Package org.joml

## Interface Vector4dc

• All Known Implementing Classes:
`Vector4d`

`public interface Vector4dc`
Interface to a read-only view of a 4-dimensional vector of double-precision floats.
Author:
Kai Burjack
• ### Method Summary

All Methods
Modifier and Type Method Description
`Vector4d` `absolute​(Vector4d dest)`
Compute the absolute of each of this vector's components and store the result into `dest`.
`Vector4d` ```add​(double x, double y, double z, double w, Vector4d dest)```
Add `(x, y, z, w)` to this and store the result in `dest`.
`Vector4d` ```add​(Vector4dc v, Vector4d dest)```
Add the supplied vector to this one and store the result in `dest`.
`Vector4d` ```add​(Vector4fc v, Vector4d dest)```
Add the supplied vector to this one and store the result in `dest`.
`double` `angle​(Vector4dc v)`
Return the angle between this vector and the supplied vector.
`double` `angleCos​(Vector4dc v)`
Return the cosine of the angle between this vector and the supplied vector.
`Vector4d` `ceil​(Vector4d dest)`
Compute for each component of this vector the smallest (closest to negative infinity) `double` value that is greater than or equal to that component and is equal to a mathematical integer and store the result in `dest`.
`double` ```distance​(double x, double y, double z, double w)```
Return the distance between `this` vector and `(x, y, z, w)`.
`double` `distance​(Vector4dc v)`
Return the distance between this Vector and `v`.
`double` ```distanceSquared​(double x, double y, double z, double w)```
Return the square of the distance between `this` vector and `(x, y, z, w)`.
`double` `distanceSquared​(Vector4dc v)`
Return the square of the distance between this vector and `v`.
`Vector4d` ```div​(double scalar, Vector4d dest)```
Divide this Vector4d by the given scalar value and store the result in `dest`.
`Vector4d` ```div​(Vector4dc v, Vector4d dest)```
Divide this `Vector4d` component-wise by the given `Vector4dc` and store the result in `dest`.
`double` ```dot​(double x, double y, double z, double w)```
Compute the dot product (inner product) of this vector and `(x, y, z, w)`.
`double` `dot​(Vector4dc v)`
Compute the dot product (inner product) of this vector and `v`.
`boolean` ```equals​(double x, double y, double z, double w)```
Compare the vector components of `this` vector with the given `(x, y, z, w)` and return whether all of them are equal.
`boolean` ```equals​(Vector4dc v, double delta)```
Compare the vector components of `this` vector with the given vector using the given `delta` and return whether all of them are equal within a maximum difference of `delta`.
`Vector4d` `floor​(Vector4d dest)`
Compute for each component of this vector the largest (closest to positive infinity) `double` value that is less than or equal to that component and is equal to a mathematical integer and store the result in `dest`.
`Vector4d` ```fma​(double a, Vector4dc b, Vector4d dest)```
Add the component-wise multiplication of `a * b` to this vector and store the result in `dest`.
`Vector4d` ```fma​(Vector4dc a, Vector4dc b, Vector4d dest)```
Add the component-wise multiplication of `a * b` to this vector and store the result in `dest`.
`double` `get​(int component)`
Get the value of the specified component of this vector.
`java.nio.ByteBuffer` ```get​(int index, java.nio.ByteBuffer buffer)```
Store this vector into the supplied `ByteBuffer` starting at the specified absolute buffer position/index.
`java.nio.DoubleBuffer` ```get​(int index, java.nio.DoubleBuffer buffer)```
Store this vector into the supplied `DoubleBuffer` starting at the specified absolute buffer position/index.
`java.nio.FloatBuffer` ```get​(int index, java.nio.FloatBuffer buffer)```
Store this vector into the supplied `FloatBuffer` starting at the specified absolute buffer position/index.
`Vector4i` ```get​(int mode, Vector4i dest)```
Set the components of the given vector `dest` to those of `this` vector using the given `RoundingMode`.
`java.nio.ByteBuffer` `get​(java.nio.ByteBuffer buffer)`
Store this vector into the supplied `ByteBuffer` at the current buffer `position`.
`java.nio.DoubleBuffer` `get​(java.nio.DoubleBuffer buffer)`
Store this vector into the supplied `DoubleBuffer` at the current buffer `position`.
`java.nio.FloatBuffer` `get​(java.nio.FloatBuffer buffer)`
Store this vector into the supplied `FloatBuffer` at the current buffer `position`.
`Vector4d` `get​(Vector4d dest)`
Set the components of the given vector `dest` to those of `this` vector.
`Vector4f` `get​(Vector4f dest)`
Set the components of the given vector `dest` to those of `this` vector.
`java.nio.ByteBuffer` ```getf​(int index, java.nio.ByteBuffer buffer)```
Store this vector into the supplied `ByteBuffer` starting at the specified absolute buffer position/index.
`java.nio.ByteBuffer` `getf​(java.nio.ByteBuffer buffer)`
Store this vector into the supplied `ByteBuffer` at the current buffer `position`.
`Vector4dc` `getToAddress​(long address)`
Store this vector at the given off-heap memory address.
`Vector4d` ```hermite​(Vector4dc t0, Vector4dc v1, Vector4dc t1, double t, Vector4d dest)```
Compute a hermite interpolation between `this` vector and its associated tangent `t0` and the given vector `v` with its tangent `t1` and store the result in `dest`.
`boolean` `isFinite()`
Determine whether all components are finite floating-point values, that is, they are not `NaN` and not `infinity`.
`double` `length()`
Return the length of this vector.
`double` `lengthSquared()`
Return the length squared of this vector.
`Vector4d` ```lerp​(Vector4dc other, double t, Vector4d dest)```
Linearly interpolate `this` and `other` using the given interpolation factor `t` and store the result in `dest`.
`Vector4d` ```max​(Vector4dc v, Vector4d dest)```
Set the components of `dest` to be the component-wise maximum of this and the other vector.
`int` `maxComponent()`
Determine the component with the biggest absolute value.
`Vector4d` ```min​(Vector4dc v, Vector4d dest)```
Set the components of `dest` to be the component-wise minimum of this and the other vector.
`int` `minComponent()`
Determine the component with the smallest (towards zero) absolute value.
`Vector4d` ```mul​(double scalar, Vector4d dest)```
Multiply this Vector4d by the given scalar value and store the result in `dest`.
`Vector4d` ```mul​(Matrix4dc mat, Vector4d dest)```
Multiply the given matrix mat with this `Vector4d` and store the result in `dest`.
`Vector4d` ```mul​(Matrix4fc mat, Vector4d dest)```
Multiply the given matrix mat with this Vector4d and store the result in `dest`.
`Vector4d` ```mul​(Matrix4x3dc mat, Vector4d dest)```
Multiply the given matrix mat with this Vector4d and store the result in `dest`.
`Vector4d` ```mul​(Matrix4x3fc mat, Vector4d dest)```
Multiply the given matrix mat with this Vector4d and store the result in `dest`.
`Vector4d` ```mul​(Vector4dc v, Vector4d dest)```
Multiply this `Vector4d` component-wise by the given `Vector4dc` and store the result in `dest`.
`Vector4d` ```mul​(Vector4fc v, Vector4d dest)```
Multiply this `Vector4d` component-wise by the given `Vector4fc` and store the result in `dest`.
`Vector4d` ```mulAdd​(double a, Vector4dc b, Vector4d dest)```
Add the component-wise multiplication of `this * a` to `b` and store the result in `dest`.
`Vector4d` ```mulAdd​(Vector4dc a, Vector4dc b, Vector4d dest)```
Add the component-wise multiplication of `this * a` to `b` and store the result in `dest`.
`Vector4d` ```mulAffine​(Matrix4dc mat, Vector4d dest)```
Multiply the given affine matrix mat with this Vector4d and store the result in `dest`.
`Vector4d` ```mulAffineTranspose​(Matrix4dc mat, Vector4d dest)```
Multiply the transpose of the given affine matrix `mat` with this Vector4d and store the result in `dest`.
`Vector3d` ```mulProject​(Matrix4dc mat, Vector3d dest)```
Multiply the given matrix `mat` with this Vector4d, perform perspective division and store the `(x, y, z)` result in `dest`.
`Vector4d` ```mulProject​(Matrix4dc mat, Vector4d dest)```
Multiply the given matrix `mat` with this Vector4d, perform perspective division and store the result in `dest`.
`Vector4d` ```mulTranspose​(Matrix4dc mat, Vector4d dest)```
Multiply the transpose of the given matrix `mat` with this Vector4d and store the result in `dest`.
`Vector4d` `negate​(Vector4d dest)`
Negate this vector and store the result in `dest`.
`Vector4d` ```normalize​(double length, Vector4d dest)```
Scale this vector to have the given length and store the result in `dest`.
`Vector4d` `normalize​(Vector4d dest)`
Normalizes this vector and store the result in `dest`.
`Vector4d` `normalize3​(Vector4d dest)`
Normalize this vector by computing only the norm of `(x, y, z)` and store the result in `dest`.
`Vector4d` ```rotate​(Quaterniondc quat, Vector4d dest)```
Transform this vector by the given quaternion `quat` and store the result in `dest`.
`Vector4d` ```rotateAxis​(double angle, double aX, double aY, double aZ, Vector4d dest)```
Rotate this vector the specified radians around the given rotation axis and store the result into `dest`.
`Vector4d` ```rotateX​(double angle, Vector4d dest)```
Rotate this vector the specified radians around the X axis and store the result into `dest`.
`Vector4d` ```rotateY​(double angle, Vector4d dest)```
Rotate this vector the specified radians around the Y axis and store the result into `dest`.
`Vector4d` ```rotateZ​(double angle, Vector4d dest)```
Rotate this vector the specified radians around the Z axis and store the result into `dest`.
`Vector4d` `round​(Vector4d dest)`
Compute for each component of this vector the closest double that is equal to a mathematical integer, with ties rounding to positive infinity and store the result in `dest`.
`Vector4d` ```smoothStep​(Vector4dc v, double t, Vector4d dest)```
Compute a smooth-step (i.e.
`Vector4d` ```sub​(double x, double y, double z, double w, Vector4d dest)```
Subtract `(x, y, z, w)` from this and store the result in `dest`.
`Vector4d` ```sub​(Vector4dc v, Vector4d dest)```
Subtract the supplied vector from this one and store the result in `dest`.
`Vector4d` ```sub​(Vector4fc v, Vector4d dest)```
Subtract the supplied vector from this one and store the result in `dest`.
`double` `w()`
`double` `x()`
`double` `y()`
`double` `z()`
• ### Method Detail

• #### x

`double x()`
Returns:
the value of the x component
• #### y

`double y()`
Returns:
the value of the y component
• #### z

`double z()`
Returns:
the value of the z component
• #### w

`double w()`
Returns:
the value of the w component
• #### get

`java.nio.ByteBuffer get​(java.nio.ByteBuffer buffer)`
Store this vector into the supplied `ByteBuffer` at the current buffer `position`.

This method will not increment the position of the given ByteBuffer.

In order to specify the offset into the ByteBuffer at which the vector is stored, use `get(int, ByteBuffer)`, taking the absolute position as parameter.

Parameters:
`buffer` - will receive the values of this vector in `x, y, z, w` order
Returns:
the passed in buffer
`get(int, ByteBuffer)`
• #### get

```java.nio.ByteBuffer get​(int index,
java.nio.ByteBuffer buffer)```
Store this vector into the supplied `ByteBuffer` starting at the specified absolute buffer position/index.

This method will not increment the position of the given ByteBuffer.

Parameters:
`index` - the absolute position into the ByteBuffer
`buffer` - will receive the values of this vector in `x, y, z, w` order
Returns:
the passed in buffer
• #### get

`java.nio.DoubleBuffer get​(java.nio.DoubleBuffer buffer)`
Store this vector into the supplied `DoubleBuffer` at the current buffer `position`.

This method will not increment the position of the given DoubleBuffer.

In order to specify the offset into the DoubleBuffer at which the vector is stored, use `get(int, DoubleBuffer)`, taking the absolute position as parameter.

Parameters:
`buffer` - will receive the values of this vector in `x, y, z, w` order
Returns:
the passed in buffer
`get(int, DoubleBuffer)`
• #### get

```java.nio.DoubleBuffer get​(int index,
java.nio.DoubleBuffer buffer)```
Store this vector into the supplied `DoubleBuffer` starting at the specified absolute buffer position/index.

This method will not increment the position of the given DoubleBuffer.

Parameters:
`index` - the absolute position into the DoubleBuffer
`buffer` - will receive the values of this vector in `x, y, z, w` order
Returns:
the passed in buffer
• #### get

`java.nio.FloatBuffer get​(java.nio.FloatBuffer buffer)`
Store this vector into the supplied `FloatBuffer` at the current buffer `position`.

This method will not increment the position of the given FloatBuffer.

In order to specify the offset into the FloatBuffer at which the vector is stored, use `get(int, FloatBuffer)`, taking the absolute position as parameter.

Please note that due to this vector storing double values those values will potentially lose precision when they are converted to float values before being put into the given FloatBuffer.

Parameters:
`buffer` - will receive the values of this vector in `x, y, z, w` order
Returns:
the passed in buffer
`get(int, DoubleBuffer)`
• #### get

```java.nio.FloatBuffer get​(int index,
java.nio.FloatBuffer buffer)```
Store this vector into the supplied `FloatBuffer` starting at the specified absolute buffer position/index.

This method will not increment the position of the given FloatBuffer.

Please note that due to this vector storing double values those values will potentially lose precision when they are converted to float values before being put into the given FloatBuffer.

Parameters:
`index` - the absolute position into the FloatBuffer
`buffer` - will receive the values of this vector in `x, y, z, w` order
Returns:
the passed in buffer
• #### getf

`java.nio.ByteBuffer getf​(java.nio.ByteBuffer buffer)`
Store this vector into the supplied `ByteBuffer` at the current buffer `position`.

This method will not increment the position of the given ByteBuffer.

In order to specify the offset into the ByteBuffer at which the vector is stored, use `get(int, ByteBuffer)`, taking the absolute position as parameter.

Please note that due to this vector storing double values those values will potentially lose precision when they are converted to float values before being put into the given ByteBuffer.

Parameters:
`buffer` - will receive the values of this vector in `x, y, z, w` order
Returns:
the passed in buffer
`get(int, ByteBuffer)`
• #### getf

```java.nio.ByteBuffer getf​(int index,
java.nio.ByteBuffer buffer)```
Store this vector into the supplied `ByteBuffer` starting at the specified absolute buffer position/index.

This method will not increment the position of the given ByteBuffer.

Please note that due to this vector storing double values those values will potentially lose precision when they are converted to float values before being put into the given ByteBuffer.

Parameters:
`index` - the absolute position into the ByteBuffer
`buffer` - will receive the values of this vector in `x, y, z, w` order
Returns:
the passed in buffer

`Vector4dc getToAddress​(long address)`
Store this vector at the given off-heap memory address.

This method will throw an `UnsupportedOperationException` when JOML is used with `-Djoml.nounsafe`.

This method is unsafe as it can result in a crash of the JVM process when the specified address range does not belong to this process.

Parameters:
`address` - the off-heap address where to store this vector
Returns:
this
• #### sub

```Vector4d sub​(Vector4dc v,
Vector4d dest)```
Subtract the supplied vector from this one and store the result in `dest`.
Parameters:
`v` - the vector to subtract
`dest` - will hold the result
Returns:
dest
• #### sub

```Vector4d sub​(Vector4fc v,
Vector4d dest)```
Subtract the supplied vector from this one and store the result in `dest`.
Parameters:
`v` - the vector to subtract
`dest` - will hold the result
Returns:
dest
• #### sub

```Vector4d sub​(double x,
double y,
double z,
double w,
Vector4d dest)```
Subtract `(x, y, z, w)` from this and store the result in `dest`.
Parameters:
`x` - the x component to subtract
`y` - the y component to subtract
`z` - the z component to subtract
`w` - the w component to subtract
`dest` - will hold the result
Returns:
dest

```Vector4d add​(Vector4dc v,
Vector4d dest)```
Add the supplied vector to this one and store the result in `dest`.
Parameters:
`v` - the vector to add
`dest` - will hold the result
Returns:
dest

```Vector4d add​(Vector4fc v,
Vector4d dest)```
Add the supplied vector to this one and store the result in `dest`.
Parameters:
`v` - the vector to add
`dest` - will hold the result
Returns:
dest

```Vector4d add​(double x,
double y,
double z,
double w,
Vector4d dest)```
Add `(x, y, z, w)` to this and store the result in `dest`.
Parameters:
`x` - the x component to subtract
`y` - the y component to subtract
`z` - the z component to subtract
`w` - the w component to subtract
`dest` - will hold the result
Returns:
dest
• #### fma

```Vector4d fma​(Vector4dc a,
Vector4dc b,
Vector4d dest)```
Add the component-wise multiplication of `a * b` to this vector and store the result in `dest`.
Parameters:
`a` - the first multiplicand
`b` - the second multiplicand
`dest` - will hold the result
Returns:
dest
• #### fma

```Vector4d fma​(double a,
Vector4dc b,
Vector4d dest)```
Add the component-wise multiplication of `a * b` to this vector and store the result in `dest`.
Parameters:
`a` - the first multiplicand
`b` - the second multiplicand
`dest` - will hold the result
Returns:
dest
• #### mul

```Vector4d mul​(Vector4dc v,
Vector4d dest)```
Multiply this `Vector4d` component-wise by the given `Vector4dc` and store the result in `dest`.
Parameters:
`v` - the vector to multiply this by
`dest` - will hold the result
Returns:
dest
• #### mul

```Vector4d mul​(Vector4fc v,
Vector4d dest)```
Multiply this `Vector4d` component-wise by the given `Vector4fc` and store the result in `dest`.
Parameters:
`v` - the vector to multiply this by
`dest` - will hold the result
Returns:
dest
• #### div

```Vector4d div​(Vector4dc v,
Vector4d dest)```
Divide this `Vector4d` component-wise by the given `Vector4dc` and store the result in `dest`.
Parameters:
`v` - the vector to divide this by
`dest` - will hold the result
Returns:
dest
• #### mul

```Vector4d mul​(Matrix4dc mat,
Vector4d dest)```
Multiply the given matrix mat with this `Vector4d` and store the result in `dest`.
Parameters:
`mat` - the matrix to multiply `this` by
`dest` - will hold the result
Returns:
dest
• #### mul

```Vector4d mul​(Matrix4x3dc mat,
Vector4d dest)```
Multiply the given matrix mat with this Vector4d and store the result in `dest`.
Parameters:
`mat` - the matrix to multiply the vector with
`dest` - the destination vector to hold the result
Returns:
dest
• #### mul

```Vector4d mul​(Matrix4x3fc mat,
Vector4d dest)```
Multiply the given matrix mat with this Vector4d and store the result in `dest`.
Parameters:
`mat` - the matrix to multiply the vector with
`dest` - the destination vector to hold the result
Returns:
dest
• #### mul

```Vector4d mul​(Matrix4fc mat,
Vector4d dest)```
Multiply the given matrix mat with this Vector4d and store the result in `dest`.
Parameters:
`mat` - the matrix to multiply `this` by
`dest` - will hold the result
Returns:
dest
• #### mulTranspose

```Vector4d mulTranspose​(Matrix4dc mat,
Vector4d dest)```
Multiply the transpose of the given matrix `mat` with this Vector4d and store the result in `dest`.
Parameters:
`mat` - the matrix whose transpose to multiply the vector with
`dest` - the destination vector to hold the result
Returns:
dest
• #### mulAffine

```Vector4d mulAffine​(Matrix4dc mat,
Vector4d dest)```
Multiply the given affine matrix mat with this Vector4d and store the result in `dest`.
Parameters:
`mat` - the affine matrix to multiply the vector with
`dest` - the destination vector to hold the result
Returns:
dest
• #### mulAffineTranspose

```Vector4d mulAffineTranspose​(Matrix4dc mat,
Vector4d dest)```
Multiply the transpose of the given affine matrix `mat` with this Vector4d and store the result in `dest`.
Parameters:
`mat` - the affine matrix whose transpose to multiply the vector with
`dest` - the destination vector to hold the result
Returns:
dest
• #### mulProject

```Vector4d mulProject​(Matrix4dc mat,
Vector4d dest)```
Multiply the given matrix `mat` with this Vector4d, perform perspective division and store the result in `dest`.
Parameters:
`mat` - the matrix to multiply this vector by
`dest` - will hold the result
Returns:
dest
• #### mulProject

```Vector3d mulProject​(Matrix4dc mat,
Vector3d dest)```
Multiply the given matrix `mat` with this Vector4d, perform perspective division and store the `(x, y, z)` result in `dest`.
Parameters:
`mat` - the matrix to multiply this vector by
`dest` - will hold the result
Returns:
dest

```Vector4d mulAdd​(Vector4dc a,
Vector4dc b,
Vector4d dest)```
Add the component-wise multiplication of `this * a` to `b` and store the result in `dest`.
Parameters:
`a` - the multiplicand
`b` - the addend
`dest` - will hold the result
Returns:
dest

```Vector4d mulAdd​(double a,
Vector4dc b,
Vector4d dest)```
Add the component-wise multiplication of `this * a` to `b` and store the result in `dest`.
Parameters:
`a` - the multiplicand
`b` - the addend
`dest` - will hold the result
Returns:
dest
• #### mul

```Vector4d mul​(double scalar,
Vector4d dest)```
Multiply this Vector4d by the given scalar value and store the result in `dest`.
Parameters:
`scalar` - the factor to multiply by
`dest` - will hold the result
Returns:
dest
• #### div

```Vector4d div​(double scalar,
Vector4d dest)```
Divide this Vector4d by the given scalar value and store the result in `dest`.
Parameters:
`scalar` - the factor to divide by
`dest` - will hold the result
Returns:
dest
• #### rotate

```Vector4d rotate​(Quaterniondc quat,
Vector4d dest)```
Transform this vector by the given quaternion `quat` and store the result in `dest`.
Parameters:
`quat` - the quaternion to transform this vector
`dest` - will hold the result
Returns:
dest
`Quaterniond.transform(Vector4d)`
• #### rotateAxis

```Vector4d rotateAxis​(double angle,
double aX,
double aY,
double aZ,
Vector4d dest)```
Rotate this vector the specified radians around the given rotation axis and store the result into `dest`.
Parameters:
`angle` - the angle in radians
`aX` - the x component of the rotation axis
`aY` - the y component of the rotation axis
`aZ` - the z component of the rotation axis
`dest` - will hold the result
Returns:
dest
• #### rotateX

```Vector4d rotateX​(double angle,
Vector4d dest)```
Rotate this vector the specified radians around the X axis and store the result into `dest`.
Parameters:
`angle` - the angle in radians
`dest` - will hold the result
Returns:
dest
• #### rotateY

```Vector4d rotateY​(double angle,
Vector4d dest)```
Rotate this vector the specified radians around the Y axis and store the result into `dest`.
Parameters:
`angle` - the angle in radians
`dest` - will hold the result
Returns:
dest
• #### rotateZ

```Vector4d rotateZ​(double angle,
Vector4d dest)```
Rotate this vector the specified radians around the Z axis and store the result into `dest`.
Parameters:
`angle` - the angle in radians
`dest` - will hold the result
Returns:
dest
• #### lengthSquared

`double lengthSquared()`
Return the length squared of this vector.
Returns:
the length squared
• #### length

`double length()`
Return the length of this vector.
Returns:
the length
• #### normalize

`Vector4d normalize​(Vector4d dest)`
Normalizes this vector and store the result in `dest`.
Parameters:
`dest` - will hold the result
Returns:
dest
• #### normalize

```Vector4d normalize​(double length,
Vector4d dest)```
Scale this vector to have the given length and store the result in `dest`.
Parameters:
`length` - the desired length
`dest` - will hold the result
Returns:
dest
• #### normalize3

`Vector4d normalize3​(Vector4d dest)`
Normalize this vector by computing only the norm of `(x, y, z)` and store the result in `dest`.
Parameters:
`dest` - will hold the result
Returns:
dest
• #### distance

`double distance​(Vector4dc v)`
Return the distance between this Vector and `v`.
Parameters:
`v` - the other vector
Returns:
the distance
• #### distance

```double distance​(double x,
double y,
double z,
double w)```
Return the distance between `this` vector and `(x, y, z, w)`.
Parameters:
`x` - the x component of the other vector
`y` - the y component of the other vector
`z` - the z component of the other vector
`w` - the w component of the other vector
Returns:
the euclidean distance
• #### distanceSquared

`double distanceSquared​(Vector4dc v)`
Return the square of the distance between this vector and `v`.
Parameters:
`v` - the other vector
Returns:
the squared of the distance
• #### distanceSquared

```double distanceSquared​(double x,
double y,
double z,
double w)```
Return the square of the distance between `this` vector and `(x, y, z, w)`.
Parameters:
`x` - the x component of the other vector
`y` - the y component of the other vector
`z` - the z component of the other vector
`w` - the w component of the other vector
Returns:
the square of the distance
• #### dot

`double dot​(Vector4dc v)`
Compute the dot product (inner product) of this vector and `v`.
Parameters:
`v` - the other vector
Returns:
the dot product
• #### dot

```double dot​(double x,
double y,
double z,
double w)```
Compute the dot product (inner product) of this vector and `(x, y, z, w)`.
Parameters:
`x` - the x component of the other vector
`y` - the y component of the other vector
`z` - the z component of the other vector
`w` - the w component of the other vector
Returns:
the dot product
• #### angleCos

`double angleCos​(Vector4dc v)`
Return the cosine of the angle between this vector and the supplied vector.

Use this instead of `Math.cos(angle(v))`.

Parameters:
`v` - the other vector
Returns:
the cosine of the angle
`angle(Vector4dc)`
• #### angle

`double angle​(Vector4dc v)`
Return the angle between this vector and the supplied vector.
Parameters:
`v` - the other vector
Returns:
`angleCos(Vector4dc)`
• #### negate

`Vector4d negate​(Vector4d dest)`
Negate this vector and store the result in `dest`.
Parameters:
`dest` - will hold the result
Returns:
dest
• #### min

```Vector4d min​(Vector4dc v,
Vector4d dest)```
Set the components of `dest` to be the component-wise minimum of this and the other vector.
Parameters:
`v` - the other vector
`dest` - will hold the result
Returns:
dest
• #### max

```Vector4d max​(Vector4dc v,
Vector4d dest)```
Set the components of `dest` to be the component-wise maximum of this and the other vector.
Parameters:
`v` - the other vector
`dest` - will hold the result
Returns:
dest
• #### smoothStep

```Vector4d smoothStep​(Vector4dc v,
double t,
Vector4d dest)```
Compute a smooth-step (i.e. hermite with zero tangents) interpolation between `this` vector and the given vector `v` and store the result in `dest`.
Parameters:
`v` - the other vector
`t` - the interpolation factor, within `[0..1]`
`dest` - will hold the result
Returns:
dest
• #### hermite

```Vector4d hermite​(Vector4dc t0,
Vector4dc v1,
Vector4dc t1,
double t,
Vector4d dest)```
Compute a hermite interpolation between `this` vector and its associated tangent `t0` and the given vector `v` with its tangent `t1` and store the result in `dest`.
Parameters:
`t0` - the tangent of `this` vector
`v1` - the other vector
`t1` - the tangent of the other vector
`t` - the interpolation factor, within `[0..1]`
`dest` - will hold the result
Returns:
dest
• #### lerp

```Vector4d lerp​(Vector4dc other,
double t,
Vector4d dest)```
Linearly interpolate `this` and `other` using the given interpolation factor `t` and store the result in `dest`.

If `t` is `0.0` then the result is `this`. If the interpolation factor is `1.0` then the result is `other`.

Parameters:
`other` - the other vector
`t` - the interpolation factor between 0.0 and 1.0
`dest` - will hold the result
Returns:
dest
• #### get

```double get​(int component)
throws java.lang.IllegalArgumentException```
Get the value of the specified component of this vector.
Parameters:
`component` - the component, within `[0..3]`
Returns:
the value
Throws:
`java.lang.IllegalArgumentException` - if `component` is not within `[0..3]`
• #### get

```Vector4i get​(int mode,
Vector4i dest)```
Set the components of the given vector `dest` to those of `this` vector using the given `RoundingMode`.
Parameters:
`mode` - the `RoundingMode` to use
`dest` - will hold the result
Returns:
dest
• #### get

`Vector4f get​(Vector4f dest)`
Set the components of the given vector `dest` to those of `this` vector.
Parameters:
`dest` - will hold the result
Returns:
dest
• #### get

`Vector4d get​(Vector4d dest)`
Set the components of the given vector `dest` to those of `this` vector.
Parameters:
`dest` - will hold the result
Returns:
dest
• #### maxComponent

`int maxComponent()`
Determine the component with the biggest absolute value.
Returns:
the component index, within `[0..3]`
• #### minComponent

`int minComponent()`
Determine the component with the smallest (towards zero) absolute value.
Returns:
the component index, within `[0..3]`
• #### floor

`Vector4d floor​(Vector4d dest)`
Compute for each component of this vector the largest (closest to positive infinity) `double` value that is less than or equal to that component and is equal to a mathematical integer and store the result in `dest`.
Parameters:
`dest` - will hold the result
Returns:
dest
• #### ceil

`Vector4d ceil​(Vector4d dest)`
Compute for each component of this vector the smallest (closest to negative infinity) `double` value that is greater than or equal to that component and is equal to a mathematical integer and store the result in `dest`.
Parameters:
`dest` - will hold the result
Returns:
dest
• #### round

`Vector4d round​(Vector4d dest)`
Compute for each component of this vector the closest double that is equal to a mathematical integer, with ties rounding to positive infinity and store the result in `dest`.
Parameters:
`dest` - will hold the result
Returns:
dest
• #### isFinite

`boolean isFinite()`
Determine whether all components are finite floating-point values, that is, they are not `NaN` and not `infinity`.
Returns:
`true` if all components are finite floating-point values; `false` otherwise
• #### absolute

`Vector4d absolute​(Vector4d dest)`
Compute the absolute of each of this vector's components and store the result into `dest`.
Parameters:
`dest` - will hold the result
Returns:
dest
• #### equals

```boolean equals​(Vector4dc v,
double delta)```
Compare the vector components of `this` vector with the given vector using the given `delta` and return whether all of them are equal within a maximum difference of `delta`.

Please note that this method is not used by any data structure such as `ArrayList` `HashSet` or `HashMap` and their operations, such as `ArrayList.contains(Object)` or `HashSet.remove(Object)`, since those data structures only use the `Object.equals(Object)` and `Object.hashCode()` methods.

Parameters:
`v` - the other vector
`delta` - the allowed maximum difference
Returns:
`true` whether all of the vector components are equal; `false` otherwise
• #### equals

```boolean equals​(double x,
double y,
double z,
double w)```
Compare the vector components of `this` vector with the given `(x, y, z, w)` and return whether all of them are equal.
Parameters:
`x` - the x component to compare to
`y` - the y component to compare to
`z` - the z component to compare to
`w` - the w component to compare to
Returns:
`true` if all the vector components are equal