Interface Matrix3dc
-
- All Known Implementing Classes:
Matrix3d,Matrix3dStack
public interface Matrix3dcInterface to a read-only view of a 3x3 matrix of double-precision floats.- Author:
- Kai Burjack
-
-
Method Summary
All Methods Instance Methods Abstract Methods Modifier and Type Method Description Matrix3dadd(Matrix3dc other, Matrix3d dest)Component-wise addthisandotherand store the result indest.Matrix3dcofactor(Matrix3d dest)Compute the cofactor matrix ofthisand store it intodest.doubledeterminant()Return the determinant of this matrix.booleanequals(Matrix3dc m, double delta)Compare the matrix elements ofthismatrix with the given matrix using the givendeltaand return whether all of them are equal within a maximum difference ofdelta.double[]get(double[] arr)Store this matrix into the supplied double array in column-major order.double[]get(double[] arr, int offset)Store this matrix into the supplied double array in column-major order at the given offset.float[]get(float[] arr)Store the elements of this matrix as float values in column-major order into the supplied float array.float[]get(float[] arr, int offset)Store the elements of this matrix as float values in column-major order into the supplied float array at the given offset.doubleget(int column, int row)Get the matrix element value at the given column and row.java.nio.ByteBufferget(int index, java.nio.ByteBuffer buffer)Store this matrix in column-major order into the suppliedByteBufferstarting at the specified absolute buffer position/index.java.nio.DoubleBufferget(int index, java.nio.DoubleBuffer buffer)Store this matrix into the suppliedDoubleBufferstarting at the specified absolute buffer position/index using column-major order.java.nio.FloatBufferget(int index, java.nio.FloatBuffer buffer)Store this matrix in column-major order into the suppliedFloatBufferstarting at the specified absolute buffer position/index.java.nio.ByteBufferget(java.nio.ByteBuffer buffer)Store this matrix in column-major order into the suppliedByteBufferat the current bufferposition.java.nio.DoubleBufferget(java.nio.DoubleBuffer buffer)Store this matrix into the suppliedDoubleBufferat the current bufferpositionusing column-major order.java.nio.FloatBufferget(java.nio.FloatBuffer buffer)Store this matrix in column-major order into the suppliedFloatBufferat the current bufferposition.Matrix3dget(Matrix3d dest)Get the current values ofthismatrix and store them intodest.Vector3dgetColumn(int column, Vector3d dest)Get the column at the givencolumnindex, starting with0.Vector3dgetEulerAnglesXYZ(Vector3d dest)Extract the Euler angles from the rotation represented bythismatrix and store the extracted Euler angles indest.Vector3dgetEulerAnglesZYX(Vector3d dest)Extract the Euler angles from the rotation represented bythismatrix and store the extracted Euler angles indest.java.nio.ByteBuffergetFloats(int index, java.nio.ByteBuffer buffer)Store the elements of this matrix as float values in column-major order into the suppliedByteBufferstarting at the specified absolute buffer position/index.java.nio.ByteBuffergetFloats(java.nio.ByteBuffer buffer)Store the elements of this matrix as float values in column-major order into the suppliedByteBufferat the current bufferposition.QuaterniondgetNormalizedRotation(Quaterniond dest)Get the current values ofthismatrix and store the represented rotation into the givenQuaterniond.QuaternionfgetNormalizedRotation(Quaternionf dest)Get the current values ofthismatrix and store the represented rotation into the givenQuaternionf.AxisAngle4fgetRotation(AxisAngle4f dest)Get the current values ofthismatrix and store the represented rotation into the givenAxisAngle4f.Vector3dgetRow(int row, Vector3d dest)Get the row at the givenrowindex, starting with0.doublegetRowColumn(int row, int column)Get the matrix element value at the given row and column.Vector3dgetScale(Vector3d dest)Get the scaling factors ofthismatrix for the three base axes.Matrix3dcgetToAddress(long address)Store this matrix in column-major order at the given off-heap address.java.nio.ByteBuffergetTransposed(int index, java.nio.ByteBuffer buffer)Store this matrix in row-major order into the suppliedByteBufferstarting at the specified absolute buffer position/index.java.nio.DoubleBuffergetTransposed(int index, java.nio.DoubleBuffer buffer)Store this matrix in row-major order into the suppliedDoubleBufferstarting at the specified absolute buffer position/index.java.nio.FloatBuffergetTransposed(int index, java.nio.FloatBuffer buffer)Store this matrix in row-major order into the suppliedFloatBufferstarting at the specified absolute buffer position/index.java.nio.ByteBuffergetTransposed(java.nio.ByteBuffer buffer)Store this matrix in row-major order into the suppliedByteBufferat the current bufferposition.java.nio.DoubleBuffergetTransposed(java.nio.DoubleBuffer buffer)Store this matrix in row-major order into the suppliedDoubleBufferat the current bufferposition.java.nio.FloatBuffergetTransposed(java.nio.FloatBuffer buffer)Store this matrix in row-major order into the suppliedFloatBufferat the current bufferposition.java.nio.ByteBuffergetTransposedFloats(int index, java.nio.ByteBuffer buffer)Store this matrix in row-major order into the suppliedByteBufferstarting at the specified absolute buffer position/index.java.nio.ByteBuffergetTransposedFloats(java.nio.ByteBuffer buffer)Store this matrix as float values in row-major order into the suppliedByteBufferat the current bufferposition.QuaterniondgetUnnormalizedRotation(Quaterniond dest)Get the current values ofthismatrix and store the represented rotation into the givenQuaterniond.QuaternionfgetUnnormalizedRotation(Quaternionf dest)Get the current values ofthismatrix and store the represented rotation into the givenQuaternionf.Matrix3dinvert(Matrix3d dest)Invertthismatrix and store the result indest.booleanisFinite()Determine whether all matrix elements are finite floating-point values, that is, they are notNaNand notinfinity.Matrix3dlerp(Matrix3dc other, double t, Matrix3d dest)Linearly interpolatethisandotherusing the given interpolation factortand store the result indest.Matrix3dlookAlong(double dirX, double dirY, double dirZ, double upX, double upY, double upZ, Matrix3d dest)Apply a rotation transformation to this matrix to make-zpoint alongdirand store the result indest.Matrix3dlookAlong(Vector3dc dir, Vector3dc up, Matrix3d dest)Apply a rotation transformation to this matrix to make-zpoint alongdirand store the result indest.doublem00()Return the value of the matrix element at column 0 and row 0.doublem01()Return the value of the matrix element at column 0 and row 1.doublem02()Return the value of the matrix element at column 0 and row 2.doublem10()Return the value of the matrix element at column 1 and row 0.doublem11()Return the value of the matrix element at column 1 and row 1.doublem12()Return the value of the matrix element at column 1 and row 2.doublem20()Return the value of the matrix element at column 2 and row 0.doublem21()Return the value of the matrix element at column 2 and row 1.doublem22()Return the value of the matrix element at column 2 and row 2.Matrix3dmapnXnYnZ(Matrix3d dest)Multiplythisby the matrixMatrix3dmapnXnYZ(Matrix3d dest)Multiplythisby the matrixMatrix3dmapnXnZnY(Matrix3d dest)Multiplythisby the matrixMatrix3dmapnXnZY(Matrix3d dest)Multiplythisby the matrixMatrix3dmapnXYnZ(Matrix3d dest)Multiplythisby the matrixMatrix3dmapnXZnY(Matrix3d dest)Multiplythisby the matrixMatrix3dmapnXZY(Matrix3d dest)Multiplythisby the matrixMatrix3dmapnYnXnZ(Matrix3d dest)Multiplythisby the matrixMatrix3dmapnYnXZ(Matrix3d dest)Multiplythisby the matrixMatrix3dmapnYnZnX(Matrix3d dest)Multiplythisby the matrixMatrix3dmapnYnZX(Matrix3d dest)Multiplythisby the matrixMatrix3dmapnYXnZ(Matrix3d dest)Multiplythisby the matrixMatrix3dmapnYXZ(Matrix3d dest)Multiplythisby the matrixMatrix3dmapnYZnX(Matrix3d dest)Multiplythisby the matrixMatrix3dmapnYZX(Matrix3d dest)Multiplythisby the matrixMatrix3dmapnZnXnY(Matrix3d dest)Multiplythisby the matrixMatrix3dmapnZnXY(Matrix3d dest)Multiplythisby the matrixMatrix3dmapnZnYnX(Matrix3d dest)Multiplythisby the matrixMatrix3dmapnZnYX(Matrix3d dest)Multiplythisby the matrixMatrix3dmapnZXnY(Matrix3d dest)Multiplythisby the matrixMatrix3dmapnZXY(Matrix3d dest)Multiplythisby the matrixMatrix3dmapnZYnX(Matrix3d dest)Multiplythisby the matrixMatrix3dmapnZYX(Matrix3d dest)Multiplythisby the matrixMatrix3dmapXnYnZ(Matrix3d dest)Multiplythisby the matrixMatrix3dmapXnZnY(Matrix3d dest)Multiplythisby the matrixMatrix3dmapXnZY(Matrix3d dest)Multiplythisby the matrixMatrix3dmapXZnY(Matrix3d dest)Multiplythisby the matrixMatrix3dmapXZY(Matrix3d dest)Multiplythisby the matrixMatrix3dmapYnXnZ(Matrix3d dest)Multiplythisby the matrixMatrix3dmapYnXZ(Matrix3d dest)Multiplythisby the matrixMatrix3dmapYnZnX(Matrix3d dest)Multiplythisby the matrixMatrix3dmapYnZX(Matrix3d dest)Multiplythisby the matrixMatrix3dmapYXnZ(Matrix3d dest)Multiplythisby the matrixMatrix3dmapYXZ(Matrix3d dest)Multiplythisby the matrixMatrix3dmapYZnX(Matrix3d dest)Multiplythisby the matrixMatrix3dmapYZX(Matrix3d dest)Multiplythisby the matrixMatrix3dmapZnXnY(Matrix3d dest)Multiplythisby the matrixMatrix3dmapZnXY(Matrix3d dest)Multiplythisby the matrixMatrix3dmapZnYnX(Matrix3d dest)Multiplythisby the matrixMatrix3dmapZnYX(Matrix3d dest)Multiplythisby the matrixMatrix3dmapZXnY(Matrix3d dest)Multiplythisby the matrixMatrix3dmapZXY(Matrix3d dest)Multiplythisby the matrixMatrix3dmapZYnX(Matrix3d dest)Multiplythisby the matrixMatrix3dmapZYX(Matrix3d dest)Multiplythisby the matrixMatrix3dmul(Matrix3dc right, Matrix3d dest)Multiply this matrix by the supplied matrix and store the result indest.Matrix3dmul(Matrix3fc right, Matrix3d dest)Multiply this matrix by the supplied matrix and store the result indest.Matrix3dmulComponentWise(Matrix3dc other, Matrix3d dest)Component-wise multiplythisbyotherand store the result indest.Matrix3dmulLocal(Matrix3dc left, Matrix3d dest)Pre-multiply this matrix by the suppliedleftmatrix and store the result indest.Matrix3dnegateX(Matrix3d dest)Multiplythisby the matrixMatrix3dnegateY(Matrix3d dest)Multiplythisby the matrixMatrix3dnegateZ(Matrix3d dest)Multiplythisby the matrixMatrix3dnormal(Matrix3d dest)Compute a normal matrix fromthismatrix and store it intodest.Vector3dnormalizedPositiveX(Vector3d dir)Obtain the direction of+Xbefore the transformation represented bythisorthogonal matrix is applied.Vector3dnormalizedPositiveY(Vector3d dir)Obtain the direction of+Ybefore the transformation represented bythisorthogonal matrix is applied.Vector3dnormalizedPositiveZ(Vector3d dir)Obtain the direction of+Zbefore the transformation represented bythisorthogonal matrix is applied.Matrix3dobliqueZ(double a, double b, Matrix3d dest)Apply an oblique projection transformation to this matrix with the given values foraandband store the result indest.Vector3dpositiveX(Vector3d dir)Obtain the direction of+Xbefore the transformation represented bythismatrix is applied.Vector3dpositiveY(Vector3d dir)Obtain the direction of+Ybefore the transformation represented bythismatrix is applied.Vector3dpositiveZ(Vector3d dir)Obtain the direction of+Zbefore the transformation represented bythismatrix is applied.doublequadraticFormProduct(double x, double y, double z)Compute(x, y, z)^T * this * (x, y, z).doublequadraticFormProduct(Vector3dc v)Computev^T * this * v.doublequadraticFormProduct(Vector3fc v)Computev^T * this * v.Matrix3dreflect(double nx, double ny, double nz, Matrix3d dest)Apply a mirror/reflection transformation to this matrix that reflects through the given plane specified via the plane normal(nx, ny, nz), and store the result indest.Matrix3dreflect(Quaterniondc orientation, Matrix3d dest)Apply a mirror/reflection transformation to this matrix that reflects through a plane specified via the plane orientation, and store the result indest.Matrix3dreflect(Vector3dc normal, Matrix3d dest)Apply a mirror/reflection transformation to this matrix that reflects through the given plane specified via the plane normal, and store the result indest.Matrix3drotate(double ang, double x, double y, double z, Matrix3d dest)Apply rotation to this matrix by rotating the given amount of radians about the given axis specified as x, y and z components, and store the result indest.Matrix3drotate(double angle, Vector3dc axis, Matrix3d dest)Apply a rotation transformation, rotating the given radians about the specified axis and store the result indest.Matrix3drotate(double angle, Vector3fc axis, Matrix3d dest)Apply a rotation transformation, rotating the given radians about the specified axis and store the result indest.Matrix3drotate(AxisAngle4d axisAngle, Matrix3d dest)Apply a rotation transformation, rotating about the givenAxisAngle4dand store the result indest.Matrix3drotate(AxisAngle4f axisAngle, Matrix3d dest)Apply a rotation transformation, rotating about the givenAxisAngle4fand store the result indest.Matrix3drotate(Quaterniondc quat, Matrix3d dest)Apply the rotation - and possibly scaling - transformation of the givenQuaterniondcto this matrix and store the result indest.Matrix3drotate(Quaternionfc quat, Matrix3d dest)Apply the rotation - and possibly scaling - transformation of the givenQuaternionfcto this matrix and store the result indest.Matrix3drotateLocal(double ang, double x, double y, double z, Matrix3d dest)Pre-multiply a rotation to this matrix by rotating the given amount of radians about the specified(x, y, z)axis and store the result indest.Matrix3drotateLocal(Quaterniondc quat, Matrix3d dest)Pre-multiply the rotation - and possibly scaling - transformation of the givenQuaterniondcto this matrix and store the result indest.Matrix3drotateLocal(Quaternionfc quat, Matrix3d dest)Pre-multiply the rotation - and possibly scaling - transformation of the givenQuaternionfcto this matrix and store the result indest.Matrix3drotateLocalX(double ang, Matrix3d dest)Pre-multiply a rotation around the X axis to this matrix by rotating the given amount of radians about the X axis and store the result indest.Matrix3drotateLocalY(double ang, Matrix3d dest)Pre-multiply a rotation around the Y axis to this matrix by rotating the given amount of radians about the Y axis and store the result indest.Matrix3drotateLocalZ(double ang, Matrix3d dest)Pre-multiply a rotation around the Z axis to this matrix by rotating the given amount of radians about the Z axis and store the result indest.Matrix3drotateTowards(double dirX, double dirY, double dirZ, double upX, double upY, double upZ, Matrix3d dest)Apply a model transformation to this matrix for a right-handed coordinate system, that aligns the local+Zaxis withdirand store the result indest.Matrix3drotateTowards(Vector3dc direction, Vector3dc up, Matrix3d dest)Apply a model transformation to this matrix for a right-handed coordinate system, that aligns the local+Zaxis withdirectionand store the result indest.Matrix3drotateX(double ang, Matrix3d dest)Apply rotation about the X axis to this matrix by rotating the given amount of radians and store the result indest.Matrix3drotateXYZ(double angleX, double angleY, double angleZ, Matrix3d dest)Apply rotation ofangleXradians about the X axis, followed by a rotation ofangleYradians about the Y axis and followed by a rotation ofangleZradians about the Z axis and store the result indest.Matrix3drotateY(double ang, Matrix3d dest)Apply rotation about the Y axis to this matrix by rotating the given amount of radians and store the result indest.Matrix3drotateYXZ(double angleY, double angleX, double angleZ, Matrix3d dest)Apply rotation ofangleYradians about the Y axis, followed by a rotation ofangleXradians about the X axis and followed by a rotation ofangleZradians about the Z axis and store the result indest.Matrix3drotateZ(double ang, Matrix3d dest)Apply rotation about the Z axis to this matrix by rotating the given amount of radians and store the result indest.Matrix3drotateZYX(double angleZ, double angleY, double angleX, Matrix3d dest)Apply rotation ofangleZradians about the Z axis, followed by a rotation ofangleYradians about the Y axis and followed by a rotation ofangleXradians about the X axis and store the result indest.Matrix3dscale(double x, double y, double z, Matrix3d dest)Apply scaling to this matrix by scaling the base axes by the given x, y and z factors and store the result indest.Matrix3dscale(double xyz, Matrix3d dest)Apply scaling to this matrix by uniformly scaling all base axes by the givenxyzfactor and store the result indest.Matrix3dscale(Vector3dc xyz, Matrix3d dest)Apply scaling tothismatrix by scaling the base axes by the givenxyz.x,xyz.yandxyz.zfactors, respectively and store the result indest.Matrix3dscaleLocal(double x, double y, double z, Matrix3d dest)Pre-multiply scaling tothismatrix by scaling the base axes by the given x, y and z factors and store the result indest.Matrix3dsub(Matrix3dc subtrahend, Matrix3d dest)Component-wise subtractsubtrahendfromthisand store the result indest.Vector3dtransform(double x, double y, double z, Vector3d dest)Transform the vector(x, y, z)by this matrix and store the result indest.Vector3dtransform(Vector3d v)Transform the given vector by this matrix.Vector3dtransform(Vector3dc v, Vector3d dest)Transform the given vector by this matrix and store the result indest.Vector3ftransform(Vector3f v)Transform the given vector by this matrix.Vector3ftransform(Vector3fc v, Vector3f dest)Transform the given vector by this matrix and store the result indest.Vector3dtransformTranspose(double x, double y, double z, Vector3d dest)Transform the vector(x, y, z)by the transpose of this matrix and store the result indest.Vector3dtransformTranspose(Vector3d v)Transform the given vector by the transpose of this matrix.Vector3dtransformTranspose(Vector3dc v, Vector3d dest)Transform the given vector by the transpose of this matrix and store the result indest.Matrix3dtranspose(Matrix3d dest)Transposethismatrix and store the result indest.
-
-
-
Method Detail
-
m00
double m00()
Return the value of the matrix element at column 0 and row 0.- Returns:
- the value of the matrix element
-
m01
double m01()
Return the value of the matrix element at column 0 and row 1.- Returns:
- the value of the matrix element
-
m02
double m02()
Return the value of the matrix element at column 0 and row 2.- Returns:
- the value of the matrix element
-
m10
double m10()
Return the value of the matrix element at column 1 and row 0.- Returns:
- the value of the matrix element
-
m11
double m11()
Return the value of the matrix element at column 1 and row 1.- Returns:
- the value of the matrix element
-
m12
double m12()
Return the value of the matrix element at column 1 and row 2.- Returns:
- the value of the matrix element
-
m20
double m20()
Return the value of the matrix element at column 2 and row 0.- Returns:
- the value of the matrix element
-
m21
double m21()
Return the value of the matrix element at column 2 and row 1.- Returns:
- the value of the matrix element
-
m22
double m22()
Return the value of the matrix element at column 2 and row 2.- Returns:
- the value of the matrix element
-
mul
Matrix3d mul(Matrix3dc right, Matrix3d dest)
Multiply this matrix by the supplied matrix and store the result indest. This matrix will be the left one.If
Misthismatrix andRtherightmatrix, then the new matrix will beM * R. So when transforming a vectorvwith the new matrix by usingM * R * v, the transformation of the right matrix will be applied first!- Parameters:
right- the right operanddest- will hold the result- Returns:
- dest
-
mulLocal
Matrix3d mulLocal(Matrix3dc left, Matrix3d dest)
Pre-multiply this matrix by the suppliedleftmatrix and store the result indest.If
Misthismatrix andLtheleftmatrix, then the new matrix will beL * M. So when transforming a vectorvwith the new matrix by usingL * M * v, the transformation ofthismatrix will be applied first!- Parameters:
left- the left operand of the matrix multiplicationdest- the destination matrix, which will hold the result- Returns:
- dest
-
mul
Matrix3d mul(Matrix3fc right, Matrix3d dest)
Multiply this matrix by the supplied matrix and store the result indest. This matrix will be the left one.If
Misthismatrix andRtherightmatrix, then the new matrix will beM * R. So when transforming a vectorvwith the new matrix by usingM * R * v, the transformation of the right matrix will be applied first!- Parameters:
right- the right operanddest- will hold the result- Returns:
- dest
-
determinant
double determinant()
Return the determinant of this matrix.- Returns:
- the determinant
-
invert
Matrix3d invert(Matrix3d dest)
Invertthismatrix and store the result indest.- Parameters:
dest- will hold the result- Returns:
- dest
-
transpose
Matrix3d transpose(Matrix3d dest)
Transposethismatrix and store the result indest.- Parameters:
dest- will hold the result- Returns:
- dest
-
get
Matrix3d get(Matrix3d dest)
Get the current values ofthismatrix and store them intodest.- Parameters:
dest- the destination matrix- Returns:
- the passed in destination
-
getRotation
AxisAngle4f getRotation(AxisAngle4f dest)
Get the current values ofthismatrix and store the represented rotation into the givenAxisAngle4f.- Parameters:
dest- the destinationAxisAngle4f- Returns:
- the passed in destination
- See Also:
AxisAngle4f.set(Matrix3dc)
-
getUnnormalizedRotation
Quaternionf getUnnormalizedRotation(Quaternionf dest)
Get the current values ofthismatrix and store the represented rotation into the givenQuaternionf.This method assumes that the three column vectors of this matrix are not normalized and thus allows to ignore any additional scaling factor that is applied to the matrix.
- Parameters:
dest- the destinationQuaternionf- Returns:
- the passed in destination
- See Also:
Quaternionf.setFromUnnormalized(Matrix3dc)
-
getNormalizedRotation
Quaternionf getNormalizedRotation(Quaternionf dest)
Get the current values ofthismatrix and store the represented rotation into the givenQuaternionf.This method assumes that the three column vectors of this matrix are normalized.
- Parameters:
dest- the destinationQuaternionf- Returns:
- the passed in destination
- See Also:
Quaternionf.setFromNormalized(Matrix3dc)
-
getUnnormalizedRotation
Quaterniond getUnnormalizedRotation(Quaterniond dest)
Get the current values ofthismatrix and store the represented rotation into the givenQuaterniond.This method assumes that the three column vectors of this matrix are not normalized and thus allows to ignore any additional scaling factor that is applied to the matrix.
- Parameters:
dest- the destinationQuaterniond- Returns:
- the passed in destination
- See Also:
Quaterniond.setFromUnnormalized(Matrix3dc)
-
getNormalizedRotation
Quaterniond getNormalizedRotation(Quaterniond dest)
Get the current values ofthismatrix and store the represented rotation into the givenQuaterniond.This method assumes that the three column vectors of this matrix are normalized.
- Parameters:
dest- the destinationQuaterniond- Returns:
- the passed in destination
- See Also:
Quaterniond.setFromNormalized(Matrix3dc)
-
get
java.nio.DoubleBuffer get(java.nio.DoubleBuffer buffer)
Store this matrix into the suppliedDoubleBufferat the current bufferpositionusing column-major order.This method will not increment the position of the given DoubleBuffer.
In order to specify the offset into the DoubleBuffer} at which the matrix is stored, use
get(int, DoubleBuffer), taking the absolute position as parameter.- Parameters:
buffer- will receive the values of this matrix in column-major order at its current position- Returns:
- the passed in buffer
- See Also:
get(int, DoubleBuffer)
-
get
java.nio.DoubleBuffer get(int index, java.nio.DoubleBuffer buffer)Store this matrix into the suppliedDoubleBufferstarting at the specified absolute buffer position/index using column-major order.This method will not increment the position of the given
DoubleBuffer.- Parameters:
index- the absolute position into theDoubleBufferbuffer- will receive the values of this matrix in column-major order- Returns:
- the passed in buffer
-
get
java.nio.FloatBuffer get(java.nio.FloatBuffer buffer)
Store this matrix in column-major order into the suppliedFloatBufferat the current bufferposition.This method will not increment the position of the given FloatBuffer.
In order to specify the offset into the FloatBuffer at which the matrix is stored, use
get(int, FloatBuffer), taking the absolute position as parameter.Please note that due to this matrix storing double values those values will potentially lose precision when they are converted to float values before being put into the given FloatBuffer.
- Parameters:
buffer- will receive the values of this matrix in column-major order at its current position- Returns:
- the passed in buffer
- See Also:
get(int, FloatBuffer)
-
get
java.nio.FloatBuffer get(int index, java.nio.FloatBuffer buffer)Store this matrix in column-major order into the suppliedFloatBufferstarting at the specified absolute buffer position/index.This method will not increment the position of the given FloatBuffer.
Please note that due to this matrix storing double values those values will potentially lose precision when they are converted to float values before being put into the given FloatBuffer.
- Parameters:
index- the absolute position into the FloatBufferbuffer- will receive the values of this matrix in column-major order- Returns:
- the passed in buffer
-
get
java.nio.ByteBuffer get(java.nio.ByteBuffer buffer)
Store this matrix in column-major order into the suppliedByteBufferat the current bufferposition.This method will not increment the position of the given ByteBuffer.
In order to specify the offset into the ByteBuffer at which the matrix is stored, use
get(int, ByteBuffer), taking the absolute position as parameter.- Parameters:
buffer- will receive the values of this matrix in column-major order at its current position- Returns:
- the passed in buffer
- See Also:
get(int, ByteBuffer)
-
get
java.nio.ByteBuffer get(int index, java.nio.ByteBuffer buffer)Store this matrix in column-major order into the suppliedByteBufferstarting at the specified absolute buffer position/index.This method will not increment the position of the given ByteBuffer.
- Parameters:
index- the absolute position into the ByteBufferbuffer- will receive the values of this matrix in column-major order- Returns:
- the passed in buffer
-
getFloats
java.nio.ByteBuffer getFloats(java.nio.ByteBuffer buffer)
Store the elements of this matrix as float values in column-major order into the suppliedByteBufferat the current bufferposition.This method will not increment the position of the given ByteBuffer.
Please note that due to this matrix storing double values those values will potentially lose precision when they are converted to float values before being put into the given ByteBuffer.
In order to specify the offset into the ByteBuffer at which the matrix is stored, use
getFloats(int, ByteBuffer), taking the absolute position as parameter.- Parameters:
buffer- will receive the elements of this matrix as float values in column-major order at its current position- Returns:
- the passed in buffer
- See Also:
getFloats(int, ByteBuffer)
-
getFloats
java.nio.ByteBuffer getFloats(int index, java.nio.ByteBuffer buffer)Store the elements of this matrix as float values in column-major order into the suppliedByteBufferstarting at the specified absolute buffer position/index.This method will not increment the position of the given ByteBuffer.
Please note that due to this matrix storing double values those values will potentially lose precision when they are converted to float values before being put into the given ByteBuffer.
- Parameters:
index- the absolute position into the ByteBufferbuffer- will receive the elements of this matrix as float values in column-major order- Returns:
- the passed in buffer
-
getTransposed
java.nio.DoubleBuffer getTransposed(java.nio.DoubleBuffer buffer)
Store this matrix in row-major order into the suppliedDoubleBufferat the current bufferposition.This method will not increment the position of the given DoubleBuffer.
In order to specify the offset into the DoubleBuffer at which the matrix is stored, use
getTransposed(int, DoubleBuffer), taking the absolute position as parameter.- Parameters:
buffer- will receive the values of this matrix in row-major order at its current position- Returns:
- the passed in buffer
- See Also:
getTransposed(int, DoubleBuffer)
-
getTransposed
java.nio.DoubleBuffer getTransposed(int index, java.nio.DoubleBuffer buffer)Store this matrix in row-major order into the suppliedDoubleBufferstarting at the specified absolute buffer position/index.This method will not increment the position of the given DoubleBuffer.
- Parameters:
index- the absolute position into the DoubleBufferbuffer- will receive the values of this matrix in row-major order- Returns:
- the passed in buffer
-
getTransposed
java.nio.ByteBuffer getTransposed(java.nio.ByteBuffer buffer)
Store this matrix in row-major order into the suppliedByteBufferat the current bufferposition.This method will not increment the position of the given ByteBuffer.
In order to specify the offset into the ByteBuffer at which the matrix is stored, use
getTransposed(int, ByteBuffer), taking the absolute position as parameter.- Parameters:
buffer- will receive the values of this matrix in row-major order at its current position- Returns:
- the passed in buffer
- See Also:
getTransposed(int, ByteBuffer)
-
getTransposed
java.nio.ByteBuffer getTransposed(int index, java.nio.ByteBuffer buffer)Store this matrix in row-major order into the suppliedByteBufferstarting at the specified absolute buffer position/index.This method will not increment the position of the given ByteBuffer.
- Parameters:
index- the absolute position into the ByteBufferbuffer- will receive the values of this matrix in row-major order- Returns:
- the passed in buffer
-
getTransposed
java.nio.FloatBuffer getTransposed(java.nio.FloatBuffer buffer)
Store this matrix in row-major order into the suppliedFloatBufferat the current bufferposition.This method will not increment the position of the given FloatBuffer.
Please note that due to this matrix storing double values those values will potentially lose precision when they are converted to float values before being put into the given FloatBuffer.
In order to specify the offset into the FloatBuffer at which the matrix is stored, use
getTransposed(int, FloatBuffer), taking the absolute position as parameter.- Parameters:
buffer- will receive the values of this matrix in row-major order at its current position- Returns:
- the passed in buffer
- See Also:
getTransposed(int, FloatBuffer)
-
getTransposed
java.nio.FloatBuffer getTransposed(int index, java.nio.FloatBuffer buffer)Store this matrix in row-major order into the suppliedFloatBufferstarting at the specified absolute buffer position/index.This method will not increment the position of the given FloatBuffer.
Please note that due to this matrix storing double values those values will potentially lose precision when they are converted to float values before being put into the given FloatBuffer.
- Parameters:
index- the absolute position into the FloatBufferbuffer- will receive the values of this matrix in row-major order- Returns:
- the passed in buffer
-
getTransposedFloats
java.nio.ByteBuffer getTransposedFloats(java.nio.ByteBuffer buffer)
Store this matrix as float values in row-major order into the suppliedByteBufferat the current bufferposition.This method will not increment the position of the given ByteBuffer.
Please note that due to this matrix storing double values those values will potentially lose precision when they are converted to float values before being put into the given FloatBuffer.
In order to specify the offset into the ByteBuffer at which the matrix is stored, use
getTransposedFloats(int, ByteBuffer), taking the absolute position as parameter.- Parameters:
buffer- will receive the values of this matrix as float values in row-major order at its current position- Returns:
- the passed in buffer
- See Also:
getTransposedFloats(int, ByteBuffer)
-
getTransposedFloats
java.nio.ByteBuffer getTransposedFloats(int index, java.nio.ByteBuffer buffer)Store this matrix in row-major order into the suppliedByteBufferstarting at the specified absolute buffer position/index.This method will not increment the position of the given ByteBuffer.
Please note that due to this matrix storing double values those values will potentially lose precision when they are converted to float values before being put into the given FloatBuffer.
- Parameters:
index- the absolute position into the ByteBufferbuffer- will receive the values of this matrix as float values in row-major order- Returns:
- the passed in buffer
-
getToAddress
Matrix3dc getToAddress(long address)
Store this matrix in column-major order at the given off-heap address.This method will throw an
UnsupportedOperationExceptionwhen JOML is used with `-Djoml.nounsafe`.This method is unsafe as it can result in a crash of the JVM process when the specified address range does not belong to this process.
- Parameters:
address- the off-heap address where to store this matrix- Returns:
- this
-
get
double[] get(double[] arr, int offset)Store this matrix into the supplied double array in column-major order at the given offset.- Parameters:
arr- the array to write the matrix values intooffset- the offset into the array- Returns:
- the passed in array
-
get
double[] get(double[] arr)
Store this matrix into the supplied double array in column-major order.In order to specify an explicit offset into the array, use the method
get(double[], int).- Parameters:
arr- the array to write the matrix values into- Returns:
- the passed in array
- See Also:
get(double[], int)
-
get
float[] get(float[] arr, int offset)Store the elements of this matrix as float values in column-major order into the supplied float array at the given offset.Please note that due to this matrix storing double values those values will potentially lose precision when they are converted to float values before being put into the given float array.
- Parameters:
arr- the array to write the matrix values intooffset- the offset into the array- Returns:
- the passed in array
-
get
float[] get(float[] arr)
Store the elements of this matrix as float values in column-major order into the supplied float array.Please note that due to this matrix storing double values those values will potentially lose precision when they are converted to float values before being put into the given float array.
In order to specify an explicit offset into the array, use the method
get(float[], int).- Parameters:
arr- the array to write the matrix values into- Returns:
- the passed in array
- See Also:
get(float[], int)
-
scale
Matrix3d scale(Vector3dc xyz, Matrix3d dest)
Apply scaling tothismatrix by scaling the base axes by the givenxyz.x,xyz.yandxyz.zfactors, respectively and store the result indest.If
Misthismatrix andSthe scaling matrix, then the new matrix will beM * S. So when transforming a vectorvwith the new matrix by usingM * S * v, the scaling will be applied first!- Parameters:
xyz- the factors of the x, y and z component, respectivelydest- will hold the result- Returns:
- dest
-
scale
Matrix3d scale(double x, double y, double z, Matrix3d dest)
Apply scaling to this matrix by scaling the base axes by the given x, y and z factors and store the result indest.If
Misthismatrix andSthe scaling matrix, then the new matrix will beM * S. So when transforming a vectorvwith the new matrix by usingM * S * v, the scaling will be applied first!- Parameters:
x- the factor of the x componenty- the factor of the y componentz- the factor of the z componentdest- will hold the result- Returns:
- dest
-
scale
Matrix3d scale(double xyz, Matrix3d dest)
Apply scaling to this matrix by uniformly scaling all base axes by the givenxyzfactor and store the result indest.If
Misthismatrix andSthe scaling matrix, then the new matrix will beM * S. So when transforming a vectorvwith the new matrix by usingM * S * v, the scaling will be applied first!- Parameters:
xyz- the factor for all componentsdest- will hold the result- Returns:
- dest
- See Also:
scale(double, double, double, Matrix3d)
-
scaleLocal
Matrix3d scaleLocal(double x, double y, double z, Matrix3d dest)
Pre-multiply scaling tothismatrix by scaling the base axes by the given x, y and z factors and store the result indest.If
Misthismatrix andSthe scaling matrix, then the new matrix will beS * M. So when transforming a vectorvwith the new matrix by usingS * M * v, the scaling will be applied last!- Parameters:
x- the factor of the x componenty- the factor of the y componentz- the factor of the z componentdest- will hold the result- Returns:
- dest
-
transform
Vector3d transform(Vector3d v)
Transform the given vector by this matrix.- Parameters:
v- the vector to transform- Returns:
- v
-
transform
Vector3d transform(Vector3dc v, Vector3d dest)
Transform the given vector by this matrix and store the result indest.- Parameters:
v- the vector to transformdest- will hold the result- Returns:
- dest
-
transform
Vector3f transform(Vector3f v)
Transform the given vector by this matrix.- Parameters:
v- the vector to transform- Returns:
- v
-
transform
Vector3f transform(Vector3fc v, Vector3f dest)
Transform the given vector by this matrix and store the result indest.- Parameters:
v- the vector to transformdest- will hold the result- Returns:
- dest
-
transform
Vector3d transform(double x, double y, double z, Vector3d dest)
Transform the vector(x, y, z)by this matrix and store the result indest.- Parameters:
x- the x coordinate of the vector to transformy- the y coordinate of the vector to transformz- the z coordinate of the vector to transformdest- will hold the result- Returns:
- dest
-
transformTranspose
Vector3d transformTranspose(Vector3d v)
Transform the given vector by the transpose of this matrix.- Parameters:
v- the vector to transform- Returns:
- v
-
transformTranspose
Vector3d transformTranspose(Vector3dc v, Vector3d dest)
Transform the given vector by the transpose of this matrix and store the result indest.- Parameters:
v- the vector to transformdest- will hold the result- Returns:
- dest
-
transformTranspose
Vector3d transformTranspose(double x, double y, double z, Vector3d dest)
Transform the vector(x, y, z)by the transpose of this matrix and store the result indest.- Parameters:
x- the x coordinate of the vector to transformy- the y coordinate of the vector to transformz- the z coordinate of the vector to transformdest- will hold the result- Returns:
- dest
-
rotateX
Matrix3d rotateX(double ang, Matrix3d dest)
Apply rotation about the X axis to this matrix by rotating the given amount of radians and store the result indest.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
Misthismatrix andRthe rotation matrix, then the new matrix will beM * R. So when transforming a vectorvwith the new matrix by usingM * R * v, the rotation will be applied first!Reference: http://en.wikipedia.org
- Parameters:
ang- the angle in radiansdest- will hold the result- Returns:
- dest
-
rotateY
Matrix3d rotateY(double ang, Matrix3d dest)
Apply rotation about the Y axis to this matrix by rotating the given amount of radians and store the result indest.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
Misthismatrix andRthe rotation matrix, then the new matrix will beM * R. So when transforming a vectorvwith the new matrix by usingM * R * v, the rotation will be applied first!Reference: http://en.wikipedia.org
- Parameters:
ang- the angle in radiansdest- will hold the result- Returns:
- dest
-
rotateZ
Matrix3d rotateZ(double ang, Matrix3d dest)
Apply rotation about the Z axis to this matrix by rotating the given amount of radians and store the result indest.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
Misthismatrix andRthe rotation matrix, then the new matrix will beM * R. So when transforming a vectorvwith the new matrix by usingM * R * v, the rotation will be applied first!Reference: http://en.wikipedia.org
- Parameters:
ang- the angle in radiansdest- will hold the result- Returns:
- dest
-
rotateXYZ
Matrix3d rotateXYZ(double angleX, double angleY, double angleZ, Matrix3d dest)
Apply rotation ofangleXradians about the X axis, followed by a rotation ofangleYradians about the Y axis and followed by a rotation ofangleZradians about the Z axis and store the result indest.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
Misthismatrix andRthe rotation matrix, then the new matrix will beM * R. So when transforming a vectorvwith the new matrix by usingM * R * v, the rotation will be applied first!This method is equivalent to calling:
rotateX(angleX, dest).rotateY(angleY).rotateZ(angleZ)- Parameters:
angleX- the angle to rotate about XangleY- the angle to rotate about YangleZ- the angle to rotate about Zdest- will hold the result- Returns:
- dest
-
rotateZYX
Matrix3d rotateZYX(double angleZ, double angleY, double angleX, Matrix3d dest)
Apply rotation ofangleZradians about the Z axis, followed by a rotation ofangleYradians about the Y axis and followed by a rotation ofangleXradians about the X axis and store the result indest.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
Misthismatrix andRthe rotation matrix, then the new matrix will beM * R. So when transforming a vectorvwith the new matrix by usingM * R * v, the rotation will be applied first!This method is equivalent to calling:
rotateZ(angleZ, dest).rotateY(angleY).rotateX(angleX)- Parameters:
angleZ- the angle to rotate about ZangleY- the angle to rotate about YangleX- the angle to rotate about Xdest- will hold the result- Returns:
- dest
-
rotateYXZ
Matrix3d rotateYXZ(double angleY, double angleX, double angleZ, Matrix3d dest)
Apply rotation ofangleYradians about the Y axis, followed by a rotation ofangleXradians about the X axis and followed by a rotation ofangleZradians about the Z axis and store the result indest.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
Misthismatrix andRthe rotation matrix, then the new matrix will beM * R. So when transforming a vectorvwith the new matrix by usingM * R * v, the rotation will be applied first!This method is equivalent to calling:
rotateY(angleY, dest).rotateX(angleX).rotateZ(angleZ)- Parameters:
angleY- the angle to rotate about YangleX- the angle to rotate about XangleZ- the angle to rotate about Zdest- will hold the result- Returns:
- dest
-
rotate
Matrix3d rotate(double ang, double x, double y, double z, Matrix3d dest)
Apply rotation to this matrix by rotating the given amount of radians about the given axis specified as x, y and z components, and store the result indest.The axis described by the three components needs to be a unit vector.
When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
Misthismatrix andRthe rotation matrix, then the new matrix will beM * R. So when transforming a vectorvwith the new matrix by usingM * R * v, the rotation will be applied first!Reference: http://en.wikipedia.org
- Parameters:
ang- the angle in radiansx- the x component of the axisy- the y component of the axisz- the z component of the axisdest- will hold the result- Returns:
- dest
-
rotateLocal
Matrix3d rotateLocal(double ang, double x, double y, double z, Matrix3d dest)
Pre-multiply a rotation to this matrix by rotating the given amount of radians about the specified(x, y, z)axis and store the result indest.The axis described by the three components needs to be a unit vector.
When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
Misthismatrix andRthe rotation matrix, then the new matrix will beR * M. So when transforming a vectorvwith the new matrix by usingR * M * v, the rotation will be applied last!Reference: http://en.wikipedia.org
- Parameters:
ang- the angle in radiansx- the x component of the axisy- the y component of the axisz- the z component of the axisdest- will hold the result- Returns:
- dest
-
rotateLocalX
Matrix3d rotateLocalX(double ang, Matrix3d dest)
Pre-multiply a rotation around the X axis to this matrix by rotating the given amount of radians about the X axis and store the result indest.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
Misthismatrix andRthe rotation matrix, then the new matrix will beR * M. So when transforming a vectorvwith the new matrix by usingR * M * v, the rotation will be applied last!Reference: http://en.wikipedia.org
- Parameters:
ang- the angle in radians to rotate about the X axisdest- will hold the result- Returns:
- dest
-
rotateLocalY
Matrix3d rotateLocalY(double ang, Matrix3d dest)
Pre-multiply a rotation around the Y axis to this matrix by rotating the given amount of radians about the Y axis and store the result indest.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
Misthismatrix andRthe rotation matrix, then the new matrix will beR * M. So when transforming a vectorvwith the new matrix by usingR * M * v, the rotation will be applied last!Reference: http://en.wikipedia.org
- Parameters:
ang- the angle in radians to rotate about the Y axisdest- will hold the result- Returns:
- dest
-
rotateLocalZ
Matrix3d rotateLocalZ(double ang, Matrix3d dest)
Pre-multiply a rotation around the Z axis to this matrix by rotating the given amount of radians about the Z axis and store the result indest.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
Misthismatrix andRthe rotation matrix, then the new matrix will beR * M. So when transforming a vectorvwith the new matrix by usingR * M * v, the rotation will be applied last!Reference: http://en.wikipedia.org
- Parameters:
ang- the angle in radians to rotate about the Z axisdest- will hold the result- Returns:
- dest
-
rotateLocal
Matrix3d rotateLocal(Quaterniondc quat, Matrix3d dest)
Pre-multiply the rotation - and possibly scaling - transformation of the givenQuaterniondcto this matrix and store the result indest.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
Misthismatrix andQthe rotation matrix obtained from the given quaternion, then the new matrix will beQ * M. So when transforming a vectorvwith the new matrix by usingQ * M * v, the quaternion rotation will be applied last!Reference: http://en.wikipedia.org
- Parameters:
quat- theQuaterniondcdest- will hold the result- Returns:
- dest
-
rotateLocal
Matrix3d rotateLocal(Quaternionfc quat, Matrix3d dest)
Pre-multiply the rotation - and possibly scaling - transformation of the givenQuaternionfcto this matrix and store the result indest.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
Misthismatrix andQthe rotation matrix obtained from the given quaternion, then the new matrix will beQ * M. So when transforming a vectorvwith the new matrix by usingQ * M * v, the quaternion rotation will be applied last!Reference: http://en.wikipedia.org
- Parameters:
quat- theQuaternionfcdest- will hold the result- Returns:
- dest
-
rotate
Matrix3d rotate(Quaterniondc quat, Matrix3d dest)
Apply the rotation - and possibly scaling - transformation of the givenQuaterniondcto this matrix and store the result indest.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
Misthismatrix andQthe rotation matrix obtained from the given quaternion, then the new matrix will beM * Q. So when transforming a vectorvwith the new matrix by usingM * Q * v, the quaternion rotation will be applied first!Reference: http://en.wikipedia.org
- Parameters:
quat- theQuaterniondcdest- will hold the result- Returns:
- dest
-
rotate
Matrix3d rotate(Quaternionfc quat, Matrix3d dest)
Apply the rotation - and possibly scaling - transformation of the givenQuaternionfcto this matrix and store the result indest.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
Misthismatrix andQthe rotation matrix obtained from the given quaternion, then the new matrix will beM * Q. So when transforming a vectorvwith the new matrix by usingM * Q * v, the quaternion rotation will be applied first!Reference: http://en.wikipedia.org
- Parameters:
quat- theQuaternionfcdest- will hold the result- Returns:
- dest
-
rotate
Matrix3d rotate(AxisAngle4f axisAngle, Matrix3d dest)
Apply a rotation transformation, rotating about the givenAxisAngle4fand store the result indest.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
Misthismatrix andAthe rotation matrix obtained from the givenAxisAngle4f, then the new matrix will beM * A. So when transforming a vectorvwith the new matrix by usingM * A * v, theAxisAngle4frotation will be applied first!Reference: http://en.wikipedia.org
- Parameters:
axisAngle- theAxisAngle4f(needs to benormalized)dest- will hold the result- Returns:
- dest
- See Also:
rotate(double, double, double, double, Matrix3d)
-
rotate
Matrix3d rotate(AxisAngle4d axisAngle, Matrix3d dest)
Apply a rotation transformation, rotating about the givenAxisAngle4dand store the result indest.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
Misthismatrix andAthe rotation matrix obtained from the givenAxisAngle4d, then the new matrix will beM * A. So when transforming a vectorvwith the new matrix by usingM * A * v, theAxisAngle4drotation will be applied first!Reference: http://en.wikipedia.org
- Parameters:
axisAngle- theAxisAngle4d(needs to benormalized)dest- will hold the result- Returns:
- dest
- See Also:
rotate(double, double, double, double, Matrix3d)
-
rotate
Matrix3d rotate(double angle, Vector3dc axis, Matrix3d dest)
Apply a rotation transformation, rotating the given radians about the specified axis and store the result indest.The axis described by the
axisvector needs to be a unit vector.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
Misthismatrix andAthe rotation matrix obtained from the given axis and angle, then the new matrix will beM * A. So when transforming a vectorvwith the new matrix by usingM * A * v, the axis-angle rotation will be applied first!Reference: http://en.wikipedia.org
- Parameters:
angle- the angle in radiansaxis- the rotation axis (needs to benormalized)dest- will hold the result- Returns:
- dest
- See Also:
rotate(double, double, double, double, Matrix3d)
-
rotate
Matrix3d rotate(double angle, Vector3fc axis, Matrix3d dest)
Apply a rotation transformation, rotating the given radians about the specified axis and store the result indest.The axis described by the
axisvector needs to be a unit vector.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
Misthismatrix andAthe rotation matrix obtained from the given axis and angle, then the new matrix will beM * A. So when transforming a vectorvwith the new matrix by usingM * A * v, the axis-angle rotation will be applied first!Reference: http://en.wikipedia.org
- Parameters:
angle- the angle in radiansaxis- the rotation axis (needs to benormalized)dest- will hold the result- Returns:
- dest
- See Also:
rotate(double, double, double, double, Matrix3d)
-
getRow
Vector3d getRow(int row, Vector3d dest) throws java.lang.IndexOutOfBoundsException
Get the row at the givenrowindex, starting with0.- Parameters:
row- the row index in[0..2]dest- will hold the row components- Returns:
- the passed in destination
- Throws:
java.lang.IndexOutOfBoundsException- ifrowis not in[0..2]
-
getColumn
Vector3d getColumn(int column, Vector3d dest) throws java.lang.IndexOutOfBoundsException
Get the column at the givencolumnindex, starting with0.- Parameters:
column- the column index in[0..2]dest- will hold the column components- Returns:
- the passed in destination
- Throws:
java.lang.IndexOutOfBoundsException- ifcolumnis not in[0..2]
-
get
double get(int column, int row)Get the matrix element value at the given column and row.- Parameters:
column- the colum index in[0..2]row- the row index in[0..2]- Returns:
- the element value
-
getRowColumn
double getRowColumn(int row, int column)Get the matrix element value at the given row and column.- Parameters:
row- the row index in[0..2]column- the colum index in[0..2]- Returns:
- the element value
-
normal
Matrix3d normal(Matrix3d dest)
Compute a normal matrix fromthismatrix and store it intodest.The normal matrix of
mis the transpose of the inverse ofm.- Parameters:
dest- will hold the result- Returns:
- dest
-
cofactor
Matrix3d cofactor(Matrix3d dest)
Compute the cofactor matrix ofthisand store it intodest.The cofactor matrix can be used instead of
normal(Matrix3d)to transform normals when the orientation of the normals with respect to the surface should be preserved.- Parameters:
dest- will hold the result- Returns:
- dest
-
lookAlong
Matrix3d lookAlong(Vector3dc dir, Vector3dc up, Matrix3d dest)
Apply a rotation transformation to this matrix to make-zpoint alongdirand store the result indest.If
Misthismatrix andLthe lookalong rotation matrix, then the new matrix will beM * L. So when transforming a vectorvwith the new matrix by usingM * L * v, the lookalong rotation transformation will be applied first!- Parameters:
dir- the direction in space to look alongup- the direction of 'up'dest- will hold the result- Returns:
- dest
- See Also:
lookAlong(double, double, double, double, double, double, Matrix3d)
-
lookAlong
Matrix3d lookAlong(double dirX, double dirY, double dirZ, double upX, double upY, double upZ, Matrix3d dest)
Apply a rotation transformation to this matrix to make-zpoint alongdirand store the result indest.If
Misthismatrix andLthe lookalong rotation matrix, then the new matrix will beM * L. So when transforming a vectorvwith the new matrix by usingM * L * v, the lookalong rotation transformation will be applied first!- Parameters:
dirX- the x-coordinate of the direction to look alongdirY- the y-coordinate of the direction to look alongdirZ- the z-coordinate of the direction to look alongupX- the x-coordinate of the up vectorupY- the y-coordinate of the up vectorupZ- the z-coordinate of the up vectordest- will hold the result- Returns:
- dest
-
getScale
Vector3d getScale(Vector3d dest)
Get the scaling factors ofthismatrix for the three base axes.- Parameters:
dest- will hold the scaling factors forx,yandz- Returns:
- dest
-
positiveZ
Vector3d positiveZ(Vector3d dir)
Obtain the direction of+Zbefore the transformation represented bythismatrix is applied.This method is equivalent to the following code:
Matrix3d inv = new Matrix3d(this).invert(); inv.transform(dir.set(0, 0, 1)).normalize();
Ifthisis already an orthogonal matrix, then consider usingnormalizedPositiveZ(Vector3d)instead.Reference: http://www.euclideanspace.com
- Parameters:
dir- will hold the direction of+Z- Returns:
- dir
-
normalizedPositiveZ
Vector3d normalizedPositiveZ(Vector3d dir)
Obtain the direction of+Zbefore the transformation represented bythisorthogonal matrix is applied. This method only produces correct results ifthisis an orthogonal matrix.This method is equivalent to the following code:
Matrix3d inv = new Matrix3d(this).transpose(); inv.transform(dir.set(0, 0, 1));
Reference: http://www.euclideanspace.com
- Parameters:
dir- will hold the direction of+Z- Returns:
- dir
-
positiveX
Vector3d positiveX(Vector3d dir)
Obtain the direction of+Xbefore the transformation represented bythismatrix is applied.This method is equivalent to the following code:
Matrix3d inv = new Matrix3d(this).invert(); inv.transform(dir.set(1, 0, 0)).normalize();
Ifthisis already an orthogonal matrix, then consider usingnormalizedPositiveX(Vector3d)instead.Reference: http://www.euclideanspace.com
- Parameters:
dir- will hold the direction of+X- Returns:
- dir
-
normalizedPositiveX
Vector3d normalizedPositiveX(Vector3d dir)
Obtain the direction of+Xbefore the transformation represented bythisorthogonal matrix is applied. This method only produces correct results ifthisis an orthogonal matrix.This method is equivalent to the following code:
Matrix3d inv = new Matrix3d(this).transpose(); inv.transform(dir.set(1, 0, 0));
Reference: http://www.euclideanspace.com
- Parameters:
dir- will hold the direction of+X- Returns:
- dir
-
positiveY
Vector3d positiveY(Vector3d dir)
Obtain the direction of+Ybefore the transformation represented bythismatrix is applied.This method is equivalent to the following code:
Matrix3d inv = new Matrix3d(this).invert(); inv.transform(dir.set(0, 1, 0)).normalize();
Ifthisis already an orthogonal matrix, then consider usingnormalizedPositiveY(Vector3d)instead.Reference: http://www.euclideanspace.com
- Parameters:
dir- will hold the direction of+Y- Returns:
- dir
-
normalizedPositiveY
Vector3d normalizedPositiveY(Vector3d dir)
Obtain the direction of+Ybefore the transformation represented bythisorthogonal matrix is applied. This method only produces correct results ifthisis an orthogonal matrix.This method is equivalent to the following code:
Matrix3d inv = new Matrix3d(this).transpose(); inv.transform(dir.set(0, 1, 0));
Reference: http://www.euclideanspace.com
- Parameters:
dir- will hold the direction of+Y- Returns:
- dir
-
add
Matrix3d add(Matrix3dc other, Matrix3d dest)
Component-wise addthisandotherand store the result indest.- Parameters:
other- the other addenddest- will hold the result- Returns:
- dest
-
sub
Matrix3d sub(Matrix3dc subtrahend, Matrix3d dest)
Component-wise subtractsubtrahendfromthisand store the result indest.- Parameters:
subtrahend- the subtrahenddest- will hold the result- Returns:
- dest
-
mulComponentWise
Matrix3d mulComponentWise(Matrix3dc other, Matrix3d dest)
Component-wise multiplythisbyotherand store the result indest.- Parameters:
other- the other matrixdest- will hold the result- Returns:
- dest
-
lerp
Matrix3d lerp(Matrix3dc other, double t, Matrix3d dest)
Linearly interpolatethisandotherusing the given interpolation factortand store the result indest.If
tis0.0then the result isthis. If the interpolation factor is1.0then the result isother.- Parameters:
other- the other matrixt- the interpolation factor between 0.0 and 1.0dest- will hold the result- Returns:
- dest
-
rotateTowards
Matrix3d rotateTowards(Vector3dc direction, Vector3dc up, Matrix3d dest)
Apply a model transformation to this matrix for a right-handed coordinate system, that aligns the local+Zaxis withdirectionand store the result indest.If
Misthismatrix andLthe lookat matrix, then the new matrix will beM * L. So when transforming a vectorvwith the new matrix by usingM * L * v, the lookat transformation will be applied first!This method is equivalent to calling:
mul(new Matrix3d().lookAlong(new Vector3d(dir).negate(), up).invert(), dest)- Parameters:
direction- the direction to rotate towardsup- the model's up vectordest- will hold the result- Returns:
- dest
- See Also:
rotateTowards(double, double, double, double, double, double, Matrix3d)
-
rotateTowards
Matrix3d rotateTowards(double dirX, double dirY, double dirZ, double upX, double upY, double upZ, Matrix3d dest)
Apply a model transformation to this matrix for a right-handed coordinate system, that aligns the local+Zaxis withdirand store the result indest.If
Misthismatrix andLthe lookat matrix, then the new matrix will beM * L. So when transforming a vectorvwith the new matrix by usingM * L * v, the lookat transformation will be applied first!This method is equivalent to calling:
mul(new Matrix3d().lookAlong(-dirX, -dirY, -dirZ, upX, upY, upZ).invert(), dest)- Parameters:
dirX- the x-coordinate of the direction to rotate towardsdirY- the y-coordinate of the direction to rotate towardsdirZ- the z-coordinate of the direction to rotate towardsupX- the x-coordinate of the up vectorupY- the y-coordinate of the up vectorupZ- the z-coordinate of the up vectordest- will hold the result- Returns:
- dest
- See Also:
rotateTowards(Vector3dc, Vector3dc, Matrix3d)
-
getEulerAnglesXYZ
Vector3d getEulerAnglesXYZ(Vector3d dest)
Extract the Euler angles from the rotation represented bythismatrix and store the extracted Euler angles indest.This method assumes that
thismatrix only represents a rotation without scaling.The Euler angles are always returned as the angle around X in the
Vector3d.xfield, the angle around Y in theVector3d.yfield and the angle around Z in theVector3d.zfield of the suppliedVector3dinstance.Note that the returned Euler angles must be applied in the order
X * Y * Zto obtain the identical matrix. This means that callingrotateXYZ(double, double, double, Matrix3d)using the obtained Euler angles will yield the same rotation as the original matrix from which the Euler angles were obtained, so in the below code the matrixm2should be identical tom(disregarding possible floating-point inaccuracies).Matrix3d m = ...; // <- matrix only representing rotation Matrix3d n = new Matrix3d(); n.rotateXYZ(m.getEulerAnglesXYZ(new Vector3d()));
Reference: http://en.wikipedia.org/
- Parameters:
dest- will hold the extracted Euler angles- Returns:
- dest
-
getEulerAnglesZYX
Vector3d getEulerAnglesZYX(Vector3d dest)
Extract the Euler angles from the rotation represented bythismatrix and store the extracted Euler angles indest.This method assumes that
thismatrix only represents a rotation without scaling.The Euler angles are always returned as the angle around X in the
Vector3d.xfield, the angle around Y in theVector3d.yfield and the angle around Z in theVector3d.zfield of the suppliedVector3dinstance.Note that the returned Euler angles must be applied in the order
Z * Y * Xto obtain the identical matrix. This means that callingrotateZYX(double, double, double, Matrix3d)using the obtained Euler angles will yield the same rotation as the original matrix from which the Euler angles were obtained, so in the below code the matrixm2should be identical tom(disregarding possible floating-point inaccuracies).Matrix3d m = ...; // <- matrix only representing rotation Matrix3d n = new Matrix3d(); n.rotateZYX(m.getEulerAnglesZYX(new Vector3d()));
Reference: http://en.wikipedia.org/
- Parameters:
dest- will hold the extracted Euler angles- Returns:
- dest
-
obliqueZ
Matrix3d obliqueZ(double a, double b, Matrix3d dest)
Apply an oblique projection transformation to this matrix with the given values foraandband store the result indest.If
Misthismatrix andOthe oblique transformation matrix, then the new matrix will beM * O. So when transforming a vectorvwith the new matrix by usingM * O * v, the oblique transformation will be applied first!The oblique transformation is defined as:
x' = x + a*z y' = y + a*z z' = z
or in matrix form:1 0 a 0 1 b 0 0 1
- Parameters:
a- the value for the z factor that applies to xb- the value for the z factor that applies to ydest- will hold the result- Returns:
- dest
-
equals
boolean equals(Matrix3dc m, double delta)
Compare the matrix elements ofthismatrix with the given matrix using the givendeltaand return whether all of them are equal within a maximum difference ofdelta.Please note that this method is not used by any data structure such as
ArrayListHashSetorHashMapand their operations, such asArrayList.contains(Object)orHashSet.remove(Object), since those data structures only use theObject.equals(Object)andObject.hashCode()methods.- Parameters:
m- the other matrixdelta- the allowed maximum difference- Returns:
truewhether all of the matrix elements are equal;falseotherwise
-
reflect
Matrix3d reflect(double nx, double ny, double nz, Matrix3d dest)
Apply a mirror/reflection transformation to this matrix that reflects through the given plane specified via the plane normal(nx, ny, nz), and store the result indest.If
Misthismatrix andRthe reflection matrix, then the new matrix will beM * R. So when transforming a vectorvwith the new matrix by usingM * R * v, the reflection will be applied first!- Parameters:
nx- the x-coordinate of the plane normalny- the y-coordinate of the plane normalnz- the z-coordinate of the plane normaldest- will hold the result- Returns:
- this
-
reflect
Matrix3d reflect(Quaterniondc orientation, Matrix3d dest)
Apply a mirror/reflection transformation to this matrix that reflects through a plane specified via the plane orientation, and store the result indest.This method can be used to build a reflection transformation based on the orientation of a mirror object in the scene. It is assumed that the default mirror plane's normal is
(0, 0, 1). So, if the givenQuaterniondcis the identity (does not apply any additional rotation), the reflection plane will bez=0.If
Misthismatrix andRthe reflection matrix, then the new matrix will beM * R. So when transforming a vectorvwith the new matrix by usingM * R * v, the reflection will be applied first!- Parameters:
orientation- the plane orientationdest- will hold the result- Returns:
- this
-
reflect
Matrix3d reflect(Vector3dc normal, Matrix3d dest)
Apply a mirror/reflection transformation to this matrix that reflects through the given plane specified via the plane normal, and store the result indest.If
Misthismatrix andRthe reflection matrix, then the new matrix will beM * R. So when transforming a vectorvwith the new matrix by usingM * R * v, the reflection will be applied first!- Parameters:
normal- the plane normaldest- will hold the result- Returns:
- this
-
isFinite
boolean isFinite()
Determine whether all matrix elements are finite floating-point values, that is, they are notNaNand notinfinity.- Returns:
trueif all components are finite floating-point values;falseotherwise
-
quadraticFormProduct
double quadraticFormProduct(double x, double y, double z)Compute(x, y, z)^T * this * (x, y, z).- Parameters:
x- the x coordinate of the vector to multiplyy- the y coordinate of the vector to multiplyz- the z coordinate of the vector to multiply- Returns:
- the result
-
quadraticFormProduct
double quadraticFormProduct(Vector3dc v)
Computev^T * this * v.- Parameters:
v- the vector to multiply- Returns:
- the result
-
quadraticFormProduct
double quadraticFormProduct(Vector3fc v)
Computev^T * this * v.- Parameters:
v- the vector to multiply- Returns:
- the result
-
mapXZY
Matrix3d mapXZY(Matrix3d dest)
Multiplythisby the matrix1 0 0 0 0 1 0 1 0
and store the result indest.- Parameters:
dest- will hold the result- Returns:
- dest
-
mapXZnY
Matrix3d mapXZnY(Matrix3d dest)
Multiplythisby the matrix1 0 0 0 0 -1 0 1 0
and store the result indest.- Parameters:
dest- will hold the result- Returns:
- dest
-
mapXnYnZ
Matrix3d mapXnYnZ(Matrix3d dest)
Multiplythisby the matrix1 0 0 0 -1 0 0 0 -1
and store the result indest.- Parameters:
dest- will hold the result- Returns:
- dest
-
mapXnZY
Matrix3d mapXnZY(Matrix3d dest)
Multiplythisby the matrix1 0 0 0 0 1 0 -1 0
and store the result indest.- Parameters:
dest- will hold the result- Returns:
- dest
-
mapXnZnY
Matrix3d mapXnZnY(Matrix3d dest)
Multiplythisby the matrix1 0 0 0 0 -1 0 -1 0
and store the result indest.- Parameters:
dest- will hold the result- Returns:
- dest
-
mapYXZ
Matrix3d mapYXZ(Matrix3d dest)
Multiplythisby the matrix0 1 0 1 0 0 0 0 1
and store the result indest.- Parameters:
dest- will hold the result- Returns:
- dest
-
mapYXnZ
Matrix3d mapYXnZ(Matrix3d dest)
Multiplythisby the matrix0 1 0 1 0 0 0 0 -1
and store the result indest.- Parameters:
dest- will hold the result- Returns:
- dest
-
mapYZX
Matrix3d mapYZX(Matrix3d dest)
Multiplythisby the matrix0 0 1 1 0 0 0 1 0
and store the result indest.- Parameters:
dest- will hold the result- Returns:
- dest
-
mapYZnX
Matrix3d mapYZnX(Matrix3d dest)
Multiplythisby the matrix0 0 -1 1 0 0 0 1 0
and store the result indest.- Parameters:
dest- will hold the result- Returns:
- dest
-
mapYnXZ
Matrix3d mapYnXZ(Matrix3d dest)
Multiplythisby the matrix0 -1 0 1 0 0 0 0 1
and store the result indest.- Parameters:
dest- will hold the result- Returns:
- dest
-
mapYnXnZ
Matrix3d mapYnXnZ(Matrix3d dest)
Multiplythisby the matrix0 -1 0 1 0 0 0 0 -1
and store the result indest.- Parameters:
dest- will hold the result- Returns:
- dest
-
mapYnZX
Matrix3d mapYnZX(Matrix3d dest)
Multiplythisby the matrix0 0 1 1 0 0 0 -1 0
and store the result indest.- Parameters:
dest- will hold the result- Returns:
- dest
-
mapYnZnX
Matrix3d mapYnZnX(Matrix3d dest)
Multiplythisby the matrix0 0 -1 1 0 0 0 -1 0
and store the result indest.- Parameters:
dest- will hold the result- Returns:
- dest
-
mapZXY
Matrix3d mapZXY(Matrix3d dest)
Multiplythisby the matrix0 1 0 0 0 1 1 0 0
and store the result indest.- Parameters:
dest- will hold the result- Returns:
- dest
-
mapZXnY
Matrix3d mapZXnY(Matrix3d dest)
Multiplythisby the matrix0 1 0 0 0 -1 1 0 0
and store the result indest.- Parameters:
dest- will hold the result- Returns:
- dest
-
mapZYX
Matrix3d mapZYX(Matrix3d dest)
Multiplythisby the matrix0 0 1 0 1 0 1 0 0
and store the result indest.- Parameters:
dest- will hold the result- Returns:
- dest
-
mapZYnX
Matrix3d mapZYnX(Matrix3d dest)
Multiplythisby the matrix0 0 -1 0 1 0 1 0 0
and store the result indest.- Parameters:
dest- will hold the result- Returns:
- dest
-
mapZnXY
Matrix3d mapZnXY(Matrix3d dest)
Multiplythisby the matrix0 -1 0 0 0 1 1 0 0
and store the result indest.- Parameters:
dest- will hold the result- Returns:
- dest
-
mapZnXnY
Matrix3d mapZnXnY(Matrix3d dest)
Multiplythisby the matrix0 -1 0 0 0 -1 1 0 0
and store the result indest.- Parameters:
dest- will hold the result- Returns:
- dest
-
mapZnYX
Matrix3d mapZnYX(Matrix3d dest)
Multiplythisby the matrix0 0 1 0 -1 0 1 0 0
and store the result indest.- Parameters:
dest- will hold the result- Returns:
- dest
-
mapZnYnX
Matrix3d mapZnYnX(Matrix3d dest)
Multiplythisby the matrix0 0 -1 0 -1 0 1 0 0
and store the result indest.- Parameters:
dest- will hold the result- Returns:
- dest
-
mapnXYnZ
Matrix3d mapnXYnZ(Matrix3d dest)
Multiplythisby the matrix-1 0 0 0 1 0 0 0 -1
and store the result indest.- Parameters:
dest- will hold the result- Returns:
- dest
-
mapnXZY
Matrix3d mapnXZY(Matrix3d dest)
Multiplythisby the matrix-1 0 0 0 0 1 0 1 0
and store the result indest.- Parameters:
dest- will hold the result- Returns:
- dest
-
mapnXZnY
Matrix3d mapnXZnY(Matrix3d dest)
Multiplythisby the matrix-1 0 0 0 0 -1 0 1 0
and store the result indest.- Parameters:
dest- will hold the result- Returns:
- dest
-
mapnXnYZ
Matrix3d mapnXnYZ(Matrix3d dest)
Multiplythisby the matrix-1 0 0 0 -1 0 0 0 1
and store the result indest.- Parameters:
dest- will hold the result- Returns:
- dest
-
mapnXnYnZ
Matrix3d mapnXnYnZ(Matrix3d dest)
Multiplythisby the matrix-1 0 0 0 -1 0 0 0 -1
and store the result indest.- Parameters:
dest- will hold the result- Returns:
- dest
-
mapnXnZY
Matrix3d mapnXnZY(Matrix3d dest)
Multiplythisby the matrix-1 0 0 0 0 1 0 -1 0
and store the result indest.- Parameters:
dest- will hold the result- Returns:
- dest
-
mapnXnZnY
Matrix3d mapnXnZnY(Matrix3d dest)
Multiplythisby the matrix-1 0 0 0 0 -1 0 -1 0
and store the result indest.- Parameters:
dest- will hold the result- Returns:
- dest
-
mapnYXZ
Matrix3d mapnYXZ(Matrix3d dest)
Multiplythisby the matrix0 1 0 -1 0 0 0 0 1
and store the result indest.- Parameters:
dest- will hold the result- Returns:
- dest
-
mapnYXnZ
Matrix3d mapnYXnZ(Matrix3d dest)
Multiplythisby the matrix0 1 0 -1 0 0 0 0 -1
and store the result indest.- Parameters:
dest- will hold the result- Returns:
- dest
-
mapnYZX
Matrix3d mapnYZX(Matrix3d dest)
Multiplythisby the matrix0 0 1 -1 0 0 0 1 0
and store the result indest.- Parameters:
dest- will hold the result- Returns:
- dest
-
mapnYZnX
Matrix3d mapnYZnX(Matrix3d dest)
Multiplythisby the matrix0 0 -1 -1 0 0 0 1 0
and store the result indest.- Parameters:
dest- will hold the result- Returns:
- dest
-
mapnYnXZ
Matrix3d mapnYnXZ(Matrix3d dest)
Multiplythisby the matrix0 -1 0 -1 0 0 0 0 1
and store the result indest.- Parameters:
dest- will hold the result- Returns:
- dest
-
mapnYnXnZ
Matrix3d mapnYnXnZ(Matrix3d dest)
Multiplythisby the matrix0 -1 0 -1 0 0 0 0 -1
and store the result indest.- Parameters:
dest- will hold the result- Returns:
- dest
-
mapnYnZX
Matrix3d mapnYnZX(Matrix3d dest)
Multiplythisby the matrix0 0 1 -1 0 0 0 -1 0
and store the result indest.- Parameters:
dest- will hold the result- Returns:
- dest
-
mapnYnZnX
Matrix3d mapnYnZnX(Matrix3d dest)
Multiplythisby the matrix0 0 -1 -1 0 0 0 -1 0
and store the result indest.- Parameters:
dest- will hold the result- Returns:
- dest
-
mapnZXY
Matrix3d mapnZXY(Matrix3d dest)
Multiplythisby the matrix0 1 0 0 0 1 -1 0 0
and store the result indest.- Parameters:
dest- will hold the result- Returns:
- dest
-
mapnZXnY
Matrix3d mapnZXnY(Matrix3d dest)
Multiplythisby the matrix0 1 0 0 0 -1 -1 0 0
and store the result indest.- Parameters:
dest- will hold the result- Returns:
- dest
-
mapnZYX
Matrix3d mapnZYX(Matrix3d dest)
Multiplythisby the matrix0 0 1 0 1 0 -1 0 0
and store the result indest.- Parameters:
dest- will hold the result- Returns:
- dest
-
mapnZYnX
Matrix3d mapnZYnX(Matrix3d dest)
Multiplythisby the matrix0 0 -1 0 1 0 -1 0 0
and store the result indest.- Parameters:
dest- will hold the result- Returns:
- dest
-
mapnZnXY
Matrix3d mapnZnXY(Matrix3d dest)
Multiplythisby the matrix0 -1 0 0 0 1 -1 0 0
and store the result indest.- Parameters:
dest- will hold the result- Returns:
- dest
-
mapnZnXnY
Matrix3d mapnZnXnY(Matrix3d dest)
Multiplythisby the matrix0 -1 0 0 0 -1 -1 0 0
and store the result indest.- Parameters:
dest- will hold the result- Returns:
- dest
-
mapnZnYX
Matrix3d mapnZnYX(Matrix3d dest)
Multiplythisby the matrix0 0 1 0 -1 0 -1 0 0
and store the result indest.- Parameters:
dest- will hold the result- Returns:
- dest
-
mapnZnYnX
Matrix3d mapnZnYnX(Matrix3d dest)
Multiplythisby the matrix0 0 -1 0 -1 0 -1 0 0
and store the result indest.- Parameters:
dest- will hold the result- Returns:
- dest
-
negateX
Matrix3d negateX(Matrix3d dest)
Multiplythisby the matrix-1 0 0 0 1 0 0 0 1
and store the result indest.- Parameters:
dest- will hold the result- Returns:
- dest
-
negateY
Matrix3d negateY(Matrix3d dest)
Multiplythisby the matrix1 0 0 0 -1 0 0 0 1
and store the result indest.- Parameters:
dest- will hold the result- Returns:
- dest
-
-