Interface Matrix4x3fc
-
- All Known Implementing Classes:
Matrix4x3f
,Matrix4x3fStack
public interface Matrix4x3fc
Interface to a read-only view of a 4x3 matrix of single-precision floats.- Author:
- Kai Burjack
-
-
Field Summary
Fields Modifier and Type Field Description static int
PLANE_NX
Argument to the first parameter offrustumPlane(int, Vector4f)
identifying the plane with equationx=-1
when using the identity matrix.static int
PLANE_NY
Argument to the first parameter offrustumPlane(int, Vector4f)
identifying the plane with equationy=-1
when using the identity matrix.static int
PLANE_NZ
Argument to the first parameter offrustumPlane(int, Vector4f)
identifying the plane with equationz=-1
when using the identity matrix.static int
PLANE_PX
Argument to the first parameter offrustumPlane(int, Vector4f)
identifying the plane with equationx=1
when using the identity matrix.static int
PLANE_PY
Argument to the first parameter offrustumPlane(int, Vector4f)
identifying the plane with equationy=1
when using the identity matrix.static int
PLANE_PZ
Argument to the first parameter offrustumPlane(int, Vector4f)
identifying the plane with equationz=1
when using the identity matrix.static byte
PROPERTY_IDENTITY
Bit returned byproperties()
to indicate that the matrix represents the identity transformation.static byte
PROPERTY_ORTHONORMAL
Bit returned byproperties()
to indicate that the left 3x3 submatrix represents an orthogonal matrix (i.e.static byte
PROPERTY_TRANSLATION
Bit returned byproperties()
to indicate that the matrix represents a pure translation transformation.
-
Method Summary
All Methods Instance Methods Abstract Methods Modifier and Type Method Description Matrix4x3f
add(Matrix4x3fc other, Matrix4x3f dest)
Component-wise addthis
andother
and store the result indest
.Matrix4x3f
arcball(float radius, float centerX, float centerY, float centerZ, float angleX, float angleY, Matrix4x3f dest)
Apply an arcball view transformation to this matrix with the givenradius
and center(centerX, centerY, centerZ)
position of the arcball and the specified X and Y rotation angles, and store the result indest
.Matrix4x3f
arcball(float radius, Vector3fc center, float angleX, float angleY, Matrix4x3f dest)
Apply an arcball view transformation to this matrix with the givenradius
andcenter
position of the arcball and the specified X and Y rotation angles, and store the result indest
.Matrix3f
cofactor3x3(Matrix3f dest)
Compute the cofactor matrix of the left 3x3 submatrix ofthis
and store it intodest
.Matrix4x3f
cofactor3x3(Matrix4x3f dest)
Compute the cofactor matrix of the left 3x3 submatrix ofthis
and store it intodest
.float
determinant()
Return the determinant of this matrix.boolean
equals(Matrix4x3fc m, float delta)
Compare the matrix elements ofthis
matrix with the given matrix using the givendelta
and return whether all of them are equal within a maximum difference ofdelta
.Matrix4x3f
fma(Matrix4x3fc other, float otherFactor, Matrix4x3f dest)
Component-wise addthis
andother
by first multiplying each component ofother
byotherFactor
, adding that tothis
and storing the final result indest
.Vector4f
frustumPlane(int which, Vector4f dest)
Calculate a frustum plane ofthis
matrix, which can be a projection matrix or a combined modelview-projection matrix, and store the result in the givendest
.float[]
get(float[] arr)
Store this matrix into the supplied float array in column-major order.float[]
get(float[] arr, int offset)
Store this matrix into the supplied float array in column-major order at the given offset.java.nio.ByteBuffer
get(int index, java.nio.ByteBuffer buffer)
Store this matrix in column-major order into the suppliedByteBuffer
starting at the specified absolute buffer position/index.java.nio.FloatBuffer
get(int index, java.nio.FloatBuffer buffer)
Store this matrix in column-major order into the suppliedFloatBuffer
starting at the specified absolute buffer position/index.java.nio.ByteBuffer
get(java.nio.ByteBuffer buffer)
Store this matrix in column-major order into the suppliedByteBuffer
at the current bufferposition
.java.nio.FloatBuffer
get(java.nio.FloatBuffer buffer)
Store this matrix in column-major order into the suppliedFloatBuffer
at the current bufferposition
.Matrix4d
get(Matrix4d dest)
Get the current values ofthis
matrix and store them into the upper 4x3 submatrix ofdest
.Matrix4f
get(Matrix4f dest)
Get the current values ofthis
matrix and store them into the upper 4x3 submatrix ofdest
.Matrix4x3d
get(Matrix4x3d dest)
Get the current values ofthis
matrix and store them intodest
.Matrix4x3f
get(Matrix4x3f dest)
Get the current values ofthis
matrix and store them intodest
.java.nio.ByteBuffer
get3x4(int index, java.nio.ByteBuffer buffer)
Store the left 3x3 submatrix as 3x4 matrix in column-major order into the suppliedByteBuffer
starting at the specified absolute buffer position/index, with the m03, m13 and m23 components being zero.java.nio.FloatBuffer
get3x4(int index, java.nio.FloatBuffer buffer)
Store the left 3x3 submatrix as 3x4 matrix in column-major order into the suppliedFloatBuffer
starting at the specified absolute buffer position/index, with the m03, m13 and m23 components being zero.java.nio.ByteBuffer
get3x4(java.nio.ByteBuffer buffer)
Store the left 3x3 submatrix as 3x4 matrix in column-major order into the suppliedByteBuffer
at the current bufferposition
, with the m03, m13 and m23 components being zero.java.nio.FloatBuffer
get3x4(java.nio.FloatBuffer buffer)
Store the left 3x3 submatrix as 3x4 matrix in column-major order into the suppliedFloatBuffer
at the current bufferposition
, with the m03, m13 and m23 components being zero.float[]
get4x4(float[] arr)
Store a 4x4 matrix in column-major order into the supplied array, where the upper 4x3 submatrix isthis
and the last row is(0, 0, 0, 1)
.float[]
get4x4(float[] arr, int offset)
Store a 4x4 matrix in column-major order into the supplied array at the given offset, where the upper 4x3 submatrix isthis
and the last row is(0, 0, 0, 1)
.java.nio.ByteBuffer
get4x4(int index, java.nio.ByteBuffer buffer)
Store a 4x4 matrix in column-major order into the suppliedByteBuffer
starting at the specified absolute buffer position/index, where the upper 4x3 submatrix isthis
and the last row is(0, 0, 0, 1)
.java.nio.FloatBuffer
get4x4(int index, java.nio.FloatBuffer buffer)
Store a 4x4 matrix in column-major order into the suppliedFloatBuffer
starting at the specified absolute buffer position/index, where the upper 4x3 submatrix isthis
and the last row is(0, 0, 0, 1)
.java.nio.ByteBuffer
get4x4(java.nio.ByteBuffer buffer)
Store a 4x4 matrix in column-major order into the suppliedByteBuffer
at the current bufferposition
, where the upper 4x3 submatrix isthis
and the last row is(0, 0, 0, 1)
.java.nio.FloatBuffer
get4x4(java.nio.FloatBuffer buffer)
Store a 4x4 matrix in column-major order into the suppliedFloatBuffer
at the current bufferposition
, where the upper 4x3 submatrix isthis
and the last row is(0, 0, 0, 1)
.Vector3f
getColumn(int column, Vector3f dest)
Get the column at the givencolumn
index, starting with0
.Vector3f
getEulerAnglesXYZ(Vector3f dest)
Extract the Euler angles from the rotation represented by the left 3x3 submatrix ofthis
and store the extracted Euler angles indest
.Vector3f
getEulerAnglesZYX(Vector3f dest)
Extract the Euler angles from the rotation represented by the left 3x3 submatrix ofthis
and store the extracted Euler angles indest
.Quaterniond
getNormalizedRotation(Quaterniond dest)
Get the current values ofthis
matrix and store the represented rotation into the givenQuaterniond
.Quaternionf
getNormalizedRotation(Quaternionf dest)
Get the current values ofthis
matrix and store the represented rotation into the givenQuaternionf
.AxisAngle4d
getRotation(AxisAngle4d dest)
Get the rotational component ofthis
matrix and store the represented rotation into the givenAxisAngle4d
.AxisAngle4f
getRotation(AxisAngle4f dest)
Get the rotational component ofthis
matrix and store the represented rotation into the givenAxisAngle4f
.Vector4f
getRow(int row, Vector4f dest)
Get the row at the givenrow
index, starting with0
.Vector3f
getScale(Vector3f dest)
Get the scaling factors ofthis
matrix for the three base axes.Matrix4x3fc
getToAddress(long address)
Store this matrix in column-major order at the given off-heap address.Vector3f
getTranslation(Vector3f dest)
Get only the translation components(m30, m31, m32)
of this matrix and store them in the given vectorxyz
.float[]
getTransposed(float[] arr)
Store this matrix into the supplied float array in row-major order.float[]
getTransposed(float[] arr, int offset)
Store this matrix into the supplied float array in row-major order at the given offset.java.nio.ByteBuffer
getTransposed(int index, java.nio.ByteBuffer buffer)
Store this matrix in row-major order into the suppliedByteBuffer
starting at the specified absolute buffer position/index.java.nio.FloatBuffer
getTransposed(int index, java.nio.FloatBuffer buffer)
Store this matrix in row-major order into the suppliedFloatBuffer
starting at the specified absolute buffer position/index.java.nio.ByteBuffer
getTransposed(java.nio.ByteBuffer buffer)
Store this matrix in row-major order into the suppliedByteBuffer
at the current bufferposition
.java.nio.FloatBuffer
getTransposed(java.nio.FloatBuffer buffer)
Store this matrix in row-major order into the suppliedFloatBuffer
at the current bufferposition
.Quaterniond
getUnnormalizedRotation(Quaterniond dest)
Get the current values ofthis
matrix and store the represented rotation into the givenQuaterniond
.Quaternionf
getUnnormalizedRotation(Quaternionf dest)
Get the current values ofthis
matrix and store the represented rotation into the givenQuaternionf
.Matrix4f
invert(Matrix4f dest)
Invert this matrix and write the result as the top 4x3 matrix intodest
and set all other values ofdest
to identity..Matrix4x3f
invert(Matrix4x3f dest)
Invert this matrix and write the result intodest
.Matrix4x3f
invertOrtho(Matrix4x3f dest)
Invertthis
orthographic projection matrix and store the result into the givendest
.boolean
isFinite()
Determine whether all matrix elements are finite floating-point values, that is, they are notNaN
and notinfinity
.Matrix4x3f
lerp(Matrix4x3fc other, float t, Matrix4x3f dest)
Linearly interpolatethis
andother
using the given interpolation factort
and store the result indest
.Matrix4x3f
lookAlong(float dirX, float dirY, float dirZ, float upX, float upY, float upZ, Matrix4x3f dest)
Apply a rotation transformation to this matrix to make-z
point alongdir
and store the result indest
.Matrix4x3f
lookAlong(Vector3fc dir, Vector3fc up, Matrix4x3f dest)
Apply a rotation transformation to this matrix to make-z
point alongdir
and store the result indest
.Matrix4x3f
lookAt(float eyeX, float eyeY, float eyeZ, float centerX, float centerY, float centerZ, float upX, float upY, float upZ, Matrix4x3f dest)
Apply a "lookat" transformation to this matrix for a right-handed coordinate system, that aligns-z
withcenter - eye
and store the result indest
.Matrix4x3f
lookAt(Vector3fc eye, Vector3fc center, Vector3fc up, Matrix4x3f dest)
Apply a "lookat" transformation to this matrix for a right-handed coordinate system, that aligns-z
withcenter - eye
and store the result indest
.Matrix4x3f
lookAtLH(float eyeX, float eyeY, float eyeZ, float centerX, float centerY, float centerZ, float upX, float upY, float upZ, Matrix4x3f dest)
Apply a "lookat" transformation to this matrix for a left-handed coordinate system, that aligns+z
withcenter - eye
and store the result indest
.Matrix4x3f
lookAtLH(Vector3fc eye, Vector3fc center, Vector3fc up, Matrix4x3f dest)
Apply a "lookat" transformation to this matrix for a left-handed coordinate system, that aligns+z
withcenter - eye
and store the result indest
.float
m00()
Return the value of the matrix element at column 0 and row 0.float
m01()
Return the value of the matrix element at column 0 and row 1.float
m02()
Return the value of the matrix element at column 0 and row 2.float
m10()
Return the value of the matrix element at column 1 and row 0.float
m11()
Return the value of the matrix element at column 1 and row 1.float
m12()
Return the value of the matrix element at column 1 and row 2.float
m20()
Return the value of the matrix element at column 2 and row 0.float
m21()
Return the value of the matrix element at column 2 and row 1.float
m22()
Return the value of the matrix element at column 2 and row 2.float
m30()
Return the value of the matrix element at column 3 and row 0.float
m31()
Return the value of the matrix element at column 3 and row 1.float
m32()
Return the value of the matrix element at column 3 and row 2.Matrix4x3f
mapnXnYnZ(Matrix4x3f dest)
Multiplythis
by the matrixMatrix4x3f
mapnXnYZ(Matrix4x3f dest)
Multiplythis
by the matrixMatrix4x3f
mapnXnZnY(Matrix4x3f dest)
Multiplythis
by the matrixMatrix4x3f
mapnXnZY(Matrix4x3f dest)
Multiplythis
by the matrixMatrix4x3f
mapnXYnZ(Matrix4x3f dest)
Multiplythis
by the matrixMatrix4x3f
mapnXZnY(Matrix4x3f dest)
Multiplythis
by the matrixMatrix4x3f
mapnXZY(Matrix4x3f dest)
Multiplythis
by the matrixMatrix4x3f
mapnYnXnZ(Matrix4x3f dest)
Multiplythis
by the matrixMatrix4x3f
mapnYnXZ(Matrix4x3f dest)
Multiplythis
by the matrixMatrix4x3f
mapnYnZnX(Matrix4x3f dest)
Multiplythis
by the matrixMatrix4x3f
mapnYnZX(Matrix4x3f dest)
Multiplythis
by the matrixMatrix4x3f
mapnYXnZ(Matrix4x3f dest)
Multiplythis
by the matrixMatrix4x3f
mapnYXZ(Matrix4x3f dest)
Multiplythis
by the matrixMatrix4x3f
mapnYZnX(Matrix4x3f dest)
Multiplythis
by the matrixMatrix4x3f
mapnYZX(Matrix4x3f dest)
Multiplythis
by the matrixMatrix4x3f
mapnZnXnY(Matrix4x3f dest)
Multiplythis
by the matrixMatrix4x3f
mapnZnXY(Matrix4x3f dest)
Multiplythis
by the matrixMatrix4x3f
mapnZnYnX(Matrix4x3f dest)
Multiplythis
by the matrixMatrix4x3f
mapnZnYX(Matrix4x3f dest)
Multiplythis
by the matrixMatrix4x3f
mapnZXnY(Matrix4x3f dest)
Multiplythis
by the matrixMatrix4x3f
mapnZXY(Matrix4x3f dest)
Multiplythis
by the matrixMatrix4x3f
mapnZYnX(Matrix4x3f dest)
Multiplythis
by the matrixMatrix4x3f
mapnZYX(Matrix4x3f dest)
Multiplythis
by the matrixMatrix4x3f
mapXnYnZ(Matrix4x3f dest)
Multiplythis
by the matrixMatrix4x3f
mapXnZnY(Matrix4x3f dest)
Multiplythis
by the matrixMatrix4x3f
mapXnZY(Matrix4x3f dest)
Multiplythis
by the matrixMatrix4x3f
mapXZnY(Matrix4x3f dest)
Multiplythis
by the matrixMatrix4x3f
mapXZY(Matrix4x3f dest)
Multiplythis
by the matrixMatrix4x3f
mapYnXnZ(Matrix4x3f dest)
Multiplythis
by the matrixMatrix4x3f
mapYnXZ(Matrix4x3f dest)
Multiplythis
by the matrixMatrix4x3f
mapYnZnX(Matrix4x3f dest)
Multiplythis
by the matrixMatrix4x3f
mapYnZX(Matrix4x3f dest)
Multiplythis
by the matrixMatrix4x3f
mapYXnZ(Matrix4x3f dest)
Multiplythis
by the matrixMatrix4x3f
mapYXZ(Matrix4x3f dest)
Multiplythis
by the matrixMatrix4x3f
mapYZnX(Matrix4x3f dest)
Multiplythis
by the matrixMatrix4x3f
mapYZX(Matrix4x3f dest)
Multiplythis
by the matrixMatrix4x3f
mapZnXnY(Matrix4x3f dest)
Multiplythis
by the matrixMatrix4x3f
mapZnXY(Matrix4x3f dest)
Multiplythis
by the matrixMatrix4x3f
mapZnYnX(Matrix4x3f dest)
Multiplythis
by the matrixMatrix4x3f
mapZnYX(Matrix4x3f dest)
Multiplythis
by the matrixMatrix4x3f
mapZXnY(Matrix4x3f dest)
Multiplythis
by the matrixMatrix4x3f
mapZXY(Matrix4x3f dest)
Multiplythis
by the matrixMatrix4x3f
mapZYnX(Matrix4x3f dest)
Multiplythis
by the matrixMatrix4x3f
mapZYX(Matrix4x3f dest)
Multiplythis
by the matrixMatrix4x3f
mul(Matrix4x3fc right, Matrix4x3f dest)
Multiply this matrix by the suppliedright
matrix and store the result indest
.Matrix4x3f
mul3x3(float rm00, float rm01, float rm02, float rm10, float rm11, float rm12, float rm20, float rm21, float rm22, Matrix4x3f dest)
Multiplythis
by the 4x3 matrix with the column vectors(rm00, rm01, rm02)
,(rm10, rm11, rm12)
,(rm20, rm21, rm22)
and(0, 0, 0)
and store the result indest
.Matrix4x3f
mulComponentWise(Matrix4x3fc other, Matrix4x3f dest)
Component-wise multiplythis
byother
and store the result indest
.Matrix4x3f
mulOrtho(Matrix4x3fc view, Matrix4x3f dest)
Multiplythis
orthographic projection matrix by the suppliedview
matrix and store the result indest
.Matrix4x3f
mulTranslation(Matrix4x3fc right, Matrix4x3f dest)
Multiply this matrix, which is assumed to only contain a translation, by the suppliedright
matrix and store the result indest
.Matrix4x3f
negateX(Matrix4x3f dest)
Multiplythis
by the matrixMatrix4x3f
negateY(Matrix4x3f dest)
Multiplythis
by the matrixMatrix4x3f
negateZ(Matrix4x3f dest)
Multiplythis
by the matrixMatrix3f
normal(Matrix3f dest)
Compute a normal matrix from the left 3x3 submatrix ofthis
and store it intodest
.Matrix4x3f
normal(Matrix4x3f dest)
Compute a normal matrix from the left 3x3 submatrix ofthis
and store it into the left 3x3 submatrix ofdest
.Matrix3f
normalize3x3(Matrix3f dest)
Normalize the left 3x3 submatrix of this matrix and store the result indest
.Matrix4x3f
normalize3x3(Matrix4x3f dest)
Normalize the left 3x3 submatrix of this matrix and store the result indest
.Vector3f
normalizedPositiveX(Vector3f dir)
Obtain the direction of+X
before the transformation represented bythis
orthogonal matrix is applied.Vector3f
normalizedPositiveY(Vector3f dir)
Obtain the direction of+Y
before the transformation represented bythis
orthogonal matrix is applied.Vector3f
normalizedPositiveZ(Vector3f dir)
Obtain the direction of+Z
before the transformation represented bythis
orthogonal matrix is applied.Matrix4x3f
obliqueZ(float a, float b, Matrix4x3f dest)
Apply an oblique projection transformation to this matrix with the given values fora
andb
and store the result indest
.Vector3f
origin(Vector3f origin)
Obtain the position that gets transformed to the origin bythis
matrix.Matrix4x3f
ortho(float left, float right, float bottom, float top, float zNear, float zFar, boolean zZeroToOne, Matrix4x3f dest)
Apply an orthographic projection transformation for a right-handed coordinate system using the given NDC z range to this matrix and store the result indest
.Matrix4x3f
ortho(float left, float right, float bottom, float top, float zNear, float zFar, Matrix4x3f dest)
Apply an orthographic projection transformation for a right-handed coordinate system using OpenGL's NDC z range of[-1..+1]
to this matrix and store the result indest
.Matrix4x3f
ortho2D(float left, float right, float bottom, float top, Matrix4x3f dest)
Apply an orthographic projection transformation for a right-handed coordinate system to this matrix and store the result indest
.Matrix4x3f
ortho2DLH(float left, float right, float bottom, float top, Matrix4x3f dest)
Apply an orthographic projection transformation for a left-handed coordinate system to this matrix and store the result indest
.Matrix4x3f
orthoLH(float left, float right, float bottom, float top, float zNear, float zFar, boolean zZeroToOne, Matrix4x3f dest)
Apply an orthographic projection transformation for a left-handed coordiante system using the given NDC z range to this matrix and store the result indest
.Matrix4x3f
orthoLH(float left, float right, float bottom, float top, float zNear, float zFar, Matrix4x3f dest)
Apply an orthographic projection transformation for a left-handed coordiante system using OpenGL's NDC z range of[-1..+1]
to this matrix and store the result indest
.Matrix4x3f
orthoSymmetric(float width, float height, float zNear, float zFar, boolean zZeroToOne, Matrix4x3f dest)
Apply a symmetric orthographic projection transformation for a right-handed coordinate system using the given NDC z range to this matrix and store the result indest
.Matrix4x3f
orthoSymmetric(float width, float height, float zNear, float zFar, Matrix4x3f dest)
Apply a symmetric orthographic projection transformation for a right-handed coordinate system using OpenGL's NDC z range of[-1..+1]
to this matrix and store the result indest
.Matrix4x3f
orthoSymmetricLH(float width, float height, float zNear, float zFar, boolean zZeroToOne, Matrix4x3f dest)
Apply a symmetric orthographic projection transformation for a left-handed coordinate system using the given NDC z range to this matrix and store the result indest
.Matrix4x3f
orthoSymmetricLH(float width, float height, float zNear, float zFar, Matrix4x3f dest)
Apply a symmetric orthographic projection transformation for a left-handed coordinate system using OpenGL's NDC z range of[-1..+1]
to this matrix and store the result indest
.Matrix4x3f
pick(float x, float y, float width, float height, int[] viewport, Matrix4x3f dest)
Apply a picking transformation to this matrix using the given window coordinates(x, y)
as the pick center and the given(width, height)
as the size of the picking region in window coordinates, and store the result indest
.Vector3f
positiveX(Vector3f dir)
Obtain the direction of+X
before the transformation represented bythis
matrix is applied.Vector3f
positiveY(Vector3f dir)
Obtain the direction of+Y
before the transformation represented bythis
matrix is applied.Vector3f
positiveZ(Vector3f dir)
Obtain the direction of+Z
before the transformation represented bythis
matrix is applied.int
properties()
Matrix4x3f
reflect(float nx, float ny, float nz, float px, float py, float pz, Matrix4x3f dest)
Apply a mirror/reflection transformation to this matrix that reflects about the given plane specified via the plane normal and a point on the plane, and store the result indest
.Matrix4x3f
reflect(float a, float b, float c, float d, Matrix4x3f dest)
Apply a mirror/reflection transformation to this matrix that reflects about the given plane specified via the equationx*a + y*b + z*c + d = 0
and store the result indest
.Matrix4x3f
reflect(Quaternionfc orientation, Vector3fc point, Matrix4x3f dest)
Apply a mirror/reflection transformation to this matrix that reflects about a plane specified via the plane orientation and a point on the plane, and store the result indest
.Matrix4x3f
reflect(Vector3fc normal, Vector3fc point, Matrix4x3f dest)
Apply a mirror/reflection transformation to this matrix that reflects about the given plane specified via the plane normal and a point on the plane, and store the result indest
.Matrix4x3f
rotate(float ang, float x, float y, float z, Matrix4x3f dest)
Apply rotation to this matrix by rotating the given amount of radians about the specified(x, y, z)
axis and store the result indest
.Matrix4x3f
rotate(float angle, Vector3fc axis, Matrix4x3f dest)
Apply a rotation transformation, rotating the given radians about the specified axis and store the result indest
.Matrix4x3f
rotate(AxisAngle4f axisAngle, Matrix4x3f dest)
Apply a rotation transformation, rotating about the givenAxisAngle4f
and store the result indest
.Matrix4x3f
rotate(Quaternionfc quat, Matrix4x3f dest)
Apply the rotation - and possibly scaling - transformation of the givenQuaternionfc
to this matrix and store the result indest
.Matrix4x3f
rotateAround(Quaternionfc quat, float ox, float oy, float oz, Matrix4x3f dest)
Apply the rotation - and possibly scaling - transformation of the givenQuaternionfc
to this matrix while using(ox, oy, oz)
as the rotation origin, and store the result indest
.Matrix4x3f
rotateLocal(float ang, float x, float y, float z, Matrix4x3f dest)
Pre-multiply a rotation to this matrix by rotating the given amount of radians about the specified(x, y, z)
axis and store the result indest
.Matrix4x3f
rotateLocal(Quaternionfc quat, Matrix4x3f dest)
Pre-multiply the rotation - and possibly scaling - transformation of the givenQuaternionfc
to this matrix and store the result indest
.Matrix4x3f
rotateTowards(float dirX, float dirY, float dirZ, float upX, float upY, float upZ, Matrix4x3f dest)
Apply a model transformation to this matrix for a right-handed coordinate system, that aligns the local+Z
axis with(dirX, dirY, dirZ)
and store the result indest
.Matrix4x3f
rotateTowards(Vector3fc dir, Vector3fc up, Matrix4x3f dest)
Apply a model transformation to this matrix for a right-handed coordinate system, that aligns the local+Z
axis withdir
and store the result indest
.Matrix4x3f
rotateTranslation(float ang, float x, float y, float z, Matrix4x3f dest)
Apply rotation to this matrix, which is assumed to only contain a translation, by rotating the given amount of radians about the specified(x, y, z)
axis and store the result indest
.Matrix4x3f
rotateTranslation(Quaternionfc quat, Matrix4x3f dest)
Apply the rotation - and possibly scaling - transformation of the givenQuaternionfc
to this matrix, which is assumed to only contain a translation, and store the result indest
.Matrix4x3f
rotateX(float ang, Matrix4x3f dest)
Apply rotation about the X axis to this matrix by rotating the given amount of radians and store the result indest
.Matrix4x3f
rotateXYZ(float angleX, float angleY, float angleZ, Matrix4x3f dest)
Apply rotation ofangleX
radians about the X axis, followed by a rotation ofangleY
radians about the Y axis and followed by a rotation ofangleZ
radians about the Z axis and store the result indest
.Matrix4x3f
rotateY(float ang, Matrix4x3f dest)
Apply rotation about the Y axis to this matrix by rotating the given amount of radians and store the result indest
.Matrix4x3f
rotateYXZ(float angleY, float angleX, float angleZ, Matrix4x3f dest)
Apply rotation ofangleY
radians about the Y axis, followed by a rotation ofangleX
radians about the X axis and followed by a rotation ofangleZ
radians about the Z axis and store the result indest
.Matrix4x3f
rotateZ(float ang, Matrix4x3f dest)
Apply rotation about the Z axis to this matrix by rotating the given amount of radians and store the result indest
.Matrix4x3f
rotateZYX(float angleZ, float angleY, float angleX, Matrix4x3f dest)
Apply rotation ofangleZ
radians about the Z axis, followed by a rotation ofangleY
radians about the Y axis and followed by a rotation ofangleX
radians about the X axis and store the result indest
.Matrix4x3f
scale(float x, float y, float z, Matrix4x3f dest)
Apply scaling tothis
matrix by scaling the base axes by the given x, y and z factors and store the result indest
.Matrix4x3f
scale(float xyz, Matrix4x3f dest)
Apply scaling to this matrix by uniformly scaling all base axes by the givenxyz
factor and store the result indest
.Matrix4x3f
scale(Vector3fc xyz, Matrix4x3f dest)
Apply scaling tothis
matrix by scaling the base axes by the givenxyz.x
,xyz.y
andxyz.z
factors, respectively and store the result indest
.Matrix4x3f
scaleAround(float sx, float sy, float sz, float ox, float oy, float oz, Matrix4x3f dest)
Apply scaling tothis
matrix by scaling the base axes by the given sx, sy and sz factors while using(ox, oy, oz)
as the scaling origin, and store the result indest
.Matrix4x3f
scaleAround(float factor, float ox, float oy, float oz, Matrix4x3f dest)
Apply scaling to this matrix by scaling all three base axes by the givenfactor
while using(ox, oy, oz)
as the scaling origin, and store the result indest
.Matrix4x3f
scaleLocal(float x, float y, float z, Matrix4x3f dest)
Pre-multiply scaling tothis
matrix by scaling the base axes by the given x, y and z factors and store the result indest
.Matrix4x3f
scaleXY(float x, float y, Matrix4x3f dest)
Apply scaling to this matrix by by scaling the X axis byx
and the Y axis byy
and store the result indest
.Matrix4x3f
shadow(float lightX, float lightY, float lightZ, float lightW, float a, float b, float c, float d, Matrix4x3f dest)
Apply a projection transformation to this matrix that projects onto the plane specified via the general plane equationx*a + y*b + z*c + d = 0
as if casting a shadow from a given light position/direction(lightX, lightY, lightZ, lightW)
and store the result indest
.Matrix4x3f
shadow(float lightX, float lightY, float lightZ, float lightW, Matrix4x3fc planeTransform, Matrix4x3f dest)
Apply a projection transformation to this matrix that projects onto the plane with the general plane equationy = 0
as if casting a shadow from a given light position/direction(lightX, lightY, lightZ, lightW)
and store the result indest
.Matrix4x3f
shadow(Vector4fc light, float a, float b, float c, float d, Matrix4x3f dest)
Apply a projection transformation to this matrix that projects onto the plane specified via the general plane equationx*a + y*b + z*c + d = 0
as if casting a shadow from a given light position/directionlight
and store the result indest
.Matrix4x3f
shadow(Vector4fc light, Matrix4x3fc planeTransform, Matrix4x3f dest)
Apply a projection transformation to this matrix that projects onto the plane with the general plane equationy = 0
as if casting a shadow from a given light position/directionlight
and store the result indest
.Matrix4x3f
sub(Matrix4x3fc subtrahend, Matrix4x3f dest)
Component-wise subtractsubtrahend
fromthis
and store the result indest
.Vector4f
transform(Vector4f v)
Transform/multiply the given vector by this matrix and store the result in that vector.Vector4f
transform(Vector4fc v, Vector4f dest)
Transform/multiply the given vector by this matrix and store the result indest
.Matrix4x3f
transformAab(float minX, float minY, float minZ, float maxX, float maxY, float maxZ, Vector3f outMin, Vector3f outMax)
Transform the axis-aligned box given as the minimum corner(minX, minY, minZ)
and maximum corner(maxX, maxY, maxZ)
bythis
matrix and compute the axis-aligned box of the result whose minimum corner is stored inoutMin
and maximum corner stored inoutMax
.Matrix4x3f
transformAab(Vector3fc min, Vector3fc max, Vector3f outMin, Vector3f outMax)
Transform the axis-aligned box given as the minimum cornermin
and maximum cornermax
bythis
matrix and compute the axis-aligned box of the result whose minimum corner is stored inoutMin
and maximum corner stored inoutMax
.Vector3f
transformDirection(Vector3f v)
Transform/multiply the given 3D-vector, as if it was a 4D-vector with w=0, by this matrix and store the result in that vector.Vector3f
transformDirection(Vector3fc v, Vector3f dest)
Transform/multiply the given 3D-vector, as if it was a 4D-vector with w=0, by this matrix and store the result indest
.Vector3f
transformPosition(Vector3f v)
Transform/multiply the given 3D-vector, as if it was a 4D-vector with w=1, by this matrix and store the result in that vector.Vector3f
transformPosition(Vector3fc v, Vector3f dest)
Transform/multiply the given 3D-vector, as if it was a 4D-vector with w=1, by this matrix and store the result indest
.Matrix4x3f
translate(float x, float y, float z, Matrix4x3f dest)
Apply a translation to this matrix by translating by the given number of units in x, y and z and store the result indest
.Matrix4x3f
translate(Vector3fc offset, Matrix4x3f dest)
Apply a translation to this matrix by translating by the given number of units in x, y and z and store the result indest
.Matrix4x3f
translateLocal(float x, float y, float z, Matrix4x3f dest)
Pre-multiply a translation to this matrix by translating by the given number of units in x, y and z and store the result indest
.Matrix4x3f
translateLocal(Vector3fc offset, Matrix4x3f dest)
Pre-multiply a translation to this matrix by translating by the given number of units in x, y and z and store the result indest
.Matrix3f
transpose3x3(Matrix3f dest)
Transpose only the left 3x3 submatrix of this matrix and store the result indest
.Matrix4x3f
transpose3x3(Matrix4x3f dest)
Transpose only the left 3x3 submatrix of this matrix and store the result indest
.Matrix4x3f
withLookAtUp(float upX, float upY, float upZ, Matrix4x3f dest)
Apply a transformation to this matrix to ensure that the local Y axis (as obtained bypositiveY(Vector3f)
) will be coplanar to the plane spanned by the local Z axis (as obtained bypositiveZ(Vector3f)
) and the given vector(upX, upY, upZ)
, and store the result indest
.Matrix4x3f
withLookAtUp(Vector3fc up, Matrix4x3f dest)
Apply a transformation to this matrix to ensure that the local Y axis (as obtained bypositiveY(Vector3f)
) will be coplanar to the plane spanned by the local Z axis (as obtained bypositiveZ(Vector3f)
) and the given vectorup
, and store the result indest
.
-
-
-
Field Detail
-
PLANE_NX
static final int PLANE_NX
Argument to the first parameter offrustumPlane(int, Vector4f)
identifying the plane with equationx=-1
when using the identity matrix.- See Also:
- Constant Field Values
-
PLANE_PX
static final int PLANE_PX
Argument to the first parameter offrustumPlane(int, Vector4f)
identifying the plane with equationx=1
when using the identity matrix.- See Also:
- Constant Field Values
-
PLANE_NY
static final int PLANE_NY
Argument to the first parameter offrustumPlane(int, Vector4f)
identifying the plane with equationy=-1
when using the identity matrix.- See Also:
- Constant Field Values
-
PLANE_PY
static final int PLANE_PY
Argument to the first parameter offrustumPlane(int, Vector4f)
identifying the plane with equationy=1
when using the identity matrix.- See Also:
- Constant Field Values
-
PLANE_NZ
static final int PLANE_NZ
Argument to the first parameter offrustumPlane(int, Vector4f)
identifying the plane with equationz=-1
when using the identity matrix.- See Also:
- Constant Field Values
-
PLANE_PZ
static final int PLANE_PZ
Argument to the first parameter offrustumPlane(int, Vector4f)
identifying the plane with equationz=1
when using the identity matrix.- See Also:
- Constant Field Values
-
PROPERTY_IDENTITY
static final byte PROPERTY_IDENTITY
Bit returned byproperties()
to indicate that the matrix represents the identity transformation.- See Also:
- Constant Field Values
-
PROPERTY_TRANSLATION
static final byte PROPERTY_TRANSLATION
Bit returned byproperties()
to indicate that the matrix represents a pure translation transformation.- See Also:
- Constant Field Values
-
PROPERTY_ORTHONORMAL
static final byte PROPERTY_ORTHONORMAL
Bit returned byproperties()
to indicate that the left 3x3 submatrix represents an orthogonal matrix (i.e. orthonormal basis).- See Also:
- Constant Field Values
-
-
Method Detail
-
properties
int properties()
- Returns:
- the properties of the matrix
-
m00
float m00()
Return the value of the matrix element at column 0 and row 0.- Returns:
- the value of the matrix element
-
m01
float m01()
Return the value of the matrix element at column 0 and row 1.- Returns:
- the value of the matrix element
-
m02
float m02()
Return the value of the matrix element at column 0 and row 2.- Returns:
- the value of the matrix element
-
m10
float m10()
Return the value of the matrix element at column 1 and row 0.- Returns:
- the value of the matrix element
-
m11
float m11()
Return the value of the matrix element at column 1 and row 1.- Returns:
- the value of the matrix element
-
m12
float m12()
Return the value of the matrix element at column 1 and row 2.- Returns:
- the value of the matrix element
-
m20
float m20()
Return the value of the matrix element at column 2 and row 0.- Returns:
- the value of the matrix element
-
m21
float m21()
Return the value of the matrix element at column 2 and row 1.- Returns:
- the value of the matrix element
-
m22
float m22()
Return the value of the matrix element at column 2 and row 2.- Returns:
- the value of the matrix element
-
m30
float m30()
Return the value of the matrix element at column 3 and row 0.- Returns:
- the value of the matrix element
-
m31
float m31()
Return the value of the matrix element at column 3 and row 1.- Returns:
- the value of the matrix element
-
m32
float m32()
Return the value of the matrix element at column 3 and row 2.- Returns:
- the value of the matrix element
-
get
Matrix4f get(Matrix4f dest)
Get the current values ofthis
matrix and store them into the upper 4x3 submatrix ofdest
.The other elements of
dest
will not be modified.- Parameters:
dest
- the destination matrix- Returns:
- dest
- See Also:
Matrix4f.set4x3(Matrix4x3fc)
-
get
Matrix4d get(Matrix4d dest)
Get the current values ofthis
matrix and store them into the upper 4x3 submatrix ofdest
.The other elements of
dest
will not be modified.- Parameters:
dest
- the destination matrix- Returns:
- dest
- See Also:
Matrix4d.set4x3(Matrix4x3fc)
-
mul
Matrix4x3f mul(Matrix4x3fc right, Matrix4x3f dest)
Multiply this matrix by the suppliedright
matrix and store the result indest
.If
M
isthis
matrix andR
theright
matrix, then the new matrix will beM * R
. So when transforming a vectorv
with the new matrix by usingM * R * v
, the transformation of the right matrix will be applied first!- Parameters:
right
- the right operand of the matrix multiplicationdest
- the destination matrix, which will hold the result- Returns:
- dest
-
mulTranslation
Matrix4x3f mulTranslation(Matrix4x3fc right, Matrix4x3f dest)
Multiply this matrix, which is assumed to only contain a translation, by the suppliedright
matrix and store the result indest
.This method assumes that
this
matrix only contains a translation.This method will not modify either the last row of
this
or the last row ofright
.If
M
isthis
matrix andR
theright
matrix, then the new matrix will beM * R
. So when transforming a vectorv
with the new matrix by usingM * R * v
, the transformation of the right matrix will be applied first!- Parameters:
right
- the right operand of the matrix multiplicationdest
- the destination matrix, which will hold the result- Returns:
- dest
-
mulOrtho
Matrix4x3f mulOrtho(Matrix4x3fc view, Matrix4x3f dest)
Multiplythis
orthographic projection matrix by the suppliedview
matrix and store the result indest
.If
M
isthis
matrix andV
theview
matrix, then the new matrix will beM * V
. So when transforming a vectorv
with the new matrix by usingM * V * v
, the transformation of theview
matrix will be applied first!- Parameters:
view
- the matrix which to multiplythis
withdest
- the destination matrix, which will hold the result- Returns:
- dest
-
mul3x3
Matrix4x3f mul3x3(float rm00, float rm01, float rm02, float rm10, float rm11, float rm12, float rm20, float rm21, float rm22, Matrix4x3f dest)
Multiplythis
by the 4x3 matrix with the column vectors(rm00, rm01, rm02)
,(rm10, rm11, rm12)
,(rm20, rm21, rm22)
and(0, 0, 0)
and store the result indest
.If
M
isthis
matrix andR
the specified matrix, then the new matrix will beM * R
. So when transforming a vectorv
with the new matrix by usingM * R * v
, the transformation of theR
matrix will be applied first!- Parameters:
rm00
- the value of the m00 elementrm01
- the value of the m01 elementrm02
- the value of the m02 elementrm10
- the value of the m10 elementrm11
- the value of the m11 elementrm12
- the value of the m12 elementrm20
- the value of the m20 elementrm21
- the value of the m21 elementrm22
- the value of the m22 elementdest
- will hold the result- Returns:
- dest
-
fma
Matrix4x3f fma(Matrix4x3fc other, float otherFactor, Matrix4x3f dest)
Component-wise addthis
andother
by first multiplying each component ofother
byotherFactor
, adding that tothis
and storing the final result indest
.The other components of
dest
will be set to the ones ofthis
.The matrices
this
andother
will not be changed.- Parameters:
other
- the other matrixotherFactor
- the factor to multiply each of the other matrix's componentsdest
- will hold the result- Returns:
- dest
-
add
Matrix4x3f add(Matrix4x3fc other, Matrix4x3f dest)
Component-wise addthis
andother
and store the result indest
.- Parameters:
other
- the other addenddest
- will hold the result- Returns:
- dest
-
sub
Matrix4x3f sub(Matrix4x3fc subtrahend, Matrix4x3f dest)
Component-wise subtractsubtrahend
fromthis
and store the result indest
.- Parameters:
subtrahend
- the subtrahenddest
- will hold the result- Returns:
- dest
-
mulComponentWise
Matrix4x3f mulComponentWise(Matrix4x3fc other, Matrix4x3f dest)
Component-wise multiplythis
byother
and store the result indest
.- Parameters:
other
- the other matrixdest
- will hold the result- Returns:
- dest
-
determinant
float determinant()
Return the determinant of this matrix.- Returns:
- the determinant
-
invert
Matrix4x3f invert(Matrix4x3f dest)
Invert this matrix and write the result intodest
.- Parameters:
dest
- will hold the result- Returns:
- dest
-
invert
Matrix4f invert(Matrix4f dest)
Invert this matrix and write the result as the top 4x3 matrix intodest
and set all other values ofdest
to identity..- Parameters:
dest
- will hold the result- Returns:
- dest
-
invertOrtho
Matrix4x3f invertOrtho(Matrix4x3f dest)
Invertthis
orthographic projection matrix and store the result into the givendest
.This method can be used to quickly obtain the inverse of an orthographic projection matrix.
- Parameters:
dest
- will hold the inverse ofthis
- Returns:
- dest
-
transpose3x3
Matrix4x3f transpose3x3(Matrix4x3f dest)
Transpose only the left 3x3 submatrix of this matrix and store the result indest
.All other matrix elements are left unchanged.
- Parameters:
dest
- will hold the result- Returns:
- dest
-
transpose3x3
Matrix3f transpose3x3(Matrix3f dest)
Transpose only the left 3x3 submatrix of this matrix and store the result indest
.- Parameters:
dest
- will hold the result- Returns:
- dest
-
getTranslation
Vector3f getTranslation(Vector3f dest)
Get only the translation components(m30, m31, m32)
of this matrix and store them in the given vectorxyz
.- Parameters:
dest
- will hold the translation components of this matrix- Returns:
- dest
-
getScale
Vector3f getScale(Vector3f dest)
Get the scaling factors ofthis
matrix for the three base axes.- Parameters:
dest
- will hold the scaling factors forx
,y
andz
- Returns:
- dest
-
get
Matrix4x3f get(Matrix4x3f dest)
Get the current values ofthis
matrix and store them intodest
.- Parameters:
dest
- the destination matrix- Returns:
- the passed in destination
-
get
Matrix4x3d get(Matrix4x3d dest)
Get the current values ofthis
matrix and store them intodest
.- Parameters:
dest
- the destination matrix- Returns:
- the passed in destination
-
getRotation
AxisAngle4f getRotation(AxisAngle4f dest)
Get the rotational component ofthis
matrix and store the represented rotation into the givenAxisAngle4f
.- Parameters:
dest
- the destinationAxisAngle4f
- Returns:
- the passed in destination
- See Also:
AxisAngle4f.set(Matrix4x3fc)
-
getRotation
AxisAngle4d getRotation(AxisAngle4d dest)
Get the rotational component ofthis
matrix and store the represented rotation into the givenAxisAngle4d
.- Parameters:
dest
- the destinationAxisAngle4d
- Returns:
- the passed in destination
- See Also:
AxisAngle4f.set(Matrix4x3fc)
-
getUnnormalizedRotation
Quaternionf getUnnormalizedRotation(Quaternionf dest)
Get the current values ofthis
matrix and store the represented rotation into the givenQuaternionf
.This method assumes that the first three column vectors of the left 3x3 submatrix are not normalized and thus allows to ignore any additional scaling factor that is applied to the matrix.
- Parameters:
dest
- the destinationQuaternionf
- Returns:
- the passed in destination
- See Also:
Quaternionf.setFromUnnormalized(Matrix4x3fc)
-
getNormalizedRotation
Quaternionf getNormalizedRotation(Quaternionf dest)
Get the current values ofthis
matrix and store the represented rotation into the givenQuaternionf
.This method assumes that the first three column vectors of the left 3x3 submatrix are normalized.
- Parameters:
dest
- the destinationQuaternionf
- Returns:
- the passed in destination
- See Also:
Quaternionf.setFromNormalized(Matrix4x3fc)
-
getUnnormalizedRotation
Quaterniond getUnnormalizedRotation(Quaterniond dest)
Get the current values ofthis
matrix and store the represented rotation into the givenQuaterniond
.This method assumes that the first three column vectors of the left 3x3 submatrix are not normalized and thus allows to ignore any additional scaling factor that is applied to the matrix.
- Parameters:
dest
- the destinationQuaterniond
- Returns:
- the passed in destination
- See Also:
Quaterniond.setFromUnnormalized(Matrix4x3fc)
-
getNormalizedRotation
Quaterniond getNormalizedRotation(Quaterniond dest)
Get the current values ofthis
matrix and store the represented rotation into the givenQuaterniond
.This method assumes that the first three column vectors of the left 3x3 submatrix are normalized.
- Parameters:
dest
- the destinationQuaterniond
- Returns:
- the passed in destination
- See Also:
Quaterniond.setFromNormalized(Matrix4x3fc)
-
get
java.nio.FloatBuffer get(java.nio.FloatBuffer buffer)
Store this matrix in column-major order into the suppliedFloatBuffer
at the current bufferposition
.This method will not increment the position of the given FloatBuffer.
In order to specify the offset into the FloatBuffer at which the matrix is stored, use
get(int, FloatBuffer)
, taking the absolute position as parameter.- Parameters:
buffer
- will receive the values of this matrix in column-major order at its current position- Returns:
- the passed in buffer
- See Also:
get(int, FloatBuffer)
-
get
java.nio.FloatBuffer get(int index, java.nio.FloatBuffer buffer)
Store this matrix in column-major order into the suppliedFloatBuffer
starting at the specified absolute buffer position/index.This method will not increment the position of the given FloatBuffer.
- Parameters:
index
- the absolute position into the FloatBufferbuffer
- will receive the values of this matrix in column-major order- Returns:
- the passed in buffer
-
get
java.nio.ByteBuffer get(java.nio.ByteBuffer buffer)
Store this matrix in column-major order into the suppliedByteBuffer
at the current bufferposition
.This method will not increment the position of the given ByteBuffer.
In order to specify the offset into the ByteBuffer at which the matrix is stored, use
get(int, ByteBuffer)
, taking the absolute position as parameter.- Parameters:
buffer
- will receive the values of this matrix in column-major order at its current position- Returns:
- the passed in buffer
- See Also:
get(int, ByteBuffer)
-
get
java.nio.ByteBuffer get(int index, java.nio.ByteBuffer buffer)
Store this matrix in column-major order into the suppliedByteBuffer
starting at the specified absolute buffer position/index.This method will not increment the position of the given ByteBuffer.
- Parameters:
index
- the absolute position into the ByteBufferbuffer
- will receive the values of this matrix in column-major order- Returns:
- the passed in buffer
-
getToAddress
Matrix4x3fc getToAddress(long address)
Store this matrix in column-major order at the given off-heap address.This method will throw an
UnsupportedOperationException
when JOML is used with `-Djoml.nounsafe`.This method is unsafe as it can result in a crash of the JVM process when the specified address range does not belong to this process.
- Parameters:
address
- the off-heap address where to store this matrix- Returns:
- this
-
get
float[] get(float[] arr, int offset)
Store this matrix into the supplied float array in column-major order at the given offset.- Parameters:
arr
- the array to write the matrix values intooffset
- the offset into the array- Returns:
- the passed in array
-
get
float[] get(float[] arr)
Store this matrix into the supplied float array in column-major order.In order to specify an explicit offset into the array, use the method
get(float[], int)
.- Parameters:
arr
- the array to write the matrix values into- Returns:
- the passed in array
- See Also:
get(float[], int)
-
get4x4
float[] get4x4(float[] arr, int offset)
Store a 4x4 matrix in column-major order into the supplied array at the given offset, where the upper 4x3 submatrix isthis
and the last row is(0, 0, 0, 1)
.- Parameters:
arr
- the array to write the matrix values intooffset
- the offset into the array- Returns:
- the passed in array
-
get4x4
float[] get4x4(float[] arr)
Store a 4x4 matrix in column-major order into the supplied array, where the upper 4x3 submatrix isthis
and the last row is(0, 0, 0, 1)
.In order to specify an explicit offset into the array, use the method
get4x4(float[], int)
.- Parameters:
arr
- the array to write the matrix values into- Returns:
- the passed in array
- See Also:
get4x4(float[], int)
-
get4x4
java.nio.FloatBuffer get4x4(java.nio.FloatBuffer buffer)
Store a 4x4 matrix in column-major order into the suppliedFloatBuffer
at the current bufferposition
, where the upper 4x3 submatrix isthis
and the last row is(0, 0, 0, 1)
.This method will not increment the position of the given FloatBuffer.
In order to specify the offset into the FloatBuffer at which the matrix is stored, use
get4x4(int, FloatBuffer)
, taking the absolute position as parameter.- Parameters:
buffer
- will receive the values of this matrix in column-major order at its current position- Returns:
- the passed in buffer
- See Also:
get4x4(int, FloatBuffer)
-
get4x4
java.nio.FloatBuffer get4x4(int index, java.nio.FloatBuffer buffer)
Store a 4x4 matrix in column-major order into the suppliedFloatBuffer
starting at the specified absolute buffer position/index, where the upper 4x3 submatrix isthis
and the last row is(0, 0, 0, 1)
.This method will not increment the position of the given FloatBuffer.
- Parameters:
index
- the absolute position into the FloatBufferbuffer
- will receive the values of this matrix in column-major order- Returns:
- the passed in buffer
-
get4x4
java.nio.ByteBuffer get4x4(java.nio.ByteBuffer buffer)
Store a 4x4 matrix in column-major order into the suppliedByteBuffer
at the current bufferposition
, where the upper 4x3 submatrix isthis
and the last row is(0, 0, 0, 1)
.This method will not increment the position of the given ByteBuffer.
In order to specify the offset into the ByteBuffer at which the matrix is stored, use
get4x4(int, ByteBuffer)
, taking the absolute position as parameter.- Parameters:
buffer
- will receive the values of this matrix in column-major order at its current position- Returns:
- the passed in buffer
- See Also:
get4x4(int, ByteBuffer)
-
get4x4
java.nio.ByteBuffer get4x4(int index, java.nio.ByteBuffer buffer)
Store a 4x4 matrix in column-major order into the suppliedByteBuffer
starting at the specified absolute buffer position/index, where the upper 4x3 submatrix isthis
and the last row is(0, 0, 0, 1)
.This method will not increment the position of the given ByteBuffer.
- Parameters:
index
- the absolute position into the ByteBufferbuffer
- will receive the values of this matrix in column-major order- Returns:
- the passed in buffer
-
get3x4
java.nio.FloatBuffer get3x4(java.nio.FloatBuffer buffer)
Store the left 3x3 submatrix as 3x4 matrix in column-major order into the suppliedFloatBuffer
at the current bufferposition
, with the m03, m13 and m23 components being zero.This method will not increment the position of the given FloatBuffer.
In order to specify the offset into the FloatBuffer at which the matrix is stored, use
get3x4(int, FloatBuffer)
, taking the absolute position as parameter.- Parameters:
buffer
- will receive the values of the left 3x3 submatrix as 3x4 matrix in column-major order at its current position- Returns:
- the passed in buffer
- See Also:
get3x4(int, FloatBuffer)
-
get3x4
java.nio.FloatBuffer get3x4(int index, java.nio.FloatBuffer buffer)
Store the left 3x3 submatrix as 3x4 matrix in column-major order into the suppliedFloatBuffer
starting at the specified absolute buffer position/index, with the m03, m13 and m23 components being zero.This method will not increment the position of the given FloatBuffer.
- Parameters:
index
- the absolute position into the FloatBufferbuffer
- will receive the values of the left 3x3 submatrix as 3x4 matrix in column-major order- Returns:
- the passed in buffer
-
get3x4
java.nio.ByteBuffer get3x4(java.nio.ByteBuffer buffer)
Store the left 3x3 submatrix as 3x4 matrix in column-major order into the suppliedByteBuffer
at the current bufferposition
, with the m03, m13 and m23 components being zero.This method will not increment the position of the given ByteBuffer.
In order to specify the offset into the ByteBuffer at which the matrix is stored, use
get3x4(int, ByteBuffer)
, taking the absolute position as parameter.- Parameters:
buffer
- will receive the values of the left 3x3 submatrix as 3x4 matrix in column-major order at its current position- Returns:
- the passed in buffer
- See Also:
get3x4(int, ByteBuffer)
-
get3x4
java.nio.ByteBuffer get3x4(int index, java.nio.ByteBuffer buffer)
Store the left 3x3 submatrix as 3x4 matrix in column-major order into the suppliedByteBuffer
starting at the specified absolute buffer position/index, with the m03, m13 and m23 components being zero.This method will not increment the position of the given ByteBuffer.
- Parameters:
index
- the absolute position into the ByteBufferbuffer
- will receive the values of the left 3x3 submatrix as 3x4 matrix in column-major order- Returns:
- the passed in buffer
-
getTransposed
java.nio.FloatBuffer getTransposed(java.nio.FloatBuffer buffer)
Store this matrix in row-major order into the suppliedFloatBuffer
at the current bufferposition
.This method will not increment the position of the given FloatBuffer.
In order to specify the offset into the FloatBuffer at which the matrix is stored, use
getTransposed(int, FloatBuffer)
, taking the absolute position as parameter.- Parameters:
buffer
- will receive the values of this matrix in row-major order at its current position- Returns:
- the passed in buffer
- See Also:
getTransposed(int, FloatBuffer)
-
getTransposed
java.nio.FloatBuffer getTransposed(int index, java.nio.FloatBuffer buffer)
Store this matrix in row-major order into the suppliedFloatBuffer
starting at the specified absolute buffer position/index.This method will not increment the position of the given FloatBuffer.
- Parameters:
index
- the absolute position into the FloatBufferbuffer
- will receive the values of this matrix in row-major order- Returns:
- the passed in buffer
-
getTransposed
java.nio.ByteBuffer getTransposed(java.nio.ByteBuffer buffer)
Store this matrix in row-major order into the suppliedByteBuffer
at the current bufferposition
.This method will not increment the position of the given ByteBuffer.
In order to specify the offset into the ByteBuffer at which the matrix is stored, use
getTransposed(int, ByteBuffer)
, taking the absolute position as parameter.- Parameters:
buffer
- will receive the values of this matrix in row-major order at its current position- Returns:
- the passed in buffer
- See Also:
getTransposed(int, ByteBuffer)
-
getTransposed
java.nio.ByteBuffer getTransposed(int index, java.nio.ByteBuffer buffer)
Store this matrix in row-major order into the suppliedByteBuffer
starting at the specified absolute buffer position/index.This method will not increment the position of the given ByteBuffer.
- Parameters:
index
- the absolute position into the ByteBufferbuffer
- will receive the values of this matrix in row-major order- Returns:
- the passed in buffer
-
getTransposed
float[] getTransposed(float[] arr, int offset)
Store this matrix into the supplied float array in row-major order at the given offset.- Parameters:
arr
- the array to write the matrix values intooffset
- the offset into the array- Returns:
- the passed in array
-
getTransposed
float[] getTransposed(float[] arr)
Store this matrix into the supplied float array in row-major order.In order to specify an explicit offset into the array, use the method
getTransposed(float[], int)
.- Parameters:
arr
- the array to write the matrix values into- Returns:
- the passed in array
- See Also:
getTransposed(float[], int)
-
transform
Vector4f transform(Vector4f v)
Transform/multiply the given vector by this matrix and store the result in that vector.- Parameters:
v
- the vector to transform and to hold the final result- Returns:
- v
- See Also:
Vector4f.mul(Matrix4x3fc)
-
transform
Vector4f transform(Vector4fc v, Vector4f dest)
Transform/multiply the given vector by this matrix and store the result indest
.- Parameters:
v
- the vector to transformdest
- will contain the result- Returns:
- dest
- See Also:
Vector4f.mul(Matrix4x3fc, Vector4f)
-
transformPosition
Vector3f transformPosition(Vector3f v)
Transform/multiply the given 3D-vector, as if it was a 4D-vector with w=1, by this matrix and store the result in that vector.The given 3D-vector is treated as a 4D-vector with its w-component being 1.0, so it will represent a position/location in 3D-space rather than a direction.
In order to store the result in another vector, use
transformPosition(Vector3fc, Vector3f)
.- Parameters:
v
- the vector to transform and to hold the final result- Returns:
- v
- See Also:
transformPosition(Vector3fc, Vector3f)
,transform(Vector4f)
-
transformPosition
Vector3f transformPosition(Vector3fc v, Vector3f dest)
Transform/multiply the given 3D-vector, as if it was a 4D-vector with w=1, by this matrix and store the result indest
.The given 3D-vector is treated as a 4D-vector with its w-component being 1.0, so it will represent a position/location in 3D-space rather than a direction.
In order to store the result in the same vector, use
transformPosition(Vector3f)
.- Parameters:
v
- the vector to transformdest
- will hold the result- Returns:
- dest
- See Also:
transformPosition(Vector3f)
,transform(Vector4fc, Vector4f)
-
transformDirection
Vector3f transformDirection(Vector3f v)
Transform/multiply the given 3D-vector, as if it was a 4D-vector with w=0, by this matrix and store the result in that vector.The given 3D-vector is treated as a 4D-vector with its w-component being
0.0
, so it will represent a direction in 3D-space rather than a position. This method will therefore not take the translation part of the matrix into account.In order to store the result in another vector, use
transformDirection(Vector3fc, Vector3f)
.- Parameters:
v
- the vector to transform and to hold the final result- Returns:
- v
- See Also:
transformDirection(Vector3fc, Vector3f)
-
transformDirection
Vector3f transformDirection(Vector3fc v, Vector3f dest)
Transform/multiply the given 3D-vector, as if it was a 4D-vector with w=0, by this matrix and store the result indest
.The given 3D-vector is treated as a 4D-vector with its w-component being
0.0
, so it will represent a direction in 3D-space rather than a position. This method will therefore not take the translation part of the matrix into account.In order to store the result in the same vector, use
transformDirection(Vector3f)
.- Parameters:
v
- the vector to transform and to hold the final resultdest
- will hold the result- Returns:
- dest
- See Also:
transformDirection(Vector3f)
-
scale
Matrix4x3f scale(Vector3fc xyz, Matrix4x3f dest)
Apply scaling tothis
matrix by scaling the base axes by the givenxyz.x
,xyz.y
andxyz.z
factors, respectively and store the result indest
.If
M
isthis
matrix andS
the scaling matrix, then the new matrix will beM * S
. So when transforming a vectorv
with the new matrix by usingM * S * v
, the scaling will be applied first!- Parameters:
xyz
- the factors of the x, y and z component, respectivelydest
- will hold the result- Returns:
- dest
-
scale
Matrix4x3f scale(float xyz, Matrix4x3f dest)
Apply scaling to this matrix by uniformly scaling all base axes by the givenxyz
factor and store the result indest
.If
M
isthis
matrix andS
the scaling matrix, then the new matrix will beM * S
. So when transforming a vectorv
with the new matrix by usingM * S * v
, the scaling will be applied first!Individual scaling of all three axes can be applied using
scale(float, float, float, Matrix4x3f)
.- Parameters:
xyz
- the factor for all componentsdest
- will hold the result- Returns:
- dest
- See Also:
scale(float, float, float, Matrix4x3f)
-
scaleXY
Matrix4x3f scaleXY(float x, float y, Matrix4x3f dest)
Apply scaling to this matrix by by scaling the X axis byx
and the Y axis byy
and store the result indest
.If
M
isthis
matrix andS
the scaling matrix, then the new matrix will beM * S
. So when transforming a vectorv
with the new matrix by usingM * S * v
, the scaling will be applied first!- Parameters:
x
- the factor of the x componenty
- the factor of the y componentdest
- will hold the result- Returns:
- dest
-
scaleAround
Matrix4x3f scaleAround(float sx, float sy, float sz, float ox, float oy, float oz, Matrix4x3f dest)
Apply scaling tothis
matrix by scaling the base axes by the given sx, sy and sz factors while using(ox, oy, oz)
as the scaling origin, and store the result indest
.If
M
isthis
matrix andS
the scaling matrix, then the new matrix will beM * S
. So when transforming a vectorv
with the new matrix by usingM * S * v
, the scaling will be applied first!This method is equivalent to calling:
translate(ox, oy, oz, dest).scale(sx, sy, sz).translate(-ox, -oy, -oz)
- Parameters:
sx
- the scaling factor of the x componentsy
- the scaling factor of the y componentsz
- the scaling factor of the z componentox
- the x coordinate of the scaling originoy
- the y coordinate of the scaling originoz
- the z coordinate of the scaling origindest
- will hold the result- Returns:
- dest
-
scaleAround
Matrix4x3f scaleAround(float factor, float ox, float oy, float oz, Matrix4x3f dest)
Apply scaling to this matrix by scaling all three base axes by the givenfactor
while using(ox, oy, oz)
as the scaling origin, and store the result indest
.If
M
isthis
matrix andS
the scaling matrix, then the new matrix will beM * S
. So when transforming a vectorv
with the new matrix by usingM * S * v
, the scaling will be applied first!This method is equivalent to calling:
translate(ox, oy, oz, dest).scale(factor).translate(-ox, -oy, -oz)
- Parameters:
factor
- the scaling factor for all three axesox
- the x coordinate of the scaling originoy
- the y coordinate of the scaling originoz
- the z coordinate of the scaling origindest
- will hold the result- Returns:
- this
-
scale
Matrix4x3f scale(float x, float y, float z, Matrix4x3f dest)
Apply scaling tothis
matrix by scaling the base axes by the given x, y and z factors and store the result indest
.If
M
isthis
matrix andS
the scaling matrix, then the new matrix will beM * S
. So when transforming a vectorv
with the new matrix by usingM * S * v
, the scaling will be applied first!- Parameters:
x
- the factor of the x componenty
- the factor of the y componentz
- the factor of the z componentdest
- will hold the result- Returns:
- dest
-
scaleLocal
Matrix4x3f scaleLocal(float x, float y, float z, Matrix4x3f dest)
Pre-multiply scaling tothis
matrix by scaling the base axes by the given x, y and z factors and store the result indest
.If
M
isthis
matrix andS
the scaling matrix, then the new matrix will beS * M
. So when transforming a vectorv
with the new matrix by usingS * M * v
, the scaling will be applied last!- Parameters:
x
- the factor of the x componenty
- the factor of the y componentz
- the factor of the z componentdest
- will hold the result- Returns:
- dest
-
rotateX
Matrix4x3f rotateX(float ang, Matrix4x3f dest)
Apply rotation about the X axis to this matrix by rotating the given amount of radians and store the result indest
.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
M
isthis
matrix andR
the rotation matrix, then the new matrix will beM * R
. So when transforming a vectorv
with the new matrix by usingM * R * v
, the rotation will be applied first!Reference: http://en.wikipedia.org
- Parameters:
ang
- the angle in radiansdest
- will hold the result- Returns:
- dest
-
rotateY
Matrix4x3f rotateY(float ang, Matrix4x3f dest)
Apply rotation about the Y axis to this matrix by rotating the given amount of radians and store the result indest
.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
M
isthis
matrix andR
the rotation matrix, then the new matrix will beM * R
. So when transforming a vectorv
with the new matrix by usingM * R * v
, the rotation will be applied first!Reference: http://en.wikipedia.org
- Parameters:
ang
- the angle in radiansdest
- will hold the result- Returns:
- dest
-
rotateZ
Matrix4x3f rotateZ(float ang, Matrix4x3f dest)
Apply rotation about the Z axis to this matrix by rotating the given amount of radians and store the result indest
.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
M
isthis
matrix andR
the rotation matrix, then the new matrix will beM * R
. So when transforming a vectorv
with the new matrix by usingM * R * v
, the rotation will be applied first!Reference: http://en.wikipedia.org
- Parameters:
ang
- the angle in radiansdest
- will hold the result- Returns:
- dest
-
rotateXYZ
Matrix4x3f rotateXYZ(float angleX, float angleY, float angleZ, Matrix4x3f dest)
Apply rotation ofangleX
radians about the X axis, followed by a rotation ofangleY
radians about the Y axis and followed by a rotation ofangleZ
radians about the Z axis and store the result indest
.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
M
isthis
matrix andR
the rotation matrix, then the new matrix will beM * R
. So when transforming a vectorv
with the new matrix by usingM * R * v
, the rotation will be applied first!This method is equivalent to calling:
rotateX(angleX, dest).rotateY(angleY).rotateZ(angleZ)
- Parameters:
angleX
- the angle to rotate about XangleY
- the angle to rotate about YangleZ
- the angle to rotate about Zdest
- will hold the result- Returns:
- dest
-
rotateZYX
Matrix4x3f rotateZYX(float angleZ, float angleY, float angleX, Matrix4x3f dest)
Apply rotation ofangleZ
radians about the Z axis, followed by a rotation ofangleY
radians about the Y axis and followed by a rotation ofangleX
radians about the X axis and store the result indest
.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
M
isthis
matrix andR
the rotation matrix, then the new matrix will beM * R
. So when transforming a vectorv
with the new matrix by usingM * R * v
, the rotation will be applied first!This method is equivalent to calling:
rotateZ(angleZ, dest).rotateY(angleY).rotateX(angleX)
- Parameters:
angleZ
- the angle to rotate about ZangleY
- the angle to rotate about YangleX
- the angle to rotate about Xdest
- will hold the result- Returns:
- dest
-
rotateYXZ
Matrix4x3f rotateYXZ(float angleY, float angleX, float angleZ, Matrix4x3f dest)
Apply rotation ofangleY
radians about the Y axis, followed by a rotation ofangleX
radians about the X axis and followed by a rotation ofangleZ
radians about the Z axis and store the result indest
.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
M
isthis
matrix andR
the rotation matrix, then the new matrix will beM * R
. So when transforming a vectorv
with the new matrix by usingM * R * v
, the rotation will be applied first!This method is equivalent to calling:
rotateY(angleY, dest).rotateX(angleX).rotateZ(angleZ)
- Parameters:
angleY
- the angle to rotate about YangleX
- the angle to rotate about XangleZ
- the angle to rotate about Zdest
- will hold the result- Returns:
- dest
-
rotate
Matrix4x3f rotate(float ang, float x, float y, float z, Matrix4x3f dest)
Apply rotation to this matrix by rotating the given amount of radians about the specified(x, y, z)
axis and store the result indest
.The axis described by the three components needs to be a unit vector.
When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
M
isthis
matrix andR
the rotation matrix, then the new matrix will beM * R
. So when transforming a vectorv
with the new matrix by usingM * R * v
, the rotation will be applied first!Reference: http://en.wikipedia.org
- Parameters:
ang
- the angle in radiansx
- the x component of the axisy
- the y component of the axisz
- the z component of the axisdest
- will hold the result- Returns:
- dest
-
rotateTranslation
Matrix4x3f rotateTranslation(float ang, float x, float y, float z, Matrix4x3f dest)
Apply rotation to this matrix, which is assumed to only contain a translation, by rotating the given amount of radians about the specified(x, y, z)
axis and store the result indest
.This method assumes
this
to only contain a translation.The axis described by the three components needs to be a unit vector.
When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
M
isthis
matrix andR
the rotation matrix, then the new matrix will beM * R
. So when transforming a vectorv
with the new matrix by usingM * R * v
, the rotation will be applied first!Reference: http://en.wikipedia.org
- Parameters:
ang
- the angle in radiansx
- the x component of the axisy
- the y component of the axisz
- the z component of the axisdest
- will hold the result- Returns:
- dest
-
rotateAround
Matrix4x3f rotateAround(Quaternionfc quat, float ox, float oy, float oz, Matrix4x3f dest)
Apply the rotation - and possibly scaling - transformation of the givenQuaternionfc
to this matrix while using(ox, oy, oz)
as the rotation origin, and store the result indest
.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
M
isthis
matrix andQ
the rotation matrix obtained from the given quaternion, then the new matrix will beM * Q
. So when transforming a vectorv
with the new matrix by usingM * Q * v
, the quaternion rotation will be applied first!This method is equivalent to calling:
translate(ox, oy, oz, dest).rotate(quat).translate(-ox, -oy, -oz)
Reference: http://en.wikipedia.org
- Parameters:
quat
- theQuaternionfc
ox
- the x coordinate of the rotation originoy
- the y coordinate of the rotation originoz
- the z coordinate of the rotation origindest
- will hold the result- Returns:
- dest
-
rotateLocal
Matrix4x3f rotateLocal(float ang, float x, float y, float z, Matrix4x3f dest)
Pre-multiply a rotation to this matrix by rotating the given amount of radians about the specified(x, y, z)
axis and store the result indest
.The axis described by the three components needs to be a unit vector.
When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
M
isthis
matrix andR
the rotation matrix, then the new matrix will beR * M
. So when transforming a vectorv
with the new matrix by usingR * M * v
, the rotation will be applied last!Reference: http://en.wikipedia.org
- Parameters:
ang
- the angle in radiansx
- the x component of the axisy
- the y component of the axisz
- the z component of the axisdest
- will hold the result- Returns:
- dest
-
translate
Matrix4x3f translate(Vector3fc offset, Matrix4x3f dest)
Apply a translation to this matrix by translating by the given number of units in x, y and z and store the result indest
.If
M
isthis
matrix andT
the translation matrix, then the new matrix will beM * T
. So when transforming a vectorv
with the new matrix by usingM * T * v
, the translation will be applied first!- Parameters:
offset
- the number of units in x, y and z by which to translatedest
- will hold the result- Returns:
- dest
-
translate
Matrix4x3f translate(float x, float y, float z, Matrix4x3f dest)
Apply a translation to this matrix by translating by the given number of units in x, y and z and store the result indest
.If
M
isthis
matrix andT
the translation matrix, then the new matrix will beM * T
. So when transforming a vectorv
with the new matrix by usingM * T * v
, the translation will be applied first!- Parameters:
x
- the offset to translate in xy
- the offset to translate in yz
- the offset to translate in zdest
- will hold the result- Returns:
- dest
-
translateLocal
Matrix4x3f translateLocal(Vector3fc offset, Matrix4x3f dest)
Pre-multiply a translation to this matrix by translating by the given number of units in x, y and z and store the result indest
.If
M
isthis
matrix andT
the translation matrix, then the new matrix will beT * M
. So when transforming a vectorv
with the new matrix by usingT * M * v
, the translation will be applied last!- Parameters:
offset
- the number of units in x, y and z by which to translatedest
- will hold the result- Returns:
- dest
-
translateLocal
Matrix4x3f translateLocal(float x, float y, float z, Matrix4x3f dest)
Pre-multiply a translation to this matrix by translating by the given number of units in x, y and z and store the result indest
.If
M
isthis
matrix andT
the translation matrix, then the new matrix will beT * M
. So when transforming a vectorv
with the new matrix by usingT * M * v
, the translation will be applied last!- Parameters:
x
- the offset to translate in xy
- the offset to translate in yz
- the offset to translate in zdest
- will hold the result- Returns:
- dest
-
ortho
Matrix4x3f ortho(float left, float right, float bottom, float top, float zNear, float zFar, boolean zZeroToOne, Matrix4x3f dest)
Apply an orthographic projection transformation for a right-handed coordinate system using the given NDC z range to this matrix and store the result indest
.If
M
isthis
matrix andO
the orthographic projection matrix, then the new matrix will beM * O
. So when transforming a vectorv
with the new matrix by usingM * O * v
, the orthographic projection transformation will be applied first!Reference: http://www.songho.ca
- Parameters:
left
- the distance from the center to the left frustum edgeright
- the distance from the center to the right frustum edgebottom
- the distance from the center to the bottom frustum edgetop
- the distance from the center to the top frustum edgezNear
- near clipping plane distancezFar
- far clipping plane distancezZeroToOne
- whether to use Vulkan's and Direct3D's NDC z range of[0..+1]
whentrue
or whether to use OpenGL's NDC z range of[-1..+1]
whenfalse
dest
- will hold the result- Returns:
- dest
-
ortho
Matrix4x3f ortho(float left, float right, float bottom, float top, float zNear, float zFar, Matrix4x3f dest)
Apply an orthographic projection transformation for a right-handed coordinate system using OpenGL's NDC z range of[-1..+1]
to this matrix and store the result indest
.If
M
isthis
matrix andO
the orthographic projection matrix, then the new matrix will beM * O
. So when transforming a vectorv
with the new matrix by usingM * O * v
, the orthographic projection transformation will be applied first!Reference: http://www.songho.ca
- Parameters:
left
- the distance from the center to the left frustum edgeright
- the distance from the center to the right frustum edgebottom
- the distance from the center to the bottom frustum edgetop
- the distance from the center to the top frustum edgezNear
- near clipping plane distancezFar
- far clipping plane distancedest
- will hold the result- Returns:
- dest
-
orthoLH
Matrix4x3f orthoLH(float left, float right, float bottom, float top, float zNear, float zFar, boolean zZeroToOne, Matrix4x3f dest)
Apply an orthographic projection transformation for a left-handed coordiante system using the given NDC z range to this matrix and store the result indest
.If
M
isthis
matrix andO
the orthographic projection matrix, then the new matrix will beM * O
. So when transforming a vectorv
with the new matrix by usingM * O * v
, the orthographic projection transformation will be applied first!Reference: http://www.songho.ca
- Parameters:
left
- the distance from the center to the left frustum edgeright
- the distance from the center to the right frustum edgebottom
- the distance from the center to the bottom frustum edgetop
- the distance from the center to the top frustum edgezNear
- near clipping plane distancezFar
- far clipping plane distancezZeroToOne
- whether to use Vulkan's and Direct3D's NDC z range of[0..+1]
whentrue
or whether to use OpenGL's NDC z range of[-1..+1]
whenfalse
dest
- will hold the result- Returns:
- dest
-
orthoLH
Matrix4x3f orthoLH(float left, float right, float bottom, float top, float zNear, float zFar, Matrix4x3f dest)
Apply an orthographic projection transformation for a left-handed coordiante system using OpenGL's NDC z range of[-1..+1]
to this matrix and store the result indest
.If
M
isthis
matrix andO
the orthographic projection matrix, then the new matrix will beM * O
. So when transforming a vectorv
with the new matrix by usingM * O * v
, the orthographic projection transformation will be applied first!Reference: http://www.songho.ca
- Parameters:
left
- the distance from the center to the left frustum edgeright
- the distance from the center to the right frustum edgebottom
- the distance from the center to the bottom frustum edgetop
- the distance from the center to the top frustum edgezNear
- near clipping plane distancezFar
- far clipping plane distancedest
- will hold the result- Returns:
- dest
-
orthoSymmetric
Matrix4x3f orthoSymmetric(float width, float height, float zNear, float zFar, boolean zZeroToOne, Matrix4x3f dest)
Apply a symmetric orthographic projection transformation for a right-handed coordinate system using the given NDC z range to this matrix and store the result indest
.This method is equivalent to calling
ortho()
withleft=-width/2
,right=+width/2
,bottom=-height/2
andtop=+height/2
.If
M
isthis
matrix andO
the orthographic projection matrix, then the new matrix will beM * O
. So when transforming a vectorv
with the new matrix by usingM * O * v
, the orthographic projection transformation will be applied first!Reference: http://www.songho.ca
- Parameters:
width
- the distance between the right and left frustum edgesheight
- the distance between the top and bottom frustum edgeszNear
- near clipping plane distancezFar
- far clipping plane distancedest
- will hold the resultzZeroToOne
- whether to use Vulkan's and Direct3D's NDC z range of[0..+1]
whentrue
or whether to use OpenGL's NDC z range of[-1..+1]
whenfalse
- Returns:
- dest
-
orthoSymmetric
Matrix4x3f orthoSymmetric(float width, float height, float zNear, float zFar, Matrix4x3f dest)
Apply a symmetric orthographic projection transformation for a right-handed coordinate system using OpenGL's NDC z range of[-1..+1]
to this matrix and store the result indest
.This method is equivalent to calling
ortho()
withleft=-width/2
,right=+width/2
,bottom=-height/2
andtop=+height/2
.If
M
isthis
matrix andO
the orthographic projection matrix, then the new matrix will beM * O
. So when transforming a vectorv
with the new matrix by usingM * O * v
, the orthographic projection transformation will be applied first!Reference: http://www.songho.ca
- Parameters:
width
- the distance between the right and left frustum edgesheight
- the distance between the top and bottom frustum edgeszNear
- near clipping plane distancezFar
- far clipping plane distancedest
- will hold the result- Returns:
- dest
-
orthoSymmetricLH
Matrix4x3f orthoSymmetricLH(float width, float height, float zNear, float zFar, boolean zZeroToOne, Matrix4x3f dest)
Apply a symmetric orthographic projection transformation for a left-handed coordinate system using the given NDC z range to this matrix and store the result indest
.This method is equivalent to calling
orthoLH()
withleft=-width/2
,right=+width/2
,bottom=-height/2
andtop=+height/2
.If
M
isthis
matrix andO
the orthographic projection matrix, then the new matrix will beM * O
. So when transforming a vectorv
with the new matrix by usingM * O * v
, the orthographic projection transformation will be applied first!Reference: http://www.songho.ca
- Parameters:
width
- the distance between the right and left frustum edgesheight
- the distance between the top and bottom frustum edgeszNear
- near clipping plane distancezFar
- far clipping plane distancedest
- will hold the resultzZeroToOne
- whether to use Vulkan's and Direct3D's NDC z range of[0..+1]
whentrue
or whether to use OpenGL's NDC z range of[-1..+1]
whenfalse
- Returns:
- dest
-
orthoSymmetricLH
Matrix4x3f orthoSymmetricLH(float width, float height, float zNear, float zFar, Matrix4x3f dest)
Apply a symmetric orthographic projection transformation for a left-handed coordinate system using OpenGL's NDC z range of[-1..+1]
to this matrix and store the result indest
.This method is equivalent to calling
orthoLH()
withleft=-width/2
,right=+width/2
,bottom=-height/2
andtop=+height/2
.If
M
isthis
matrix andO
the orthographic projection matrix, then the new matrix will beM * O
. So when transforming a vectorv
with the new matrix by usingM * O * v
, the orthographic projection transformation will be applied first!Reference: http://www.songho.ca
- Parameters:
width
- the distance between the right and left frustum edgesheight
- the distance between the top and bottom frustum edgeszNear
- near clipping plane distancezFar
- far clipping plane distancedest
- will hold the result- Returns:
- dest
-
ortho2D
Matrix4x3f ortho2D(float left, float right, float bottom, float top, Matrix4x3f dest)
Apply an orthographic projection transformation for a right-handed coordinate system to this matrix and store the result indest
.This method is equivalent to calling
ortho()
withzNear=-1
andzFar=+1
.If
M
isthis
matrix andO
the orthographic projection matrix, then the new matrix will beM * O
. So when transforming a vectorv
with the new matrix by usingM * O * v
, the orthographic projection transformation will be applied first!Reference: http://www.songho.ca
- Parameters:
left
- the distance from the center to the left frustum edgeright
- the distance from the center to the right frustum edgebottom
- the distance from the center to the bottom frustum edgetop
- the distance from the center to the top frustum edgedest
- will hold the result- Returns:
- dest
- See Also:
ortho(float, float, float, float, float, float, Matrix4x3f)
-
ortho2DLH
Matrix4x3f ortho2DLH(float left, float right, float bottom, float top, Matrix4x3f dest)
Apply an orthographic projection transformation for a left-handed coordinate system to this matrix and store the result indest
.This method is equivalent to calling
orthoLH()
withzNear=-1
andzFar=+1
.If
M
isthis
matrix andO
the orthographic projection matrix, then the new matrix will beM * O
. So when transforming a vectorv
with the new matrix by usingM * O * v
, the orthographic projection transformation will be applied first!Reference: http://www.songho.ca
- Parameters:
left
- the distance from the center to the left frustum edgeright
- the distance from the center to the right frustum edgebottom
- the distance from the center to the bottom frustum edgetop
- the distance from the center to the top frustum edgedest
- will hold the result- Returns:
- dest
- See Also:
orthoLH(float, float, float, float, float, float, Matrix4x3f)
-
lookAlong
Matrix4x3f lookAlong(Vector3fc dir, Vector3fc up, Matrix4x3f dest)
Apply a rotation transformation to this matrix to make-z
point alongdir
and store the result indest
.If
M
isthis
matrix andL
the lookalong rotation matrix, then the new matrix will beM * L
. So when transforming a vectorv
with the new matrix by usingM * L * v
, the lookalong rotation transformation will be applied first!This is equivalent to calling
lookAt
witheye = (0, 0, 0)
andcenter = dir
.- Parameters:
dir
- the direction in space to look alongup
- the direction of 'up'dest
- will hold the result- Returns:
- dest
- See Also:
lookAlong(float, float, float, float, float, float, Matrix4x3f)
,lookAt(Vector3fc, Vector3fc, Vector3fc, Matrix4x3f)
-
lookAlong
Matrix4x3f lookAlong(float dirX, float dirY, float dirZ, float upX, float upY, float upZ, Matrix4x3f dest)
Apply a rotation transformation to this matrix to make-z
point alongdir
and store the result indest
.If
M
isthis
matrix andL
the lookalong rotation matrix, then the new matrix will beM * L
. So when transforming a vectorv
with the new matrix by usingM * L * v
, the lookalong rotation transformation will be applied first!This is equivalent to calling
lookAt()
witheye = (0, 0, 0)
andcenter = dir
.- Parameters:
dirX
- the x-coordinate of the direction to look alongdirY
- the y-coordinate of the direction to look alongdirZ
- the z-coordinate of the direction to look alongupX
- the x-coordinate of the up vectorupY
- the y-coordinate of the up vectorupZ
- the z-coordinate of the up vectordest
- will hold the result- Returns:
- dest
- See Also:
lookAt(float, float, float, float, float, float, float, float, float, Matrix4x3f)
-
lookAt
Matrix4x3f lookAt(Vector3fc eye, Vector3fc center, Vector3fc up, Matrix4x3f dest)
Apply a "lookat" transformation to this matrix for a right-handed coordinate system, that aligns-z
withcenter - eye
and store the result indest
.If
M
isthis
matrix andL
the lookat matrix, then the new matrix will beM * L
. So when transforming a vectorv
with the new matrix by usingM * L * v
, the lookat transformation will be applied first!- Parameters:
eye
- the position of the cameracenter
- the point in space to look atup
- the direction of 'up'dest
- will hold the result- Returns:
- dest
- See Also:
lookAt(float, float, float, float, float, float, float, float, float, Matrix4x3f)
-
lookAt
Matrix4x3f lookAt(float eyeX, float eyeY, float eyeZ, float centerX, float centerY, float centerZ, float upX, float upY, float upZ, Matrix4x3f dest)
Apply a "lookat" transformation to this matrix for a right-handed coordinate system, that aligns-z
withcenter - eye
and store the result indest
.If
M
isthis
matrix andL
the lookat matrix, then the new matrix will beM * L
. So when transforming a vectorv
with the new matrix by usingM * L * v
, the lookat transformation will be applied first!- Parameters:
eyeX
- the x-coordinate of the eye/camera locationeyeY
- the y-coordinate of the eye/camera locationeyeZ
- the z-coordinate of the eye/camera locationcenterX
- the x-coordinate of the point to look atcenterY
- the y-coordinate of the point to look atcenterZ
- the z-coordinate of the point to look atupX
- the x-coordinate of the up vectorupY
- the y-coordinate of the up vectorupZ
- the z-coordinate of the up vectordest
- will hold the result- Returns:
- dest
- See Also:
lookAt(Vector3fc, Vector3fc, Vector3fc, Matrix4x3f)
-
lookAtLH
Matrix4x3f lookAtLH(Vector3fc eye, Vector3fc center, Vector3fc up, Matrix4x3f dest)
Apply a "lookat" transformation to this matrix for a left-handed coordinate system, that aligns+z
withcenter - eye
and store the result indest
.If
M
isthis
matrix andL
the lookat matrix, then the new matrix will beM * L
. So when transforming a vectorv
with the new matrix by usingM * L * v
, the lookat transformation will be applied first!- Parameters:
eye
- the position of the cameracenter
- the point in space to look atup
- the direction of 'up'dest
- will hold the result- Returns:
- dest
- See Also:
lookAtLH(float, float, float, float, float, float, float, float, float, Matrix4x3f)
-
lookAtLH
Matrix4x3f lookAtLH(float eyeX, float eyeY, float eyeZ, float centerX, float centerY, float centerZ, float upX, float upY, float upZ, Matrix4x3f dest)
Apply a "lookat" transformation to this matrix for a left-handed coordinate system, that aligns+z
withcenter - eye
and store the result indest
.If
M
isthis
matrix andL
the lookat matrix, then the new matrix will beM * L
. So when transforming a vectorv
with the new matrix by usingM * L * v
, the lookat transformation will be applied first!- Parameters:
eyeX
- the x-coordinate of the eye/camera locationeyeY
- the y-coordinate of the eye/camera locationeyeZ
- the z-coordinate of the eye/camera locationcenterX
- the x-coordinate of the point to look atcenterY
- the y-coordinate of the point to look atcenterZ
- the z-coordinate of the point to look atupX
- the x-coordinate of the up vectorupY
- the y-coordinate of the up vectorupZ
- the z-coordinate of the up vectordest
- will hold the result- Returns:
- dest
- See Also:
lookAtLH(Vector3fc, Vector3fc, Vector3fc, Matrix4x3f)
-
rotate
Matrix4x3f rotate(Quaternionfc quat, Matrix4x3f dest)
Apply the rotation - and possibly scaling - transformation of the givenQuaternionfc
to this matrix and store the result indest
.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
M
isthis
matrix andQ
the rotation matrix obtained from the given quaternion, then the new matrix will beM * Q
. So when transforming a vectorv
with the new matrix by usingM * Q * v
, the quaternion rotation will be applied first!Reference: http://en.wikipedia.org
- Parameters:
quat
- theQuaternionfc
dest
- will hold the result- Returns:
- dest
-
rotateTranslation
Matrix4x3f rotateTranslation(Quaternionfc quat, Matrix4x3f dest)
Apply the rotation - and possibly scaling - transformation of the givenQuaternionfc
to this matrix, which is assumed to only contain a translation, and store the result indest
.This method assumes
this
to only contain a translation.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
M
isthis
matrix andQ
the rotation matrix obtained from the given quaternion, then the new matrix will beM * Q
. So when transforming a vectorv
with the new matrix by usingM * Q * v
, the quaternion rotation will be applied first!Reference: http://en.wikipedia.org
- Parameters:
quat
- theQuaternionfc
dest
- will hold the result- Returns:
- dest
-
rotateLocal
Matrix4x3f rotateLocal(Quaternionfc quat, Matrix4x3f dest)
Pre-multiply the rotation - and possibly scaling - transformation of the givenQuaternionfc
to this matrix and store the result indest
.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
M
isthis
matrix andQ
the rotation matrix obtained from the given quaternion, then the new matrix will beQ * M
. So when transforming a vectorv
with the new matrix by usingQ * M * v
, the quaternion rotation will be applied last!Reference: http://en.wikipedia.org
- Parameters:
quat
- theQuaternionfc
dest
- will hold the result- Returns:
- dest
-
rotate
Matrix4x3f rotate(AxisAngle4f axisAngle, Matrix4x3f dest)
Apply a rotation transformation, rotating about the givenAxisAngle4f
and store the result indest
.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
M
isthis
matrix andA
the rotation matrix obtained from the givenAxisAngle4f
, then the new matrix will beM * A
. So when transforming a vectorv
with the new matrix by usingM * A * v
, theAxisAngle4f
rotation will be applied first!Reference: http://en.wikipedia.org
- Parameters:
axisAngle
- theAxisAngle4f
(needs to benormalized
)dest
- will hold the result- Returns:
- dest
- See Also:
rotate(float, float, float, float, Matrix4x3f)
-
rotate
Matrix4x3f rotate(float angle, Vector3fc axis, Matrix4x3f dest)
Apply a rotation transformation, rotating the given radians about the specified axis and store the result indest
.The axis described by the
axis
vector needs to be a unit vector.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
M
isthis
matrix andA
the rotation matrix obtained from the given axis-angle, then the new matrix will beM * A
. So when transforming a vectorv
with the new matrix by usingM * A * v
, the axis-angle rotation will be applied first!Reference: http://en.wikipedia.org
- Parameters:
angle
- the angle in radiansaxis
- the rotation axis (needs to benormalized
)dest
- will hold the result- Returns:
- dest
- See Also:
rotate(float, float, float, float, Matrix4x3f)
-
reflect
Matrix4x3f reflect(float a, float b, float c, float d, Matrix4x3f dest)
Apply a mirror/reflection transformation to this matrix that reflects about the given plane specified via the equationx*a + y*b + z*c + d = 0
and store the result indest
.The vector
(a, b, c)
must be a unit vector.If
M
isthis
matrix andR
the reflection matrix, then the new matrix will beM * R
. So when transforming a vectorv
with the new matrix by usingM * R * v
, the reflection will be applied first!Reference: msdn.microsoft.com
- Parameters:
a
- the x factor in the plane equationb
- the y factor in the plane equationc
- the z factor in the plane equationd
- the constant in the plane equationdest
- will hold the result- Returns:
- dest
-
reflect
Matrix4x3f reflect(float nx, float ny, float nz, float px, float py, float pz, Matrix4x3f dest)
Apply a mirror/reflection transformation to this matrix that reflects about the given plane specified via the plane normal and a point on the plane, and store the result indest
.If
M
isthis
matrix andR
the reflection matrix, then the new matrix will beM * R
. So when transforming a vectorv
with the new matrix by usingM * R * v
, the reflection will be applied first!- Parameters:
nx
- the x-coordinate of the plane normalny
- the y-coordinate of the plane normalnz
- the z-coordinate of the plane normalpx
- the x-coordinate of a point on the planepy
- the y-coordinate of a point on the planepz
- the z-coordinate of a point on the planedest
- will hold the result- Returns:
- dest
-
reflect
Matrix4x3f reflect(Quaternionfc orientation, Vector3fc point, Matrix4x3f dest)
Apply a mirror/reflection transformation to this matrix that reflects about a plane specified via the plane orientation and a point on the plane, and store the result indest
.This method can be used to build a reflection transformation based on the orientation of a mirror object in the scene. It is assumed that the default mirror plane's normal is
(0, 0, 1)
. So, if the givenQuaternionfc
is the identity (does not apply any additional rotation), the reflection plane will bez=0
, offset by the givenpoint
.If
M
isthis
matrix andR
the reflection matrix, then the new matrix will beM * R
. So when transforming a vectorv
with the new matrix by usingM * R * v
, the reflection will be applied first!- Parameters:
orientation
- the plane orientation relative to an implied normal vector of(0, 0, 1)
point
- a point on the planedest
- will hold the result- Returns:
- dest
-
reflect
Matrix4x3f reflect(Vector3fc normal, Vector3fc point, Matrix4x3f dest)
Apply a mirror/reflection transformation to this matrix that reflects about the given plane specified via the plane normal and a point on the plane, and store the result indest
.If
M
isthis
matrix andR
the reflection matrix, then the new matrix will beM * R
. So when transforming a vectorv
with the new matrix by usingM * R * v
, the reflection will be applied first!- Parameters:
normal
- the plane normalpoint
- a point on the planedest
- will hold the result- Returns:
- dest
-
getRow
Vector4f getRow(int row, Vector4f dest) throws java.lang.IndexOutOfBoundsException
Get the row at the givenrow
index, starting with0
.- Parameters:
row
- the row index in[0..2]
dest
- will hold the row components- Returns:
- the passed in destination
- Throws:
java.lang.IndexOutOfBoundsException
- ifrow
is not in[0..2]
-
getColumn
Vector3f getColumn(int column, Vector3f dest) throws java.lang.IndexOutOfBoundsException
Get the column at the givencolumn
index, starting with0
.- Parameters:
column
- the column index in[0..2]
dest
- will hold the column components- Returns:
- the passed in destination
- Throws:
java.lang.IndexOutOfBoundsException
- ifcolumn
is not in[0..2]
-
normal
Matrix4x3f normal(Matrix4x3f dest)
Compute a normal matrix from the left 3x3 submatrix ofthis
and store it into the left 3x3 submatrix ofdest
. All other values ofdest
will be set to identity.The normal matrix of
m
is the transpose of the inverse ofm
.- Parameters:
dest
- will hold the result- Returns:
- dest
-
normal
Matrix3f normal(Matrix3f dest)
Compute a normal matrix from the left 3x3 submatrix ofthis
and store it intodest
.The normal matrix of
m
is the transpose of the inverse ofm
.- Parameters:
dest
- will hold the result- Returns:
- dest
-
cofactor3x3
Matrix3f cofactor3x3(Matrix3f dest)
Compute the cofactor matrix of the left 3x3 submatrix ofthis
and store it intodest
.The cofactor matrix can be used instead of
normal(Matrix3f)
to transform normals when the orientation of the normals with respect to the surface should be preserved.- Parameters:
dest
- will hold the result- Returns:
- dest
-
cofactor3x3
Matrix4x3f cofactor3x3(Matrix4x3f dest)
Compute the cofactor matrix of the left 3x3 submatrix ofthis
and store it intodest
. All other values ofdest
will be set to identity.The cofactor matrix can be used instead of
normal(Matrix4x3f)
to transform normals when the orientation of the normals with respect to the surface should be preserved.- Parameters:
dest
- will hold the result- Returns:
- dest
-
normalize3x3
Matrix4x3f normalize3x3(Matrix4x3f dest)
Normalize the left 3x3 submatrix of this matrix and store the result indest
.The resulting matrix will map unit vectors to unit vectors, though a pair of orthogonal input unit vectors need not be mapped to a pair of orthogonal output vectors if the original matrix was not orthogonal itself (i.e. had skewing).
- Parameters:
dest
- will hold the result- Returns:
- dest
-
normalize3x3
Matrix3f normalize3x3(Matrix3f dest)
Normalize the left 3x3 submatrix of this matrix and store the result indest
.The resulting matrix will map unit vectors to unit vectors, though a pair of orthogonal input unit vectors need not be mapped to a pair of orthogonal output vectors if the original matrix was not orthogonal itself (i.e. had skewing).
- Parameters:
dest
- will hold the result- Returns:
- dest
-
frustumPlane
Vector4f frustumPlane(int which, Vector4f dest)
Calculate a frustum plane ofthis
matrix, which can be a projection matrix or a combined modelview-projection matrix, and store the result in the givendest
.Generally, this method computes the frustum plane in the local frame of any coordinate system that existed before
this
transformation was applied to it in order to yield homogeneous clipping space.The plane normal, which is
(a, b, c)
, is directed "inwards" of the frustum. Any plane/point test usinga*x + b*y + c*z + d
therefore will yield a result greater than zero if the point is within the frustum (i.e. at the positive side of the frustum plane).Reference: Fast Extraction of Viewing Frustum Planes from the World-View-Projection Matrix
-
positiveZ
Vector3f positiveZ(Vector3f dir)
Obtain the direction of+Z
before the transformation represented bythis
matrix is applied.This method uses the rotation component of the left 3x3 submatrix to obtain the direction that is transformed to
+Z
bythis
matrix.This method is equivalent to the following code:
Matrix4x3f inv = new Matrix4x3f(this).invert(); inv.transformDirection(dir.set(0, 0, 1)).normalize();
Ifthis
is already an orthogonal matrix, then consider usingnormalizedPositiveZ(Vector3f)
instead.Reference: http://www.euclideanspace.com
- Parameters:
dir
- will hold the direction of+Z
- Returns:
- dir
-
normalizedPositiveZ
Vector3f normalizedPositiveZ(Vector3f dir)
Obtain the direction of+Z
before the transformation represented bythis
orthogonal matrix is applied. This method only produces correct results ifthis
is an orthogonal matrix.This method uses the rotation component of the left 3x3 submatrix to obtain the direction that is transformed to
+Z
bythis
matrix.This method is equivalent to the following code:
Matrix4x3f inv = new Matrix4x3f(this).transpose(); inv.transformDirection(dir.set(0, 0, 1)).normalize();
Reference: http://www.euclideanspace.com
- Parameters:
dir
- will hold the direction of+Z
- Returns:
- dir
-
positiveX
Vector3f positiveX(Vector3f dir)
Obtain the direction of+X
before the transformation represented bythis
matrix is applied.This method uses the rotation component of the left 3x3 submatrix to obtain the direction that is transformed to
+X
bythis
matrix.This method is equivalent to the following code:
Matrix4x3f inv = new Matrix4x3f(this).invert(); inv.transformDirection(dir.set(1, 0, 0)).normalize();
Ifthis
is already an orthogonal matrix, then consider usingnormalizedPositiveX(Vector3f)
instead.Reference: http://www.euclideanspace.com
- Parameters:
dir
- will hold the direction of+X
- Returns:
- dir
-
normalizedPositiveX
Vector3f normalizedPositiveX(Vector3f dir)
Obtain the direction of+X
before the transformation represented bythis
orthogonal matrix is applied. This method only produces correct results ifthis
is an orthogonal matrix.This method uses the rotation component of the left 3x3 submatrix to obtain the direction that is transformed to
+X
bythis
matrix.This method is equivalent to the following code:
Matrix4x3f inv = new Matrix4x3f(this).transpose(); inv.transformDirection(dir.set(1, 0, 0)).normalize();
Reference: http://www.euclideanspace.com
- Parameters:
dir
- will hold the direction of+X
- Returns:
- dir
-
positiveY
Vector3f positiveY(Vector3f dir)
Obtain the direction of+Y
before the transformation represented bythis
matrix is applied.This method uses the rotation component of the left 3x3 submatrix to obtain the direction that is transformed to
+Y
bythis
matrix.This method is equivalent to the following code:
Matrix4x3f inv = new Matrix4x3f(this).invert(); inv.transformDirection(dir.set(0, 1, 0)).normalize();
Ifthis
is already an orthogonal matrix, then consider usingnormalizedPositiveY(Vector3f)
instead.Reference: http://www.euclideanspace.com
- Parameters:
dir
- will hold the direction of+Y
- Returns:
- dir
-
normalizedPositiveY
Vector3f normalizedPositiveY(Vector3f dir)
Obtain the direction of+Y
before the transformation represented bythis
orthogonal matrix is applied. This method only produces correct results ifthis
is an orthogonal matrix.This method uses the rotation component of the left 3x3 submatrix to obtain the direction that is transformed to
+Y
bythis
matrix.This method is equivalent to the following code:
Matrix4x3f inv = new Matrix4x3f(this).transpose(); inv.transformDirection(dir.set(0, 1, 0)).normalize();
Reference: http://www.euclideanspace.com
- Parameters:
dir
- will hold the direction of+Y
- Returns:
- dir
-
origin
Vector3f origin(Vector3f origin)
Obtain the position that gets transformed to the origin bythis
matrix. This can be used to get the position of the "camera" from a given view transformation matrix.This method is equivalent to the following code:
Matrix4x3f inv = new Matrix4x3f(this).invert(); inv.transformPosition(origin.set(0, 0, 0));
- Parameters:
origin
- will hold the position transformed to the origin- Returns:
- origin
-
shadow
Matrix4x3f shadow(Vector4fc light, float a, float b, float c, float d, Matrix4x3f dest)
Apply a projection transformation to this matrix that projects onto the plane specified via the general plane equationx*a + y*b + z*c + d = 0
as if casting a shadow from a given light position/directionlight
and store the result indest
.If
light.w
is0.0
the light is being treated as a directional light; if it is1.0
it is a point light.If
M
isthis
matrix andS
the shadow matrix, then the new matrix will beM * S
. So when transforming a vectorv
with the new matrix by usingM * S * v
, the shadow projection will be applied first!Reference: ftp.sgi.com
- Parameters:
light
- the light's vectora
- the x factor in the plane equationb
- the y factor in the plane equationc
- the z factor in the plane equationd
- the constant in the plane equationdest
- will hold the result- Returns:
- dest
-
shadow
Matrix4x3f shadow(float lightX, float lightY, float lightZ, float lightW, float a, float b, float c, float d, Matrix4x3f dest)
Apply a projection transformation to this matrix that projects onto the plane specified via the general plane equationx*a + y*b + z*c + d = 0
as if casting a shadow from a given light position/direction(lightX, lightY, lightZ, lightW)
and store the result indest
.If
lightW
is0.0
the light is being treated as a directional light; if it is1.0
it is a point light.If
M
isthis
matrix andS
the shadow matrix, then the new matrix will beM * S
. So when transforming a vectorv
with the new matrix by usingM * S * v
, the shadow projection will be applied first!Reference: ftp.sgi.com
- Parameters:
lightX
- the x-component of the light's vectorlightY
- the y-component of the light's vectorlightZ
- the z-component of the light's vectorlightW
- the w-component of the light's vectora
- the x factor in the plane equationb
- the y factor in the plane equationc
- the z factor in the plane equationd
- the constant in the plane equationdest
- will hold the result- Returns:
- dest
-
shadow
Matrix4x3f shadow(Vector4fc light, Matrix4x3fc planeTransform, Matrix4x3f dest)
Apply a projection transformation to this matrix that projects onto the plane with the general plane equationy = 0
as if casting a shadow from a given light position/directionlight
and store the result indest
.Before the shadow projection is applied, the plane is transformed via the specified
planeTransformation
.If
light.w
is0.0
the light is being treated as a directional light; if it is1.0
it is a point light.If
M
isthis
matrix andS
the shadow matrix, then the new matrix will beM * S
. So when transforming a vectorv
with the new matrix by usingM * S * v
, the shadow projection will be applied first!- Parameters:
light
- the light's vectorplaneTransform
- the transformation to transform the implied planey = 0
before applying the projectiondest
- will hold the result- Returns:
- dest
-
shadow
Matrix4x3f shadow(float lightX, float lightY, float lightZ, float lightW, Matrix4x3fc planeTransform, Matrix4x3f dest)
Apply a projection transformation to this matrix that projects onto the plane with the general plane equationy = 0
as if casting a shadow from a given light position/direction(lightX, lightY, lightZ, lightW)
and store the result indest
.Before the shadow projection is applied, the plane is transformed via the specified
planeTransformation
.If
lightW
is0.0
the light is being treated as a directional light; if it is1.0
it is a point light.If
M
isthis
matrix andS
the shadow matrix, then the new matrix will beM * S
. So when transforming a vectorv
with the new matrix by usingM * S * v
, the shadow projection will be applied first!- Parameters:
lightX
- the x-component of the light vectorlightY
- the y-component of the light vectorlightZ
- the z-component of the light vectorlightW
- the w-component of the light vectorplaneTransform
- the transformation to transform the implied planey = 0
before applying the projectiondest
- will hold the result- Returns:
- dest
-
pick
Matrix4x3f pick(float x, float y, float width, float height, int[] viewport, Matrix4x3f dest)
Apply a picking transformation to this matrix using the given window coordinates(x, y)
as the pick center and the given(width, height)
as the size of the picking region in window coordinates, and store the result indest
.- Parameters:
x
- the x coordinate of the picking region center in window coordinatesy
- the y coordinate of the picking region center in window coordinateswidth
- the width of the picking region in window coordinatesheight
- the height of the picking region in window coordinatesviewport
- the viewport described by[x, y, width, height]
dest
- the destination matrix, which will hold the result- Returns:
- dest
-
arcball
Matrix4x3f arcball(float radius, float centerX, float centerY, float centerZ, float angleX, float angleY, Matrix4x3f dest)
Apply an arcball view transformation to this matrix with the givenradius
and center(centerX, centerY, centerZ)
position of the arcball and the specified X and Y rotation angles, and store the result indest
.This method is equivalent to calling:
translate(0, 0, -radius, dest).rotateX(angleX).rotateY(angleY).translate(-centerX, -centerY, -centerZ)
- Parameters:
radius
- the arcball radiuscenterX
- the x coordinate of the center position of the arcballcenterY
- the y coordinate of the center position of the arcballcenterZ
- the z coordinate of the center position of the arcballangleX
- the rotation angle around the X axis in radiansangleY
- the rotation angle around the Y axis in radiansdest
- will hold the result- Returns:
- dest
-
arcball
Matrix4x3f arcball(float radius, Vector3fc center, float angleX, float angleY, Matrix4x3f dest)
Apply an arcball view transformation to this matrix with the givenradius
andcenter
position of the arcball and the specified X and Y rotation angles, and store the result indest
.This method is equivalent to calling:
translate(0, 0, -radius).rotateX(angleX).rotateY(angleY).translate(-center.x, -center.y, -center.z)
- Parameters:
radius
- the arcball radiuscenter
- the center position of the arcballangleX
- the rotation angle around the X axis in radiansangleY
- the rotation angle around the Y axis in radiansdest
- will hold the result- Returns:
- dest
-
transformAab
Matrix4x3f transformAab(float minX, float minY, float minZ, float maxX, float maxY, float maxZ, Vector3f outMin, Vector3f outMax)
Transform the axis-aligned box given as the minimum corner(minX, minY, minZ)
and maximum corner(maxX, maxY, maxZ)
bythis
matrix and compute the axis-aligned box of the result whose minimum corner is stored inoutMin
and maximum corner stored inoutMax
.Reference: http://dev.theomader.com
- Parameters:
minX
- the x coordinate of the minimum corner of the axis-aligned boxminY
- the y coordinate of the minimum corner of the axis-aligned boxminZ
- the z coordinate of the minimum corner of the axis-aligned boxmaxX
- the x coordinate of the maximum corner of the axis-aligned boxmaxY
- the y coordinate of the maximum corner of the axis-aligned boxmaxZ
- the y coordinate of the maximum corner of the axis-aligned boxoutMin
- will hold the minimum corner of the resulting axis-aligned boxoutMax
- will hold the maximum corner of the resulting axis-aligned box- Returns:
- this
-
transformAab
Matrix4x3f transformAab(Vector3fc min, Vector3fc max, Vector3f outMin, Vector3f outMax)
Transform the axis-aligned box given as the minimum cornermin
and maximum cornermax
bythis
matrix and compute the axis-aligned box of the result whose minimum corner is stored inoutMin
and maximum corner stored inoutMax
.- Parameters:
min
- the minimum corner of the axis-aligned boxmax
- the maximum corner of the axis-aligned boxoutMin
- will hold the minimum corner of the resulting axis-aligned boxoutMax
- will hold the maximum corner of the resulting axis-aligned box- Returns:
- this
-
lerp
Matrix4x3f lerp(Matrix4x3fc other, float t, Matrix4x3f dest)
Linearly interpolatethis
andother
using the given interpolation factort
and store the result indest
.If
t
is0.0
then the result isthis
. If the interpolation factor is1.0
then the result isother
.- Parameters:
other
- the other matrixt
- the interpolation factor between 0.0 and 1.0dest
- will hold the result- Returns:
- dest
-
rotateTowards
Matrix4x3f rotateTowards(Vector3fc dir, Vector3fc up, Matrix4x3f dest)
Apply a model transformation to this matrix for a right-handed coordinate system, that aligns the local+Z
axis withdir
and store the result indest
.If
M
isthis
matrix andL
the lookat matrix, then the new matrix will beM * L
. So when transforming a vectorv
with the new matrix by usingM * L * v
, the lookat transformation will be applied first!This method is equivalent to calling:
mul(new Matrix4x3f().lookAt(new Vector3f(), new Vector3f(dir).negate(), up).invert(), dest)
- Parameters:
dir
- the direction to rotate towardsup
- the up vectordest
- will hold the result- Returns:
- dest
- See Also:
rotateTowards(float, float, float, float, float, float, Matrix4x3f)
-
rotateTowards
Matrix4x3f rotateTowards(float dirX, float dirY, float dirZ, float upX, float upY, float upZ, Matrix4x3f dest)
Apply a model transformation to this matrix for a right-handed coordinate system, that aligns the local+Z
axis with(dirX, dirY, dirZ)
and store the result indest
.If
M
isthis
matrix andL
the lookat matrix, then the new matrix will beM * L
. So when transforming a vectorv
with the new matrix by usingM * L * v
, the lookat transformation will be applied first!This method is equivalent to calling:
mul(new Matrix4x3f().lookAt(0, 0, 0, -dirX, -dirY, -dirZ, upX, upY, upZ).invert(), dest)
- Parameters:
dirX
- the x-coordinate of the direction to rotate towardsdirY
- the y-coordinate of the direction to rotate towardsdirZ
- the z-coordinate of the direction to rotate towardsupX
- the x-coordinate of the up vectorupY
- the y-coordinate of the up vectorupZ
- the z-coordinate of the up vectordest
- will hold the result- Returns:
- dest
- See Also:
rotateTowards(Vector3fc, Vector3fc, Matrix4x3f)
-
getEulerAnglesXYZ
Vector3f getEulerAnglesXYZ(Vector3f dest)
Extract the Euler angles from the rotation represented by the left 3x3 submatrix ofthis
and store the extracted Euler angles indest
.This method assumes that the left 3x3 submatrix of
this
only represents a rotation without scaling.The Euler angles are always returned as the angle around X in the
Vector3f.x
field, the angle around Y in theVector3f.y
field and the angle around Z in theVector3f.z
field of the suppliedVector3f
instance.Note that the returned Euler angles must be applied in the order
X * Y * Z
to obtain the identical matrix. This means that callingrotateXYZ(float, float, float, Matrix4x3f)
using the obtained Euler angles will yield the same rotation as the original matrix from which the Euler angles were obtained, so in the below code the matrixm2
should be identical tom
(disregarding possible floating-point inaccuracies).Matrix4x3f m = ...; // <- matrix only representing rotation Matrix4x3f n = new Matrix4x3f(); n.rotateXYZ(m.getEulerAnglesXYZ(new Vector3f()));
Reference: http://nghiaho.com/
- Parameters:
dest
- will hold the extracted Euler angles- Returns:
- dest
-
getEulerAnglesZYX
Vector3f getEulerAnglesZYX(Vector3f dest)
Extract the Euler angles from the rotation represented by the left 3x3 submatrix ofthis
and store the extracted Euler angles indest
.This method assumes that the left 3x3 submatrix of
this
only represents a rotation without scaling.The Euler angles are always returned as the angle around X in the
Vector3f.x
field, the angle around Y in theVector3f.y
field and the angle around Z in theVector3f.z
field of the suppliedVector3f
instance.Note that the returned Euler angles must be applied in the order
Z * Y * X
to obtain the identical matrix. This means that callingrotateZYX(float, float, float, Matrix4x3f)
using the obtained Euler angles will yield the same rotation as the original matrix from which the Euler angles were obtained, so in the below code the matrixm2
should be identical tom
(disregarding possible floating-point inaccuracies).Matrix4x3f m = ...; // <- matrix only representing rotation Matrix4x3f n = new Matrix4x3f(); n.rotateZYX(m.getEulerAnglesZYX(new Vector3f()));
Reference: http://nghiaho.com/
- Parameters:
dest
- will hold the extracted Euler angles- Returns:
- dest
-
obliqueZ
Matrix4x3f obliqueZ(float a, float b, Matrix4x3f dest)
Apply an oblique projection transformation to this matrix with the given values fora
andb
and store the result indest
.If
M
isthis
matrix andO
the oblique transformation matrix, then the new matrix will beM * O
. So when transforming a vectorv
with the new matrix by usingM * O * v
, the oblique transformation will be applied first!The oblique transformation is defined as:
x' = x + a*z y' = y + a*z z' = z
or in matrix form:1 0 a 0 0 1 b 0 0 0 1 0
- Parameters:
a
- the value for the z factor that applies to xb
- the value for the z factor that applies to ydest
- will hold the result- Returns:
- dest
-
withLookAtUp
Matrix4x3f withLookAtUp(Vector3fc up, Matrix4x3f dest)
Apply a transformation to this matrix to ensure that the local Y axis (as obtained bypositiveY(Vector3f)
) will be coplanar to the plane spanned by the local Z axis (as obtained bypositiveZ(Vector3f)
) and the given vectorup
, and store the result indest
.This effectively ensures that the resulting matrix will be equal to the one obtained from calling
Matrix4f.setLookAt(Vector3fc, Vector3fc, Vector3fc)
with the current local origin of this matrix (as obtained byorigin(Vector3f)
), the sum of this position and the negated local Z axis as well as the given vectorup
.- Parameters:
up
- the up vectordest
- will hold the result- Returns:
- this
-
withLookAtUp
Matrix4x3f withLookAtUp(float upX, float upY, float upZ, Matrix4x3f dest)
Apply a transformation to this matrix to ensure that the local Y axis (as obtained bypositiveY(Vector3f)
) will be coplanar to the plane spanned by the local Z axis (as obtained bypositiveZ(Vector3f)
) and the given vector(upX, upY, upZ)
, and store the result indest
.This effectively ensures that the resulting matrix will be equal to the one obtained from calling
Matrix4f.setLookAt(float, float, float, float, float, float, float, float, float)
called with the current local origin of this matrix (as obtained byorigin(Vector3f)
), the sum of this position and the negated local Z axis as well as the given vector(upX, upY, upZ)
.- Parameters:
upX
- the x coordinate of the up vectorupY
- the y coordinate of the up vectorupZ
- the z coordinate of the up vectordest
- will hold the result- Returns:
- this
-
mapXZY
Matrix4x3f mapXZY(Matrix4x3f dest)
Multiplythis
by the matrix1 0 0 0 0 0 1 0 0 1 0 0
and store the result indest
.- Parameters:
dest
- will hold the result- Returns:
- dest
-
mapXZnY
Matrix4x3f mapXZnY(Matrix4x3f dest)
Multiplythis
by the matrix1 0 0 0 0 0 -1 0 0 1 0 0
and store the result indest
.- Parameters:
dest
- will hold the result- Returns:
- dest
-
mapXnYnZ
Matrix4x3f mapXnYnZ(Matrix4x3f dest)
Multiplythis
by the matrix1 0 0 0 0 -1 0 0 0 0 -1 0
and store the result indest
.- Parameters:
dest
- will hold the result- Returns:
- dest
-
mapXnZY
Matrix4x3f mapXnZY(Matrix4x3f dest)
Multiplythis
by the matrix1 0 0 0 0 0 1 0 0 -1 0 0
and store the result indest
.- Parameters:
dest
- will hold the result- Returns:
- dest
-
mapXnZnY
Matrix4x3f mapXnZnY(Matrix4x3f dest)
Multiplythis
by the matrix1 0 0 0 0 0 -1 0 0 -1 0 0
and store the result indest
.- Parameters:
dest
- will hold the result- Returns:
- dest
-
mapYXZ
Matrix4x3f mapYXZ(Matrix4x3f dest)
Multiplythis
by the matrix0 1 0 0 1 0 0 0 0 0 1 0
and store the result indest
.- Parameters:
dest
- will hold the result- Returns:
- dest
-
mapYXnZ
Matrix4x3f mapYXnZ(Matrix4x3f dest)
Multiplythis
by the matrix0 1 0 0 1 0 0 0 0 0 -1 0
and store the result indest
.- Parameters:
dest
- will hold the result- Returns:
- dest
-
mapYZX
Matrix4x3f mapYZX(Matrix4x3f dest)
Multiplythis
by the matrix0 0 1 0 1 0 0 0 0 1 0 0
and store the result indest
.- Parameters:
dest
- will hold the result- Returns:
- dest
-
mapYZnX
Matrix4x3f mapYZnX(Matrix4x3f dest)
Multiplythis
by the matrix0 0 -1 0 1 0 0 0 0 1 0 0
and store the result indest
.- Parameters:
dest
- will hold the result- Returns:
- dest
-
mapYnXZ
Matrix4x3f mapYnXZ(Matrix4x3f dest)
Multiplythis
by the matrix0 -1 0 0 1 0 0 0 0 0 1 0
and store the result indest
.- Parameters:
dest
- will hold the result- Returns:
- dest
-
mapYnXnZ
Matrix4x3f mapYnXnZ(Matrix4x3f dest)
Multiplythis
by the matrix0 -1 0 0 1 0 0 0 0 0 -1 0
and store the result indest
.- Parameters:
dest
- will hold the result- Returns:
- dest
-
mapYnZX
Matrix4x3f mapYnZX(Matrix4x3f dest)
Multiplythis
by the matrix0 0 1 0 1 0 0 0 0 -1 0 0
and store the result indest
.- Parameters:
dest
- will hold the result- Returns:
- dest
-
mapYnZnX
Matrix4x3f mapYnZnX(Matrix4x3f dest)
Multiplythis
by the matrix0 0 -1 0 1 0 0 0 0 -1 0 0
and store the result indest
.- Parameters:
dest
- will hold the result- Returns:
- dest
-
mapZXY
Matrix4x3f mapZXY(Matrix4x3f dest)
Multiplythis
by the matrix0 1 0 0 0 0 1 0 1 0 0 0
and store the result indest
.- Parameters:
dest
- will hold the result- Returns:
- dest
-
mapZXnY
Matrix4x3f mapZXnY(Matrix4x3f dest)
Multiplythis
by the matrix0 1 0 0 0 0 -1 0 1 0 0 0
and store the result indest
.- Parameters:
dest
- will hold the result- Returns:
- dest
-
mapZYX
Matrix4x3f mapZYX(Matrix4x3f dest)
Multiplythis
by the matrix0 0 1 0 0 1 0 0 1 0 0 0
and store the result indest
.- Parameters:
dest
- will hold the result- Returns:
- dest
-
mapZYnX
Matrix4x3f mapZYnX(Matrix4x3f dest)
Multiplythis
by the matrix0 0 -1 0 0 1 0 0 1 0 0 0
and store the result indest
.- Parameters:
dest
- will hold the result- Returns:
- dest
-
mapZnXY
Matrix4x3f mapZnXY(Matrix4x3f dest)
Multiplythis
by the matrix0 -1 0 0 0 0 1 0 1 0 0 0
and store the result indest
.- Parameters:
dest
- will hold the result- Returns:
- dest
-
mapZnXnY
Matrix4x3f mapZnXnY(Matrix4x3f dest)
Multiplythis
by the matrix0 -1 0 0 0 0 -1 0 1 0 0 0
and store the result indest
.- Parameters:
dest
- will hold the result- Returns:
- dest
-
mapZnYX
Matrix4x3f mapZnYX(Matrix4x3f dest)
Multiplythis
by the matrix0 0 1 0 0 -1 0 0 1 0 0 0
and store the result indest
.- Parameters:
dest
- will hold the result- Returns:
- dest
-
mapZnYnX
Matrix4x3f mapZnYnX(Matrix4x3f dest)
Multiplythis
by the matrix0 0 -1 0 0 -1 0 0 1 0 0 0
and store the result indest
.- Parameters:
dest
- will hold the result- Returns:
- dest
-
mapnXYnZ
Matrix4x3f mapnXYnZ(Matrix4x3f dest)
Multiplythis
by the matrix-1 0 0 0 0 1 0 0 0 0 -1 0
and store the result indest
.- Parameters:
dest
- will hold the result- Returns:
- dest
-
mapnXZY
Matrix4x3f mapnXZY(Matrix4x3f dest)
Multiplythis
by the matrix-1 0 0 0 0 0 1 0 0 1 0 0
and store the result indest
.- Parameters:
dest
- will hold the result- Returns:
- dest
-
mapnXZnY
Matrix4x3f mapnXZnY(Matrix4x3f dest)
Multiplythis
by the matrix-1 0 0 0 0 0 -1 0 0 1 0 0
and store the result indest
.- Parameters:
dest
- will hold the result- Returns:
- dest
-
mapnXnYZ
Matrix4x3f mapnXnYZ(Matrix4x3f dest)
Multiplythis
by the matrix-1 0 0 0 0 -1 0 0 0 0 1 0
and store the result indest
.- Parameters:
dest
- will hold the result- Returns:
- dest
-
mapnXnYnZ
Matrix4x3f mapnXnYnZ(Matrix4x3f dest)
Multiplythis
by the matrix-1 0 0 0 0 -1 0 0 0 0 -1 0
and store the result indest
.- Parameters:
dest
- will hold the result- Returns:
- dest
-
mapnXnZY
Matrix4x3f mapnXnZY(Matrix4x3f dest)
Multiplythis
by the matrix-1 0 0 0 0 0 1 0 0 -1 0 0
and store the result indest
.- Parameters:
dest
- will hold the result- Returns:
- dest
-
mapnXnZnY
Matrix4x3f mapnXnZnY(Matrix4x3f dest)
Multiplythis
by the matrix-1 0 0 0 0 0 -1 0 0 -1 0 0
and store the result indest
.- Parameters:
dest
- will hold the result- Returns:
- dest
-
mapnYXZ
Matrix4x3f mapnYXZ(Matrix4x3f dest)
Multiplythis
by the matrix0 1 0 0 -1 0 0 0 0 0 1 0
and store the result indest
.- Parameters:
dest
- will hold the result- Returns:
- dest
-
mapnYXnZ
Matrix4x3f mapnYXnZ(Matrix4x3f dest)
Multiplythis
by the matrix0 1 0 0 -1 0 0 0 0 0 -1 0
and store the result indest
.- Parameters:
dest
- will hold the result- Returns:
- dest
-
mapnYZX
Matrix4x3f mapnYZX(Matrix4x3f dest)
Multiplythis
by the matrix0 0 1 0 -1 0 0 0 0 1 0 0
and store the result indest
.- Parameters:
dest
- will hold the result- Returns:
- dest
-
mapnYZnX
Matrix4x3f mapnYZnX(Matrix4x3f dest)
Multiplythis
by the matrix0 0 -1 0 -1 0 0 0 0 1 0 0
and store the result indest
.- Parameters:
dest
- will hold the result- Returns:
- dest
-
mapnYnXZ
Matrix4x3f mapnYnXZ(Matrix4x3f dest)
Multiplythis
by the matrix0 -1 0 0 -1 0 0 0 0 0 1 0
and store the result indest
.- Parameters:
dest
- will hold the result- Returns:
- dest
-
mapnYnXnZ
Matrix4x3f mapnYnXnZ(Matrix4x3f dest)
Multiplythis
by the matrix0 -1 0 0 -1 0 0 0 0 0 -1 0
and store the result indest
.- Parameters:
dest
- will hold the result- Returns:
- dest
-
mapnYnZX
Matrix4x3f mapnYnZX(Matrix4x3f dest)
Multiplythis
by the matrix0 0 1 0 -1 0 0 0 0 -1 0 0
and store the result indest
.- Parameters:
dest
- will hold the result- Returns:
- dest
-
mapnYnZnX
Matrix4x3f mapnYnZnX(Matrix4x3f dest)
Multiplythis
by the matrix0 0 -1 0 -1 0 0 0 0 -1 0 0
and store the result indest
.- Parameters:
dest
- will hold the result- Returns:
- dest
-
mapnZXY
Matrix4x3f mapnZXY(Matrix4x3f dest)
Multiplythis
by the matrix0 1 0 0 0 0 1 0 -1 0 0 0
and store the result indest
.- Parameters:
dest
- will hold the result- Returns:
- dest
-
mapnZXnY
Matrix4x3f mapnZXnY(Matrix4x3f dest)
Multiplythis
by the matrix0 1 0 0 0 0 -1 0 -1 0 0 0
and store the result indest
.- Parameters:
dest
- will hold the result- Returns:
- dest
-
mapnZYX
Matrix4x3f mapnZYX(Matrix4x3f dest)
Multiplythis
by the matrix0 0 1 0 0 1 0 0 -1 0 0 0
and store the result indest
.- Parameters:
dest
- will hold the result- Returns:
- dest
-
mapnZYnX
Matrix4x3f mapnZYnX(Matrix4x3f dest)
Multiplythis
by the matrix0 0 -1 0 0 1 0 0 -1 0 0 0
and store the result indest
.- Parameters:
dest
- will hold the result- Returns:
- dest
-
mapnZnXY
Matrix4x3f mapnZnXY(Matrix4x3f dest)
Multiplythis
by the matrix0 -1 0 0 0 0 1 0 -1 0 0 0
and store the result indest
.- Parameters:
dest
- will hold the result- Returns:
- dest
-
mapnZnXnY
Matrix4x3f mapnZnXnY(Matrix4x3f dest)
Multiplythis
by the matrix0 -1 0 0 0 0 -1 0 -1 0 0 0
and store the result indest
.- Parameters:
dest
- will hold the result- Returns:
- dest
-
mapnZnYX
Matrix4x3f mapnZnYX(Matrix4x3f dest)
Multiplythis
by the matrix0 0 1 0 0 -1 0 0 -1 0 0 0
and store the result indest
.- Parameters:
dest
- will hold the result- Returns:
- dest
-
mapnZnYnX
Matrix4x3f mapnZnYnX(Matrix4x3f dest)
Multiplythis
by the matrix0 0 -1 0 0 -1 0 0 -1 0 0 0
and store the result indest
.- Parameters:
dest
- will hold the result- Returns:
- dest
-
negateX
Matrix4x3f negateX(Matrix4x3f dest)
Multiplythis
by the matrix-1 0 0 0 0 1 0 0 0 0 1 0
and store the result indest
.- Parameters:
dest
- will hold the result- Returns:
- dest
-
negateY
Matrix4x3f negateY(Matrix4x3f dest)
Multiplythis
by the matrix1 0 0 0 0 -1 0 0 0 0 1 0
and store the result indest
.- Parameters:
dest
- will hold the result- Returns:
- dest
-
negateZ
Matrix4x3f negateZ(Matrix4x3f dest)
Multiplythis
by the matrix1 0 0 0 0 1 0 0 0 0 -1 0
and store the result indest
.- Parameters:
dest
- will hold the result- Returns:
- dest
-
equals
boolean equals(Matrix4x3fc m, float delta)
Compare the matrix elements ofthis
matrix with the given matrix using the givendelta
and return whether all of them are equal within a maximum difference ofdelta
.Please note that this method is not used by any data structure such as
ArrayList
HashSet
orHashMap
and their operations, such asArrayList.contains(Object)
orHashSet.remove(Object)
, since those data structures only use theObject.equals(Object)
andObject.hashCode()
methods.- Parameters:
m
- the other matrixdelta
- the allowed maximum difference- Returns:
true
whether all of the matrix elements are equal;false
otherwise
-
isFinite
boolean isFinite()
Determine whether all matrix elements are finite floating-point values, that is, they are notNaN
and notinfinity
.- Returns:
true
if all components are finite floating-point values;false
otherwise
-
-