constant in the plane equation- Returns:
- this
-
shadow
public Matrix4f shadow(float lightX, float lightY, float lightZ, float lightW, float a, float b, float c, float d, Matrix4f dest)
Description copied from interface:Matrix4fcApply a projection transformation to this matrix that projects onto the plane specified via the general plane equationx*a + y*b + z*c + d = 0as if casting a shadow from a given light position/direction(lightX, lightY, lightZ, lightW)and store the result indest.If
lightWis0.0the light is being treated as a directional light; if it is1.0it is a point light.If
Misthismatrix andSthe shadow matrix, then the new matrix will beM * S. So when transforming a vectorvwith the new matrix by usingM * S * v, the shadow projection will be applied first!Reference: ftp.sgi.com
- Specified by:
shadowin interfaceMatrix4fc- Parameters:
lightX- the x-component of the light's vectorlightY- the y-component of the light's vectorlightZ- the z-component of the light's vectorlightW- the w-component of the light's vectora- the x factor in the plane equationb- the y factor in the plane equationc- the z factor in the plane equationd- the constant in the plane equationdest- will hold the result- Returns:
- dest
-
shadow
public Matrix4f shadow(Vector4f light, Matrix4fc planeTransform, Matrix4f dest)
Description copied from interface:Matrix4fcApply a projection transformation to this matrix that projects onto the plane with the general plane equationy = 0as if casting a shadow from a given light position/directionlightand store the result indest.Before the shadow projection is applied, the plane is transformed via the specified
planeTransformation.If
light.wis0.0the light is being treated as a directional light; if it is1.0it is a point light.If
Misthismatrix andSthe shadow matrix, then the new matrix will beM * S. So when transforming a vectorvwith the new matrix by usingM * S * v, the shadow projection will be applied first!
-
shadow
public Matrix4f shadow(Vector4f light, Matrix4f planeTransform)
Apply a projection transformation to this matrix that projects onto the plane with the general plane equationy = 0as if casting a shadow from a given light position/directionlight.Before the shadow projection is applied, the plane is transformed via the specified
planeTransformation.If
light.wis0.0the light is being treated as a directional light; if it is1.0it is a point light.If
Misthismatrix andSthe shadow matrix, then the new matrix will beM * S. So when transforming a vectorvwith the new matrix by usingM * S * v, the shadow projection will be applied first!- Parameters:
light- the light's vectorplaneTransform- the transformation to transform the implied planey = 0before applying the projection- Returns:
- this
-
shadow
public Matrix4f shadow(float lightX, float lightY, float lightZ, float lightW, Matrix4fc planeTransform, Matrix4f dest)
Description copied from interface:Matrix4fcApply a projection transformation to this matrix that projects onto the plane with the general plane equationy = 0as if casting a shadow from a given light position/direction(lightX, lightY, lightZ, lightW)and store the result indest.Before the shadow projection is applied, the plane is transformed via the specified
planeTransformation.If
lightWis0.0the light is being treated as a directional light; if it is1.0it is a point light.If
Misthismatrix andSthe shadow matrix, then the new matrix will beM * S. So when transforming a vectorvwith the new matrix by usingM * S * v, the shadow projection will be applied first!- Specified by:
shadowin interfaceMatrix4fc- Parameters:
lightX- the x-component of the light vectorlightY- the y-component of the light vectorlightZ- the z-component of the light vectorlightW- the w-component of the light vectorplaneTransform- the transformation to transform the implied planey = 0before applying the projectiondest- will hold the result- Returns:
- dest
-
shadow
public Matrix4f shadow(float lightX, float lightY, float lightZ, float lightW, Matrix4f planeTransform)
Apply a projection transformation to this matrix that projects onto the plane with the general plane equationy = 0as if casting a shadow from a given light position/direction(lightX, lightY, lightZ, lightW).Before the shadow projection is applied, the plane is transformed via the specified
planeTransformation.If
lightWis0.0the light is being treated as a directional light; if it is1.0it is a point light.If
Misthismatrix andSthe shadow matrix, then the new matrix will beM * S. So when transforming a vectorvwith the new matrix by usingM * S * v, the shadow projection will be applied first!- Parameters:
lightX- the x-component of the light vectorlightY- the y-component of the light vectorlightZ- the z-component of the light vectorlightW- the w-component of the light vectorplaneTransform- the transformation to transform the implied planey = 0before applying the projection- Returns:
- this
-
billboardCylindrical
public Matrix4f billboardCylindrical(Vector3fc objPos, Vector3fc targetPos, Vector3fc up)
Set this matrix to a cylindrical billboard transformation that rotates the local +Z axis of a given object with positionobjPostowards a target position attargetPoswhile constraining a cylindrical rotation around the givenupvector.This method can be used to create the complete model transformation for a given object, including the translation of the object to its position
objPos.- Parameters:
objPos- the position of the object to rotate towardstargetPostargetPos- the position of the target (for example the camera) towards which to rotate the objectup- the rotation axis (must benormalized)- Returns:
- this
-
billboardSpherical
public Matrix4f billboardSpherical(Vector3fc objPos, Vector3fc targetPos, Vector3fc up)
Set this matrix to a spherical billboard transformation that rotates the local +Z axis of a given object with positionobjPostowards a target position attargetPos.This method can be used to create the complete model transformation for a given object, including the translation of the object to its position
objPos.If preserving an up vector is not necessary when rotating the +Z axis, then a shortest arc rotation can be obtained using
billboardSpherical(Vector3fc, Vector3fc).- Parameters:
objPos- the position of the object to rotate towardstargetPostargetPos- the position of the target (for example the camera) towards which to rotate the objectup- the up axis used to orient the object- Returns:
- this
- See Also:
billboardSpherical(Vector3fc, Vector3fc)
-
billboardSpherical
public Matrix4f billboardSpherical(Vector3fc objPos, Vector3fc targetPos)
Set this matrix to a spherical billboard transformation that rotates the local +Z axis of a given object with positionobjPostowards a target position attargetPosusing a shortest arc rotation by not preserving any up vector of the object.This method can be used to create the complete model transformation for a given object, including the translation of the object to its position
objPos.In order to specify an up vector which needs to be maintained when rotating the +Z axis of the object, use
billboardSpherical(Vector3fc, Vector3fc, Vector3fc).- Parameters:
objPos- the position of the object to rotate towardstargetPostargetPos- the position of the target (for example the camera) towards which to rotate the object- Returns:
- this
- See Also:
billboardSpherical(Vector3fc, Vector3fc, Vector3fc)
-
hashCode
public int hashCode()
- Overrides:
hashCodein classjava.lang.Object
-
equals
public boolean equals(java.lang.Object obj)
- Overrides:
equalsin classjava.lang.Object
-
equals
public boolean equals(Matrix4fc m, float delta)
Description copied from interface:Matrix4fcCompare the matrix elements ofthismatrix with the given matrix using the givendeltaand return whether all of them are equal within a maximum difference ofdelta.Please note that this method is not used by any data structure such as
ArrayListHashSetorHashMapand their operations, such asArrayList.contains(Object)orHashSet.remove(Object), since those data structures only use theObject.equals(Object)andObject.hashCode()methods.
-
pick
public Matrix4f pick(float x, float y, float width, float height, int[] viewport, Matrix4f dest)
Description copied from interface:Matrix4fcApply a picking transformation to this matrix using the given window coordinates(x, y)as the pick center and the given(width, height)as the size of the picking region in window coordinates, and store the result indest.- Specified by:
pickin interfaceMatrix4fc- Parameters:
x- the x coordinate of the picking region center in window coordinatesy- the y coordinate of the picking region center in window coordinateswidth- the width of the picking region in window coordinatesheight- the height of the picking region in window coordinatesviewport- the viewport described by[x, y, width, height]dest- the destination matrix, which will hold the result- Returns:
- dest
-
pick
public Matrix4f pick(float x, float y, float width, float height, int[] viewport)
Apply a picking transformation to this matrix using the given window coordinates(x, y)as the pick center and the given(width, height)as the size of the picking region in window coordinates.- Parameters:
x- the x coordinate of the picking region center in window coordinatesy- the y coordinate of the picking region center in window coordinateswidth- the width of the picking region in window coordinatesheight- the height of the picking region in window coordinatesviewport- the viewport described by[x, y, width, height]- Returns:
- this
-
isAffine
public boolean isAffine()
Description copied from interface:Matrix4fcDetermine whether this matrix describes an affine transformation. This is the case iff its last row is equal to(0, 0, 0, 1).
-
swap
public Matrix4f swap(Matrix4f other)
Exchange the values ofthismatrix with the givenothermatrix.- Parameters:
other- the other matrix to exchange the values with- Returns:
- this
-
arcball
public Matrix4f arcball(float radius, float centerX, float centerY, float centerZ, float angleX, float angleY, Matrix4f dest)
Description copied from interface:Matrix4fcApply an arcball view transformation to this matrix with the givenradiusand center(centerX, centerY, centerZ)position of the arcball and the specified X and Y rotation angles, and store the result indest.This method is equivalent to calling:
translate(0, 0, -radius, dest).rotateX(angleX).rotateY(angleY).translate(-centerX, -centerY, -centerZ)- Specified by:
arcballin interfaceMatrix4fc- Parameters:
radius- the arcball radiuscenterX- the x coordinate of the center position of the arcballcenterY- the y coordinate of the center position of the arcballcenterZ- the z coordinate of the center position of the arcballangleX- the rotation angle around the X axis in radiansangleY- the rotation angle around the Y axis in radiansdest- will hold the result- Returns:
- dest
-
arcball
public Matrix4f arcball(float radius, Vector3fc center, float angleX, float angleY, Matrix4f dest)
Description copied from interface:Matrix4fcApply an arcball view transformation to this matrix with the givenradiusandcenterposition of the arcball and the specified X and Y rotation angles, and store the result indest.This method is equivalent to calling:
translate(0, 0, -radius).rotateX(angleX).rotateY(angleY).translate(-center.x, -center.y, -center.z)
-
arcball
public Matrix4f arcball(float radius, float centerX, float centerY, float centerZ, float angleX, float angleY)
Apply an arcball view transformation to this matrix with the givenradiusand center(centerX, centerY, centerZ)position of the arcball and the specified X and Y rotation angles.This method is equivalent to calling:
translate(0, 0, -radius).rotateX(angleX).rotateY(angleY).translate(-centerX, -centerY, -centerZ)- Parameters:
radius- the arcball radiuscenterX- the x coordinate of the center position of the arcballcenterY- the y coordinate of the center position of the arcballcenterZ- the z coordinate of the center position of the arcballangleX- the rotation angle around the X axis in radiansangleY- the rotation angle around the Y axis in radians- Returns:
- this
-
arcball
public Matrix4f arcball(float radius, Vector3fc center, float angleX, float angleY)
Apply an arcball view transformation to this matrix with the givenradiusandcenterposition of the arcball and the specified X and Y rotation angles.This method is equivalent to calling:
translate(0, 0, -radius).rotateX(angleX).rotateY(angleY).translate(-center.x, -center.y, -center.z)- Parameters:
radius- the arcball radiuscenter- the center position of the arcballangleX- the rotation angle around the X axis in radiansangleY- the rotation angle around the Y axis in radians- Returns:
- this
-
frustumAabb
public Matrix4f frustumAabb(Vector3f min, Vector3f max)
Compute the axis-aligned bounding box of the frustum described bythismatrix and store the minimum corner coordinates in the givenminand the maximum corner coordinates in the givenmaxvector.The matrix
thisis assumed to be theinverseof the origial view-projection matrix for which to compute the axis-aligned bounding box in world-space.The axis-aligned bounding box of the unit frustum is
(-1, -1, -1),(1, 1, 1).- Specified by:
frustumAabbin interfaceMatrix4fc- Parameters:
min- will hold the minimum corner coordinates of the axis-aligned bounding boxmax- will hold the maximum corner coordinates of the axis-aligned bounding box- Returns:
- this
-
projectedGridRange
public Matrix4f projectedGridRange(Matrix4fc projector, float sLower, float sUpper, Matrix4f dest)
Description copied from interface:Matrix4fcCompute the range matrix for the Projected Grid transformation as described in chapter "2.4.2 Creating the range conversion matrix" of the paper Real-time water rendering - Introducing the projected grid concept based on the inverse of the view-projection matrix which is assumed to bethis, and store that range matrix intodest.If the projected grid will not be visible then this method returns
null.This method uses the
y = 0plane for the projection.- Specified by:
projectedGridRangein interfaceMatrix4fc- Parameters:
projector- the projector view-projection transformationsLower- the lower (smallest) Y-coordinate which any transformed vertex might have while still being visible on the projected gridsUpper- the upper (highest) Y-coordinate which any transformed vertex might have while still being visible on the projected griddest- will hold the resulting range matrix- Returns:
- the computed range matrix; or
nullif the projected grid will not be visible
-
perspectiveFrustumSlice
public Matrix4f perspectiveFrustumSlice(float near, float far, Matrix4f dest)
Change the near and far clip plane distances ofthisperspective frustum transformation matrix and store the result indest.This method only works if
thisis a perspective projection frustum transformation, for example obtained viaperspective()orfrustum().- Specified by:
perspectiveFrustumSlicein interfaceMatrix4fc- Parameters:
near- the new near clip plane distancefar- the new far clip plane distancedest- will hold the resulting matrix- Returns:
- dest
- See Also:
perspective(float, float, float, float),frustum(float, float, float, float, float, float)
-
orthoCrop
public Matrix4f orthoCrop(Matrix4fc view, Matrix4f dest)
Build an ortographic projection transformation that fits the view-projection transformation represented bythisinto the given affineviewtransformation.The transformation represented by
thismust be given as theinverseof a typical combined camera view-projection transformation, whose projection can be either orthographic or perspective.The
viewmust be anaffinetransformation which in the application of Cascaded Shadow Maps is usually the light view transformation. It be obtained via any affine transformation or for example vialookAt().Reference: OpenGL SDK - Cascaded Shadow Maps
-
trapezoidCrop
public Matrix4f trapezoidCrop(float p0x, float p0y, float p1x, float p1y, float p2x, float p2y, float p3x, float p3y)
Setthismatrix to a perspective transformation that maps the trapezoid spanned by the four corner coordinates(p0x, p0y),(p1x, p1y),(p2x, p2y)and(p3x, p3y)to the unit square[(-1, -1)..(+1, +1)].The corner coordinates are given in counter-clockwise order starting from the left corner on the smaller parallel side of the trapezoid seen when looking at the trapezoid oriented with its shorter parallel edge at the bottom and its longer parallel edge at the top.
Reference: Trapezoidal Shadow Maps (TSM) - Recipe
- Parameters:
p0x- the x coordinate of the left corner at the shorter edge of the trapezoidp0y- the y coordinate of the left corner at the shorter edge of the trapezoidp1x- the x coordinate of the right corner at the shorter edge of the trapezoidp1y- the y coordinate of the right corner at the shorter edge of the trapezoidp2x- the x coordinate of the right corner at the longer edge of the trapezoidp2y- the y coordinate of the right corner at the longer edge of the trapezoidp3x- the x coordinate of the left corner at the longer edge of the trapezoidp3y- the y coordinate of the left corner at the longer edge of the trapezoid- Returns:
- this
-
transformAab
public Matrix4f transformAab(float minX, float minY, float minZ, float maxX, float maxY, float maxZ, Vector3f outMin, Vector3f outMax)
Description copied from interface:Matrix4fcTransform the axis-aligned box given as the minimum corner(minX, minY, minZ)and maximum corner(maxX, maxY, maxZ)bythisaffinematrix and compute the axis-aligned box of the result whose minimum corner is stored inoutMinand maximum corner stored inoutMax.Reference: http://dev.theomader.com
- Specified by:
transformAabin interfaceMatrix4fc- Parameters:
minX- the x coordinate of the minimum corner of the axis-aligned boxminY- the y coordinate of the minimum corner of the axis-aligned boxminZ- the z coordinate of the minimum corner of the axis-aligned boxmaxX- the x coordinate of the maximum corner of the axis-aligned boxmaxY- the y coordinate of the maximum corner of the axis-aligned boxmaxZ- the y coordinate of the maximum corner of the axis-aligned boxoutMin- will hold the minimum corner of the resulting axis-aligned boxoutMax- will hold the maximum corner of the resulting axis-aligned box- Returns:
- this
-
transformAab
public Matrix4f transformAab(Vector3fc min, Vector3fc max, Vector3f outMin, Vector3f outMax)
Description copied from interface:Matrix4fcTransform the axis-aligned box given as the minimum cornerminand maximum cornermaxbythisaffinematrix and compute the axis-aligned box of the result whose minimum corner is stored inoutMinand maximum corner stored inoutMax.- Specified by:
transformAabin interfaceMatrix4fc- Parameters:
min- the minimum corner of the axis-aligned boxmax- the maximum corner of the axis-aligned boxoutMin- will hold the minimum corner of the resulting axis-aligned boxoutMax- will hold the maximum corner of the resulting axis-aligned box- Returns:
- this
-
lerp
public Matrix4f lerp(Matrix4fc other, float t)
Linearly interpolatethisandotherusing the given interpolation factortand store the result inthis.If
tis0.0then the result isthis. If the interpolation factor is1.0then the result isother.- Parameters:
other- the other matrixt- the interpolation factor between 0.0 and 1.0- Returns:
- this
-
lerp
public Matrix4f lerp(Matrix4fc other, float t, Matrix4f dest)
Description copied from interface:Matrix4fcLinearly interpolatethisandotherusing the given interpolation factortand store the result indest.If
tis0.0then the result isthis. If the interpolation factor is1.0then the result isother.
-
rotateTowards
public Matrix4f rotateTowards(Vector3fc dir, Vector3fc up, Matrix4f dest)
Apply a model transformation to this matrix for a right-handed coordinate system, that aligns the local+Zaxis withdirand store the result indest.If
Misthismatrix andLthe lookat matrix, then the new matrix will beM * L. So when transforming a vectorvwith the new matrix by usingM * L * v, the lookat transformation will be applied first!In order to set the matrix to a rotation transformation without post-multiplying it, use
rotationTowards().This method is equivalent to calling:
mulAffine(new Matrix4f().lookAt(new Vector3f(), new Vector3f(dir).negate(), up).invertAffine(), dest)- Specified by:
rotateTowardsin interfaceMatrix4fc- Parameters:
dir- the direction to rotate towardsup- the up vectordest- will hold the result- Returns:
- dest
- See Also:
rotateTowards(float, float, float, float, float, float, Matrix4f),rotationTowards(Vector3fc, Vector3fc)
-
rotateTowards
public Matrix4f rotateTowards(Vector3fc dir, Vector3fc up)
Apply a model transformation to this matrix for a right-handed coordinate system, that aligns the local+Zaxis withdir.If
Misthismatrix andLthe lookat matrix, then the new matrix will beM * L. So when transforming a vectorvwith the new matrix by usingM * L * v, the lookat transformation will be applied first!In order to set the matrix to a rotation transformation without post-multiplying it, use
rotationTowards().This method is equivalent to calling:
mulAffine(new Matrix4f().lookAt(new Vector3f(), new Vector3f(dir).negate(), up).invertAffine())- Parameters:
dir- the direction to orient towardsup- the up vector- Returns:
- this
- See Also:
rotateTowards(float, float, float, float, float, float),rotationTowards(Vector3fc, Vector3fc)
-
rotateTowards
public Matrix4f rotateTowards(float dirX, float dirY, float dirZ, float upX, float upY, float upZ)
Apply a model transformation to this matrix for a right-handed coordinate system, that aligns the local+Zaxis with(dirX, dirY, dirZ).If
Misthismatrix andLthe lookat matrix, then the new matrix will beM * L. So when transforming a vectorvwith the new matrix by usingM * L * v, the lookat transformation will be applied first!In order to set the matrix to a rotation transformation without post-multiplying it, use
rotationTowards().This method is equivalent to calling:
mulAffine(new Matrix4f().lookAt(0, 0, 0, -dirX, -dirY, -dirZ, upX, upY, upZ).invertAffine())- Parameters:
dirX- the x-coordinate of the direction to rotate towardsdirY- the y-coordinate of the direction to rotate towardsdirZ- the z-coordinate of the direction to rotate towardsupX- the x-coordinate of the up vectorupY- the y-coordinate of the up vectorupZ- the z-coordinate of the up vector- Returns:
- this
- See Also:
rotateTowards(Vector3fc, Vector3fc),rotationTowards(float, float, float, float, float, float)
-
rotateTowards
public Matrix4f rotateTowards(float dirX, float dirY, float dirZ, float upX, float upY, float upZ, Matrix4f dest)
Apply a model transformation to this matrix for a right-handed coordinate system, that aligns the local+Zaxis with(dirX, dirY, dirZ)and store the result indest.If
Misthismatrix andLthe lookat matrix, then the new matrix will beM * L. So when transforming a vectorvwith the new matrix by usingM * L * v, the lookat transformation will be applied first!In order to set the matrix to a rotation transformation without post-multiplying it, use
rotationTowards().This method is equivalent to calling:
mulAffine(new Matrix4f().lookAt(0, 0, 0, -dirX, -dirY, -dirZ, upX, upY, upZ).invertAffine(), dest)- Specified by:
rotateTowardsin interfaceMatrix4fc- Parameters:
dirX- the x-coordinate of the direction to rotate towardsdirY- the y-coordinate of the direction to rotate towardsdirZ- the z-coordinate of the direction to rotate towardsupX- the x-coordinate of the up vectorupY- the y-coordinate of the up vectorupZ- the z-coordinate of the up vectordest- will hold the result- Returns:
- dest
- See Also:
rotateTowards(Vector3fc, Vector3fc),rotationTowards(float, float, float, float, float, float)
-
rotationTowards
public Matrix4f rotationTowards(Vector3fc dir, Vector3fc up)
Set this matrix to a model transformation for a right-handed coordinate system, that aligns the local-zaxis withdir.In order to apply the rotation transformation to a previous existing transformation, use
rotateTowards.This method is equivalent to calling:
setLookAt(new Vector3f(), new Vector3f(dir).negate(), up).invertAffine()- Parameters:
dir- the direction to orient the local -z axis towardsup- the up vector- Returns:
- this
- See Also:
rotationTowards(Vector3fc, Vector3fc),rotateTowards(float, float, float, float, float, float)
-
rotationTowards
public Matrix4f rotationTowards(float dirX, float dirY, float dirZ, float upX, float upY, float upZ)
Set this matrix to a model transformation for a right-handed coordinate system, that aligns the local-zaxis with(dirX, dirY, dirZ).In order to apply the rotation transformation to a previous existing transformation, use
rotateTowards.This method is equivalent to calling:
setLookAt(0, 0, 0, -dirX, -dirY, -dirZ, upX, upY, upZ).invertAffine()- Parameters:
dirX- the x-coordinate of the direction to rotate towardsdirY- the y-coordinate of the direction to rotate towardsdirZ- the z-coordinate of the direction to rotate towardsupX- the x-coordinate of the up vectorupY- the y-coordinate of the up vectorupZ- the z-coordinate of the up vector- Returns:
- this
- See Also:
rotateTowards(Vector3fc, Vector3fc),rotationTowards(float, float, float, float, float, float)
-
translationRotateTowards
public Matrix4f translationRotateTowards(Vector3fc pos, Vector3fc dir, Vector3fc up)
Set this matrix to a model transformation for a right-handed coordinate system, that translates to the givenposand aligns the local-zaxis withdir.This method is equivalent to calling:
translation(pos).rotateTowards(dir, up)- Parameters:
pos- the position to translate todir- the direction to rotate towardsup- the up vector- Returns:
- this
- See Also:
translation(Vector3fc),rotateTowards(Vector3fc, Vector3fc)
-
translationRotateTowards
public Matrix4f translationRotateTowards(float posX, float posY, float posZ, float dirX, float dirY, float dirZ, float upX, float upY, float upZ)
Set this matrix to a model transformation for a right-handed coordinate system, that translates to the given(posX, posY, posZ)and aligns the local-zaxis with(dirX, dirY, dirZ).This method is equivalent to calling:
translation(posX, posY, posZ).rotateTowards(dirX, dirY, dirZ, upX, upY, upZ)- Parameters:
posX- the x-coordinate of the position to translate toposY- the y-coordinate of the position to translate toposZ- the z-coordinate of the position to translate todirX- the x-coordinate of the direction to rotate towardsdirY- the y-coordinate of the direction to rotate towardsdirZ- the z-coordinate of the direction to rotate towardsupX- the x-coordinate of the up vectorupY- the y-coordinate of the up vectorupZ- the z-coordinate of the up vector- Returns:
- this
- See Also:
translation(float, float, float),rotateTowards(float, float, float, float, float, float)
-
getEulerAnglesZYX
public Vector3f getEulerAnglesZYX(Vector3f dest)
Description copied from interface:Matrix4fcExtract the Euler angles from the rotation represented by the upper left 3x3 submatrix ofthisand store the extracted Euler angles indest.This method assumes that the upper left of
thisonly represents a rotation without scaling.The Euler angles are always returned as the angle around X in the
Vector3f.xfield, the angle around Y in theVector3f.yfield and the angle around Z in theVector3f.zfield of the suppliedVector3finstance.Note that the returned Euler angles must be applied in the order
Z * Y * Xto obtain the identical matrix. This means that callingMatrix4fc.rotateZYX(float, float, float, Matrix4f)using the obtained Euler angles will yield the same rotation as the original matrix from which the Euler angles were obtained, so in the below code the matrixm2should be identical tom(disregarding possible floating-point inaccuracies).Matrix4f m = ...; // <- matrix only representing rotation Matrix4f n = new Matrix4f(); n.rotateZYX(m.getEulerAnglesZYX(new Vector3f()));
Reference: http://nghiaho.com/
- Specified by:
getEulerAnglesZYXin interfaceMatrix4fc- Parameters:
dest- will hold the extracted Euler angles- Returns:
- dest
-
getEulerAnglesXYZ
public Vector3f getEulerAnglesXYZ(Vector3f dest)
Description copied from interface:Matrix4fcExtract the Euler angles from the rotation represented by the upper left 3x3 submatrix ofthisand store the extracted Euler angles indest.This method assumes that the upper left of
thisonly represents a rotation without scaling.The Euler angles are always returned as the angle around X in the
Vector3f.xfield, the angle around Y in theVector3f.yfield and the angle around Z in theVector3f.zfield of the suppliedVector3finstance.Note that the returned Euler angles must be applied in the order
X * Y * Zto obtain the identical matrix. This means that callingMatrix4fc.rotateXYZ(float, float, float, Matrix4f)using the obtained Euler angles will yield the same rotation as the original matrix from which the Euler angles were obtained, so in the below code the matrixm2should be identical tom(disregarding possible floating-point inaccuracies).Matrix4f m = ...; // <- matrix only representing rotation Matrix4f n = new Matrix4f(); n.rotateXYZ(m.getEulerAnglesXYZ(new Vector3f()));
Reference: http://en.wikipedia.org/
- Specified by:
getEulerAnglesXYZin interfaceMatrix4fc- Parameters:
dest- will hold the extracted Euler angles- Returns:
- dest
-
affineSpan
public Matrix4f affineSpan(Vector3f corner, Vector3f xDir, Vector3f yDir, Vector3f zDir)
Compute the extents of the coordinate system before thisaffinetransformation was applied and store the resulting corner coordinates incornerand the span vectors inxDir,yDirandzDir.That means, given the maximum extents of the coordinate system between
[-1..+1]in all dimensions, this method returns one corner and the length and direction of the three base axis vectors in the coordinate system before this transformation is applied, which transforms into the corner coordinates[-1, +1].This method is equivalent to computing at least three adjacent corners using
frustumCorner(int, Vector3f)and subtracting them to obtain the length and direction of the span vectors.- Parameters:
corner- will hold one corner of the span (usually the cornerMatrix4fc.CORNER_NXNYNZ)xDir- will hold the direction and length of the span along the positive X axisyDir- will hold the direction and length of the span along the positive Y axiszDir- will hold the direction and length of the span along the positive z axis- Returns:
- this
-
testPoint
public boolean testPoint(float x, float y, float z)Description copied from interface:Matrix4fcTest whether the given point(x, y, z)is within the frustum defined bythismatrix.This method assumes
thismatrix to be a transformation from any arbitrary coordinate system/spaceMinto standard OpenGL clip space and tests whether the given point with the coordinates(x, y, z)given in spaceMis within the clip space.When testing multiple points using the same transformation matrix,
FrustumIntersectionshould be used instead.Reference: Fast Extraction of Viewing Frustum Planes from the World-View-Projection Matrix
-
testSphere
public boolean testSphere(float x, float y, float z, float r)Description copied from interface:Matrix4fcTest whether the given sphere is partly or completely within or outside of the frustum defined bythismatrix.This method assumes
thismatrix to be a transformation from any arbitrary coordinate system/spaceMinto standard OpenGL clip space and tests whether the given sphere with the coordinates(x, y, z)given in spaceMis within the clip space.When testing multiple spheres using the same transformation matrix, or more sophisticated/optimized intersection algorithms are required,
FrustumIntersectionshould be used instead.The algorithm implemented by this method is conservative. This means that in certain circumstances a false positive can occur, when the method returns
truefor spheres that are actually not visible. See iquilezles.org for an examination of this problem.Reference: Fast Extraction of Viewing Frustum Planes from the World-View-Projection Matrix
- Specified by:
testSpherein interfaceMatrix4fc- Parameters:
x- the x-coordinate of the sphere's centery- the y-coordinate of the sphere's centerz- the z-coordinate of the sphere's centerr- the sphere's radius- Returns:
trueif the given sphere is partly or completely inside the frustum;falseotherwise
-
testAab
public boolean testAab(float minX, float minY, float minZ, float maxX, float maxY, float maxZ)Description copied from interface:Matrix4fcTest whether the given axis-aligned box is partly or completely within or outside of the frustum defined bythismatrix. The box is specified via its min and max corner coordinates.This method assumes
thismatrix to be a transformation from any arbitrary coordinate system/spaceMinto standard OpenGL clip space and tests whether the given axis-aligned box with its minimum corner coordinates(minX, minY, minZ)and maximum corner coordinates(maxX, maxY, maxZ)given in spaceMis within the clip space.When testing multiple axis-aligned boxes using the same transformation matrix, or more sophisticated/optimized intersection algorithms are required,
FrustumIntersectionshould be used instead.The algorithm implemented by this method is conservative. This means that in certain circumstances a false positive can occur, when the method returns
-1for boxes that are actually not visible/do not intersect the frustum. See iquilezles.org for an examination of this problem.Reference: Efficient View Frustum Culling
Reference: Fast Extraction of Viewing Frustum Planes from the World-View-Projection Matrix- Specified by:
testAabin interfaceMatrix4fc- Parameters:
minX- the x-coordinate of the minimum cornerminY- the y-coordinate of the minimum cornerminZ- the z-coordinate of the minimum cornermaxX- the x-coordinate of the maximum cornermaxY- the y-coordinate of the maximum cornermaxZ- the z-coordinate of the maximum corner- Returns:
trueif the axis-aligned box is completely or partly inside of the frustum;falseotherwise
-
obliqueZ
public Matrix4f obliqueZ(float a, float b)
Apply an oblique projection transformation to this matrix with the given values foraandb.If
Misthismatrix andOthe oblique transformation matrix, then the new matrix will beM * O. So when transforming a vectorvwith the new matrix by usingM * O * v, the oblique transformation will be applied first!The oblique transformation is defined as:
x' = x + a*z y' = y + a*z z' = z
or in matrix form:1 0 a 0 0 1 b 0 0 0 1 0 0 0 0 1
- Parameters:
a- the value for the z factor that applies to xb- the value for the z factor that applies to y- Returns:
- this
-
obliqueZ
public Matrix4f obliqueZ(float a, float b, Matrix4f dest)
Apply an oblique projection transformation to this matrix with the given values foraandband store the result indest.If
Misthismatrix andOthe oblique transformation matrix, then the new matrix will beM * O. So when transforming a vectorvwith the new matrix by usingM * O * v, the oblique transformation will be applied first!The oblique transformation is defined as:
x' = x + a*z y' = y + a*z z' = z
or in matrix form:1 0 a 0 0 1 b 0 0 0 1 0 0 0 0 1
-
perspectiveOffCenterViewFromRectangle
public static void perspectiveOffCenterViewFromRectangle(Vector3f eye, Vector3f p, Vector3f x, Vector3f y, float nearFarDist, boolean zeroToOne, Matrix4f projDest, Matrix4f viewDest)
Create a view and off-center perspective projection matrix from a giveneyeposition, a given bottom left corner positionpof the near plane rectangle and the extents of the near plane rectangle along its localxandyaxes, and store the resulting matrices inprojDestandviewDest.This method creates a view and perspective projection matrix assuming that there is a pinhole camera at position
eyeprojecting the scene onto the near plane defined by the rectangle.All positions and lengths are in the same (world) unit.
- Parameters:
eye- the position of the camerap- the bottom left corner of the near plane rectangle (will map to the bottom left corner in window coordinates)x- the direction and length of the local "bottom/top" X axis/side of the near plane rectangley- the direction and length of the local "left/right" Y axis/side of the near plane rectanglenearFarDist- the distance between the far and near plane (the near plane will be calculated by this method). If the special valueFloat.POSITIVE_INFINITYis used, the far clipping plane will be at positive infinity. If the special valueFloat.NEGATIVE_INFINITYis used, the near and far planes will be swapped and the near clipping plane will be at positive infinity. If a negative value is used (except forFloat.NEGATIVE_INFINITY) the near and far planes will be swappedzeroToOne- whether to use Vulkan's and Direct3D's NDC z range of[0..+1]whentrueor whether to use OpenGL's NDC z range of[-1..+1]whenfalseprojDest- will hold the resulting off-center perspective projection matrixviewDest- will hold the resulting view matrix
-
withLookAtUp
public Matrix4f withLookAtUp(Vector3fc up)
Apply a transformation to this matrix to ensure that the local Y axis (as obtained bypositiveY(Vector3f)) will be coplanar to the plane spanned by the local Z axis (as obtained bypositiveZ(Vector3f)) and the given vectorup.This effectively ensures that the resulting matrix will be equal to the one obtained from
setLookAt(Vector3fc, Vector3fc, Vector3fc)called with the current local origin of this matrix (as obtained byoriginAffine(Vector3f)), the sum of this position and the negated local Z axis as well as the given vectorup.This method must only be called on
isAffine()matrices.- Parameters:
up- the up vector- Returns:
- this
-
withLookAtUp
public Matrix4f withLookAtUp(Vector3fc up, Matrix4f dest)
Description copied from interface:Matrix4fcApply a transformation to this matrix to ensure that the local Y axis (as obtained byMatrix4fc.positiveY(Vector3f)) will be coplanar to the plane spanned by the local Z axis (as obtained byMatrix4fc.positiveZ(Vector3f)) and the given vectorup, and store the result indest.This effectively ensures that the resulting matrix will be equal to the one obtained from calling
setLookAt(Vector3fc, Vector3fc, Vector3fc)with the current local origin of this matrix (as obtained byMatrix4fc.originAffine(Vector3f)), the sum of this position and the negated local Z axis as well as the given vectorup.This method must only be called on
Matrix4fc.isAffine()matrices.- Specified by:
withLookAtUpin interfaceMatrix4fc- Parameters:
up- the up vectordest- will hold the result- Returns:
- this
-
withLookAtUp
public Matrix4f withLookAtUp(float upX, float upY, float upZ)
Apply a transformation to this matrix to ensure that the local Y axis (as obtained bypositiveY(Vector3f)) will be coplanar to the plane spanned by the local Z axis (as obtained bypositiveZ(Vector3f)) and the given vector(upX, upY, upZ).This effectively ensures that the resulting matrix will be equal to the one obtained from
setLookAt(float, float, float, float, float, float, float, float, float)called with the current local origin of this matrix (as obtained byoriginAffine(Vector3f)), the sum of this position and the negated local Z axis as well as the given vector(upX, upY, upZ).This method must only be called on
isAffine()matrices.- Parameters:
upX- the x coordinate of the up vectorupY- the y coordinate of the up vectorupZ- the z coordinate of the up vector- Returns:
- this
-
withLookAtUp
public Matrix4f withLookAtUp(float upX, float upY, float upZ, Matrix4f dest)
Description copied from interface:Matrix4fcApply a transformation to this matrix to ensure that the local Y axis (as obtained byMatrix4fc.positiveY(Vector3f)) will be coplanar to the plane spanned by the local Z axis (as obtained byMatrix4fc.positiveZ(Vector3f)) and the given vector(upX, upY, upZ), and store the result indest.This effectively ensures that the resulting matrix will be equal to the one obtained from calling
setLookAt(float, float, float, float, float, float, float, float, float)called with the current local origin of this matrix (as obtained byMatrix4fc.originAffine(Vector3f)), the sum of this position and the negated local Z axis as well as the given vector(upX, upY, upZ).This method must only be called on
Matrix4fc.isAffine()matrices.- Specified by:
withLookAtUpin interfaceMatrix4fc- Parameters:
upX- the x coordinate of the up vectorupY- the y coordinate of the up vectorupZ- the z coordinate of the up vectordest- will hold the result- Returns:
- this
-
mapXZY
public Matrix4f mapXZY()
Multiplythisby the matrix1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1
- Returns:
- this
-
mapXZY
public Matrix4f mapXZY(Matrix4f dest)
Description copied from interface:Matrix4fcMultiplythisby the matrix1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1
and store the result indest.
-
mapXZnY
public Matrix4f mapXZnY()
Multiplythisby the matrix1 0 0 0 0 0 -1 0 0 1 0 0 0 0 0 1
- Returns:
- this
-
mapXZnY
public Matrix4f mapXZnY(Matrix4f dest)
Description copied from interface:Matrix4fcMultiplythisby the matrix1 0 0 0 0 0 -1 0 0 1 0 0 0 0 0 1
and store the result indest.
-
mapXnYnZ
public Matrix4f mapXnYnZ()
Multiplythisby the matrix1 0 0 0 0 -1 0 0 0 0 -1 0 0 0 0 1
- Returns:
- this
-
mapXnYnZ
public Matrix4f mapXnYnZ(Matrix4f dest)
Description copied from interface:Matrix4fcMultiplythisby the matrix1 0 0 0 0 -1 0 0 0 0 -1 0 0 0 0 1
and store the result indest.
-
mapXnZY
public Matrix4f mapXnZY()
Multiplythisby the matrix1 0 0 0 0 0 1 0 0 -1 0 0 0 0 0 1
- Returns:
- this
-
mapXnZY
public Matrix4f mapXnZY(Matrix4f dest)
Description copied from interface:Matrix4fcMultiplythisby the matrix1 0 0 0 0 0 1 0 0 -1 0 0 0 0 0 1
and store the result indest.
-
mapXnZnY
public Matrix4f mapXnZnY()
Multiplythisby the matrix1 0 0 0 0 0 -1 0 0 -1 0 0 0 0 0 1
- Returns:
- this
-
mapXnZnY
public Matrix4f mapXnZnY(Matrix4f dest)
Description copied from interface:Matrix4fcMultiplythisby the matrix1 0 0 0 0 0 -1 0 0 -1 0 0 0 0 0 1
and store the result indest.
-
mapYXZ
public Matrix4f mapYXZ()
Multiplythisby the matrix0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 1
- Returns:
- this
-
mapYXZ
public Matrix4f mapYXZ(Matrix4f dest)
Description copied from interface:Matrix4fcMultiplythisby the matrix0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 1
and store the result indest.
-
mapYXnZ
public Matrix4f mapYXnZ()
Multiplythisby the matrix0 1 0 0 1 0 0 0 0 0 -1 0 0 0 0 1
- Returns:
- this
-
mapYXnZ
public Matrix4f mapYXnZ(Matrix4f dest)
Description copied from interface:Matrix4fcMultiplythisby the matrix0 1 0 0 1 0 0 0 0 0 -1 0 0 0 0 1
and store the result indest.
-
mapYZX
public Matrix4f mapYZX()
Multiplythisby the matrix0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 1
- Returns:
- this
-
mapYZX
public Matrix4f mapYZX(Matrix4f dest)
Description copied from interface:Matrix4fcMultiplythisby the matrix0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 1
and store the result indest.
-
mapYZnX
public Matrix4f mapYZnX()
Multiplythisby the matrix0 0 -1 0 1 0 0 0 0 1 0 0 0 0 0 1
- Returns:
- this
-
mapYZnX
public Matrix4f mapYZnX(Matrix4f dest)
Description copied from interface:Matrix4fcMultiplythisby the matrix0 0 -1 0 1 0 0 0 0 1 0 0 0 0 0 1
and store the result indest.
-
mapYnXZ
public Matrix4f mapYnXZ()
Multiplythisby the matrix0 -1 0 0 1 0 0 0 0 0 1 0 0 0 0 1
- Returns:
- this
-
mapYnXZ
public Matrix4f mapYnXZ(Matrix4f dest)
Description copied from interface:Matrix4fcMultiplythisby the matrix0 -1 0 0 1 0 0 0 0 0 1 0 0 0 0 1
and store the result indest.
-
mapYnXnZ
public Matrix4f mapYnXnZ()
Multiplythisby the matrix0 -1 0 0 1 0 0 0 0 0 -1 0 0 0 0 1
- Returns:
- this
-
mapYnXnZ
public Matrix4f mapYnXnZ(Matrix4f dest)
Description copied from interface:Matrix4fcMultiplythisby the matrix0 -1 0 0 1 0 0 0 0 0 -1 0 0 0 0 1
and store the result indest.
-
mapYnZX
public Matrix4f mapYnZX()
Multiplythisby the matrix0 0 1 0 1 0 0 0 0 -1 0 0 0 0 0 1
- Returns:
- this
-
mapYnZX
public Matrix4f mapYnZX(Matrix4f dest)
Description copied from interface:Matrix4fcMultiplythisby the matrix0 0 1 0 1 0 0 0 0 -1 0 0 0 0 0 1
and store the result indest.
-
mapYnZnX
public Matrix4f mapYnZnX()
Multiplythisby the matrix0 0 -1 0 1 0 0 0 0 -1 0 0 0 0 0 1
- Returns:
- this
-
mapYnZnX
public Matrix4f mapYnZnX(Matrix4f dest)
Description copied from interface:Matrix4fcMultiplythisby the matrix0 0 -1 0 1 0 0 0 0 -1 0 0 0 0 0 1
and store the result indest.
-
mapZXY
public Matrix4f mapZXY()
Multiplythisby the matrix0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 1
- Returns:
- this
-
mapZXY
public Matrix4f mapZXY(Matrix4f dest)
Description copied from interface:Matrix4fcMultiplythisby the matrix0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 1
and store the result indest.
-
mapZXnY
public Matrix4f mapZXnY()
Multiplythisby the matrix0 1 0 0 0 0 -1 0 1 0 0 0 0 0 0 1
- Returns:
- this
-
mapZXnY
public Matrix4f mapZXnY(Matrix4f dest)
Description copied from interface:Matrix4fcMultiplythisby the matrix0 1 0 0 0 0 -1 0 1 0 0 0 0 0 0 1
and store the result indest.
-
mapZYX
public Matrix4f mapZYX()
Multiplythisby the matrix0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 1
- Returns:
- this
-
mapZYX
public Matrix4f mapZYX(Matrix4f dest)
Description copied from interface:Matrix4fcMultiplythisby the matrix0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 1
and store the result indest.
-
mapZYnX
public Matrix4f mapZYnX()
Multiplythisby the matrix0 0 -1 0 0 1 0 0 1 0 0 0 0 0 0 1
- Returns:
- this
-
mapZYnX
public Matrix4f mapZYnX(Matrix4f dest)
Description copied from interface:Matrix4fcMultiplythisby the matrix0 0 -1 0 0 1 0 0 1 0 0 0 0 0 0 1
and store the result indest.
-
mapZnXY
public Matrix4f mapZnXY()
Multiplythisby the matrix0 -1 0 0 0 0 1 0 1 0 0 0 0 0 0 1
- Returns:
- this
-
mapZnXY
public Matrix4f mapZnXY(Matrix4f dest)
Description copied from interface:Matrix4fcMultiplythisby the matrix0 -1 0 0 0 0 1 0 1 0 0 0 0 0 0 1
and store the result indest.
-
mapZnXnY
public Matrix4f mapZnXnY()
Multiplythisby the matrix0 -1 0 0 0 0 -1 0 1 0 0 0 0 0 0 1
- Returns:
- this
-
mapZnXnY
public Matrix4f mapZnXnY(Matrix4f dest)
Description copied from interface:Matrix4fcMultiplythisby the matrix0 -1 0 0 0 0 -1 0 1 0 0 0 0 0 0 1
and store the result indest.
-
mapZnYX
public Matrix4f mapZnYX()
Multiplythisby the matrix0 0 1 0 0 -1 0 0 1 0 0 0 0 0 0 1
- Returns:
- this
-
mapZnYX
public Matrix4f mapZnYX(Matrix4f dest)
Description copied from interface:Matrix4fcMultiplythisby the matrix0 0 1 0 0 -1 0 0 1 0 0 0 0 0 0 1
and store the result indest.
-
mapZnYnX
public Matrix4f mapZnYnX()
Multiplythisby the matrix0 0 -1 0 0 -1 0 0 1 0 0 0 0 0 0 1
- Returns:
- this
-
mapZnYnX
public Matrix4f mapZnYnX(Matrix4f dest)
Description copied from interface:Matrix4fcMultiplythisby the matrix0 0 -1 0 0 -1 0 0 1 0 0 0 0 0 0 1
and store the result indest.
-
mapnXYnZ
public Matrix4f mapnXYnZ()
Multiplythisby the matrix-1 0 0 0 0 1 0 0 0 0 -1 0 0 0 0 1
- Returns:
- this
-
mapnXYnZ
public Matrix4f mapnXYnZ(Matrix4f dest)
Description copied from interface:Matrix4fcMultiplythisby the matrix-1 0 0 0 0 1 0 0 0 0 -1 0 0 0 0 1
and store the result indest.
-
mapnXZY
public Matrix4f mapnXZY()
Multiplythisby the matrix-1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1
- Returns:
- this
-
mapnXZY
public Matrix4f mapnXZY(Matrix4f dest)
Description copied from interface:Matrix4fcMultiplythisby the matrix-1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1
and store the result indest.
-
mapnXZnY
public Matrix4f mapnXZnY()
Multiplythisby the matrix-1 0 0 0 0 0 -1 0 0 1 0 0 0 0 0 1
- Returns:
- this
-
mapnXZnY
public Matrix4f mapnXZnY(Matrix4f dest)
Description copied from interface:Matrix4fcMultiplythisby the matrix-1 0 0 0 0 0 -1 0 0 1 0 0 0 0 0 1
and store the result indest.
-
mapnXnYZ
public Matrix4f mapnXnYZ()
Multiplythisby the matrix-1 0 0 0 0 -1 0 0 0 0 1 0 0 0 0 1
- Returns:
- this
-
mapnXnYZ
public Matrix4f mapnXnYZ(Matrix4f dest)
Description copied from interface:Matrix4fcMultiplythisby the matrix-1 0 0 0 0 -1 0 0 0 0 1 0 0 0 0 1
and store the result indest.
-
mapnXnYnZ
public Matrix4f mapnXnYnZ()
Multiplythisby the matrix-1 0 0 0 0 -1 0 0 0 0 -1 0 0 0 0 1
- Returns:
- this
-
mapnXnYnZ
public Matrix4f mapnXnYnZ(Matrix4f dest)
Description copied from interface:Matrix4fcMultiplythisby the matrix-1 0 0 0 0 -1 0 0 0 0 -1 0 0 0 0 1
and store the result indest.
-
mapnXnZY
public Matrix4f mapnXnZY()
Multiplythisby the matrix-1 0 0 0 0 0 1 0 0 -1 0 0 0 0 0 1
- Returns:
- this
-
mapnXnZY
public Matrix4f mapnXnZY(Matrix4f dest)
Description copied from interface:Matrix4fcMultiplythisby the matrix-1 0 0 0 0 0 1 0 0 -1 0 0 0 0 0 1
and store the result indest.
-
mapnXnZnY
public Matrix4f mapnXnZnY()
Multiplythisby the matrix-1 0 0 0 0 0 -1 0 0 -1 0 0 0 0 0 1
- Returns:
- this
-
mapnXnZnY
public Matrix4f mapnXnZnY(Matrix4f dest)
Description copied from interface:Matrix4fcMultiplythisby the matrix-1 0 0 0 0 0 -1 0 0 -1 0 0 0 0 0 1
and store the result indest.
-
mapnYXZ
public Matrix4f mapnYXZ()
Multiplythisby the matrix0 1 0 0 -1 0 0 0 0 0 1 0 0 0 0 1
- Returns:
- this
-
mapnYXZ
public Matrix4f mapnYXZ(Matrix4f dest)
Description copied from interface:Matrix4fcMultiplythisby the matrix0 1 0 0 -1 0 0 0 0 0 1 0 0 0 0 1
and store the result indest.
-
mapnYXnZ
public Matrix4f mapnYXnZ()
Multiplythisby the matrix0 1 0 0 -1 0 0 0 0 0 -1 0 0 0 0 1
- Returns:
- this
-
mapnYXnZ
public Matrix4f mapnYXnZ(Matrix4f dest)
Description copied from interface:Matrix4fcMultiplythisby the matrix0 1 0 0 -1 0 0 0 0 0 -1 0 0 0 0 1
and store the result indest.
-
mapnYZX
public Matrix4f mapnYZX()
Multiplythisby the matrix0 0 1 0 -1 0 0 0 0 1 0 0 0 0 0 1
- Returns:
- this
-
mapnYZX
public Matrix4f mapnYZX(Matrix4f dest)
Description copied from interface:Matrix4fcMultiplythisby the matrix0 0 1 0 -1 0 0 0 0 1 0 0 0 0 0 1
and store the result indest.
-
mapnYZnX
public Matrix4f mapnYZnX()
Multiplythisby the matrix0 0 -1 0 -1 0 0 0 0 1 0 0 0 0 0 1
- Returns:
- this
-
mapnYZnX
public Matrix4f mapnYZnX(Matrix4f dest)
Description copied from interface:Matrix4fcMultiplythisby the matrix0 0 -1 0 -1 0 0 0 0 1 0 0 0 0 0 1
and store the result indest.
-
mapnYnXZ
public Matrix4f mapnYnXZ()
Multiplythisby the matrix0 -1 0 0 -1 0 0 0 0 0 1 0 0 0 0 1
- Returns:
- this
-
mapnYnXZ
public Matrix4f mapnYnXZ(Matrix4f dest)
Description copied from interface:Matrix4fcMultiplythisby the matrix0 -1 0 0 -1 0 0 0 0 0 1 0 0 0 0 1
and store the result indest.
-
mapnYnXnZ
public Matrix4f mapnYnXnZ()
Multiplythisby the matrix0 -1 0 0 -1 0 0 0 0 0 -1 0 0 0 0 1
- Returns:
- this
-
mapnYnXnZ
public Matrix4f mapnYnXnZ(Matrix4f dest)
Description copied from interface:Matrix4fcMultiplythisby the matrix0 -1 0 0 -1 0 0 0 0 0 -1 0 0 0 0 1
and store the result indest.
-
mapnYnZX
public Matrix4f mapnYnZX()
Multiplythisby the matrix0 0 1 0 -1 0 0 0 0 -1 0 0 0 0 0 1
- Returns:
- this
-
mapnYnZX
public Matrix4f mapnYnZX(Matrix4f dest)
Description copied from interface:Matrix4fcMultiplythisby the matrix0 0 1 0 -1 0 0 0 0 -1 0 0 0 0 0 1
and store the result indest.
-
mapnYnZnX
public Matrix4f mapnYnZnX()
Multiplythisby the matrix0 0 -1 0 -1 0 0 0 0 -1 0 0 0 0 0 1
- Returns:
- this
-
mapnYnZnX
public Matrix4f mapnYnZnX(Matrix4f dest)
Description copied from interface:Matrix4fcMultiplythisby the matrix0 0 -1 0 -1 0 0 0 0 -1 0 0 0 0 0 1
and store the result indest.
-
mapnZXY
public Matrix4f mapnZXY()
Multiplythisby the matrix0 1 0 0 0 0 1 0 -1 0 0 0 0 0 0 1
- Returns:
- this
-
mapnZXY
public Matrix4f mapnZXY(Matrix4f dest)
Description copied from interface:Matrix4fcMultiplythisby the matrix0 1 0 0 0 0 1 0 -1 0 0 0 0 0 0 1
and store the result indest.
-
mapnZXnY
public Matrix4f mapnZXnY()
Multiplythisby the matrix0 1 0 0 0 0 -1 0 -1 0 0 0 0 0 0 1
- Returns:
- this
-
mapnZXnY
public Matrix4f mapnZXnY(Matrix4f dest)
Description copied from interface:Matrix4fcMultiplythisby the matrix0 1 0 0 0 0 -1 0 -1 0 0 0 0 0 0 1
and store the result indest.
-
mapnZYX
public Matrix4f mapnZYX()
Multiplythisby the matrix0 0 1 0 0 1 0 0 -1 0 0 0 0 0 0 1
- Returns:
- this
-
mapnZYX
public Matrix4f mapnZYX(Matrix4f dest)
Description copied from interface:Matrix4fcMultiplythisby the matrix0 0 1 0 0 1 0 0 -1 0 0 0 0 0 0 1
and store the result indest.
-
mapnZYnX
public Matrix4f mapnZYnX()
Multiplythisby the matrix0 0 -1 0 0 1 0 0 -1 0 0 0 0 0 0 1
- Returns:
- this
-
mapnZYnX
public Matrix4f mapnZYnX(Matrix4f dest)
Description copied from interface:Matrix4fcMultiplythisby the matrix0 0 -1 0 0 1 0 0 -1 0 0 0 0 0 0 1
and store the result indest.
-
mapnZnXY
public Matrix4f mapnZnXY()
Multiplythisby the matrix0 -1 0 0 0 0 1 0 -1 0 0 0 0 0 0 1
- Returns:
- this
-
mapnZnXY
public Matrix4f mapnZnXY(Matrix4f dest)
Description copied from interface:Matrix4fcMultiplythisby the matrix0 -1 0 0 0 0 1 0 -1 0 0 0 0 0 0 1
and store the result indest.
-
mapnZnXnY
public Matrix4f mapnZnXnY()
Multiplythisby the matrix0 -1 0 0 0 0 -1 0 -1 0 0 0 0 0 0 1
- Returns:
- this
-
mapnZnXnY
public Matrix4f mapnZnXnY(Matrix4f dest)
Description copied from interface:Matrix4fcMultiplythisby the matrix0 -1 0 0 0 0 -1 0 -1 0 0 0 0 0 0 1
and store the result indest.
-
mapnZnYX
public Matrix4f mapnZnYX()
Multiplythisby the matrix0 0 1 0 0 -1 0 0 -1 0 0 0 0 0 0 1
- Returns:
- this
-
mapnZnYX
public Matrix4f mapnZnYX(Matrix4f dest)
Description copied from interface:Matrix4fcMultiplythisby the matrix0 0 1 0 0 -1 0 0 -1 0 0 0 0 0 0 1
and store the result indest.
-
mapnZnYnX
public Matrix4f mapnZnYnX()
Multiplythisby the matrix0 0 -1 0 0 -1 0 0 -1 0 0 0 0 0 0 1
- Returns:
- this
-
mapnZnYnX
public Matrix4f mapnZnYnX(Matrix4f dest)
Description copied from interface:Matrix4fcMultiplythisby the matrix0 0 -1 0 0 -1 0 0 -1 0 0 0 0 0 0 1
and store the result indest.
-
negateX
public Matrix4f negateX()
Multiplythisby the matrix-1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
- Returns:
- this
-
negateX
public Matrix4f negateX(Matrix4f dest)
Description copied from interface:Matrix4fcMultiplythisby the matrix-1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
and store the result indest.
-
negateY
public Matrix4f negateY()
Multiplythisby the matrix1 0 0 0 0 -1 0 0 0 0 1 0 0 0 0 1
- Returns:
- this
-
negateY
public Matrix4f negateY(Matrix4f dest)
Description copied from interface:Matrix4fcMultiplythisby the matrix1 0 0 0 0 -1 0 0 0 0 1 0 0 0 0 1
and store the result indest.
-
negateZ
public Matrix4f negateZ()
Multiplythisby the matrix1 0 0 0 0 1 0 0 0 0 -1 0 0 0 0 1
- Returns:
- this
-
negateZ
public Matrix4f negateZ(Matrix4f dest)
Description copied from interface:Matrix4fcMultiplythisby the matrix1 0 0 0 0 1 0 0 0 0 -1 0 0 0 0 1
and store the result indest.
-
isFinite
public boolean isFinite()
Description copied from interface:Matrix4fcDetermine whether all matrix elements are finite floating-point values, that is, they are notNaNand notinfinity.
-
clone
public java.lang.Object clone() throws java.lang.CloneNotSupportedException- Overrides:
clonein classjava.lang.Object- Throws:
java.lang.CloneNotSupportedException
-
-