Interface Vector3dc
-
- All Known Implementing Classes:
Vector3d
public interface Vector3dcInterface to a read-only view of a 3-dimensional vector of double-precision floats.- Author:
- Kai Burjack
-
-
Method Summary
All Methods Instance Methods Abstract Methods Modifier and Type Method Description Vector3dabsolute(Vector3d dest)Compute the absolute values of the individual components ofthisand store the result indest.Vector3dadd(double x, double y, double z, Vector3d dest)Increment the components of this vector by the given values and store the result indest.Vector3dadd(Vector3dc v, Vector3d dest)Add the supplied vector to this one and store the result indest.Vector3dadd(Vector3fc v, Vector3d dest)Add the supplied vector to this one and store the result indest.doubleangle(Vector3dc v)Return the angle between this vector and the supplied vector.doubleangleCos(Vector3dc v)Return the cosine of the angle betweenthisvector and the supplied vector.doubleangleSigned(double x, double y, double z, double nx, double ny, double nz)Return the signed angle between this vector and the supplied vector with respect to the plane with the given normal vector(nx, ny, nz).doubleangleSigned(Vector3dc v, Vector3dc n)Return the signed angle between this vector and the supplied vector with respect to the plane with the given normal vectorn.Vector3dceil(Vector3d dest)Compute for each component of this vector the smallest (closest to negative infinity)doublevalue that is greater than or equal to that component and is equal to a mathematical integer and store the result indest.Vector3dcross(double x, double y, double z, Vector3d dest)Compute the cross product of this vector and(x, y, z)and store the result indest.Vector3dcross(Vector3dc v, Vector3d dest)Calculate the cross product of this and v2 and store the result indest.doubledistance(double x, double y, double z)Return the distance betweenthisvector and(x, y, z).doubledistance(Vector3dc v)Return the distance between this vector andv.doubledistanceSquared(double x, double y, double z)Return the square of the distance betweenthisvector and(x, y, z).doubledistanceSquared(Vector3dc v)Return the square of the distance between this vector andv.Vector3ddiv(double x, double y, double z, Vector3d dest)Divide the components of this Vector3f by the given scalar values and store the result indest.Vector3ddiv(double scalar, Vector3d dest)Divide this Vector3d by the given scalar value and store the result indest.Vector3ddiv(Vector3dc v, Vector3d dest)Divide this byvcomponent-wise and store the result intodest.Vector3ddiv(Vector3fc v, Vector3d dest)Divide this Vector3d component-wise by another Vector3f and store the result indest.doubledot(double x, double y, double z)Return the dot product of this vector and the vector(x, y, z).doubledot(Vector3dc v)Return the dot product of this vector and the supplied vector.booleanequals(double x, double y, double z)Compare the vector components ofthisvector with the given(x, y, z)and return whether all of them are equal.booleanequals(Vector3dc v, double delta)Compare the vector components ofthisvector with the given vector using the givendeltaand return whether all of them are equal within a maximum difference ofdelta.Vector3dfloor(Vector3d dest)Compute for each component of this vector the largest (closest to positive infinity)doublevalue that is less than or equal to that component and is equal to a mathematical integer and store the result indest.Vector3dfma(double a, Vector3dc b, Vector3d dest)Add the component-wise multiplication ofa * bto this vector and store the result indest.Vector3dfma(double a, Vector3fc b, Vector3d dest)Add the component-wise multiplication ofa * bto this vector and store the result indest.Vector3dfma(Vector3dc a, Vector3dc b, Vector3d dest)Add the component-wise multiplication ofa * bto this vector and store the result indest.Vector3dfma(Vector3dc a, Vector3fc b, Vector3d dest)Add the component-wise multiplication ofa * bto this vector and store the result indest.Vector3dfma(Vector3fc a, Vector3fc b, Vector3d dest)Add the component-wise multiplication ofa * bto this vector and store the result indest.doubleget(int component)Get the value of the specified component of this vector.java.nio.ByteBufferget(int index, java.nio.ByteBuffer buffer)Store this vector into the suppliedByteBufferstarting at the specified absolute buffer position/index.java.nio.DoubleBufferget(int index, java.nio.DoubleBuffer buffer)Store this vector into the suppliedDoubleBufferstarting at the specified absolute buffer position/index.java.nio.FloatBufferget(int index, java.nio.FloatBuffer buffer)Store this vector into the suppliedFloatBufferstarting at the specified absolute buffer position/index.Vector3iget(int mode, Vector3i dest)java.nio.ByteBufferget(java.nio.ByteBuffer buffer)Store this vector into the suppliedByteBufferat the current bufferposition.java.nio.DoubleBufferget(java.nio.DoubleBuffer buffer)Store this vector into the suppliedDoubleBufferat the current bufferposition.java.nio.FloatBufferget(java.nio.FloatBuffer buffer)Store this vector into the suppliedFloatBufferat the current bufferposition.Vector3dget(Vector3d dest)Set the components of the given vectordestto those ofthisvector.Vector3fget(Vector3f dest)Set the components of the given vectordestto those ofthisvector.java.nio.ByteBuffergetf(int index, java.nio.ByteBuffer buffer)Store this vector into the suppliedByteBufferstarting at the specified absolute buffer position/index.java.nio.ByteBuffergetf(java.nio.ByteBuffer buffer)Store this vector into the suppliedByteBufferat the current bufferposition.Vector3dcgetToAddress(long address)Store this vector at the given off-heap memory address.Vector3dhalf(double x, double y, double z, Vector3d dest)Compute the half vector between this and the vector(x, y, z)and store the result indest.Vector3dhalf(Vector3dc other, Vector3d dest)Compute the half vector between this and the other vector and store the result indest.Vector3dhermite(Vector3dc t0, Vector3dc v1, Vector3dc t1, double t, Vector3d dest)Compute a hermite interpolation betweenthisvector and its associated tangentt0and the given vectorvwith its tangentt1and store the result indest.booleanisFinite()Determine whether all components are finite floating-point values, that is, they are notNaNand notinfinity.doublelength()Return the length of this vector.doublelengthSquared()Return the length squared of this vector.Vector3dlerp(Vector3dc other, double t, Vector3d dest)Linearly interpolatethisandotherusing the given interpolation factortand store the result indest.Vector3dmax(Vector3dc v, Vector3d dest)Set the components ofdestto be the component-wise maximum of this and the other vector.intmaxComponent()Determine the component with the biggest absolute value.Vector3dmin(Vector3dc v, Vector3d dest)Set the components ofdestto be the component-wise minimum of this and the other vector.intminComponent()Determine the component with the smallest (towards zero) absolute value.Vector3dmul(double x, double y, double z, Vector3d dest)Multiply the components of this Vector3f by the given scalar values and store the result indest.Vector3dmul(double scalar, Vector3d dest)Multiply this Vector3d by the given scalar value and store the result indest.Vector3dmul(Matrix3dc mat, Vector3d dest)Multiply the given matrixmatwiththisand store the result indest.Vector3fmul(Matrix3dc mat, Vector3f dest)Multiply the given matrixmatwiththisand store the result indest.Vector3dmul(Matrix3fc mat, Vector3d dest)Multiply the given matrixmatwiththisand store the result indest.Vector3dmul(Matrix3x2dc mat, Vector3d dest)Multiply the given matrixmatwiththisby assuming a third row in the matrix of(0, 0, 1)and store the result indest.Vector3dmul(Matrix3x2fc mat, Vector3d dest)Multiply the given matrixmatwiththisby assuming a third row in the matrix of(0, 0, 1)and store the result indest.Vector3dmul(Vector3dc v, Vector3d dest)Multiply this byvcomponent-wise and store the result intodest.Vector3dmul(Vector3fc v, Vector3d dest)Multiply this Vector3d component-wise by another Vector3f and store the result indest.Vector3dmulAdd(double a, Vector3dc b, Vector3d dest)Add the component-wise multiplication ofthis * atoband store the result indest.Vector3dmulAdd(Vector3dc a, Vector3dc b, Vector3d dest)Add the component-wise multiplication ofthis * atoband store the result indest.Vector3dmulAdd(Vector3fc a, Vector3dc b, Vector3d dest)Add the component-wise multiplication ofthis * atoband store the result indest.Vector3dmulDirection(Matrix4dc mat, Vector3d dest)Multiply the given 4x4 matrixmatwiththisand store the result indest.Vector3dmulDirection(Matrix4fc mat, Vector3d dest)Multiply the given 4x4 matrixmatwiththisand store the result indest.Vector3dmulDirection(Matrix4x3dc mat, Vector3d dest)Multiply the given 4x3 matrixmatwiththisand store the result indest.Vector3dmulDirection(Matrix4x3fc mat, Vector3d dest)Multiply the given 4x3 matrixmatwiththisand store the result indest.Vector3dmulPosition(Matrix4dc mat, Vector3d dest)Multiply the given 4x4 matrixmatwiththisand store the result indest.Vector3dmulPosition(Matrix4fc mat, Vector3d dest)Multiply the given 4x4 matrixmatwiththisand store the result indest.Vector3dmulPosition(Matrix4x3dc mat, Vector3d dest)Multiply the given 4x3 matrixmatwiththisand store the result indest.Vector3dmulPosition(Matrix4x3fc mat, Vector3d dest)Multiply the given 4x3 matrixmatwiththisand store the result indest.doublemulPositionW(Matrix4dc mat, Vector3d dest)Multiply the given 4x4 matrixmatwiththis, store the result indestand return the w component of the resulting 4D vector.doublemulPositionW(Matrix4fc mat, Vector3d dest)Multiply the given 4x4 matrixmatwiththis, store the result indestand return the w component of the resulting 4D vector.Vector3dmulProject(Matrix4dc mat, double w, Vector3d dest)Multiply the given matrixmatwith this Vector3d, perform perspective division and store the result indest.Vector3dmulProject(Matrix4dc mat, Vector3d dest)Multiply the given matrixmatwith this Vector3d, perform perspective division and store the result indest.Vector3dmulProject(Matrix4fc mat, Vector3d dest)Multiply the given matrixmatwith this Vector3d, perform perspective division and store the result indest.Vector3dmulTranspose(Matrix3dc mat, Vector3d dest)Multiply the transpose of the given matrix with this Vector3f and store the result indest.Vector3dmulTranspose(Matrix3fc mat, Vector3d dest)Multiply the transpose of the given matrix with this Vector3f and store the result indest.Vector3dmulTransposeDirection(Matrix4dc mat, Vector3d dest)Multiply the transpose of the given 4x4 matrixmatwiththisand store the result indest.Vector3dmulTransposeDirection(Matrix4fc mat, Vector3d dest)Multiply the transpose of the given 4x4 matrixmatwiththisand store the result indest.Vector3dmulTransposePosition(Matrix4dc mat, Vector3d dest)Multiply the transpose of the given 4x4 matrixmatwiththisand store the result indest.Vector3dmulTransposePosition(Matrix4fc mat, Vector3d dest)Multiply the transpose of the given 4x4 matrixmatwiththisand store the result indest.Vector3dnegate(Vector3d dest)Negate this vector and store the result indest.Vector3dnormalize(double length, Vector3d dest)Scale this vector to have the given length and store the result indest.Vector3dnormalize(Vector3d dest)Normalize this vector and store the result indest.Vector3dorthogonalize(Vector3dc v, Vector3d dest)Transformthisvector so that it is orthogonal to the given vectorv, normalize the result and store it intodest.Vector3dorthogonalizeUnit(Vector3dc v, Vector3d dest)Transformthisvector so that it is orthogonal to the given unit vectorv, normalize the result and store it intodest.Vector3dreflect(double x, double y, double z, Vector3d dest)Reflect this vector about the given normal vector and store the result indest.Vector3dreflect(Vector3dc normal, Vector3d dest)Reflect this vector about the given normal vector and store the result indest.Vector3drotate(Quaterniondc quat, Vector3d dest)Rotate this vector by the given quaternionquatand store the result indest.Vector3drotateAxis(double angle, double aX, double aY, double aZ, Vector3d dest)Rotate this vector the specified radians around the given rotation axis and store the result intodest.Vector3drotateX(double angle, Vector3d dest)Rotate this vector the specified radians around the X axis and store the result intodest.Vector3drotateY(double angle, Vector3d dest)Rotate this vector the specified radians around the Y axis and store the result intodest.Vector3drotateZ(double angle, Vector3d dest)Rotate this vector the specified radians around the Z axis and store the result intodest.QuaterniondrotationTo(double toDirX, double toDirY, double toDirZ, Quaterniond dest)Compute the quaternion representing a rotation ofthisvector to point along(toDirX, toDirY, toDirZ)and store the result indest.QuaterniondrotationTo(Vector3dc toDir, Quaterniond dest)Compute the quaternion representing a rotation ofthisvector to point alongtoDirand store the result indest.Vector3dround(Vector3d dest)Compute for each component of this vector the closest double that is equal to a mathematical integer, with ties rounding to positive infinity and store the result indest.Vector3dsmoothStep(Vector3dc v, double t, Vector3d dest)Compute a smooth-step (i.e.Vector3dsub(double x, double y, double z, Vector3d dest)Subtract(x, y, z)from this vector and store the result indest.Vector3dsub(Vector3dc v, Vector3d dest)Subtract the supplied vector from this one and store the result indest.Vector3dsub(Vector3fc v, Vector3d dest)Subtract the supplied vector from this one and store the result indest.doublex()doubley()doublez()
-
-
-
Method Detail
-
x
double x()
- Returns:
- the value of the x component
-
y
double y()
- Returns:
- the value of the y component
-
z
double z()
- Returns:
- the value of the z component
-
get
java.nio.ByteBuffer get(java.nio.ByteBuffer buffer)
Store this vector into the suppliedByteBufferat the current bufferposition.This method will not increment the position of the given ByteBuffer.
In order to specify the offset into the ByteBuffer at which the vector is stored, use
get(int, ByteBuffer), taking the absolute position as parameter.- Parameters:
buffer- will receive the values of this vector inx, y, zorder- Returns:
- the passed in buffer
- See Also:
get(int, ByteBuffer)
-
get
java.nio.ByteBuffer get(int index, java.nio.ByteBuffer buffer)Store this vector into the suppliedByteBufferstarting at the specified absolute buffer position/index.This method will not increment the position of the given ByteBuffer.
- Parameters:
index- the absolute position into the ByteBufferbuffer- will receive the values of this vector inx, y, zorder- Returns:
- the passed in buffer
-
get
java.nio.DoubleBuffer get(java.nio.DoubleBuffer buffer)
Store this vector into the suppliedDoubleBufferat the current bufferposition.This method will not increment the position of the given DoubleBuffer.
In order to specify the offset into the DoubleBuffer at which the vector is stored, use
get(int, DoubleBuffer), taking the absolute position as parameter.- Parameters:
buffer- will receive the values of this vector inx, y, zorder- Returns:
- the passed in buffer
- See Also:
get(int, DoubleBuffer)
-
get
java.nio.DoubleBuffer get(int index, java.nio.DoubleBuffer buffer)Store this vector into the suppliedDoubleBufferstarting at the specified absolute buffer position/index.This method will not increment the position of the given DoubleBuffer.
- Parameters:
index- the absolute position into the DoubleBufferbuffer- will receive the values of this vector inx, y, zorder- Returns:
- the passed in buffer
-
get
java.nio.FloatBuffer get(java.nio.FloatBuffer buffer)
Store this vector into the suppliedFloatBufferat the current bufferposition.This method will not increment the position of the given FloatBuffer.
In order to specify the offset into the FloatBuffer at which the vector is stored, use
get(int, FloatBuffer), taking the absolute position as parameter.Please note that due to this vector storing double values those values will potentially lose precision when they are converted to float values before being put into the given FloatBuffer.
- Parameters:
buffer- will receive the values of this vector inx, y, zorder- Returns:
- the passed in buffer
- See Also:
get(int, DoubleBuffer)
-
get
java.nio.FloatBuffer get(int index, java.nio.FloatBuffer buffer)Store this vector into the suppliedFloatBufferstarting at the specified absolute buffer position/index.This method will not increment the position of the given FloatBuffer.
Please note that due to this vector storing double values those values will potentially lose precision when they are converted to float values before being put into the given FloatBuffer.
- Parameters:
index- the absolute position into the FloatBufferbuffer- will receive the values of this vector inx, y, zorder- Returns:
- the passed in buffer
-
getf
java.nio.ByteBuffer getf(java.nio.ByteBuffer buffer)
Store this vector into the suppliedByteBufferat the current bufferposition.This method will not increment the position of the given ByteBuffer.
In order to specify the offset into the ByteBuffer at which the vector is stored, use
get(int, ByteBuffer), taking the absolute position as parameter.Please note that due to this vector storing double values those values will potentially lose precision when they are converted to float values before being put into the given ByteBuffer.
- Parameters:
buffer- will receive the values of this vector inx, y, zorder- Returns:
- the passed in buffer
- See Also:
get(int, ByteBuffer)
-
getf
java.nio.ByteBuffer getf(int index, java.nio.ByteBuffer buffer)Store this vector into the suppliedByteBufferstarting at the specified absolute buffer position/index.This method will not increment the position of the given ByteBuffer.
Please note that due to this vector storing double values those values will potentially lose precision when they are converted to float values before being put into the given ByteBuffer.
- Parameters:
index- the absolute position into the ByteBufferbuffer- will receive the values of this vector inx, y, zorder- Returns:
- the passed in buffer
-
getToAddress
Vector3dc getToAddress(long address)
Store this vector at the given off-heap memory address.This method will throw an
UnsupportedOperationExceptionwhen JOML is used with `-Djoml.nounsafe`.This method is unsafe as it can result in a crash of the JVM process when the specified address range does not belong to this process.
- Parameters:
address- the off-heap address where to store this vector- Returns:
- this
-
sub
Vector3d sub(Vector3dc v, Vector3d dest)
Subtract the supplied vector from this one and store the result indest.- Parameters:
v- the vector to subtract fromthisdest- will hold the result- Returns:
- dest
-
sub
Vector3d sub(Vector3fc v, Vector3d dest)
Subtract the supplied vector from this one and store the result indest.- Parameters:
v- the vector to subtract fromthisdest- will hold the result- Returns:
- dest
-
sub
Vector3d sub(double x, double y, double z, Vector3d dest)
Subtract(x, y, z)from this vector and store the result indest.- Parameters:
x- the x component to subtracty- the y component to subtractz- the z component to subtractdest- will hold the result- Returns:
- dest
-
add
Vector3d add(Vector3dc v, Vector3d dest)
Add the supplied vector to this one and store the result indest.- Parameters:
v- the vector to adddest- will hold the result- Returns:
- dest
-
add
Vector3d add(Vector3fc v, Vector3d dest)
Add the supplied vector to this one and store the result indest.- Parameters:
v- the vector to adddest- will hold the result- Returns:
- dest
-
add
Vector3d add(double x, double y, double z, Vector3d dest)
Increment the components of this vector by the given values and store the result indest.- Parameters:
x- the x component to addy- the y component to addz- the z component to adddest- will hold the result- Returns:
- dest
-
fma
Vector3d fma(Vector3dc a, Vector3dc b, Vector3d dest)
Add the component-wise multiplication ofa * bto this vector and store the result indest.- Parameters:
a- the first multiplicandb- the second multiplicanddest- will hold the result- Returns:
- dest
-
fma
Vector3d fma(double a, Vector3dc b, Vector3d dest)
Add the component-wise multiplication ofa * bto this vector and store the result indest.- Parameters:
a- the first multiplicandb- the second multiplicanddest- will hold the result- Returns:
- dest
-
fma
Vector3d fma(Vector3dc a, Vector3fc b, Vector3d dest)
Add the component-wise multiplication ofa * bto this vector and store the result indest.- Parameters:
a- the first multiplicandb- the second multiplicanddest- will hold the result- Returns:
- dest
-
fma
Vector3d fma(Vector3fc a, Vector3fc b, Vector3d dest)
Add the component-wise multiplication ofa * bto this vector and store the result indest.- Parameters:
a- the first multiplicandb- the second multiplicanddest- will hold the result- Returns:
- dest
-
fma
Vector3d fma(double a, Vector3fc b, Vector3d dest)
Add the component-wise multiplication ofa * bto this vector and store the result indest.- Parameters:
a- the first multiplicandb- the second multiplicanddest- will hold the result- Returns:
- dest
-
mulAdd
Vector3d mulAdd(Vector3dc a, Vector3dc b, Vector3d dest)
Add the component-wise multiplication ofthis * atoband store the result indest.- Parameters:
a- the multiplicandb- the addenddest- will hold the result- Returns:
- dest
-
mulAdd
Vector3d mulAdd(double a, Vector3dc b, Vector3d dest)
Add the component-wise multiplication ofthis * atoband store the result indest.- Parameters:
a- the multiplicandb- the addenddest- will hold the result- Returns:
- dest
-
mulAdd
Vector3d mulAdd(Vector3fc a, Vector3dc b, Vector3d dest)
Add the component-wise multiplication ofthis * atoband store the result indest.- Parameters:
a- the multiplicandb- the addenddest- will hold the result- Returns:
- dest
-
mul
Vector3d mul(Vector3fc v, Vector3d dest)
Multiply this Vector3d component-wise by another Vector3f and store the result indest.- Parameters:
v- the vector to multiply bydest- will hold the result- Returns:
- dest
-
mul
Vector3d mul(Vector3dc v, Vector3d dest)
Multiply this byvcomponent-wise and store the result intodest.- Parameters:
v- the vector to multiply bydest- will hold the result- Returns:
- dest
-
div
Vector3d div(Vector3fc v, Vector3d dest)
Divide this Vector3d component-wise by another Vector3f and store the result indest.- Parameters:
v- the vector to divide bydest- will hold the result- Returns:
- dest
-
div
Vector3d div(Vector3dc v, Vector3d dest)
Divide this byvcomponent-wise and store the result intodest.- Parameters:
v- the vector to divide bydest- will hold the result- Returns:
- dest
-
mulProject
Vector3d mulProject(Matrix4dc mat, double w, Vector3d dest)
Multiply the given matrixmatwith this Vector3d, perform perspective division and store the result indest.This method uses the given
was the fourth vector component.- Parameters:
mat- the matrix to multiply this vector byw- the w component to usedest- will hold the result- Returns:
- dest
-
mulProject
Vector3d mulProject(Matrix4dc mat, Vector3d dest)
Multiply the given matrixmatwith this Vector3d, perform perspective division and store the result indest.This method uses
w=1.0as the fourth vector component.- Parameters:
mat- the matrix to multiply this vector bydest- will hold the result- Returns:
- dest
-
mulProject
Vector3d mulProject(Matrix4fc mat, Vector3d dest)
Multiply the given matrixmatwith this Vector3d, perform perspective division and store the result indest.This method uses
w=1.0as the fourth vector component.- Parameters:
mat- the matrix to multiply this vector bydest- will hold the result- Returns:
- dest
-
mul
Vector3d mul(Matrix3dc mat, Vector3d dest)
Multiply the given matrixmatwiththisand store the result indest.- Parameters:
mat- the matrix to multiply this vector bydest- will hold the result- Returns:
- dest
-
mul
Vector3f mul(Matrix3dc mat, Vector3f dest)
Multiply the given matrixmatwiththisand store the result indest.- Parameters:
mat- the matrix to multiply this vector bydest- will hold the result- Returns:
- dest
-
mul
Vector3d mul(Matrix3fc mat, Vector3d dest)
Multiply the given matrixmatwiththisand store the result indest.- Parameters:
mat- the matrix to multiply this vector bydest- will hold the result- Returns:
- dest
-
mul
Vector3d mul(Matrix3x2dc mat, Vector3d dest)
Multiply the given matrixmatwiththisby assuming a third row in the matrix of(0, 0, 1)and store the result indest.- Parameters:
mat- the matrix to multiply this vector bydest- will hold the result- Returns:
- dest
-
mul
Vector3d mul(Matrix3x2fc mat, Vector3d dest)
Multiply the given matrixmatwiththisby assuming a third row in the matrix of(0, 0, 1)and store the result indest.- Parameters:
mat- the matrix to multiply this vector bydest- will hold the result- Returns:
- dest
-
mulTranspose
Vector3d mulTranspose(Matrix3dc mat, Vector3d dest)
Multiply the transpose of the given matrix with this Vector3f and store the result indest.- Parameters:
mat- the matrixdest- will hold the result- Returns:
- dest
-
mulTranspose
Vector3d mulTranspose(Matrix3fc mat, Vector3d dest)
Multiply the transpose of the given matrix with this Vector3f and store the result indest.- Parameters:
mat- the matrixdest- will hold the result- Returns:
- dest
-
mulPosition
Vector3d mulPosition(Matrix4dc mat, Vector3d dest)
Multiply the given 4x4 matrixmatwiththisand store the result indest.This method assumes the
wcomponent ofthisto be1.0.- Parameters:
mat- the matrix to multiply this vector bydest- will hold the result- Returns:
- dest
-
mulPosition
Vector3d mulPosition(Matrix4fc mat, Vector3d dest)
Multiply the given 4x4 matrixmatwiththisand store the result indest.This method assumes the
wcomponent ofthisto be1.0.- Parameters:
mat- the matrix to multiply this vector bydest- will hold the result- Returns:
- dest
-
mulPosition
Vector3d mulPosition(Matrix4x3dc mat, Vector3d dest)
Multiply the given 4x3 matrixmatwiththisand store the result indest.This method assumes the
wcomponent ofthisto be1.0.- Parameters:
mat- the matrix to multiply this vector bydest- will hold the result- Returns:
- dest
-
mulPosition
Vector3d mulPosition(Matrix4x3fc mat, Vector3d dest)
Multiply the given 4x3 matrixmatwiththisand store the result indest.This method assumes the
wcomponent ofthisto be1.0.- Parameters:
mat- the matrix to multiply this vector bydest- will hold the result- Returns:
- dest
-
mulTransposePosition
Vector3d mulTransposePosition(Matrix4dc mat, Vector3d dest)
Multiply the transpose of the given 4x4 matrixmatwiththisand store the result indest.This method assumes the
wcomponent ofthisto be1.0.- Parameters:
mat- the matrix whose transpose to multiply this vector bydest- will hold the result- Returns:
- dest
-
mulTransposePosition
Vector3d mulTransposePosition(Matrix4fc mat, Vector3d dest)
Multiply the transpose of the given 4x4 matrixmatwiththisand store the result indest.This method assumes the
wcomponent ofthisto be1.0.- Parameters:
mat- the matrix whose transpose to multiply this vector bydest- will hold the result- Returns:
- dest
-
mulPositionW
double mulPositionW(Matrix4fc mat, Vector3d dest)
Multiply the given 4x4 matrixmatwiththis, store the result indestand return the w component of the resulting 4D vector.This method assumes the
wcomponent ofthisto be1.0.- Parameters:
mat- the matrix to multiply this vector bydest- will hold the(x, y, z)components of the resulting vector- Returns:
- the w component of the resulting 4D vector after multiplication
-
mulPositionW
double mulPositionW(Matrix4dc mat, Vector3d dest)
Multiply the given 4x4 matrixmatwiththis, store the result indestand return the w component of the resulting 4D vector.This method assumes the
wcomponent ofthisto be1.0.- Parameters:
mat- the matrix to multiply this vector bydest- will hold the(x, y, z)components of the resulting vector- Returns:
- the w component of the resulting 4D vector after multiplication
-
mulDirection
Vector3d mulDirection(Matrix4dc mat, Vector3d dest)
Multiply the given 4x4 matrixmatwiththisand store the result indest.This method assumes the
wcomponent ofthisto be0.0.- Parameters:
mat- the matrix to multiply this vector bydest- will hold the result- Returns:
- dest
-
mulDirection
Vector3d mulDirection(Matrix4fc mat, Vector3d dest)
Multiply the given 4x4 matrixmatwiththisand store the result indest.This method assumes the
wcomponent ofthisto be0.0.- Parameters:
mat- the matrix to multiply this vector bydest- will hold the result- Returns:
- dest
-
mulDirection
Vector3d mulDirection(Matrix4x3dc mat, Vector3d dest)
Multiply the given 4x3 matrixmatwiththisand store the result indest.This method assumes the
wcomponent ofthisto be0.0.- Parameters:
mat- the matrix to multiply this vector bydest- will hold the result- Returns:
- dest
-
mulDirection
Vector3d mulDirection(Matrix4x3fc mat, Vector3d dest)
Multiply the given 4x3 matrixmatwiththisand store the result indest.This method assumes the
wcomponent ofthisto be0.0.- Parameters:
mat- the matrix to multiply this vector bydest- will hold the result- Returns:
- dest
-
mulTransposeDirection
Vector3d mulTransposeDirection(Matrix4dc mat, Vector3d dest)
Multiply the transpose of the given 4x4 matrixmatwiththisand store the result indest.This method assumes the
wcomponent ofthisto be0.0.- Parameters:
mat- the matrix whose transpose to multiply this vector bydest- will hold the result- Returns:
- dest
-
mulTransposeDirection
Vector3d mulTransposeDirection(Matrix4fc mat, Vector3d dest)
Multiply the transpose of the given 4x4 matrixmatwiththisand store the result indest.This method assumes the
wcomponent ofthisto be0.0.- Parameters:
mat- the matrix whose transpose to multiply this vector bydest- will hold the result- Returns:
- dest
-
mul
Vector3d mul(double scalar, Vector3d dest)
Multiply this Vector3d by the given scalar value and store the result indest.- Parameters:
scalar- the scalar factordest- will hold the result- Returns:
- dest
-
mul
Vector3d mul(double x, double y, double z, Vector3d dest)
Multiply the components of this Vector3f by the given scalar values and store the result indest.- Parameters:
x- the x component to multiply this vector byy- the y component to multiply this vector byz- the z component to multiply this vector bydest- will hold the result- Returns:
- dest
-
rotate
Vector3d rotate(Quaterniondc quat, Vector3d dest)
Rotate this vector by the given quaternionquatand store the result indest.- Parameters:
quat- the quaternion to rotate this vectordest- will hold the result- Returns:
- dest
- See Also:
Quaterniond.transform(Vector3d)
-
rotationTo
Quaterniond rotationTo(Vector3dc toDir, Quaterniond dest)
Compute the quaternion representing a rotation ofthisvector to point alongtoDirand store the result indest.Because there can be multiple possible rotations, this method chooses the one with the shortest arc.
- Parameters:
toDir- the destination directiondest- will hold the result- Returns:
- dest
- See Also:
Quaterniond.rotationTo(Vector3dc, Vector3dc)
-
rotationTo
Quaterniond rotationTo(double toDirX, double toDirY, double toDirZ, Quaterniond dest)
Compute the quaternion representing a rotation ofthisvector to point along(toDirX, toDirY, toDirZ)and store the result indest.Because there can be multiple possible rotations, this method chooses the one with the shortest arc.
- Parameters:
toDirX- the x coordinate of the destination directiontoDirY- the y coordinate of the destination directiontoDirZ- the z coordinate of the destination directiondest- will hold the result- Returns:
- dest
- See Also:
Quaterniond.rotationTo(double, double, double, double, double, double)
-
rotateAxis
Vector3d rotateAxis(double angle, double aX, double aY, double aZ, Vector3d dest)
Rotate this vector the specified radians around the given rotation axis and store the result intodest.- Parameters:
angle- the angle in radiansaX- the x component of the rotation axisaY- the y component of the rotation axisaZ- the z component of the rotation axisdest- will hold the result- Returns:
- dest
-
rotateX
Vector3d rotateX(double angle, Vector3d dest)
Rotate this vector the specified radians around the X axis and store the result intodest.- Parameters:
angle- the angle in radiansdest- will hold the result- Returns:
- dest
-
rotateY
Vector3d rotateY(double angle, Vector3d dest)
Rotate this vector the specified radians around the Y axis and store the result intodest.- Parameters:
angle- the angle in radiansdest- will hold the result- Returns:
- dest
-
rotateZ
Vector3d rotateZ(double angle, Vector3d dest)
Rotate this vector the specified radians around the Z axis and store the result intodest.- Parameters:
angle- the angle in radiansdest- will hold the result- Returns:
- dest
-
div
Vector3d div(double scalar, Vector3d dest)
Divide this Vector3d by the given scalar value and store the result indest.- Parameters:
scalar- the scalar to divide this vector bydest- will hold the result- Returns:
- dest
-
div
Vector3d div(double x, double y, double z, Vector3d dest)
Divide the components of this Vector3f by the given scalar values and store the result indest.- Parameters:
x- the x component to divide this vector byy- the y component to divide this vector byz- the z component to divide this vector bydest- will hold the result- Returns:
- dest
-
lengthSquared
double lengthSquared()
Return the length squared of this vector.- Returns:
- the length squared
-
length
double length()
Return the length of this vector.- Returns:
- the length
-
normalize
Vector3d normalize(Vector3d dest)
Normalize this vector and store the result indest.- Parameters:
dest- will hold the result- Returns:
- dest
-
normalize
Vector3d normalize(double length, Vector3d dest)
Scale this vector to have the given length and store the result indest.- Parameters:
length- the desired lengthdest- will hold the result- Returns:
- dest
-
cross
Vector3d cross(Vector3dc v, Vector3d dest)
Calculate the cross product of this and v2 and store the result indest.- Parameters:
v- the other vectordest- will hold the result- Returns:
- dest
-
cross
Vector3d cross(double x, double y, double z, Vector3d dest)
Compute the cross product of this vector and(x, y, z)and store the result indest.- Parameters:
x- the x component of the other vectory- the y component of the other vectorz- the z component of the other vectordest- will hold the result- Returns:
- dest
-
distance
double distance(Vector3dc v)
Return the distance between this vector andv.- Parameters:
v- the other vector- Returns:
- the distance
-
distance
double distance(double x, double y, double z)Return the distance betweenthisvector and(x, y, z).- Parameters:
x- the x component of the other vectory- the y component of the other vectorz- the z component of the other vector- Returns:
- the euclidean distance
-
distanceSquared
double distanceSquared(Vector3dc v)
Return the square of the distance between this vector andv.- Parameters:
v- the other vector- Returns:
- the squared of the distance
-
distanceSquared
double distanceSquared(double x, double y, double z)Return the square of the distance betweenthisvector and(x, y, z).- Parameters:
x- the x component of the other vectory- the y component of the other vectorz- the z component of the other vector- Returns:
- the square of the distance
-
dot
double dot(Vector3dc v)
Return the dot product of this vector and the supplied vector.- Parameters:
v- the other vector- Returns:
- the dot product
-
dot
double dot(double x, double y, double z)Return the dot product of this vector and the vector(x, y, z).- Parameters:
x- the x component of the other vectory- the y component of the other vectorz- the z component of the other vector- Returns:
- the dot product
-
angleCos
double angleCos(Vector3dc v)
Return the cosine of the angle betweenthisvector and the supplied vector. Use this instead ofMath.cos(angle(v)).- Parameters:
v- the other vector- Returns:
- the cosine of the angle
- See Also:
angle(Vector3dc)
-
angle
double angle(Vector3dc v)
Return the angle between this vector and the supplied vector.- Parameters:
v- the other vector- Returns:
- the angle, in radians
- See Also:
angleCos(Vector3dc)
-
angleSigned
double angleSigned(Vector3dc v, Vector3dc n)
Return the signed angle between this vector and the supplied vector with respect to the plane with the given normal vectorn.- Parameters:
v- the other vectorn- the plane's normal vector- Returns:
- the angle, in radians
- See Also:
angleCos(Vector3dc)
-
angleSigned
double angleSigned(double x, double y, double z, double nx, double ny, double nz)Return the signed angle between this vector and the supplied vector with respect to the plane with the given normal vector(nx, ny, nz).- Parameters:
x- the x coordinate of the other vectory- the y coordinate of the other vectorz- the z coordinate of the other vectornx- the x coordinate of the plane's normal vectorny- the y coordinate of the plane's normal vectornz- the z coordinate of the plane's normal vector- Returns:
- the angle, in radians
-
min
Vector3d min(Vector3dc v, Vector3d dest)
Set the components ofdestto be the component-wise minimum of this and the other vector.- Parameters:
v- the other vectordest- will hold the result- Returns:
- dest
-
max
Vector3d max(Vector3dc v, Vector3d dest)
Set the components ofdestto be the component-wise maximum of this and the other vector.- Parameters:
v- the other vectordest- will hold the result- Returns:
- dest
-
negate
Vector3d negate(Vector3d dest)
Negate this vector and store the result indest.- Parameters:
dest- will hold the result- Returns:
- dest
-
absolute
Vector3d absolute(Vector3d dest)
Compute the absolute values of the individual components ofthisand store the result indest.- Parameters:
dest- will hold the result- Returns:
- dest
-
reflect
Vector3d reflect(Vector3dc normal, Vector3d dest)
Reflect this vector about the given normal vector and store the result indest.- Parameters:
normal- the vector to reflect aboutdest- will hold the result- Returns:
- dest
-
reflect
Vector3d reflect(double x, double y, double z, Vector3d dest)
Reflect this vector about the given normal vector and store the result indest.- Parameters:
x- the x component of the normaly- the y component of the normalz- the z component of the normaldest- will hold the result- Returns:
- dest
-
half
Vector3d half(Vector3dc other, Vector3d dest)
Compute the half vector between this and the other vector and store the result indest.- Parameters:
other- the other vectordest- will hold the result- Returns:
- dest
-
half
Vector3d half(double x, double y, double z, Vector3d dest)
Compute the half vector between this and the vector(x, y, z)and store the result indest.- Parameters:
x- the x component of the other vectory- the y component of the other vectorz- the z component of the other vectordest- will hold the result- Returns:
- dest
-
smoothStep
Vector3d smoothStep(Vector3dc v, double t, Vector3d dest)
Compute a smooth-step (i.e. hermite with zero tangents) interpolation betweenthisvector and the given vectorvand store the result indest.- Parameters:
v- the other vectort- the interpolation factor, within[0..1]dest- will hold the result- Returns:
- dest
-
hermite
Vector3d hermite(Vector3dc t0, Vector3dc v1, Vector3dc t1, double t, Vector3d dest)
Compute a hermite interpolation betweenthisvector and its associated tangentt0and the given vectorvwith its tangentt1and store the result indest.- Parameters:
t0- the tangent ofthisvectorv1- the other vectort1- the tangent of the other vectort- the interpolation factor, within[0..1]dest- will hold the result- Returns:
- dest
-
lerp
Vector3d lerp(Vector3dc other, double t, Vector3d dest)
Linearly interpolatethisandotherusing the given interpolation factortand store the result indest.If
tis0.0then the result isthis. If the interpolation factor is1.0then the result isother.- Parameters:
other- the other vectort- the interpolation factor between 0.0 and 1.0dest- will hold the result- Returns:
- dest
-
get
double get(int component) throws java.lang.IllegalArgumentExceptionGet the value of the specified component of this vector.- Parameters:
component- the component, within[0..2]- Returns:
- the value
- Throws:
java.lang.IllegalArgumentException- ifcomponentis not within[0..2]
-
get
Vector3i get(int mode, Vector3i dest)
- Parameters:
mode- theRoundingModeto usedest- will hold the result- Returns:
- dest
-
get
Vector3f get(Vector3f dest)
Set the components of the given vectordestto those ofthisvector.- Parameters:
dest- will hold the result- Returns:
- dest
-
get
Vector3d get(Vector3d dest)
Set the components of the given vectordestto those ofthisvector.- Parameters:
dest- will hold the result- Returns:
- dest
-
maxComponent
int maxComponent()
Determine the component with the biggest absolute value.- Returns:
- the component index, within
[0..2]
-
minComponent
int minComponent()
Determine the component with the smallest (towards zero) absolute value.- Returns:
- the component index, within
[0..2]
-
orthogonalize
Vector3d orthogonalize(Vector3dc v, Vector3d dest)
Transformthisvector so that it is orthogonal to the given vectorv, normalize the result and store it intodest.Reference: Gram–Schmidt process
- Parameters:
v- the reference vector which the result should be orthogonal todest- will hold the result- Returns:
- dest
-
orthogonalizeUnit
Vector3d orthogonalizeUnit(Vector3dc v, Vector3d dest)
Transformthisvector so that it is orthogonal to the given unit vectorv, normalize the result and store it intodest.The vector
vis assumed to be aunitvector.Reference: Gram–Schmidt process
- Parameters:
v- the reference unit vector which the result should be orthogonal todest- will hold the result- Returns:
- dest
-
floor
Vector3d floor(Vector3d dest)
Compute for each component of this vector the largest (closest to positive infinity)doublevalue that is less than or equal to that component and is equal to a mathematical integer and store the result indest.- Parameters:
dest- will hold the result- Returns:
- dest
-
ceil
Vector3d ceil(Vector3d dest)
Compute for each component of this vector the smallest (closest to negative infinity)doublevalue that is greater than or equal to that component and is equal to a mathematical integer and store the result indest.- Parameters:
dest- will hold the result- Returns:
- dest
-
round
Vector3d round(Vector3d dest)
Compute for each component of this vector the closest double that is equal to a mathematical integer, with ties rounding to positive infinity and store the result indest.- Parameters:
dest- will hold the result- Returns:
- dest
-
isFinite
boolean isFinite()
Determine whether all components are finite floating-point values, that is, they are notNaNand notinfinity.- Returns:
trueif all components are finite floating-point values;falseotherwise
-
equals
boolean equals(Vector3dc v, double delta)
Compare the vector components ofthisvector with the given vector using the givendeltaand return whether all of them are equal within a maximum difference ofdelta.Please note that this method is not used by any data structure such as
ArrayListHashSetorHashMapand their operations, such asArrayList.contains(Object)orHashSet.remove(Object), since those data structures only use theObject.equals(Object)andObject.hashCode()methods.- Parameters:
v- the other vectordelta- the allowed maximum difference- Returns:
truewhether all of the vector components are equal;falseotherwise
-
equals
boolean equals(double x, double y, double z)Compare the vector components ofthisvector with the given(x, y, z)and return whether all of them are equal.- Parameters:
x- the x component to compare toy- the y component to compare toz- the z component to compare to- Returns:
trueif all the vector components are equal
-
-