Interface Matrix4x3dc
-
- All Known Implementing Classes:
Matrix4x3d,Matrix4x3dStack
public interface Matrix4x3dcInterface to a read-only view of a 4x3 matrix of double-precision floats.- Author:
- Kai Burjack
-
-
Field Summary
Fields Modifier and Type Field Description static intPLANE_NXArgument to the first parameter offrustumPlane(int, Vector4d)identifying the plane with equationx=-1when using the identity matrix.static intPLANE_NYArgument to the first parameter offrustumPlane(int, Vector4d)identifying the plane with equationy=-1when using the identity matrix.static intPLANE_NZArgument to the first parameter offrustumPlane(int, Vector4d)identifying the plane with equationz=-1when using the identity matrix.static intPLANE_PXArgument to the first parameter offrustumPlane(int, Vector4d)identifying the plane with equationx=1when using the identity matrix.static intPLANE_PYArgument to the first parameter offrustumPlane(int, Vector4d)identifying the plane with equationy=1when using the identity matrix.static intPLANE_PZArgument to the first parameter offrustumPlane(int, Vector4d)identifying the plane with equationz=1when using the identity matrix.static bytePROPERTY_IDENTITYBit returned byproperties()to indicate that the matrix represents the identity transformation.static bytePROPERTY_ORTHONORMALBit returned byproperties()to indicate that the left 3x3 submatrix represents an orthogonal matrix (i.e.static bytePROPERTY_TRANSLATIONBit returned byproperties()to indicate that the matrix represents a pure translation transformation.
-
Method Summary
All Methods Instance Methods Abstract Methods Modifier and Type Method Description Matrix4x3dadd(Matrix4x3dc other, Matrix4x3d dest)Component-wise addthisandotherand store the result indest.Matrix4x3dadd(Matrix4x3fc other, Matrix4x3d dest)Component-wise addthisandotherand store the result indest.Matrix4x3darcball(double radius, double centerX, double centerY, double centerZ, double angleX, double angleY, Matrix4x3d dest)Apply an arcball view transformation to this matrix with the givenradiusand center(centerX, centerY, centerZ)position of the arcball and the specified X and Y rotation angles, and store the result indest.Matrix4x3darcball(double radius, Vector3dc center, double angleX, double angleY, Matrix4x3d dest)Apply an arcball view transformation to this matrix with the givenradiusandcenterposition of the arcball and the specified X and Y rotation angles, and store the result indest.Matrix3dcofactor3x3(Matrix3d dest)Compute the cofactor matrix of the left 3x3 submatrix ofthisand store it intodest.Matrix4x3dcofactor3x3(Matrix4x3d dest)Compute the cofactor matrix of the left 3x3 submatrix ofthisand store it intodest.doubledeterminant()Return the determinant of this matrix.booleanequals(Matrix4x3dc m, double delta)Compare the matrix elements ofthismatrix with the given matrix using the givendeltaand return whether all of them are equal within a maximum difference ofdelta.Matrix4x3dfma(Matrix4x3dc other, double otherFactor, Matrix4x3d dest)Component-wise addthisandotherby first multiplying each component ofotherbyotherFactor, adding that tothisand storing the final result indest.Matrix4x3dfma(Matrix4x3fc other, double otherFactor, Matrix4x3d dest)Component-wise addthisandotherby first multiplying each component ofotherbyotherFactor, adding that tothisand storing the final result indest.Vector4dfrustumPlane(int which, Vector4d dest)Calculate a frustum plane ofthismatrix, which can be a projection matrix or a combined modelview-projection matrix, and store the result in the givendest.double[]get(double[] arr)Store this matrix into the supplied double array in column-major order.double[]get(double[] arr, int offset)Store this matrix into the supplied double array in column-major order at the given offset.float[]get(float[] arr)Store the elements of this matrix as float values in column-major order into the supplied float array.float[]get(float[] arr, int offset)Store the elements of this matrix as float values in column-major order into the supplied float array at the given offset.java.nio.ByteBufferget(int index, java.nio.ByteBuffer buffer)Store this matrix in column-major order into the suppliedByteBufferstarting at the specified absolute buffer position/index.java.nio.DoubleBufferget(int index, java.nio.DoubleBuffer buffer)Store this matrix in column-major order into the suppliedDoubleBufferstarting at the specified absolute buffer position/index.java.nio.FloatBufferget(int index, java.nio.FloatBuffer buffer)Store this matrix in column-major order into the suppliedFloatBufferstarting at the specified absolute buffer position/index.java.nio.ByteBufferget(java.nio.ByteBuffer buffer)Store this matrix in column-major order into the suppliedByteBufferat the current bufferposition.java.nio.DoubleBufferget(java.nio.DoubleBuffer buffer)Store this matrix in column-major order into the suppliedDoubleBufferat the current bufferposition.java.nio.FloatBufferget(java.nio.FloatBuffer buffer)Store this matrix in column-major order into the suppliedFloatBufferat the current bufferposition.Matrix4dget(Matrix4d dest)Get the current values ofthismatrix and store them into the upper 4x3 submatrix ofdest.Matrix4x3dget(Matrix4x3d dest)Get the current values ofthismatrix and store them intodest.double[]get4x4(double[] arr)Store a 4x4 matrix in column-major order into the supplied array, where the upper 4x3 submatrix isthisand the last row is(0, 0, 0, 1).double[]get4x4(double[] arr, int offset)Store a 4x4 matrix in column-major order into the supplied array at the given offset, where the upper 4x3 submatrix isthisand the last row is(0, 0, 0, 1).float[]get4x4(float[] arr)Store a 4x4 matrix in column-major order into the supplied array, where the upper 4x3 submatrix isthisand the last row is(0, 0, 0, 1).float[]get4x4(float[] arr, int offset)Store a 4x4 matrix in column-major order into the supplied array at the given offset, where the upper 4x3 submatrix isthisand the last row is(0, 0, 0, 1).java.nio.ByteBufferget4x4(int index, java.nio.ByteBuffer buffer)Store a 4x4 matrix in column-major order into the suppliedByteBufferstarting at the specified absolute buffer position/index, where the upper 4x3 submatrix isthisand the last row is(0, 0, 0, 1).java.nio.DoubleBufferget4x4(int index, java.nio.DoubleBuffer buffer)Store a 4x4 matrix in column-major order into the suppliedDoubleBufferstarting at the specified absolute buffer position/index, where the upper 4x3 submatrix isthisand the last row is(0, 0, 0, 1).java.nio.ByteBufferget4x4(java.nio.ByteBuffer buffer)Store a 4x4 matrix in column-major order into the suppliedByteBufferat the current bufferposition, where the upper 4x3 submatrix isthisand the last row is(0, 0, 0, 1).java.nio.DoubleBufferget4x4(java.nio.DoubleBuffer buffer)Store a 4x4 matrix in column-major order into the suppliedDoubleBufferat the current bufferposition, where the upper 4x3 submatrix isthisand the last row is(0, 0, 0, 1).Vector3dgetColumn(int column, Vector3d dest)Get the column at the givencolumnindex, starting with0.Vector3dgetEulerAnglesXYZ(Vector3d dest)Extract the Euler angles from the rotation represented by the left 3x3 submatrix ofthisand store the extracted Euler angles indest.Vector3dgetEulerAnglesZYX(Vector3d dest)Extract the Euler angles from the rotation represented by the left 3x3 submatrix ofthisand store the extracted Euler angles indest.java.nio.ByteBuffergetFloats(int index, java.nio.ByteBuffer buffer)Store the elements of this matrix as float values in column-major order into the suppliedByteBufferstarting at the specified absolute buffer position/index.java.nio.ByteBuffergetFloats(java.nio.ByteBuffer buffer)Store the elements of this matrix as float values in column-major order into the suppliedByteBufferat the current bufferposition.QuaterniondgetNormalizedRotation(Quaterniond dest)Get the current values ofthismatrix and store the represented rotation into the givenQuaterniond.QuaternionfgetNormalizedRotation(Quaternionf dest)Get the current values ofthismatrix and store the represented rotation into the givenQuaternionf.Vector4dgetRow(int row, Vector4d dest)Get the row at the givenrowindex, starting with0.Vector3dgetScale(Vector3d dest)Get the scaling factors ofthismatrix for the three base axes.Matrix4x3dcgetToAddress(long address)Store this matrix in column-major order at the given off-heap address.Vector3dgetTranslation(Vector3d dest)Get only the translation components(m30, m31, m32)of this matrix and store them in the given vectorxyz.double[]getTransposed(double[] arr)Store this matrix into the supplied float array in row-major order.double[]getTransposed(double[] arr, int offset)Store this matrix into the supplied float array in row-major order at the given offset.java.nio.ByteBuffergetTransposed(int index, java.nio.ByteBuffer buffer)Store this matrix in row-major order into the suppliedByteBufferstarting at the specified absolute buffer position/index.java.nio.DoubleBuffergetTransposed(int index, java.nio.DoubleBuffer buffer)Store this matrix in row-major order into the suppliedDoubleBufferstarting at the specified absolute buffer position/index.java.nio.FloatBuffergetTransposed(int index, java.nio.FloatBuffer buffer)Store this matrix in row-major order into the suppliedFloatBufferstarting at the specified absolute buffer position/index.java.nio.ByteBuffergetTransposed(java.nio.ByteBuffer buffer)Store this matrix in row-major order into the suppliedByteBufferat the current bufferposition.java.nio.DoubleBuffergetTransposed(java.nio.DoubleBuffer buffer)Store this matrix in row-major order into the suppliedDoubleBufferat the current bufferposition.java.nio.FloatBuffergetTransposed(java.nio.FloatBuffer buffer)Store this matrix in row-major order into the suppliedFloatBufferat the current bufferposition.java.nio.ByteBuffergetTransposedFloats(int index, java.nio.ByteBuffer buffer)Store this matrix in row-major order into the suppliedByteBufferstarting at the specified absolute buffer position/index.java.nio.ByteBuffergetTransposedFloats(java.nio.ByteBuffer buffer)Store this matrix as float values in row-major order into the suppliedByteBufferat the current bufferposition.QuaterniondgetUnnormalizedRotation(Quaterniond dest)Get the current values ofthismatrix and store the represented rotation into the givenQuaterniond.QuaternionfgetUnnormalizedRotation(Quaternionf dest)Get the current values ofthismatrix and store the represented rotation into the givenQuaternionf.Matrix4x3dinvert(Matrix4x3d dest)Invertthismatrix and store the result indest.Matrix4x3dinvertOrtho(Matrix4x3d dest)Invertthisorthographic projection matrix and store the result into the givendest.booleanisFinite()Determine whether all matrix elements are finite floating-point values, that is, they are notNaNand notinfinity.Matrix4x3dlerp(Matrix4x3dc other, double t, Matrix4x3d dest)Linearly interpolatethisandotherusing the given interpolation factortand store the result indest.Matrix4x3dlookAlong(double dirX, double dirY, double dirZ, double upX, double upY, double upZ, Matrix4x3d dest)Apply a rotation transformation to this matrix to make-zpoint alongdirand store the result indest.Matrix4x3dlookAlong(Vector3dc dir, Vector3dc up, Matrix4x3d dest)Apply a rotation transformation to this matrix to make-zpoint alongdirand store the result indest.Matrix4x3dlookAt(double eyeX, double eyeY, double eyeZ, double centerX, double centerY, double centerZ, double upX, double upY, double upZ, Matrix4x3d dest)Apply a "lookat" transformation to this matrix for a right-handed coordinate system, that aligns-zwithcenter - eyeand store the result indest.Matrix4x3dlookAt(Vector3dc eye, Vector3dc center, Vector3dc up, Matrix4x3d dest)Apply a "lookat" transformation to this matrix for a right-handed coordinate system, that aligns-zwithcenter - eyeand store the result indest.Matrix4x3dlookAtLH(double eyeX, double eyeY, double eyeZ, double centerX, double centerY, double centerZ, double upX, double upY, double upZ, Matrix4x3d dest)Apply a "lookat" transformation to this matrix for a left-handed coordinate system, that aligns+zwithcenter - eyeand store the result indest.Matrix4x3dlookAtLH(Vector3dc eye, Vector3dc center, Vector3dc up, Matrix4x3d dest)Apply a "lookat" transformation to this matrix for a left-handed coordinate system, that aligns+zwithcenter - eyeand store the result indest.doublem00()Return the value of the matrix element at column 0 and row 0.doublem01()Return the value of the matrix element at column 0 and row 1.doublem02()Return the value of the matrix element at column 0 and row 2.doublem10()Return the value of the matrix element at column 1 and row 0.doublem11()Return the value of the matrix element at column 1 and row 1.doublem12()Return the value of the matrix element at column 1 and row 2.doublem20()Return the value of the matrix element at column 2 and row 0.doublem21()Return the value of the matrix element at column 2 and row 1.doublem22()Return the value of the matrix element at column 2 and row 2.doublem30()Return the value of the matrix element at column 3 and row 0.doublem31()Return the value of the matrix element at column 3 and row 1.doublem32()Return the value of the matrix element at column 3 and row 2.Matrix4x3dmapnXnYnZ(Matrix4x3d dest)Multiplythisby the matrixMatrix4x3dmapnXnYZ(Matrix4x3d dest)Multiplythisby the matrixMatrix4x3dmapnXnZnY(Matrix4x3d dest)Multiplythisby the matrixMatrix4x3dmapnXnZY(Matrix4x3d dest)Multiplythisby the matrixMatrix4x3dmapnXYnZ(Matrix4x3d dest)Multiplythisby the matrixMatrix4x3dmapnXZnY(Matrix4x3d dest)Multiplythisby the matrixMatrix4x3dmapnXZY(Matrix4x3d dest)Multiplythisby the matrixMatrix4x3dmapnYnXnZ(Matrix4x3d dest)Multiplythisby the matrixMatrix4x3dmapnYnXZ(Matrix4x3d dest)Multiplythisby the matrixMatrix4x3dmapnYnZnX(Matrix4x3d dest)Multiplythisby the matrixMatrix4x3dmapnYnZX(Matrix4x3d dest)Multiplythisby the matrixMatrix4x3dmapnYXnZ(Matrix4x3d dest)Multiplythisby the matrixMatrix4x3dmapnYXZ(Matrix4x3d dest)Multiplythisby the matrixMatrix4x3dmapnYZnX(Matrix4x3d dest)Multiplythisby the matrixMatrix4x3dmapnYZX(Matrix4x3d dest)Multiplythisby the matrixMatrix4x3dmapnZnXnY(Matrix4x3d dest)Multiplythisby the matrixMatrix4x3dmapnZnXY(Matrix4x3d dest)Multiplythisby the matrixMatrix4x3dmapnZnYnX(Matrix4x3d dest)Multiplythisby the matrixMatrix4x3dmapnZnYX(Matrix4x3d dest)Multiplythisby the matrixMatrix4x3dmapnZXnY(Matrix4x3d dest)Multiplythisby the matrixMatrix4x3dmapnZXY(Matrix4x3d dest)Multiplythisby the matrixMatrix4x3dmapnZYnX(Matrix4x3d dest)Multiplythisby the matrixMatrix4x3dmapnZYX(Matrix4x3d dest)Multiplythisby the matrixMatrix4x3dmapXnYnZ(Matrix4x3d dest)Multiplythisby the matrixMatrix4x3dmapXnZnY(Matrix4x3d dest)Multiplythisby the matrixMatrix4x3dmapXnZY(Matrix4x3d dest)Multiplythisby the matrixMatrix4x3dmapXZnY(Matrix4x3d dest)Multiplythisby the matrixMatrix4x3dmapXZY(Matrix4x3d dest)Multiplythisby the matrixMatrix4x3dmapYnXnZ(Matrix4x3d dest)Multiplythisby the matrixMatrix4x3dmapYnXZ(Matrix4x3d dest)Multiplythisby the matrixMatrix4x3dmapYnZnX(Matrix4x3d dest)Multiplythisby the matrixMatrix4x3dmapYnZX(Matrix4x3d dest)Multiplythisby the matrixMatrix4x3dmapYXnZ(Matrix4x3d dest)Multiplythisby the matrixMatrix4x3dmapYXZ(Matrix4x3d dest)Multiplythisby the matrixMatrix4x3dmapYZnX(Matrix4x3d dest)Multiplythisby the matrixMatrix4x3dmapYZX(Matrix4x3d dest)Multiplythisby the matrixMatrix4x3dmapZnXnY(Matrix4x3d dest)Multiplythisby the matrixMatrix4x3dmapZnXY(Matrix4x3d dest)Multiplythisby the matrixMatrix4x3dmapZnYnX(Matrix4x3d dest)Multiplythisby the matrixMatrix4x3dmapZnYX(Matrix4x3d dest)Multiplythisby the matrixMatrix4x3dmapZXnY(Matrix4x3d dest)Multiplythisby the matrixMatrix4x3dmapZXY(Matrix4x3d dest)Multiplythisby the matrixMatrix4x3dmapZYnX(Matrix4x3d dest)Multiplythisby the matrixMatrix4x3dmapZYX(Matrix4x3d dest)Multiplythisby the matrixMatrix4x3dmul(Matrix4x3dc right, Matrix4x3d dest)Multiply this matrix by the suppliedrightmatrix and store the result indest.Matrix4x3dmul(Matrix4x3fc right, Matrix4x3d dest)Multiply this matrix by the suppliedrightmatrix and store the result indest.Matrix4x3dmul3x3(double rm00, double rm01, double rm02, double rm10, double rm11, double rm12, double rm20, double rm21, double rm22, Matrix4x3d dest)Multiplythisby the 4x3 matrix with the column vectors(rm00, rm01, rm02),(rm10, rm11, rm12),(rm20, rm21, rm22)and(0, 0, 0)and store the result indest.Matrix4x3dmulComponentWise(Matrix4x3dc other, Matrix4x3d dest)Component-wise multiplythisbyotherand store the result indest.Matrix4x3dmulOrtho(Matrix4x3dc view, Matrix4x3d dest)Multiplythisorthographic projection matrix by the suppliedviewmatrix and store the result indest.Matrix4x3dmulTranslation(Matrix4x3dc right, Matrix4x3d dest)Multiply this matrix, which is assumed to only contain a translation, by the suppliedrightmatrix and store the result indest.Matrix4x3dmulTranslation(Matrix4x3fc right, Matrix4x3d dest)Multiply this matrix, which is assumed to only contain a translation, by the suppliedrightmatrix and store the result indest.Matrix4x3dnegateX(Matrix4x3d dest)Multiplythisby the matrixMatrix4x3dnegateY(Matrix4x3d dest)Multiplythisby the matrixMatrix4x3dnegateZ(Matrix4x3d dest)Multiplythisby the matrixMatrix3dnormal(Matrix3d dest)Compute a normal matrix from the left 3x3 submatrix ofthisand store it intodest.Matrix4x3dnormal(Matrix4x3d dest)Compute a normal matrix from the left 3x3 submatrix ofthisand store it into the left 3x3 submatrix ofdest.Matrix3dnormalize3x3(Matrix3d dest)Normalize the left 3x3 submatrix of this matrix and store the result indest.Matrix4x3dnormalize3x3(Matrix4x3d dest)Normalize the left 3x3 submatrix of this matrix and store the result indest.Vector3dnormalizedPositiveX(Vector3d dir)Obtain the direction of+Xbefore the transformation represented bythisorthogonal matrix is applied.Vector3dnormalizedPositiveY(Vector3d dir)Obtain the direction of+Ybefore the transformation represented bythisorthogonal matrix is applied.Vector3dnormalizedPositiveZ(Vector3d dir)Obtain the direction of+Zbefore the transformation represented bythisorthogonal matrix is applied.Matrix4x3dobliqueZ(double a, double b, Matrix4x3d dest)Apply an oblique projection transformation to this matrix with the given values foraandband store the result indest.Vector3dorigin(Vector3d origin)Obtain the position that gets transformed to the origin bythismatrix.Matrix4x3dortho(double left, double right, double bottom, double top, double zNear, double zFar, boolean zZeroToOne, Matrix4x3d dest)Apply an orthographic projection transformation for a right-handed coordinate system using the given NDC z range to this matrix and store the result indest.Matrix4x3dortho(double left, double right, double bottom, double top, double zNear, double zFar, Matrix4x3d dest)Apply an orthographic projection transformation for a right-handed coordinate system using OpenGL's NDC z range of[-1..+1]to this matrix and store the result indest.Matrix4x3dortho2D(double left, double right, double bottom, double top, Matrix4x3d dest)Apply an orthographic projection transformation for a right-handed coordinate system to this matrix and store the result indest.Matrix4x3dortho2DLH(double left, double right, double bottom, double top, Matrix4x3d dest)Apply an orthographic projection transformation for a left-handed coordinate system to this matrix and store the result indest.Matrix4x3dorthoLH(double left, double right, double bottom, double top, double zNear, double zFar, boolean zZeroToOne, Matrix4x3d dest)Apply an orthographic projection transformation for a left-handed coordiante system using the given NDC z range to this matrix and store the result indest.Matrix4x3dorthoLH(double left, double right, double bottom, double top, double zNear, double zFar, Matrix4x3d dest)Apply an orthographic projection transformation for a left-handed coordiante system using OpenGL's NDC z range of[-1..+1]to this matrix and store the result indest.Matrix4x3dorthoSymmetric(double width, double height, double zNear, double zFar, boolean zZeroToOne, Matrix4x3d dest)Apply a symmetric orthographic projection transformation for a right-handed coordinate system using the given NDC z range to this matrix and store the result indest.Matrix4x3dorthoSymmetric(double width, double height, double zNear, double zFar, Matrix4x3d dest)Apply a symmetric orthographic projection transformation for a right-handed coordinate system using OpenGL's NDC z range of[-1..+1]to this matrix and store the result indest.Matrix4x3dorthoSymmetricLH(double width, double height, double zNear, double zFar, boolean zZeroToOne, Matrix4x3d dest)Apply a symmetric orthographic projection transformation for a left-handed coordinate system using the given NDC z range to this matrix and store the result indest.Matrix4x3dorthoSymmetricLH(double width, double height, double zNear, double zFar, Matrix4x3d dest)Apply a symmetric orthographic projection transformation for a left-handed coordinate system using OpenGL's NDC z range of[-1..+1]to this matrix and store the result indest.Matrix4x3dpick(double x, double y, double width, double height, int[] viewport, Matrix4x3d dest)Apply a picking transformation to this matrix using the given window coordinates(x, y)as the pick center and the given(width, height)as the size of the picking region in window coordinates, and store the result indest.Vector3dpositiveX(Vector3d dir)Obtain the direction of+Xbefore the transformation represented bythismatrix is applied.Vector3dpositiveY(Vector3d dir)Obtain the direction of+Ybefore the transformation represented bythismatrix is applied.Vector3dpositiveZ(Vector3d dir)Obtain the direction of+Zbefore the transformation represented bythismatrix is applied.intproperties()Matrix4x3dreflect(double nx, double ny, double nz, double px, double py, double pz, Matrix4x3d dest)Apply a mirror/reflection transformation to this matrix that reflects about the given plane specified via the plane normal and a point on the plane, and store the result indest.Matrix4x3dreflect(double a, double b, double c, double d, Matrix4x3d dest)Apply a mirror/reflection transformation to this matrix that reflects about the given plane specified via the equationx*a + y*b + z*c + d = 0and store the result indest.Matrix4x3dreflect(Quaterniondc orientation, Vector3dc point, Matrix4x3d dest)Apply a mirror/reflection transformation to this matrix that reflects about a plane specified via the plane orientation and a point on the plane, and store the result indest.Matrix4x3dreflect(Vector3dc normal, Vector3dc point, Matrix4x3d dest)Apply a mirror/reflection transformation to this matrix that reflects about the given plane specified via the plane normal and a point on the plane, and store the result indest.Matrix4x3drotate(double ang, double x, double y, double z, Matrix4x3d dest)Apply rotation to this matrix by rotating the given amount of radians about the given axis specified as x, y and z components and store the result indest.Matrix4x3drotate(double angle, Vector3dc axis, Matrix4x3d dest)Apply a rotation transformation, rotating the given radians about the specified axis and store the result indest.Matrix4x3drotate(double angle, Vector3fc axis, Matrix4x3d dest)Apply a rotation transformation, rotating the given radians about the specified axis and store the result indest.Matrix4x3drotate(AxisAngle4d axisAngle, Matrix4x3d dest)Apply a rotation transformation, rotating about the givenAxisAngle4dand store the result indest.Matrix4x3drotate(AxisAngle4f axisAngle, Matrix4x3d dest)Apply a rotation transformation, rotating about the givenAxisAngle4fand store the result indest.Matrix4x3drotate(Quaterniondc quat, Matrix4x3d dest)Apply the rotation - and possibly scaling - transformation of the givenQuaterniondcto this matrix and store the result indest.Matrix4x3drotate(Quaternionfc quat, Matrix4x3d dest)Apply the rotation - and possibly scaling - transformation of the givenQuaternionfcto this matrix and store the result indest.Matrix4x3drotateAround(Quaterniondc quat, double ox, double oy, double oz, Matrix4x3d dest)Apply the rotation - and possibly scaling - transformation of the givenQuaterniondcto this matrix while using(ox, oy, oz)as the rotation origin, and store the result indest.Matrix4x3drotateLocal(double ang, double x, double y, double z, Matrix4x3d dest)Pre-multiply a rotation to this matrix by rotating the given amount of radians about the specified(x, y, z)axis and store the result indest.Matrix4x3drotateLocal(Quaterniondc quat, Matrix4x3d dest)Pre-multiply the rotation - and possibly scaling - transformation of the givenQuaterniondcto this matrix and store the result indest.Matrix4x3drotateLocal(Quaternionfc quat, Matrix4x3d dest)Pre-multiply the rotation - and possibly scaling - transformation of the givenQuaternionfcto this matrix and store the result indest.Matrix4x3drotateTowards(double dirX, double dirY, double dirZ, double upX, double upY, double upZ, Matrix4x3d dest)Apply a model transformation to this matrix for a right-handed coordinate system, that aligns the-zaxis with(dirX, dirY, dirZ)and store the result indest.Matrix4x3drotateTowards(Vector3dc dir, Vector3dc up, Matrix4x3d dest)Apply a model transformation to this matrix for a right-handed coordinate system, that aligns the-zaxis withdirand store the result indest.Matrix4x3drotateTranslation(double ang, double x, double y, double z, Matrix4x3d dest)Apply rotation to this matrix, which is assumed to only contain a translation, by rotating the given amount of radians about the specified(x, y, z)axis and store the result indest.Matrix4x3drotateTranslation(Quaterniondc quat, Matrix4x3d dest)Apply the rotation - and possibly scaling - transformation of the givenQuaterniondcto this matrix, which is assumed to only contain a translation, and store the result indest.Matrix4x3drotateTranslation(Quaternionfc quat, Matrix4x3d dest)Apply the rotation - and possibly scaling - transformation of the givenQuaternionfcto this matrix, which is assumed to only contain a translation, and store the result indest.Matrix4x3drotateX(double ang, Matrix4x3d dest)Apply rotation about the X axis to this matrix by rotating the given amount of radians and store the result indest.Matrix4x3drotateXYZ(double angleX, double angleY, double angleZ, Matrix4x3d dest)Apply rotation ofangleXradians about the X axis, followed by a rotation ofangleYradians about the Y axis and followed by a rotation ofangleZradians about the Z axis and store the result indest.Matrix4x3drotateY(double ang, Matrix4x3d dest)Apply rotation about the Y axis to this matrix by rotating the given amount of radians and store the result indest.Matrix4x3drotateYXZ(double angleY, double angleX, double angleZ, Matrix4x3d dest)Apply rotation ofangleYradians about the Y axis, followed by a rotation ofangleXradians about the X axis and followed by a rotation ofangleZradians about the Z axis and store the result indest.Matrix4x3drotateZ(double ang, Matrix4x3d dest)Apply rotation about the Z axis to this matrix by rotating the given amount of radians and store the result indest.Matrix4x3drotateZYX(double angleZ, double angleY, double angleX, Matrix4x3d dest)Apply rotation ofangleZradians about the Z axis, followed by a rotation ofangleYradians about the Y axis and followed by a rotation ofangleXradians about the X axis and store the result indest.Matrix4x3dscale(double x, double y, double z, Matrix4x3d dest)Apply scaling tothismatrix by scaling the base axes by the given x, y and z factors and store the result indest.Matrix4x3dscale(double xyz, Matrix4x3d dest)Apply scaling to this matrix by uniformly scaling all base axes by the given xyz factor and store the result indest.Matrix4x3dscale(Vector3dc xyz, Matrix4x3d dest)Apply scaling tothismatrix by scaling the base axes by the givenxyz.x,xyz.yandxyz.zfactors, respectively and store the result indest.Matrix4x3dscaleAround(double sx, double sy, double sz, double ox, double oy, double oz, Matrix4x3d dest)Apply scaling tothismatrix by scaling the base axes by the given sx, sy and sz factors while using(ox, oy, oz)as the scaling origin, and store the result indest.Matrix4x3dscaleAround(double factor, double ox, double oy, double oz, Matrix4x3d dest)Apply scaling to this matrix by scaling all three base axes by the givenfactorwhile using(ox, oy, oz)as the scaling origin, and store the result indest.Matrix4x3dscaleLocal(double x, double y, double z, Matrix4x3d dest)Pre-multiply scaling tothismatrix by scaling the base axes by the given x, y and z factors and store the result indest.Matrix4x3dscaleXY(double x, double y, Matrix4x3d dest)Apply scaling to this matrix by by scaling the X axis byxand the Y axis byyand store the result indest.Matrix4x3dshadow(double lightX, double lightY, double lightZ, double lightW, double a, double b, double c, double d, Matrix4x3d dest)Apply a projection transformation to this matrix that projects onto the plane specified via the general plane equationx*a + y*b + z*c + d = 0as if casting a shadow from a given light position/direction(lightX, lightY, lightZ, lightW)and store the result indest.Matrix4x3dshadow(double lightX, double lightY, double lightZ, double lightW, Matrix4x3dc planeTransform, Matrix4x3d dest)Apply a projection transformation to this matrix that projects onto the plane with the general plane equationy = 0as if casting a shadow from a given light position/direction(lightX, lightY, lightZ, lightW)and store the result indest.Matrix4x3dshadow(Vector4dc light, double a, double b, double c, double d, Matrix4x3d dest)Apply a projection transformation to this matrix that projects onto the plane specified via the general plane equationx*a + y*b + z*c + d = 0as if casting a shadow from a given light position/directionlightand store the result indest.Matrix4x3dshadow(Vector4dc light, Matrix4x3dc planeTransform, Matrix4x3d dest)Apply a projection transformation to this matrix that projects onto the plane with the general plane equationy = 0as if casting a shadow from a given light position/directionlightand store the result indest.Matrix4x3dsub(Matrix4x3dc subtrahend, Matrix4x3d dest)Component-wise subtractsubtrahendfromthisand store the result indest.Matrix4x3dsub(Matrix4x3fc subtrahend, Matrix4x3d dest)Component-wise subtractsubtrahendfromthisand store the result indest.Vector4dtransform(Vector4d v)Transform/multiply the given vector by this matrix and store the result in that vector.Vector4dtransform(Vector4dc v, Vector4d dest)Transform/multiply the given vector by this matrix and store the result indest.Matrix4x3dtransformAab(double minX, double minY, double minZ, double maxX, double maxY, double maxZ, Vector3d outMin, Vector3d outMax)Transform the axis-aligned box given as the minimum corner(minX, minY, minZ)and maximum corner(maxX, maxY, maxZ)bythismatrix and compute the axis-aligned box of the result whose minimum corner is stored inoutMinand maximum corner stored inoutMax.Matrix4x3dtransformAab(Vector3dc min, Vector3dc max, Vector3d outMin, Vector3d outMax)Transform the axis-aligned box given as the minimum cornerminand maximum cornermaxbythismatrix and compute the axis-aligned box of the result whose minimum corner is stored inoutMinand maximum corner stored inoutMax.Vector3dtransformDirection(Vector3d v)Transform/multiply the given 3D-vector, as if it was a 4D-vector with w=0, by this matrix and store the result in that vector.Vector3dtransformDirection(Vector3dc v, Vector3d dest)Transform/multiply the given 3D-vector, as if it was a 4D-vector with w=0, by this matrix and store the result indest.Vector3dtransformPosition(Vector3d v)Transform/multiply the given 3D-vector, as if it was a 4D-vector with w=1, by this matrix and store the result in that vector.Vector3dtransformPosition(Vector3dc v, Vector3d dest)Transform/multiply the given 3D-vector, as if it was a 4D-vector with w=1, by this matrix and store the result indest.Matrix4x3dtranslate(double x, double y, double z, Matrix4x3d dest)Apply a translation to this matrix by translating by the given number of units in x, y and z and store the result indest.Matrix4x3dtranslate(Vector3dc offset, Matrix4x3d dest)Apply a translation to this matrix by translating by the given number of units in x, y and z and store the result indest.Matrix4x3dtranslate(Vector3fc offset, Matrix4x3d dest)Apply a translation to this matrix by translating by the given number of units in x, y and z and store the result indest.Matrix4x3dtranslateLocal(double x, double y, double z, Matrix4x3d dest)Pre-multiply a translation to this matrix by translating by the given number of units in x, y and z and store the result indest.Matrix4x3dtranslateLocal(Vector3dc offset, Matrix4x3d dest)Pre-multiply a translation to this matrix by translating by the given number of units in x, y and z and store the result indest.Matrix4x3dtranslateLocal(Vector3fc offset, Matrix4x3d dest)Pre-multiply a translation to this matrix by translating by the given number of units in x, y and z and store the result indest.Matrix3dtranspose3x3(Matrix3d dest)Transpose only the left 3x3 submatrix of this matrix and store the result indest.Matrix4x3dtranspose3x3(Matrix4x3d dest)Transpose only the left 3x3 submatrix of this matrix and store the result indest.
-
-
-
Field Detail
-
PLANE_NX
static final int PLANE_NX
Argument to the first parameter offrustumPlane(int, Vector4d)identifying the plane with equationx=-1when using the identity matrix.- See Also:
- Constant Field Values
-
PLANE_PX
static final int PLANE_PX
Argument to the first parameter offrustumPlane(int, Vector4d)identifying the plane with equationx=1when using the identity matrix.- See Also:
- Constant Field Values
-
PLANE_NY
static final int PLANE_NY
Argument to the first parameter offrustumPlane(int, Vector4d)identifying the plane with equationy=-1when using the identity matrix.- See Also:
- Constant Field Values
-
PLANE_PY
static final int PLANE_PY
Argument to the first parameter offrustumPlane(int, Vector4d)identifying the plane with equationy=1when using the identity matrix.- See Also:
- Constant Field Values
-
PLANE_NZ
static final int PLANE_NZ
Argument to the first parameter offrustumPlane(int, Vector4d)identifying the plane with equationz=-1when using the identity matrix.- See Also:
- Constant Field Values
-
PLANE_PZ
static final int PLANE_PZ
Argument to the first parameter offrustumPlane(int, Vector4d)identifying the plane with equationz=1when using the identity matrix.- See Also:
- Constant Field Values
-
PROPERTY_IDENTITY
static final byte PROPERTY_IDENTITY
Bit returned byproperties()to indicate that the matrix represents the identity transformation.- See Also:
- Constant Field Values
-
PROPERTY_TRANSLATION
static final byte PROPERTY_TRANSLATION
Bit returned byproperties()to indicate that the matrix represents a pure translation transformation.- See Also:
- Constant Field Values
-
PROPERTY_ORTHONORMAL
static final byte PROPERTY_ORTHONORMAL
Bit returned byproperties()to indicate that the left 3x3 submatrix represents an orthogonal matrix (i.e. orthonormal basis).- See Also:
- Constant Field Values
-
-
Method Detail
-
properties
int properties()
- Returns:
- the properties of the matrix
-
m00
double m00()
Return the value of the matrix element at column 0 and row 0.- Returns:
- the value of the matrix element
-
m01
double m01()
Return the value of the matrix element at column 0 and row 1.- Returns:
- the value of the matrix element
-
m02
double m02()
Return the value of the matrix element at column 0 and row 2.- Returns:
- the value of the matrix element
-
m10
double m10()
Return the value of the matrix element at column 1 and row 0.- Returns:
- the value of the matrix element
-
m11
double m11()
Return the value of the matrix element at column 1 and row 1.- Returns:
- the value of the matrix element
-
m12
double m12()
Return the value of the matrix element at column 1 and row 2.- Returns:
- the value of the matrix element
-
m20
double m20()
Return the value of the matrix element at column 2 and row 0.- Returns:
- the value of the matrix element
-
m21
double m21()
Return the value of the matrix element at column 2 and row 1.- Returns:
- the value of the matrix element
-
m22
double m22()
Return the value of the matrix element at column 2 and row 2.- Returns:
- the value of the matrix element
-
m30
double m30()
Return the value of the matrix element at column 3 and row 0.- Returns:
- the value of the matrix element
-
m31
double m31()
Return the value of the matrix element at column 3 and row 1.- Returns:
- the value of the matrix element
-
m32
double m32()
Return the value of the matrix element at column 3 and row 2.- Returns:
- the value of the matrix element
-
get
Matrix4d get(Matrix4d dest)
Get the current values ofthismatrix and store them into the upper 4x3 submatrix ofdest.The other elements of
destwill not be modified.- Parameters:
dest- the destination matrix- Returns:
- dest
- See Also:
Matrix4d.set4x3(Matrix4x3dc)
-
mul
Matrix4x3d mul(Matrix4x3dc right, Matrix4x3d dest)
Multiply this matrix by the suppliedrightmatrix and store the result indest.If
Misthismatrix andRtherightmatrix, then the new matrix will beM * R. So when transforming a vectorvwith the new matrix by usingM * R * v, the transformation of the right matrix will be applied first!- Parameters:
right- the right operand of the multiplicationdest- will hold the result- Returns:
- dest
-
mul
Matrix4x3d mul(Matrix4x3fc right, Matrix4x3d dest)
Multiply this matrix by the suppliedrightmatrix and store the result indest.If
Misthismatrix andRtherightmatrix, then the new matrix will beM * R. So when transforming a vectorvwith the new matrix by usingM * R * v, the transformation of the right matrix will be applied first!- Parameters:
right- the right operand of the multiplicationdest- will hold the result- Returns:
- dest
-
mulTranslation
Matrix4x3d mulTranslation(Matrix4x3dc right, Matrix4x3d dest)
Multiply this matrix, which is assumed to only contain a translation, by the suppliedrightmatrix and store the result indest.This method assumes that
thismatrix only contains a translation.This method will not modify either the last row of
thisor the last row ofright.If
Misthismatrix andRtherightmatrix, then the new matrix will beM * R. So when transforming a vectorvwith the new matrix by usingM * R * v, the transformation of the right matrix will be applied first!- Parameters:
right- the right operand of the matrix multiplicationdest- the destination matrix, which will hold the result- Returns:
- dest
-
mulTranslation
Matrix4x3d mulTranslation(Matrix4x3fc right, Matrix4x3d dest)
Multiply this matrix, which is assumed to only contain a translation, by the suppliedrightmatrix and store the result indest.This method assumes that
thismatrix only contains a translation.This method will not modify either the last row of
thisor the last row ofright.If
Misthismatrix andRtherightmatrix, then the new matrix will beM * R. So when transforming a vectorvwith the new matrix by usingM * R * v, the transformation of the right matrix will be applied first!- Parameters:
right- the right operand of the matrix multiplicationdest- the destination matrix, which will hold the result- Returns:
- dest
-
mulOrtho
Matrix4x3d mulOrtho(Matrix4x3dc view, Matrix4x3d dest)
Multiplythisorthographic projection matrix by the suppliedviewmatrix and store the result indest.If
Misthismatrix andVtheviewmatrix, then the new matrix will beM * V. So when transforming a vectorvwith the new matrix by usingM * V * v, the transformation of theviewmatrix will be applied first!- Parameters:
view- the matrix which to multiplythiswithdest- the destination matrix, which will hold the result- Returns:
- dest
-
mul3x3
Matrix4x3d mul3x3(double rm00, double rm01, double rm02, double rm10, double rm11, double rm12, double rm20, double rm21, double rm22, Matrix4x3d dest)
Multiplythisby the 4x3 matrix with the column vectors(rm00, rm01, rm02),(rm10, rm11, rm12),(rm20, rm21, rm22)and(0, 0, 0)and store the result indest.If
Misthismatrix andRthe specified matrix, then the new matrix will beM * R. So when transforming a vectorvwith the new matrix by usingM * R * v, the transformation of theRmatrix will be applied first!- Parameters:
rm00- the value of the m00 elementrm01- the value of the m01 elementrm02- the value of the m02 elementrm10- the value of the m10 elementrm11- the value of the m11 elementrm12- the value of the m12 elementrm20- the value of the m20 elementrm21- the value of the m21 elementrm22- the value of the m22 elementdest- will hold the result- Returns:
- dest
-
fma
Matrix4x3d fma(Matrix4x3dc other, double otherFactor, Matrix4x3d dest)
Component-wise addthisandotherby first multiplying each component ofotherbyotherFactor, adding that tothisand storing the final result indest.The other components of
destwill be set to the ones ofthis.The matrices
thisandotherwill not be changed.- Parameters:
other- the other matrixotherFactor- the factor to multiply each of the other matrix's componentsdest- will hold the result- Returns:
- dest
-
fma
Matrix4x3d fma(Matrix4x3fc other, double otherFactor, Matrix4x3d dest)
Component-wise addthisandotherby first multiplying each component ofotherbyotherFactor, adding that tothisand storing the final result indest.The other components of
destwill be set to the ones ofthis.The matrices
thisandotherwill not be changed.- Parameters:
other- the other matrixotherFactor- the factor to multiply each of the other matrix's componentsdest- will hold the result- Returns:
- dest
-
add
Matrix4x3d add(Matrix4x3dc other, Matrix4x3d dest)
Component-wise addthisandotherand store the result indest.- Parameters:
other- the other addenddest- will hold the result- Returns:
- dest
-
add
Matrix4x3d add(Matrix4x3fc other, Matrix4x3d dest)
Component-wise addthisandotherand store the result indest.- Parameters:
other- the other addenddest- will hold the result- Returns:
- dest
-
sub
Matrix4x3d sub(Matrix4x3dc subtrahend, Matrix4x3d dest)
Component-wise subtractsubtrahendfromthisand store the result indest.- Parameters:
subtrahend- the subtrahenddest- will hold the result- Returns:
- dest
-
sub
Matrix4x3d sub(Matrix4x3fc subtrahend, Matrix4x3d dest)
Component-wise subtractsubtrahendfromthisand store the result indest.- Parameters:
subtrahend- the subtrahenddest- will hold the result- Returns:
- dest
-
mulComponentWise
Matrix4x3d mulComponentWise(Matrix4x3dc other, Matrix4x3d dest)
Component-wise multiplythisbyotherand store the result indest.- Parameters:
other- the other matrixdest- will hold the result- Returns:
- dest
-
determinant
double determinant()
Return the determinant of this matrix.- Returns:
- the determinant
-
invert
Matrix4x3d invert(Matrix4x3d dest)
Invertthismatrix and store the result indest.- Parameters:
dest- will hold the result- Returns:
- dest
-
invertOrtho
Matrix4x3d invertOrtho(Matrix4x3d dest)
Invertthisorthographic projection matrix and store the result into the givendest.This method can be used to quickly obtain the inverse of an orthographic projection matrix.
- Parameters:
dest- will hold the inverse ofthis- Returns:
- dest
-
transpose3x3
Matrix4x3d transpose3x3(Matrix4x3d dest)
Transpose only the left 3x3 submatrix of this matrix and store the result indest.All other matrix elements are left unchanged.
- Parameters:
dest- will hold the result- Returns:
- dest
-
transpose3x3
Matrix3d transpose3x3(Matrix3d dest)
Transpose only the left 3x3 submatrix of this matrix and store the result indest.- Parameters:
dest- will hold the result- Returns:
- dest
-
getTranslation
Vector3d getTranslation(Vector3d dest)
Get only the translation components(m30, m31, m32)of this matrix and store them in the given vectorxyz.- Parameters:
dest- will hold the translation components of this matrix- Returns:
- dest
-
getScale
Vector3d getScale(Vector3d dest)
Get the scaling factors ofthismatrix for the three base axes.- Parameters:
dest- will hold the scaling factors forx,yandz- Returns:
- dest
-
get
Matrix4x3d get(Matrix4x3d dest)
Get the current values ofthismatrix and store them intodest.- Parameters:
dest- the destination matrix- Returns:
- the passed in destination
-
getUnnormalizedRotation
Quaternionf getUnnormalizedRotation(Quaternionf dest)
Get the current values ofthismatrix and store the represented rotation into the givenQuaternionf.This method assumes that the first three column vectors of the left 3x3 submatrix are not normalized and thus allows to ignore any additional scaling factor that is applied to the matrix.
- Parameters:
dest- the destinationQuaternionf- Returns:
- the passed in destination
- See Also:
Quaternionf.setFromUnnormalized(Matrix4x3dc)
-
getNormalizedRotation
Quaternionf getNormalizedRotation(Quaternionf dest)
Get the current values ofthismatrix and store the represented rotation into the givenQuaternionf.This method assumes that the first three column vectors of the left 3x3 submatrix are normalized.
- Parameters:
dest- the destinationQuaternionf- Returns:
- the passed in destination
- See Also:
Quaternionf.setFromNormalized(Matrix4x3dc)
-
getUnnormalizedRotation
Quaterniond getUnnormalizedRotation(Quaterniond dest)
Get the current values ofthismatrix and store the represented rotation into the givenQuaterniond.This method assumes that the first three column vectors of the left 3x3 submatrix are not normalized and thus allows to ignore any additional scaling factor that is applied to the matrix.
- Parameters:
dest- the destinationQuaterniond- Returns:
- the passed in destination
- See Also:
Quaterniond.setFromUnnormalized(Matrix4x3dc)
-
getNormalizedRotation
Quaterniond getNormalizedRotation(Quaterniond dest)
Get the current values ofthismatrix and store the represented rotation into the givenQuaterniond.This method assumes that the first three column vectors of the left 3x3 submatrix are normalized.
- Parameters:
dest- the destinationQuaterniond- Returns:
- the passed in destination
- See Also:
Quaterniond.setFromNormalized(Matrix4x3dc)
-
get
java.nio.DoubleBuffer get(java.nio.DoubleBuffer buffer)
Store this matrix in column-major order into the suppliedDoubleBufferat the current bufferposition.This method will not increment the position of the given DoubleBuffer.
In order to specify the offset into the DoubleBuffer at which the matrix is stored, use
get(int, DoubleBuffer), taking the absolute position as parameter.- Parameters:
buffer- will receive the values of this matrix in column-major order at its current position- Returns:
- the passed in buffer
- See Also:
get(int, DoubleBuffer)
-
get
java.nio.DoubleBuffer get(int index, java.nio.DoubleBuffer buffer)Store this matrix in column-major order into the suppliedDoubleBufferstarting at the specified absolute buffer position/index.This method will not increment the position of the given
DoubleBuffer.- Parameters:
index- the absolute position into theDoubleBufferbuffer- will receive the values of this matrix in column-major order- Returns:
- the passed in buffer
-
get
java.nio.FloatBuffer get(java.nio.FloatBuffer buffer)
Store this matrix in column-major order into the suppliedFloatBufferat the current bufferposition.This method will not increment the position of the given FloatBuffer.
In order to specify the offset into the FloatBuffer at which the matrix is stored, use
get(int, FloatBuffer), taking the absolute position as parameter.Please note that due to this matrix storing double values those values will potentially lose precision when they are converted to float values before being put into the given FloatBuffer.
- Parameters:
buffer- will receive the values of this matrix in column-major order at its current position- Returns:
- the passed in buffer
- See Also:
get(int, FloatBuffer)
-
get
java.nio.FloatBuffer get(int index, java.nio.FloatBuffer buffer)Store this matrix in column-major order into the suppliedFloatBufferstarting at the specified absolute buffer position/index.This method will not increment the position of the given FloatBuffer.
Please note that due to this matrix storing double values those values will potentially lose precision when they are converted to float values before being put into the given FloatBuffer.
- Parameters:
index- the absolute position into the FloatBufferbuffer- will receive the values of this matrix in column-major order- Returns:
- the passed in buffer
-
get
java.nio.ByteBuffer get(java.nio.ByteBuffer buffer)
Store this matrix in column-major order into the suppliedByteBufferat the current bufferposition.This method will not increment the position of the given ByteBuffer.
In order to specify the offset into the ByteBuffer at which the matrix is stored, use
get(int, ByteBuffer), taking the absolute position as parameter.- Parameters:
buffer- will receive the values of this matrix in column-major order at its current position- Returns:
- the passed in buffer
- See Also:
get(int, ByteBuffer)
-
get
java.nio.ByteBuffer get(int index, java.nio.ByteBuffer buffer)Store this matrix in column-major order into the suppliedByteBufferstarting at the specified absolute buffer position/index.This method will not increment the position of the given ByteBuffer.
- Parameters:
index- the absolute position into the ByteBufferbuffer- will receive the values of this matrix in column-major order- Returns:
- the passed in buffer
-
getFloats
java.nio.ByteBuffer getFloats(java.nio.ByteBuffer buffer)
Store the elements of this matrix as float values in column-major order into the suppliedByteBufferat the current bufferposition.This method will not increment the position of the given ByteBuffer.
Please note that due to this matrix storing double values those values will potentially lose precision when they are converted to float values before being put into the given ByteBuffer.
In order to specify the offset into the ByteBuffer at which the matrix is stored, use
getFloats(int, ByteBuffer), taking the absolute position as parameter.- Parameters:
buffer- will receive the elements of this matrix as float values in column-major order at its current position- Returns:
- the passed in buffer
- See Also:
getFloats(int, ByteBuffer)
-
getFloats
java.nio.ByteBuffer getFloats(int index, java.nio.ByteBuffer buffer)Store the elements of this matrix as float values in column-major order into the suppliedByteBufferstarting at the specified absolute buffer position/index.This method will not increment the position of the given ByteBuffer.
Please note that due to this matrix storing double values those values will potentially lose precision when they are converted to float values before being put into the given ByteBuffer.
- Parameters:
index- the absolute position into the ByteBufferbuffer- will receive the elements of this matrix as float values in column-major order- Returns:
- the passed in buffer
-
getToAddress
Matrix4x3dc getToAddress(long address)
Store this matrix in column-major order at the given off-heap address.This method will throw an
UnsupportedOperationExceptionwhen JOML is used with `-Djoml.nounsafe`.This method is unsafe as it can result in a crash of the JVM process when the specified address range does not belong to this process.
- Parameters:
address- the off-heap address where to store this matrix- Returns:
- this
-
get
double[] get(double[] arr, int offset)Store this matrix into the supplied double array in column-major order at the given offset.- Parameters:
arr- the array to write the matrix values intooffset- the offset into the array- Returns:
- the passed in array
-
get
double[] get(double[] arr)
Store this matrix into the supplied double array in column-major order.In order to specify an explicit offset into the array, use the method
get(double[], int).- Parameters:
arr- the array to write the matrix values into- Returns:
- the passed in array
- See Also:
get(double[], int)
-
get
float[] get(float[] arr, int offset)Store the elements of this matrix as float values in column-major order into the supplied float array at the given offset.Please note that due to this matrix storing double values those values will potentially lose precision when they are converted to float values before being put into the given float array.
- Parameters:
arr- the array to write the matrix values intooffset- the offset into the array- Returns:
- the passed in array
-
get
float[] get(float[] arr)
Store the elements of this matrix as float values in column-major order into the supplied float array.Please note that due to this matrix storing double values those values will potentially lose precision when they are converted to float values before being put into the given float array.
In order to specify an explicit offset into the array, use the method
get(float[], int).- Parameters:
arr- the array to write the matrix values into- Returns:
- the passed in array
- See Also:
get(float[], int)
-
get4x4
double[] get4x4(double[] arr, int offset)Store a 4x4 matrix in column-major order into the supplied array at the given offset, where the upper 4x3 submatrix isthisand the last row is(0, 0, 0, 1).- Parameters:
arr- the array to write the matrix values intooffset- the offset into the array- Returns:
- the passed in array
-
get4x4
double[] get4x4(double[] arr)
Store a 4x4 matrix in column-major order into the supplied array, where the upper 4x3 submatrix isthisand the last row is(0, 0, 0, 1).In order to specify an explicit offset into the array, use the method
get4x4(double[], int).- Parameters:
arr- the array to write the matrix values into- Returns:
- the passed in array
- See Also:
get4x4(double[], int)
-
get4x4
float[] get4x4(float[] arr, int offset)Store a 4x4 matrix in column-major order into the supplied array at the given offset, where the upper 4x3 submatrix isthisand the last row is(0, 0, 0, 1).Please note that due to this matrix storing double values those values will potentially lose precision when they are converted to float values before being put into the given float array.
- Parameters:
arr- the array to write the matrix values intooffset- the offset into the array- Returns:
- the passed in array
-
get4x4
float[] get4x4(float[] arr)
Store a 4x4 matrix in column-major order into the supplied array, where the upper 4x3 submatrix isthisand the last row is(0, 0, 0, 1).Please note that due to this matrix storing double values those values will potentially lose precision when they are converted to float values before being put into the given float array.
In order to specify an explicit offset into the array, use the method
get4x4(float[], int).- Parameters:
arr- the array to write the matrix values into- Returns:
- the passed in array
- See Also:
get4x4(float[], int)
-
get4x4
java.nio.DoubleBuffer get4x4(java.nio.DoubleBuffer buffer)
Store a 4x4 matrix in column-major order into the suppliedDoubleBufferat the current bufferposition, where the upper 4x3 submatrix isthisand the last row is(0, 0, 0, 1).This method will not increment the position of the given DoubleBuffer.
In order to specify the offset into the DoubleBuffer at which the matrix is stored, use
get4x4(int, DoubleBuffer), taking the absolute position as parameter.- Parameters:
buffer- will receive the values of this matrix in column-major order at its current position- Returns:
- the passed in buffer
- See Also:
get4x4(int, DoubleBuffer)
-
get4x4
java.nio.DoubleBuffer get4x4(int index, java.nio.DoubleBuffer buffer)Store a 4x4 matrix in column-major order into the suppliedDoubleBufferstarting at the specified absolute buffer position/index, where the upper 4x3 submatrix isthisand the last row is(0, 0, 0, 1).This method will not increment the position of the given DoubleBuffer.
- Parameters:
index- the absolute position into the DoubleBufferbuffer- will receive the values of this matrix in column-major order- Returns:
- the passed in buffer
-
get4x4
java.nio.ByteBuffer get4x4(java.nio.ByteBuffer buffer)
Store a 4x4 matrix in column-major order into the suppliedByteBufferat the current bufferposition, where the upper 4x3 submatrix isthisand the last row is(0, 0, 0, 1).This method will not increment the position of the given ByteBuffer.
In order to specify the offset into the ByteBuffer at which the matrix is stored, use
get4x4(int, ByteBuffer), taking the absolute position as parameter.- Parameters:
buffer- will receive the values of this matrix in column-major order at its current position- Returns:
- the passed in buffer
- See Also:
get4x4(int, ByteBuffer)
-
get4x4
java.nio.ByteBuffer get4x4(int index, java.nio.ByteBuffer buffer)Store a 4x4 matrix in column-major order into the suppliedByteBufferstarting at the specified absolute buffer position/index, where the upper 4x3 submatrix isthisand the last row is(0, 0, 0, 1).This method will not increment the position of the given ByteBuffer.
- Parameters:
index- the absolute position into the ByteBufferbuffer- will receive the values of this matrix in column-major order- Returns:
- the passed in buffer
-
getTransposed
java.nio.DoubleBuffer getTransposed(java.nio.DoubleBuffer buffer)
Store this matrix in row-major order into the suppliedDoubleBufferat the current bufferposition.This method will not increment the position of the given DoubleBuffer.
In order to specify the offset into the DoubleBuffer at which the matrix is stored, use
getTransposed(int, DoubleBuffer), taking the absolute position as parameter.- Parameters:
buffer- will receive the values of this matrix in row-major order at its current position- Returns:
- the passed in buffer
- See Also:
getTransposed(int, DoubleBuffer)
-
getTransposed
java.nio.DoubleBuffer getTransposed(int index, java.nio.DoubleBuffer buffer)Store this matrix in row-major order into the suppliedDoubleBufferstarting at the specified absolute buffer position/index.This method will not increment the position of the given DoubleBuffer.
- Parameters:
index- the absolute position into the DoubleBufferbuffer- will receive the values of this matrix in row-major order- Returns:
- the passed in buffer
-
getTransposed
java.nio.ByteBuffer getTransposed(java.nio.ByteBuffer buffer)
Store this matrix in row-major order into the suppliedByteBufferat the current bufferposition.This method will not increment the position of the given ByteBuffer.
In order to specify the offset into the ByteBuffer at which the matrix is stored, use
getTransposed(int, ByteBuffer), taking the absolute position as parameter.- Parameters:
buffer- will receive the values of this matrix in row-major order at its current position- Returns:
- the passed in buffer
- See Also:
getTransposed(int, ByteBuffer)
-
getTransposed
java.nio.ByteBuffer getTransposed(int index, java.nio.ByteBuffer buffer)Store this matrix in row-major order into the suppliedByteBufferstarting at the specified absolute buffer position/index.This method will not increment the position of the given ByteBuffer.
- Parameters:
index- the absolute position into the ByteBufferbuffer- will receive the values of this matrix in row-major order- Returns:
- the passed in buffer
-
getTransposed
java.nio.FloatBuffer getTransposed(java.nio.FloatBuffer buffer)
Store this matrix in row-major order into the suppliedFloatBufferat the current bufferposition.This method will not increment the position of the given FloatBuffer.
Please note that due to this matrix storing double values those values will potentially lose precision when they are converted to float values before being put into the given FloatBuffer.
In order to specify the offset into the FloatBuffer at which the matrix is stored, use
getTransposed(int, FloatBuffer), taking the absolute position as parameter.- Parameters:
buffer- will receive the values of this matrix in row-major order at its current position- Returns:
- the passed in buffer
- See Also:
getTransposed(int, FloatBuffer)
-
getTransposed
java.nio.FloatBuffer getTransposed(int index, java.nio.FloatBuffer buffer)Store this matrix in row-major order into the suppliedFloatBufferstarting at the specified absolute buffer position/index.This method will not increment the position of the given FloatBuffer.
Please note that due to this matrix storing double values those values will potentially lose precision when they are converted to float values before being put into the given FloatBuffer.
- Parameters:
index- the absolute position into the FloatBufferbuffer- will receive the values of this matrix in row-major order- Returns:
- the passed in buffer
-
getTransposedFloats
java.nio.ByteBuffer getTransposedFloats(java.nio.ByteBuffer buffer)
Store this matrix as float values in row-major order into the suppliedByteBufferat the current bufferposition.This method will not increment the position of the given ByteBuffer.
Please note that due to this matrix storing double values those values will potentially lose precision when they are converted to float values before being put into the given FloatBuffer.
In order to specify the offset into the ByteBuffer at which the matrix is stored, use
getTransposedFloats(int, ByteBuffer), taking the absolute position as parameter.- Parameters:
buffer- will receive the values of this matrix as float values in row-major order at its current position- Returns:
- the passed in buffer
- See Also:
getTransposedFloats(int, ByteBuffer)
-
getTransposedFloats
java.nio.ByteBuffer getTransposedFloats(int index, java.nio.ByteBuffer buffer)Store this matrix in row-major order into the suppliedByteBufferstarting at the specified absolute buffer position/index.This method will not increment the position of the given ByteBuffer.
Please note that due to this matrix storing double values those values will potentially lose precision when they are converted to float values before being put into the given FloatBuffer.
- Parameters:
index- the absolute position into the ByteBufferbuffer- will receive the values of this matrix as float values in row-major order- Returns:
- the passed in buffer
-
getTransposed
double[] getTransposed(double[] arr, int offset)Store this matrix into the supplied float array in row-major order at the given offset.- Parameters:
arr- the array to write the matrix values intooffset- the offset into the array- Returns:
- the passed in array
-
getTransposed
double[] getTransposed(double[] arr)
Store this matrix into the supplied float array in row-major order.In order to specify an explicit offset into the array, use the method
getTransposed(double[], int).- Parameters:
arr- the array to write the matrix values into- Returns:
- the passed in array
- See Also:
getTransposed(double[], int)
-
transform
Vector4d transform(Vector4d v)
Transform/multiply the given vector by this matrix and store the result in that vector.- Parameters:
v- the vector to transform and to hold the final result- Returns:
- v
- See Also:
Vector4d.mul(Matrix4x3dc)
-
transform
Vector4d transform(Vector4dc v, Vector4d dest)
Transform/multiply the given vector by this matrix and store the result indest.- Parameters:
v- the vector to transformdest- will contain the result- Returns:
- dest
- See Also:
Vector4d.mul(Matrix4x3dc, Vector4d)
-
transformPosition
Vector3d transformPosition(Vector3d v)
Transform/multiply the given 3D-vector, as if it was a 4D-vector with w=1, by this matrix and store the result in that vector.The given 3D-vector is treated as a 4D-vector with its w-component being 1.0, so it will represent a position/location in 3D-space rather than a direction.
In order to store the result in another vector, use
transformPosition(Vector3dc, Vector3d).- Parameters:
v- the vector to transform and to hold the final result- Returns:
- v
- See Also:
transformPosition(Vector3dc, Vector3d),transform(Vector4d)
-
transformPosition
Vector3d transformPosition(Vector3dc v, Vector3d dest)
Transform/multiply the given 3D-vector, as if it was a 4D-vector with w=1, by this matrix and store the result indest.The given 3D-vector is treated as a 4D-vector with its w-component being 1.0, so it will represent a position/location in 3D-space rather than a direction.
In order to store the result in the same vector, use
transformPosition(Vector3d).- Parameters:
v- the vector to transformdest- will hold the result- Returns:
- dest
- See Also:
transformPosition(Vector3d),transform(Vector4dc, Vector4d)
-
transformDirection
Vector3d transformDirection(Vector3d v)
Transform/multiply the given 3D-vector, as if it was a 4D-vector with w=0, by this matrix and store the result in that vector.The given 3D-vector is treated as a 4D-vector with its w-component being
0.0, so it will represent a direction in 3D-space rather than a position. This method will therefore not take the translation part of the matrix into account.In order to store the result in another vector, use
transformDirection(Vector3dc, Vector3d).- Parameters:
v- the vector to transform and to hold the final result- Returns:
- v
-
transformDirection
Vector3d transformDirection(Vector3dc v, Vector3d dest)
Transform/multiply the given 3D-vector, as if it was a 4D-vector with w=0, by this matrix and store the result indest.The given 3D-vector is treated as a 4D-vector with its w-component being
0.0, so it will represent a direction in 3D-space rather than a position. This method will therefore not take the translation part of the matrix into account.In order to store the result in the same vector, use
transformDirection(Vector3d).- Parameters:
v- the vector to transform and to hold the final resultdest- will hold the result- Returns:
- dest
-
scale
Matrix4x3d scale(Vector3dc xyz, Matrix4x3d dest)
Apply scaling tothismatrix by scaling the base axes by the givenxyz.x,xyz.yandxyz.zfactors, respectively and store the result indest.If
Misthismatrix andSthe scaling matrix, then the new matrix will beM * S. So when transforming a vectorvwith the new matrix by usingM * S * v, the scaling will be applied first!- Parameters:
xyz- the factors of the x, y and z component, respectivelydest- will hold the result- Returns:
- dest
-
scale
Matrix4x3d scale(double x, double y, double z, Matrix4x3d dest)
Apply scaling tothismatrix by scaling the base axes by the given x, y and z factors and store the result indest.If
Misthismatrix andSthe scaling matrix, then the new matrix will beM * S. So when transforming a vectorvwith the new matrix by usingM * S * v, the scaling will be applied first!- Parameters:
x- the factor of the x componenty- the factor of the y componentz- the factor of the z componentdest- will hold the result- Returns:
- dest
-
scale
Matrix4x3d scale(double xyz, Matrix4x3d dest)
Apply scaling to this matrix by uniformly scaling all base axes by the given xyz factor and store the result indest.If
Misthismatrix andSthe scaling matrix, then the new matrix will beM * S. So when transforming a vectorvwith the new matrix by usingM * S * v, the scaling will be applied first!- Parameters:
xyz- the factor for all componentsdest- will hold the result- Returns:
- dest
- See Also:
scale(double, double, double, Matrix4x3d)
-
scaleXY
Matrix4x3d scaleXY(double x, double y, Matrix4x3d dest)
Apply scaling to this matrix by by scaling the X axis byxand the Y axis byyand store the result indest.If
Misthismatrix andSthe scaling matrix, then the new matrix will beM * S. So when transforming a vectorvwith the new matrix by usingM * S * v, the scaling will be applied first!- Parameters:
x- the factor of the x componenty- the factor of the y componentdest- will hold the result- Returns:
- dest
-
scaleAround
Matrix4x3d scaleAround(double sx, double sy, double sz, double ox, double oy, double oz, Matrix4x3d dest)
Apply scaling tothismatrix by scaling the base axes by the given sx, sy and sz factors while using(ox, oy, oz)as the scaling origin, and store the result indest.If
Misthismatrix andSthe scaling matrix, then the new matrix will beM * S. So when transforming a vectorvwith the new matrix by usingM * S * v, the scaling will be applied first!This method is equivalent to calling:
translate(ox, oy, oz, dest).scale(sx, sy, sz).translate(-ox, -oy, -oz)- Parameters:
sx- the scaling factor of the x componentsy- the scaling factor of the y componentsz- the scaling factor of the z componentox- the x coordinate of the scaling originoy- the y coordinate of the scaling originoz- the z coordinate of the scaling origindest- will hold the result- Returns:
- dest
-
scaleAround
Matrix4x3d scaleAround(double factor, double ox, double oy, double oz, Matrix4x3d dest)
Apply scaling to this matrix by scaling all three base axes by the givenfactorwhile using(ox, oy, oz)as the scaling origin, and store the result indest.If
Misthismatrix andSthe scaling matrix, then the new matrix will beM * S. So when transforming a vectorvwith the new matrix by usingM * S * v, the scaling will be applied first!This method is equivalent to calling:
translate(ox, oy, oz, dest).scale(factor).translate(-ox, -oy, -oz)- Parameters:
factor- the scaling factor for all three axesox- the x coordinate of the scaling originoy- the y coordinate of the scaling originoz- the z coordinate of the scaling origindest- will hold the result- Returns:
- this
-
scaleLocal
Matrix4x3d scaleLocal(double x, double y, double z, Matrix4x3d dest)
Pre-multiply scaling tothismatrix by scaling the base axes by the given x, y and z factors and store the result indest.If
Misthismatrix andSthe scaling matrix, then the new matrix will beS * M. So when transforming a vectorvwith the new matrix by usingS * M * v, the scaling will be applied last!- Parameters:
x- the factor of the x componenty- the factor of the y componentz- the factor of the z componentdest- will hold the result- Returns:
- dest
-
rotate
Matrix4x3d rotate(double ang, double x, double y, double z, Matrix4x3d dest)
Apply rotation to this matrix by rotating the given amount of radians about the given axis specified as x, y and z components and store the result indest.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
Misthismatrix andRthe rotation matrix, then the new matrix will beM * R. So when transforming a vectorvwith the new matrix by usingM * R * v, the rotation will be applied first!- Parameters:
ang- the angle is in radiansx- the x component of the axisy- the y component of the axisz- the z component of the axisdest- will hold the result- Returns:
- dest
-
rotateTranslation
Matrix4x3d rotateTranslation(double ang, double x, double y, double z, Matrix4x3d dest)
Apply rotation to this matrix, which is assumed to only contain a translation, by rotating the given amount of radians about the specified(x, y, z)axis and store the result indest.This method assumes
thisto only contain a translation.The axis described by the three components needs to be a unit vector.
When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
Misthismatrix andRthe rotation matrix, then the new matrix will beM * R. So when transforming a vectorvwith the new matrix by usingM * R * v, the rotation will be applied first!Reference: http://en.wikipedia.org
- Parameters:
ang- the angle in radiansx- the x component of the axisy- the y component of the axisz- the z component of the axisdest- will hold the result- Returns:
- dest
-
rotateAround
Matrix4x3d rotateAround(Quaterniondc quat, double ox, double oy, double oz, Matrix4x3d dest)
Apply the rotation - and possibly scaling - transformation of the givenQuaterniondcto this matrix while using(ox, oy, oz)as the rotation origin, and store the result indest.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
Misthismatrix andQthe rotation matrix obtained from the given quaternion, then the new matrix will beM * Q. So when transforming a vectorvwith the new matrix by usingM * Q * v, the quaternion rotation will be applied first!This method is equivalent to calling:
translate(ox, oy, oz, dest).rotate(quat).translate(-ox, -oy, -oz)Reference: http://en.wikipedia.org
- Parameters:
quat- theQuaterniondcox- the x coordinate of the rotation originoy- the y coordinate of the rotation originoz- the z coordinate of the rotation origindest- will hold the result- Returns:
- dest
-
rotateLocal
Matrix4x3d rotateLocal(double ang, double x, double y, double z, Matrix4x3d dest)
Pre-multiply a rotation to this matrix by rotating the given amount of radians about the specified(x, y, z)axis and store the result indest.The axis described by the three components needs to be a unit vector.
When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
Misthismatrix andRthe rotation matrix, then the new matrix will beR * M. So when transforming a vectorvwith the new matrix by usingR * M * v, the rotation will be applied last!Reference: http://en.wikipedia.org
- Parameters:
ang- the angle in radiansx- the x component of the axisy- the y component of the axisz- the z component of the axisdest- will hold the result- Returns:
- dest
-
translate
Matrix4x3d translate(Vector3dc offset, Matrix4x3d dest)
Apply a translation to this matrix by translating by the given number of units in x, y and z and store the result indest.If
Misthismatrix andTthe translation matrix, then the new matrix will beM * T. So when transforming a vectorvwith the new matrix by usingM * T * v, the translation will be applied first!- Parameters:
offset- the number of units in x, y and z by which to translatedest- will hold the result- Returns:
- dest
-
translate
Matrix4x3d translate(Vector3fc offset, Matrix4x3d dest)
Apply a translation to this matrix by translating by the given number of units in x, y and z and store the result indest.If
Misthismatrix andTthe translation matrix, then the new matrix will beM * T. So when transforming a vectorvwith the new matrix by usingM * T * v, the translation will be applied first!- Parameters:
offset- the number of units in x, y and z by which to translatedest- will hold the result- Returns:
- dest
-
translate
Matrix4x3d translate(double x, double y, double z, Matrix4x3d dest)
Apply a translation to this matrix by translating by the given number of units in x, y and z and store the result indest.If
Misthismatrix andTthe translation matrix, then the new matrix will beM * T. So when transforming a vectorvwith the new matrix by usingM * T * v, the translation will be applied first!- Parameters:
x- the offset to translate in xy- the offset to translate in yz- the offset to translate in zdest- will hold the result- Returns:
- dest
-
translateLocal
Matrix4x3d translateLocal(Vector3fc offset, Matrix4x3d dest)
Pre-multiply a translation to this matrix by translating by the given number of units in x, y and z and store the result indest.If
Misthismatrix andTthe translation matrix, then the new matrix will beT * M. So when transforming a vectorvwith the new matrix by usingT * M * v, the translation will be applied last!- Parameters:
offset- the number of units in x, y and z by which to translatedest- will hold the result- Returns:
- dest
-
translateLocal
Matrix4x3d translateLocal(Vector3dc offset, Matrix4x3d dest)
Pre-multiply a translation to this matrix by translating by the given number of units in x, y and z and store the result indest.If
Misthismatrix andTthe translation matrix, then the new matrix will beT * M. So when transforming a vectorvwith the new matrix by usingT * M * v, the translation will be applied last!- Parameters:
offset- the number of units in x, y and z by which to translatedest- will hold the result- Returns:
- dest
-
translateLocal
Matrix4x3d translateLocal(double x, double y, double z, Matrix4x3d dest)
Pre-multiply a translation to this matrix by translating by the given number of units in x, y and z and store the result indest.If
Misthismatrix andTthe translation matrix, then the new matrix will beT * M. So when transforming a vectorvwith the new matrix by usingT * M * v, the translation will be applied last!- Parameters:
x- the offset to translate in xy- the offset to translate in yz- the offset to translate in zdest- will hold the result- Returns:
- dest
-
rotateX
Matrix4x3d rotateX(double ang, Matrix4x3d dest)
Apply rotation about the X axis to this matrix by rotating the given amount of radians and store the result indest.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
Misthismatrix andRthe rotation matrix, then the new matrix will beM * R. So when transforming a vectorvwith the new matrix by usingM * R * v, the rotation will be applied first!Reference: http://en.wikipedia.org
- Parameters:
ang- the angle in radiansdest- will hold the result- Returns:
- dest
-
rotateY
Matrix4x3d rotateY(double ang, Matrix4x3d dest)
Apply rotation about the Y axis to this matrix by rotating the given amount of radians and store the result indest.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
Misthismatrix andRthe rotation matrix, then the new matrix will beM * R. So when transforming a vectorvwith the new matrix by usingM * R * v, the rotation will be applied first!Reference: http://en.wikipedia.org
- Parameters:
ang- the angle in radiansdest- will hold the result- Returns:
- dest
-
rotateZ
Matrix4x3d rotateZ(double ang, Matrix4x3d dest)
Apply rotation about the Z axis to this matrix by rotating the given amount of radians and store the result indest.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
Misthismatrix andRthe rotation matrix, then the new matrix will beM * R. So when transforming a vectorvwith the new matrix by usingM * R * v, the rotation will be applied first!Reference: http://en.wikipedia.org
- Parameters:
ang- the angle in radiansdest- will hold the result- Returns:
- dest
-
rotateXYZ
Matrix4x3d rotateXYZ(double angleX, double angleY, double angleZ, Matrix4x3d dest)
Apply rotation ofangleXradians about the X axis, followed by a rotation ofangleYradians about the Y axis and followed by a rotation ofangleZradians about the Z axis and store the result indest.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
Misthismatrix andRthe rotation matrix, then the new matrix will beM * R. So when transforming a vectorvwith the new matrix by usingM * R * v, the rotation will be applied first!This method is equivalent to calling:
rotateX(angleX, dest).rotateY(angleY).rotateZ(angleZ)- Parameters:
angleX- the angle to rotate about XangleY- the angle to rotate about YangleZ- the angle to rotate about Zdest- will hold the result- Returns:
- dest
-
rotateZYX
Matrix4x3d rotateZYX(double angleZ, double angleY, double angleX, Matrix4x3d dest)
Apply rotation ofangleZradians about the Z axis, followed by a rotation ofangleYradians about the Y axis and followed by a rotation ofangleXradians about the X axis and store the result indest.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
Misthismatrix andRthe rotation matrix, then the new matrix will beM * R. So when transforming a vectorvwith the new matrix by usingM * R * v, the rotation will be applied first!This method is equivalent to calling:
rotateZ(angleZ, dest).rotateY(angleY).rotateX(angleX)- Parameters:
angleZ- the angle to rotate about ZangleY- the angle to rotate about YangleX- the angle to rotate about Xdest- will hold the result- Returns:
- dest
-
rotateYXZ
Matrix4x3d rotateYXZ(double angleY, double angleX, double angleZ, Matrix4x3d dest)
Apply rotation ofangleYradians about the Y axis, followed by a rotation ofangleXradians about the X axis and followed by a rotation ofangleZradians about the Z axis and store the result indest.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
Misthismatrix andRthe rotation matrix, then the new matrix will beM * R. So when transforming a vectorvwith the new matrix by usingM * R * v, the rotation will be applied first!This method is equivalent to calling:
rotateY(angleY, dest).rotateX(angleX).rotateZ(angleZ)- Parameters:
angleY- the angle to rotate about YangleX- the angle to rotate about XangleZ- the angle to rotate about Zdest- will hold the result- Returns:
- dest
-
rotate
Matrix4x3d rotate(Quaterniondc quat, Matrix4x3d dest)
Apply the rotation - and possibly scaling - transformation of the givenQuaterniondcto this matrix and store the result indest.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
Misthismatrix andQthe rotation matrix obtained from the given quaternion, then the new matrix will beM * Q. So when transforming a vectorvwith the new matrix by usingM * Q * v, the quaternion rotation will be applied first!Reference: http://en.wikipedia.org
- Parameters:
quat- theQuaterniondcdest- will hold the result- Returns:
- dest
-
rotate
Matrix4x3d rotate(Quaternionfc quat, Matrix4x3d dest)
Apply the rotation - and possibly scaling - transformation of the givenQuaternionfcto this matrix and store the result indest.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
Misthismatrix andQthe rotation matrix obtained from the given quaternion, then the new matrix will beM * Q. So when transforming a vectorvwith the new matrix by usingM * Q * v, the quaternion rotation will be applied first!Reference: http://en.wikipedia.org
- Parameters:
quat- theQuaternionfcdest- will hold the result- Returns:
- dest
-
rotateTranslation
Matrix4x3d rotateTranslation(Quaterniondc quat, Matrix4x3d dest)
Apply the rotation - and possibly scaling - transformation of the givenQuaterniondcto this matrix, which is assumed to only contain a translation, and store the result indest.This method assumes
thisto only contain a translation.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
Misthismatrix andQthe rotation matrix obtained from the given quaternion, then the new matrix will beM * Q. So when transforming a vectorvwith the new matrix by usingM * Q * v, the quaternion rotation will be applied first!Reference: http://en.wikipedia.org
- Parameters:
quat- theQuaterniondcdest- will hold the result- Returns:
- dest
-
rotateTranslation
Matrix4x3d rotateTranslation(Quaternionfc quat, Matrix4x3d dest)
Apply the rotation - and possibly scaling - transformation of the givenQuaternionfcto this matrix, which is assumed to only contain a translation, and store the result indest.This method assumes
thisto only contain a translation.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
Misthismatrix andQthe rotation matrix obtained from the given quaternion, then the new matrix will beM * Q. So when transforming a vectorvwith the new matrix by usingM * Q * v, the quaternion rotation will be applied first!Reference: http://en.wikipedia.org
- Parameters:
quat- theQuaternionfcdest- will hold the result- Returns:
- dest
-
rotateLocal
Matrix4x3d rotateLocal(Quaterniondc quat, Matrix4x3d dest)
Pre-multiply the rotation - and possibly scaling - transformation of the givenQuaterniondcto this matrix and store the result indest.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
Misthismatrix andQthe rotation matrix obtained from the given quaternion, then the new matrix will beQ * M. So when transforming a vectorvwith the new matrix by usingQ * M * v, the quaternion rotation will be applied last!Reference: http://en.wikipedia.org
- Parameters:
quat- theQuaterniondcdest- will hold the result- Returns:
- dest
-
rotateLocal
Matrix4x3d rotateLocal(Quaternionfc quat, Matrix4x3d dest)
Pre-multiply the rotation - and possibly scaling - transformation of the givenQuaternionfcto this matrix and store the result indest.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
Misthismatrix andQthe rotation matrix obtained from the given quaternion, then the new matrix will beQ * M. So when transforming a vectorvwith the new matrix by usingQ * M * v, the quaternion rotation will be applied last!Reference: http://en.wikipedia.org
- Parameters:
quat- theQuaternionfcdest- will hold the result- Returns:
- dest
-
rotate
Matrix4x3d rotate(AxisAngle4f axisAngle, Matrix4x3d dest)
Apply a rotation transformation, rotating about the givenAxisAngle4fand store the result indest.The axis described by the
axisvector needs to be a unit vector.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
Misthismatrix andAthe rotation matrix obtained from the givenAxisAngle4f, then the new matrix will beM * A. So when transforming a vectorvwith the new matrix by usingM * A * v, theAxisAngle4frotation will be applied first!Reference: http://en.wikipedia.org
- Parameters:
axisAngle- theAxisAngle4f(needs to benormalized)dest- will hold the result- Returns:
- dest
- See Also:
rotate(double, double, double, double, Matrix4x3d)
-
rotate
Matrix4x3d rotate(AxisAngle4d axisAngle, Matrix4x3d dest)
Apply a rotation transformation, rotating about the givenAxisAngle4dand store the result indest.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
Misthismatrix andAthe rotation matrix obtained from the givenAxisAngle4d, then the new matrix will beM * A. So when transforming a vectorvwith the new matrix by usingM * A * v, theAxisAngle4drotation will be applied first!Reference: http://en.wikipedia.org
- Parameters:
axisAngle- theAxisAngle4d(needs to benormalized)dest- will hold the result- Returns:
- dest
- See Also:
rotate(double, double, double, double, Matrix4x3d)
-
rotate
Matrix4x3d rotate(double angle, Vector3dc axis, Matrix4x3d dest)
Apply a rotation transformation, rotating the given radians about the specified axis and store the result indest.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
Misthismatrix andAthe rotation matrix obtained from the given angle and axis, then the new matrix will beM * A. So when transforming a vectorvwith the new matrix by usingM * A * v, the axis-angle rotation will be applied first!Reference: http://en.wikipedia.org
- Parameters:
angle- the angle in radiansaxis- the rotation axis (needs to benormalized)dest- will hold the result- Returns:
- dest
- See Also:
rotate(double, double, double, double, Matrix4x3d)
-
rotate
Matrix4x3d rotate(double angle, Vector3fc axis, Matrix4x3d dest)
Apply a rotation transformation, rotating the given radians about the specified axis and store the result indest.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
Misthismatrix andAthe rotation matrix obtained from the given angle and axis, then the new matrix will beM * A. So when transforming a vectorvwith the new matrix by usingM * A * v, the axis-angle rotation will be applied first!Reference: http://en.wikipedia.org
- Parameters:
angle- the angle in radiansaxis- the rotation axis (needs to benormalized)dest- will hold the result- Returns:
- dest
- See Also:
rotate(double, double, double, double, Matrix4x3d)
-
getRow
Vector4d getRow(int row, Vector4d dest) throws java.lang.IndexOutOfBoundsException
Get the row at the givenrowindex, starting with0.- Parameters:
row- the row index in[0..2]dest- will hold the row components- Returns:
- the passed in destination
- Throws:
java.lang.IndexOutOfBoundsException- ifrowis not in[0..2]
-
getColumn
Vector3d getColumn(int column, Vector3d dest) throws java.lang.IndexOutOfBoundsException
Get the column at the givencolumnindex, starting with0.- Parameters:
column- the column index in[0..3]dest- will hold the column components- Returns:
- the passed in destination
- Throws:
java.lang.IndexOutOfBoundsException- ifcolumnis not in[0..3]
-
normal
Matrix4x3d normal(Matrix4x3d dest)
Compute a normal matrix from the left 3x3 submatrix ofthisand store it into the left 3x3 submatrix ofdest. All other values ofdestwill be set to identity.The normal matrix of
mis the transpose of the inverse ofm.- Parameters:
dest- will hold the result- Returns:
- dest
-
normal
Matrix3d normal(Matrix3d dest)
Compute a normal matrix from the left 3x3 submatrix ofthisand store it intodest.The normal matrix of
mis the transpose of the inverse ofm.- Parameters:
dest- will hold the result- Returns:
- dest
-
cofactor3x3
Matrix3d cofactor3x3(Matrix3d dest)
Compute the cofactor matrix of the left 3x3 submatrix ofthisand store it intodest.The cofactor matrix can be used instead of
normal(Matrix3d)to transform normals when the orientation of the normals with respect to the surface should be preserved.- Parameters:
dest- will hold the result- Returns:
- dest
-
cofactor3x3
Matrix4x3d cofactor3x3(Matrix4x3d dest)
Compute the cofactor matrix of the left 3x3 submatrix ofthisand store it intodest. All other values ofdestwill be set to identity.The cofactor matrix can be used instead of
normal(Matrix4x3d)to transform normals when the orientation of the normals with respect to the surface should be preserved.- Parameters:
dest- will hold the result- Returns:
- dest
-
normalize3x3
Matrix4x3d normalize3x3(Matrix4x3d dest)
Normalize the left 3x3 submatrix of this matrix and store the result indest.The resulting matrix will map unit vectors to unit vectors, though a pair of orthogonal input unit vectors need not be mapped to a pair of orthogonal output vectors if the original matrix was not orthogonal itself (i.e. had skewing).
- Parameters:
dest- will hold the result- Returns:
- dest
-
normalize3x3
Matrix3d normalize3x3(Matrix3d dest)
Normalize the left 3x3 submatrix of this matrix and store the result indest.The resulting matrix will map unit vectors to unit vectors, though a pair of orthogonal input unit vectors need not be mapped to a pair of orthogonal output vectors if the original matrix was not orthogonal itself (i.e. had skewing).
- Parameters:
dest- will hold the result- Returns:
- dest
-
reflect
Matrix4x3d reflect(double a, double b, double c, double d, Matrix4x3d dest)
Apply a mirror/reflection transformation to this matrix that reflects about the given plane specified via the equationx*a + y*b + z*c + d = 0and store the result indest.The vector
(a, b, c)must be a unit vector.If
Misthismatrix andRthe reflection matrix, then the new matrix will beM * R. So when transforming a vectorvwith the new matrix by usingM * R * v, the reflection will be applied first!Reference: msdn.microsoft.com
- Parameters:
a- the x factor in the plane equationb- the y factor in the plane equationc- the z factor in the plane equationd- the constant in the plane equationdest- will hold the result- Returns:
- dest
-
reflect
Matrix4x3d reflect(double nx, double ny, double nz, double px, double py, double pz, Matrix4x3d dest)
Apply a mirror/reflection transformation to this matrix that reflects about the given plane specified via the plane normal and a point on the plane, and store the result indest.If
Misthismatrix andRthe reflection matrix, then the new matrix will beM * R. So when transforming a vectorvwith the new matrix by usingM * R * v, the reflection will be applied first!- Parameters:
nx- the x-coordinate of the plane normalny- the y-coordinate of the plane normalnz- the z-coordinate of the plane normalpx- the x-coordinate of a point on the planepy- the y-coordinate of a point on the planepz- the z-coordinate of a point on the planedest- will hold the result- Returns:
- dest
-
reflect
Matrix4x3d reflect(Quaterniondc orientation, Vector3dc point, Matrix4x3d dest)
Apply a mirror/reflection transformation to this matrix that reflects about a plane specified via the plane orientation and a point on the plane, and store the result indest.This method can be used to build a reflection transformation based on the orientation of a mirror object in the scene. It is assumed that the default mirror plane's normal is
(0, 0, 1). So, if the givenQuaterniondcis the identity (does not apply any additional rotation), the reflection plane will bez=0, offset by the givenpoint.If
Misthismatrix andRthe reflection matrix, then the new matrix will beM * R. So when transforming a vectorvwith the new matrix by usingM * R * v, the reflection will be applied first!- Parameters:
orientation- the plane orientationpoint- a point on the planedest- will hold the result- Returns:
- dest
-
reflect
Matrix4x3d reflect(Vector3dc normal, Vector3dc point, Matrix4x3d dest)
Apply a mirror/reflection transformation to this matrix that reflects about the given plane specified via the plane normal and a point on the plane, and store the result indest.If
Misthismatrix andRthe reflection matrix, then the new matrix will beM * R. So when transforming a vectorvwith the new matrix by usingM * R * v, the reflection will be applied first!- Parameters:
normal- the plane normalpoint- a point on the planedest- will hold the result- Returns:
- dest
-
ortho
Matrix4x3d ortho(double left, double right, double bottom, double top, double zNear, double zFar, boolean zZeroToOne, Matrix4x3d dest)
Apply an orthographic projection transformation for a right-handed coordinate system using the given NDC z range to this matrix and store the result indest.If
Misthismatrix andOthe orthographic projection matrix, then the new matrix will beM * O. So when transforming a vectorvwith the new matrix by usingM * O * v, the orthographic projection transformation will be applied first!Reference: http://www.songho.ca
- Parameters:
left- the distance from the center to the left frustum edgeright- the distance from the center to the right frustum edgebottom- the distance from the center to the bottom frustum edgetop- the distance from the center to the top frustum edgezNear- near clipping plane distancezFar- far clipping plane distancezZeroToOne- whether to use Vulkan's and Direct3D's NDC z range of[0..+1]whentrueor whether to use OpenGL's NDC z range of[-1..+1]whenfalsedest- will hold the result- Returns:
- dest
-
ortho
Matrix4x3d ortho(double left, double right, double bottom, double top, double zNear, double zFar, Matrix4x3d dest)
Apply an orthographic projection transformation for a right-handed coordinate system using OpenGL's NDC z range of[-1..+1]to this matrix and store the result indest.If
Misthismatrix andOthe orthographic projection matrix, then the new matrix will beM * O. So when transforming a vectorvwith the new matrix by usingM * O * v, the orthographic projection transformation will be applied first!Reference: http://www.songho.ca
- Parameters:
left- the distance from the center to the left frustum edgeright- the distance from the center to the right frustum edgebottom- the distance from the center to the bottom frustum edgetop- the distance from the center to the top frustum edgezNear- near clipping plane distancezFar- far clipping plane distancedest- will hold the result- Returns:
- dest
-
orthoLH
Matrix4x3d orthoLH(double left, double right, double bottom, double top, double zNear, double zFar, boolean zZeroToOne, Matrix4x3d dest)
Apply an orthographic projection transformation for a left-handed coordiante system using the given NDC z range to this matrix and store the result indest.If
Misthismatrix andOthe orthographic projection matrix, then the new matrix will beM * O. So when transforming a vectorvwith the new matrix by usingM * O * v, the orthographic projection transformation will be applied first!Reference: http://www.songho.ca
- Parameters:
left- the distance from the center to the left frustum edgeright- the distance from the center to the right frustum edgebottom- the distance from the center to the bottom frustum edgetop- the distance from the center to the top frustum edgezNear- near clipping plane distancezFar- far clipping plane distancezZeroToOne- whether to use Vulkan's and Direct3D's NDC z range of[0..+1]whentrueor whether to use OpenGL's NDC z range of[-1..+1]whenfalsedest- will hold the result- Returns:
- dest
-
orthoLH
Matrix4x3d orthoLH(double left, double right, double bottom, double top, double zNear, double zFar, Matrix4x3d dest)
Apply an orthographic projection transformation for a left-handed coordiante system using OpenGL's NDC z range of[-1..+1]to this matrix and store the result indest.If
Misthismatrix andOthe orthographic projection matrix, then the new matrix will beM * O. So when transforming a vectorvwith the new matrix by usingM * O * v, the orthographic projection transformation will be applied first!Reference: http://www.songho.ca
- Parameters:
left- the distance from the center to the left frustum edgeright- the distance from the center to the right frustum edgebottom- the distance from the center to the bottom frustum edgetop- the distance from the center to the top frustum edgezNear- near clipping plane distancezFar- far clipping plane distancedest- will hold the result- Returns:
- dest
-
orthoSymmetric
Matrix4x3d orthoSymmetric(double width, double height, double zNear, double zFar, boolean zZeroToOne, Matrix4x3d dest)
Apply a symmetric orthographic projection transformation for a right-handed coordinate system using the given NDC z range to this matrix and store the result indest.This method is equivalent to calling
ortho()withleft=-width/2,right=+width/2,bottom=-height/2andtop=+height/2.If
Misthismatrix andOthe orthographic projection matrix, then the new matrix will beM * O. So when transforming a vectorvwith the new matrix by usingM * O * v, the orthographic projection transformation will be applied first!Reference: http://www.songho.ca
- Parameters:
width- the distance between the right and left frustum edgesheight- the distance between the top and bottom frustum edgeszNear- near clipping plane distancezFar- far clipping plane distancedest- will hold the resultzZeroToOne- whether to use Vulkan's and Direct3D's NDC z range of[0..+1]whentrueor whether to use OpenGL's NDC z range of[-1..+1]whenfalse- Returns:
- dest
-
orthoSymmetric
Matrix4x3d orthoSymmetric(double width, double height, double zNear, double zFar, Matrix4x3d dest)
Apply a symmetric orthographic projection transformation for a right-handed coordinate system using OpenGL's NDC z range of[-1..+1]to this matrix and store the result indest.This method is equivalent to calling
ortho()withleft=-width/2,right=+width/2,bottom=-height/2andtop=+height/2.If
Misthismatrix andOthe orthographic projection matrix, then the new matrix will beM * O. So when transforming a vectorvwith the new matrix by usingM * O * v, the orthographic projection transformation will be applied first!Reference: http://www.songho.ca
- Parameters:
width- the distance between the right and left frustum edgesheight- the distance between the top and bottom frustum edgeszNear- near clipping plane distancezFar- far clipping plane distancedest- will hold the result- Returns:
- dest
-
orthoSymmetricLH
Matrix4x3d orthoSymmetricLH(double width, double height, double zNear, double zFar, boolean zZeroToOne, Matrix4x3d dest)
Apply a symmetric orthographic projection transformation for a left-handed coordinate system using the given NDC z range to this matrix and store the result indest.This method is equivalent to calling
orthoLH()withleft=-width/2,right=+width/2,bottom=-height/2andtop=+height/2.If
Misthismatrix andOthe orthographic projection matrix, then the new matrix will beM * O. So when transforming a vectorvwith the new matrix by usingM * O * v, the orthographic projection transformation will be applied first!Reference: http://www.songho.ca
- Parameters:
width- the distance between the right and left frustum edgesheight- the distance between the top and bottom frustum edgeszNear- near clipping plane distancezFar- far clipping plane distancedest- will hold the resultzZeroToOne- whether to use Vulkan's and Direct3D's NDC z range of[0..+1]whentrueor whether to use OpenGL's NDC z range of[-1..+1]whenfalse- Returns:
- dest
-
orthoSymmetricLH
Matrix4x3d orthoSymmetricLH(double width, double height, double zNear, double zFar, Matrix4x3d dest)
Apply a symmetric orthographic projection transformation for a left-handed coordinate system using OpenGL's NDC z range of[-1..+1]to this matrix and store the result indest.This method is equivalent to calling
orthoLH()withleft=-width/2,right=+width/2,bottom=-height/2andtop=+height/2.If
Misthismatrix andOthe orthographic projection matrix, then the new matrix will beM * O. So when transforming a vectorvwith the new matrix by usingM * O * v, the orthographic projection transformation will be applied first!Reference: http://www.songho.ca
- Parameters:
width- the distance between the right and left frustum edgesheight- the distance between the top and bottom frustum edgeszNear- near clipping plane distancezFar- far clipping plane distancedest- will hold the result- Returns:
- dest
-
ortho2D
Matrix4x3d ortho2D(double left, double right, double bottom, double top, Matrix4x3d dest)
Apply an orthographic projection transformation for a right-handed coordinate system to this matrix and store the result indest.This method is equivalent to calling
ortho()withzNear=-1andzFar=+1.If
Misthismatrix andOthe orthographic projection matrix, then the new matrix will beM * O. So when transforming a vectorvwith the new matrix by usingM * O * v, the orthographic projection transformation will be applied first!Reference: http://www.songho.ca
- Parameters:
left- the distance from the center to the left frustum edgeright- the distance from the center to the right frustum edgebottom- the distance from the center to the bottom frustum edgetop- the distance from the center to the top frustum edgedest- will hold the result- Returns:
- dest
- See Also:
ortho(double, double, double, double, double, double, Matrix4x3d)
-
ortho2DLH
Matrix4x3d ortho2DLH(double left, double right, double bottom, double top, Matrix4x3d dest)
Apply an orthographic projection transformation for a left-handed coordinate system to this matrix and store the result indest.This method is equivalent to calling
orthoLH()withzNear=-1andzFar=+1.If
Misthismatrix andOthe orthographic projection matrix, then the new matrix will beM * O. So when transforming a vectorvwith the new matrix by usingM * O * v, the orthographic projection transformation will be applied first!Reference: http://www.songho.ca
- Parameters:
left- the distance from the center to the left frustum edgeright- the distance from the center to the right frustum edgebottom- the distance from the center to the bottom frustum edgetop- the distance from the center to the top frustum edgedest- will hold the result- Returns:
- dest
- See Also:
orthoLH(double, double, double, double, double, double, Matrix4x3d)
-
lookAlong
Matrix4x3d lookAlong(Vector3dc dir, Vector3dc up, Matrix4x3d dest)
Apply a rotation transformation to this matrix to make-zpoint alongdirand store the result indest.If
Misthismatrix andLthe lookalong rotation matrix, then the new matrix will beM * L. So when transforming a vectorvwith the new matrix by usingM * L * v, the lookalong rotation transformation will be applied first!This is equivalent to calling
lookAtwitheye = (0, 0, 0)andcenter = dir.- Parameters:
dir- the direction in space to look alongup- the direction of 'up'dest- will hold the result- Returns:
- dest
- See Also:
lookAlong(double, double, double, double, double, double, Matrix4x3d),lookAt(Vector3dc, Vector3dc, Vector3dc, Matrix4x3d)
-
lookAlong
Matrix4x3d lookAlong(double dirX, double dirY, double dirZ, double upX, double upY, double upZ, Matrix4x3d dest)
Apply a rotation transformation to this matrix to make-zpoint alongdirand store the result indest.If
Misthismatrix andLthe lookalong rotation matrix, then the new matrix will beM * L. So when transforming a vectorvwith the new matrix by usingM * L * v, the lookalong rotation transformation will be applied first!This is equivalent to calling
lookAt()witheye = (0, 0, 0)andcenter = dir.- Parameters:
dirX- the x-coordinate of the direction to look alongdirY- the y-coordinate of the direction to look alongdirZ- the z-coordinate of the direction to look alongupX- the x-coordinate of the up vectorupY- the y-coordinate of the up vectorupZ- the z-coordinate of the up vectordest- will hold the result- Returns:
- dest
- See Also:
lookAt(double, double, double, double, double, double, double, double, double, Matrix4x3d)
-
lookAt
Matrix4x3d lookAt(Vector3dc eye, Vector3dc center, Vector3dc up, Matrix4x3d dest)
Apply a "lookat" transformation to this matrix for a right-handed coordinate system, that aligns-zwithcenter - eyeand store the result indest.If
Misthismatrix andLthe lookat matrix, then the new matrix will beM * L. So when transforming a vectorvwith the new matrix by usingM * L * v, the lookat transformation will be applied first!- Parameters:
eye- the position of the cameracenter- the point in space to look atup- the direction of 'up'dest- will hold the result- Returns:
- dest
- See Also:
lookAt(double, double, double, double, double, double, double, double, double, Matrix4x3d)
-
lookAt
Matrix4x3d lookAt(double eyeX, double eyeY, double eyeZ, double centerX, double centerY, double centerZ, double upX, double upY, double upZ, Matrix4x3d dest)
Apply a "lookat" transformation to this matrix for a right-handed coordinate system, that aligns-zwithcenter - eyeand store the result indest.If
Misthismatrix andLthe lookat matrix, then the new matrix will beM * L. So when transforming a vectorvwith the new matrix by usingM * L * v, the lookat transformation will be applied first!- Parameters:
eyeX- the x-coordinate of the eye/camera locationeyeY- the y-coordinate of the eye/camera locationeyeZ- the z-coordinate of the eye/camera locationcenterX- the x-coordinate of the point to look atcenterY- the y-coordinate of the point to look atcenterZ- the z-coordinate of the point to look atupX- the x-coordinate of the up vectorupY- the y-coordinate of the up vectorupZ- the z-coordinate of the up vectordest- will hold the result- Returns:
- dest
- See Also:
lookAt(Vector3dc, Vector3dc, Vector3dc, Matrix4x3d)
-
lookAtLH
Matrix4x3d lookAtLH(Vector3dc eye, Vector3dc center, Vector3dc up, Matrix4x3d dest)
Apply a "lookat" transformation to this matrix for a left-handed coordinate system, that aligns+zwithcenter - eyeand store the result indest.If
Misthismatrix andLthe lookat matrix, then the new matrix will beM * L. So when transforming a vectorvwith the new matrix by usingM * L * v, the lookat transformation will be applied first!- Parameters:
eye- the position of the cameracenter- the point in space to look atup- the direction of 'up'dest- will hold the result- Returns:
- dest
- See Also:
lookAtLH(double, double, double, double, double, double, double, double, double, Matrix4x3d)
-
lookAtLH
Matrix4x3d lookAtLH(double eyeX, double eyeY, double eyeZ, double centerX, double centerY, double centerZ, double upX, double upY, double upZ, Matrix4x3d dest)
Apply a "lookat" transformation to this matrix for a left-handed coordinate system, that aligns+zwithcenter - eyeand store the result indest.If
Misthismatrix andLthe lookat matrix, then the new matrix will beM * L. So when transforming a vectorvwith the new matrix by usingM * L * v, the lookat transformation will be applied first!- Parameters:
eyeX- the x-coordinate of the eye/camera locationeyeY- the y-coordinate of the eye/camera locationeyeZ- the z-coordinate of the eye/camera locationcenterX- the x-coordinate of the point to look atcenterY- the y-coordinate of the point to look atcenterZ- the z-coordinate of the point to look atupX- the x-coordinate of the up vectorupY- the y-coordinate of the up vectorupZ- the z-coordinate of the up vectordest- will hold the result- Returns:
- dest
- See Also:
lookAtLH(Vector3dc, Vector3dc, Vector3dc, Matrix4x3d)
-
frustumPlane
Vector4d frustumPlane(int which, Vector4d dest)
Calculate a frustum plane ofthismatrix, which can be a projection matrix or a combined modelview-projection matrix, and store the result in the givendest.Generally, this method computes the frustum plane in the local frame of any coordinate system that existed before
thistransformation was applied to it in order to yield homogeneous clipping space.The plane normal, which is
(a, b, c), is directed "inwards" of the frustum. Any plane/point test usinga*x + b*y + c*z + dtherefore will yield a result greater than zero if the point is within the frustum (i.e. at the positive side of the frustum plane).Reference: Fast Extraction of Viewing Frustum Planes from the World-View-Projection Matrix
-
positiveZ
Vector3d positiveZ(Vector3d dir)
Obtain the direction of+Zbefore the transformation represented bythismatrix is applied.This method uses the rotation component of the left 3x3 submatrix to obtain the direction that is transformed to
+Zbythismatrix.This method is equivalent to the following code:
Matrix4x3d inv = new Matrix4x3d(this).invert(); inv.transformDirection(dir.set(0, 0, 1)).normalize();
Ifthisis already an orthogonal matrix, then consider usingnormalizedPositiveZ(Vector3d)instead.Reference: http://www.euclideanspace.com
- Parameters:
dir- will hold the direction of+Z- Returns:
- dir
-
normalizedPositiveZ
Vector3d normalizedPositiveZ(Vector3d dir)
Obtain the direction of+Zbefore the transformation represented bythisorthogonal matrix is applied. This method only produces correct results ifthisis an orthogonal matrix.This method uses the rotation component of the left 3x3 submatrix to obtain the direction that is transformed to
+Zbythismatrix.This method is equivalent to the following code:
Matrix4x3d inv = new Matrix4x3d(this).transpose(); inv.transformDirection(dir.set(0, 0, 1)).normalize();
Reference: http://www.euclideanspace.com
- Parameters:
dir- will hold the direction of+Z- Returns:
- dir
-
positiveX
Vector3d positiveX(Vector3d dir)
Obtain the direction of+Xbefore the transformation represented bythismatrix is applied.This method uses the rotation component of the left 3x3 submatrix to obtain the direction that is transformed to
+Xbythismatrix.This method is equivalent to the following code:
Matrix4x3d inv = new Matrix4x3d(this).invert(); inv.transformDirection(dir.set(1, 0, 0)).normalize();
Ifthisis already an orthogonal matrix, then consider usingnormalizedPositiveX(Vector3d)instead.Reference: http://www.euclideanspace.com
- Parameters:
dir- will hold the direction of+X- Returns:
- dir
-
normalizedPositiveX
Vector3d normalizedPositiveX(Vector3d dir)
Obtain the direction of+Xbefore the transformation represented bythisorthogonal matrix is applied. This method only produces correct results ifthisis an orthogonal matrix.This method uses the rotation component of the left 3x3 submatrix to obtain the direction that is transformed to
+Xbythismatrix.This method is equivalent to the following code:
Matrix4x3d inv = new Matrix4x3d(this).transpose(); inv.transformDirection(dir.set(1, 0, 0)).normalize();
Reference: http://www.euclideanspace.com
- Parameters:
dir- will hold the direction of+X- Returns:
- dir
-
positiveY
Vector3d positiveY(Vector3d dir)
Obtain the direction of+Ybefore the transformation represented bythismatrix is applied.This method uses the rotation component of the left 3x3 submatrix to obtain the direction that is transformed to
+Ybythismatrix.This method is equivalent to the following code:
Matrix4x3d inv = new Matrix4x3d(this).invert(); inv.transformDirection(dir.set(0, 1, 0)).normalize();
Ifthisis already an orthogonal matrix, then consider usingnormalizedPositiveY(Vector3d)instead.Reference: http://www.euclideanspace.com
- Parameters:
dir- will hold the direction of+Y- Returns:
- dir
-
normalizedPositiveY
Vector3d normalizedPositiveY(Vector3d dir)
Obtain the direction of+Ybefore the transformation represented bythisorthogonal matrix is applied. This method only produces correct results ifthisis an orthogonal matrix.This method uses the rotation component of the left 3x3 submatrix to obtain the direction that is transformed to
+Ybythismatrix.This method is equivalent to the following code:
Matrix4x3d inv = new Matrix4x3d(this).transpose(); inv.transformDirection(dir.set(0, 1, 0)).normalize();
Reference: http://www.euclideanspace.com
- Parameters:
dir- will hold the direction of+Y- Returns:
- dir
-
origin
Vector3d origin(Vector3d origin)
Obtain the position that gets transformed to the origin bythismatrix. This can be used to get the position of the "camera" from a given view transformation matrix.This method is equivalent to the following code:
Matrix4x3f inv = new Matrix4x3f(this).invert(); inv.transformPosition(origin.set(0, 0, 0));
- Parameters:
origin- will hold the position transformed to the origin- Returns:
- origin
-
shadow
Matrix4x3d shadow(Vector4dc light, double a, double b, double c, double d, Matrix4x3d dest)
Apply a projection transformation to this matrix that projects onto the plane specified via the general plane equationx*a + y*b + z*c + d = 0as if casting a shadow from a given light position/directionlightand store the result indest.If
light.wis0.0the light is being treated as a directional light; if it is1.0it is a point light.If
Misthismatrix andSthe shadow matrix, then the new matrix will beM * S. So when transforming a vectorvwith the new matrix by usingM * S * v, the shadow projection will be applied first!Reference: ftp.sgi.com
- Parameters:
light- the light's vectora- the x factor in the plane equationb- the y factor in the plane equationc- the z factor in the plane equationd- the constant in the plane equationdest- will hold the result- Returns:
- dest
-
shadow
Matrix4x3d shadow(double lightX, double lightY, double lightZ, double lightW, double a, double b, double c, double d, Matrix4x3d dest)
Apply a projection transformation to this matrix that projects onto the plane specified via the general plane equationx*a + y*b + z*c + d = 0as if casting a shadow from a given light position/direction(lightX, lightY, lightZ, lightW)and store the result indest.If
lightWis0.0the light is being treated as a directional light; if it is1.0it is a point light.If
Misthismatrix andSthe shadow matrix, then the new matrix will beM * S. So when transforming a vectorvwith the new matrix by usingM * S * v, the shadow projection will be applied first!Reference: ftp.sgi.com
- Parameters:
lightX- the x-component of the light's vectorlightY- the y-component of the light's vectorlightZ- the z-component of the light's vectorlightW- the w-component of the light's vectora- the x factor in the plane equationb- the y factor in the plane equationc- the z factor in the plane equationd- the constant in the plane equationdest- will hold the result- Returns:
- dest
-
shadow
Matrix4x3d shadow(Vector4dc light, Matrix4x3dc planeTransform, Matrix4x3d dest)
Apply a projection transformation to this matrix that projects onto the plane with the general plane equationy = 0as if casting a shadow from a given light position/directionlightand store the result indest.Before the shadow projection is applied, the plane is transformed via the specified
planeTransformation.If
light.wis0.0the light is being treated as a directional light; if it is1.0it is a point light.If
Misthismatrix andSthe shadow matrix, then the new matrix will beM * S. So when transforming a vectorvwith the new matrix by usingM * S * v, the shadow projection will be applied first!- Parameters:
light- the light's vectorplaneTransform- the transformation to transform the implied planey = 0before applying the projectiondest- will hold the result- Returns:
- dest
-
shadow
Matrix4x3d shadow(double lightX, double lightY, double lightZ, double lightW, Matrix4x3dc planeTransform, Matrix4x3d dest)
Apply a projection transformation to this matrix that projects onto the plane with the general plane equationy = 0as if casting a shadow from a given light position/direction(lightX, lightY, lightZ, lightW)and store the result indest.Before the shadow projection is applied, the plane is transformed via the specified
planeTransformation.If
lightWis0.0the light is being treated as a directional light; if it is1.0it is a point light.If
Misthismatrix andSthe shadow matrix, then the new matrix will beM * S. So when transforming a vectorvwith the new matrix by usingM * S * v, the shadow projection will be applied first!- Parameters:
lightX- the x-component of the light vectorlightY- the y-component of the light vectorlightZ- the z-component of the light vectorlightW- the w-component of the light vectorplaneTransform- the transformation to transform the implied planey = 0before applying the projectiondest- will hold the result- Returns:
- dest
-
pick
Matrix4x3d pick(double x, double y, double width, double height, int[] viewport, Matrix4x3d dest)
Apply a picking transformation to this matrix using the given window coordinates(x, y)as the pick center and the given(width, height)as the size of the picking region in window coordinates, and store the result indest.- Parameters:
x- the x coordinate of the picking region center in window coordinatesy- the y coordinate of the picking region center in window coordinateswidth- the width of the picking region in window coordinatesheight- the height of the picking region in window coordinatesviewport- the viewport described by[x, y, width, height]dest- the destination matrix, which will hold the result- Returns:
- dest
-
arcball
Matrix4x3d arcball(double radius, double centerX, double centerY, double centerZ, double angleX, double angleY, Matrix4x3d dest)
Apply an arcball view transformation to this matrix with the givenradiusand center(centerX, centerY, centerZ)position of the arcball and the specified X and Y rotation angles, and store the result indest.This method is equivalent to calling:
translate(0, 0, -radius, dest).rotateX(angleX).rotateY(angleY).translate(-centerX, -centerY, -centerZ)- Parameters:
radius- the arcball radiuscenterX- the x coordinate of the center position of the arcballcenterY- the y coordinate of the center position of the arcballcenterZ- the z coordinate of the center position of the arcballangleX- the rotation angle around the X axis in radiansangleY- the rotation angle around the Y axis in radiansdest- will hold the result- Returns:
- dest
-
arcball
Matrix4x3d arcball(double radius, Vector3dc center, double angleX, double angleY, Matrix4x3d dest)
Apply an arcball view transformation to this matrix with the givenradiusandcenterposition of the arcball and the specified X and Y rotation angles, and store the result indest.This method is equivalent to calling:
translate(0, 0, -radius).rotateX(angleX).rotateY(angleY).translate(-center.x, -center.y, -center.z)- Parameters:
radius- the arcball radiuscenter- the center position of the arcballangleX- the rotation angle around the X axis in radiansangleY- the rotation angle around the Y axis in radiansdest- will hold the result- Returns:
- dest
-
transformAab
Matrix4x3d transformAab(double minX, double minY, double minZ, double maxX, double maxY, double maxZ, Vector3d outMin, Vector3d outMax)
Transform the axis-aligned box given as the minimum corner(minX, minY, minZ)and maximum corner(maxX, maxY, maxZ)bythismatrix and compute the axis-aligned box of the result whose minimum corner is stored inoutMinand maximum corner stored inoutMax.Reference: http://dev.theomader.com
- Parameters:
minX- the x coordinate of the minimum corner of the axis-aligned boxminY- the y coordinate of the minimum corner of the axis-aligned boxminZ- the z coordinate of the minimum corner of the axis-aligned boxmaxX- the x coordinate of the maximum corner of the axis-aligned boxmaxY- the y coordinate of the maximum corner of the axis-aligned boxmaxZ- the y coordinate of the maximum corner of the axis-aligned boxoutMin- will hold the minimum corner of the resulting axis-aligned boxoutMax- will hold the maximum corner of the resulting axis-aligned box- Returns:
- this
-
transformAab
Matrix4x3d transformAab(Vector3dc min, Vector3dc max, Vector3d outMin, Vector3d outMax)
Transform the axis-aligned box given as the minimum cornerminand maximum cornermaxbythismatrix and compute the axis-aligned box of the result whose minimum corner is stored inoutMinand maximum corner stored inoutMax.- Parameters:
min- the minimum corner of the axis-aligned boxmax- the maximum corner of the axis-aligned boxoutMin- will hold the minimum corner of the resulting axis-aligned boxoutMax- will hold the maximum corner of the resulting axis-aligned box- Returns:
- this
-
lerp
Matrix4x3d lerp(Matrix4x3dc other, double t, Matrix4x3d dest)
Linearly interpolatethisandotherusing the given interpolation factortand store the result indest.If
tis0.0then the result isthis. If the interpolation factor is1.0then the result isother.- Parameters:
other- the other matrixt- the interpolation factor between 0.0 and 1.0dest- will hold the result- Returns:
- dest
-
rotateTowards
Matrix4x3d rotateTowards(Vector3dc dir, Vector3dc up, Matrix4x3d dest)
Apply a model transformation to this matrix for a right-handed coordinate system, that aligns the-zaxis withdirand store the result indest.If
Misthismatrix andLthe lookat matrix, then the new matrix will beM * L. So when transforming a vectorvwith the new matrix by usingM * L * v, the lookat transformation will be applied first!This method is equivalent to calling:
mul(new Matrix4x3d().lookAt(new Vector3d(), new Vector3d(dir).negate(), up).invert(), dest)- Parameters:
dir- the direction to rotate towardsup- the up vectordest- will hold the result- Returns:
- dest
- See Also:
rotateTowards(double, double, double, double, double, double, Matrix4x3d)
-
rotateTowards
Matrix4x3d rotateTowards(double dirX, double dirY, double dirZ, double upX, double upY, double upZ, Matrix4x3d dest)
Apply a model transformation to this matrix for a right-handed coordinate system, that aligns the-zaxis with(dirX, dirY, dirZ)and store the result indest.If
Misthismatrix andLthe lookat matrix, then the new matrix will beM * L. So when transforming a vectorvwith the new matrix by usingM * L * v, the lookat transformation will be applied first!This method is equivalent to calling:
mul(new Matrix4x3d().lookAt(0, 0, 0, -dirX, -dirY, -dirZ, upX, upY, upZ).invert(), dest)- Parameters:
dirX- the x-coordinate of the direction to rotate towardsdirY- the y-coordinate of the direction to rotate towardsdirZ- the z-coordinate of the direction to rotate towardsupX- the x-coordinate of the up vectorupY- the y-coordinate of the up vectorupZ- the z-coordinate of the up vectordest- will hold the result- Returns:
- dest
- See Also:
rotateTowards(Vector3dc, Vector3dc, Matrix4x3d)
-
getEulerAnglesXYZ
Vector3d getEulerAnglesXYZ(Vector3d dest)
Extract the Euler angles from the rotation represented by the left 3x3 submatrix ofthisand store the extracted Euler angles indest.This method assumes that the left 3x3 submatrix of
thisonly represents a rotation without scaling.The Euler angles are always returned as the angle around X in the
Vector3d.xfield, the angle around Y in theVector3d.yfield and the angle around Z in theVector3d.zfield of the suppliedVector3dinstance.Note that the returned Euler angles must be applied in the order
X * Y * Zto obtain the identical matrix. This means that callingMatrix4x3d.rotateXYZ(double, double, double)using the obtained Euler angles will yield the same rotation as the original matrix from which the Euler angles were obtained, so in the below code the matrixm2should be identical tom(disregarding possible floating-point inaccuracies).Matrix4x3d m = ...; // <- matrix only representing rotation Matrix4x3d n = new Matrix4x3d(); n.rotateXYZ(m.getEulerAnglesXYZ(new Vector3d()));
Reference: http://en.wikipedia.org/
- Parameters:
dest- will hold the extracted Euler angles- Returns:
- dest
-
getEulerAnglesZYX
Vector3d getEulerAnglesZYX(Vector3d dest)
Extract the Euler angles from the rotation represented by the left 3x3 submatrix ofthisand store the extracted Euler angles indest.This method assumes that the left 3x3 submatrix of
thisonly represents a rotation without scaling.The Euler angles are always returned as the angle around X in the
Vector3d.xfield, the angle around Y in theVector3d.yfield and the angle around Z in theVector3d.zfield of the suppliedVector3dinstance.Note that the returned Euler angles must be applied in the order
Z * Y * Xto obtain the identical matrix. This means that callingMatrix4x3d.rotateZYX(double, double, double)using the obtained Euler angles will yield the same rotation as the original matrix from which the Euler angles were obtained, so in the below code the matrixm2should be identical tom(disregarding possible floating-point inaccuracies).Matrix4x3d m = ...; // <- matrix only representing rotation Matrix4x3d n = new Matrix4x3d(); n.rotateZYX(m.getEulerAnglesZYX(new Vector3d()));
Reference: http://en.wikipedia.org/
- Parameters:
dest- will hold the extracted Euler angles- Returns:
- dest
-
obliqueZ
Matrix4x3d obliqueZ(double a, double b, Matrix4x3d dest)
Apply an oblique projection transformation to this matrix with the given values foraandband store the result indest.If
Misthismatrix andOthe oblique transformation matrix, then the new matrix will beM * O. So when transforming a vectorvwith the new matrix by usingM * O * v, the oblique transformation will be applied first!The oblique transformation is defined as:
x' = x + a*z y' = y + a*z z' = z
or in matrix form:1 0 a 0 0 1 b 0 0 0 1 0
- Parameters:
a- the value for the z factor that applies to xb- the value for the z factor that applies to ydest- will hold the result- Returns:
- dest
-
mapXZY
Matrix4x3d mapXZY(Matrix4x3d dest)
Multiplythisby the matrix1 0 0 0 0 0 1 0 0 1 0 0
and store the result indest.- Parameters:
dest- will hold the result- Returns:
- dest
-
mapXZnY
Matrix4x3d mapXZnY(Matrix4x3d dest)
Multiplythisby the matrix1 0 0 0 0 0 -1 0 0 1 0 0
and store the result indest.- Parameters:
dest- will hold the result- Returns:
- dest
-
mapXnYnZ
Matrix4x3d mapXnYnZ(Matrix4x3d dest)
Multiplythisby the matrix1 0 0 0 0 -1 0 0 0 0 -1 0
and store the result indest.- Parameters:
dest- will hold the result- Returns:
- dest
-
mapXnZY
Matrix4x3d mapXnZY(Matrix4x3d dest)
Multiplythisby the matrix1 0 0 0 0 0 1 0 0 -1 0 0
and store the result indest.- Parameters:
dest- will hold the result- Returns:
- dest
-
mapXnZnY
Matrix4x3d mapXnZnY(Matrix4x3d dest)
Multiplythisby the matrix1 0 0 0 0 0 -1 0 0 -1 0 0
and store the result indest.- Parameters:
dest- will hold the result- Returns:
- dest
-
mapYXZ
Matrix4x3d mapYXZ(Matrix4x3d dest)
Multiplythisby the matrix0 1 0 0 1 0 0 0 0 0 1 0
and store the result indest.- Parameters:
dest- will hold the result- Returns:
- dest
-
mapYXnZ
Matrix4x3d mapYXnZ(Matrix4x3d dest)
Multiplythisby the matrix0 1 0 0 1 0 0 0 0 0 -1 0
and store the result indest.- Parameters:
dest- will hold the result- Returns:
- dest
-
mapYZX
Matrix4x3d mapYZX(Matrix4x3d dest)
Multiplythisby the matrix0 0 1 0 1 0 0 0 0 1 0 0
and store the result indest.- Parameters:
dest- will hold the result- Returns:
- dest
-
mapYZnX
Matrix4x3d mapYZnX(Matrix4x3d dest)
Multiplythisby the matrix0 0 -1 0 1 0 0 0 0 1 0 0
and store the result indest.- Parameters:
dest- will hold the result- Returns:
- dest
-
mapYnXZ
Matrix4x3d mapYnXZ(Matrix4x3d dest)
Multiplythisby the matrix0 -1 0 0 1 0 0 0 0 0 1 0
and store the result indest.- Parameters:
dest- will hold the result- Returns:
- dest
-
mapYnXnZ
Matrix4x3d mapYnXnZ(Matrix4x3d dest)
Multiplythisby the matrix0 -1 0 0 1 0 0 0 0 0 -1 0
and store the result indest.- Parameters:
dest- will hold the result- Returns:
- dest
-
mapYnZX
Matrix4x3d mapYnZX(Matrix4x3d dest)
Multiplythisby the matrix0 0 1 0 1 0 0 0 0 -1 0 0
and store the result indest.- Parameters:
dest- will hold the result- Returns:
- dest
-
mapYnZnX
Matrix4x3d mapYnZnX(Matrix4x3d dest)
Multiplythisby the matrix0 0 -1 0 1 0 0 0 0 -1 0 0
and store the result indest.- Parameters:
dest- will hold the result- Returns:
- dest
-
mapZXY
Matrix4x3d mapZXY(Matrix4x3d dest)
Multiplythisby the matrix0 1 0 0 0 0 1 0 1 0 0 0
and store the result indest.- Parameters:
dest- will hold the result- Returns:
- dest
-
mapZXnY
Matrix4x3d mapZXnY(Matrix4x3d dest)
Multiplythisby the matrix0 1 0 0 0 0 -1 0 1 0 0 0
and store the result indest.- Parameters:
dest- will hold the result- Returns:
- dest
-
mapZYX
Matrix4x3d mapZYX(Matrix4x3d dest)
Multiplythisby the matrix0 0 1 0 0 1 0 0 1 0 0 0
and store the result indest.- Parameters:
dest- will hold the result- Returns:
- dest
-
mapZYnX
Matrix4x3d mapZYnX(Matrix4x3d dest)
Multiplythisby the matrix0 0 -1 0 0 1 0 0 1 0 0 0
and store the result indest.- Parameters:
dest- will hold the result- Returns:
- dest
-
mapZnXY
Matrix4x3d mapZnXY(Matrix4x3d dest)
Multiplythisby the matrix0 -1 0 0 0 0 1 0 1 0 0 0
and store the result indest.- Parameters:
dest- will hold the result- Returns:
- dest
-
mapZnXnY
Matrix4x3d mapZnXnY(Matrix4x3d dest)
Multiplythisby the matrix0 -1 0 0 0 0 -1 0 1 0 0 0
and store the result indest.- Parameters:
dest- will hold the result- Returns:
- dest
-
mapZnYX
Matrix4x3d mapZnYX(Matrix4x3d dest)
Multiplythisby the matrix0 0 1 0 0 -1 0 0 1 0 0 0
and store the result indest.- Parameters:
dest- will hold the result- Returns:
- dest
-
mapZnYnX
Matrix4x3d mapZnYnX(Matrix4x3d dest)
Multiplythisby the matrix0 0 -1 0 0 -1 0 0 1 0 0 0
and store the result indest.- Parameters:
dest- will hold the result- Returns:
- dest
-
mapnXYnZ
Matrix4x3d mapnXYnZ(Matrix4x3d dest)
Multiplythisby the matrix-1 0 0 0 0 1 0 0 0 0 -1 0
and store the result indest.- Parameters:
dest- will hold the result- Returns:
- dest
-
mapnXZY
Matrix4x3d mapnXZY(Matrix4x3d dest)
Multiplythisby the matrix-1 0 0 0 0 0 1 0 0 1 0 0
and store the result indest.- Parameters:
dest- will hold the result- Returns:
- dest
-
mapnXZnY
Matrix4x3d mapnXZnY(Matrix4x3d dest)
Multiplythisby the matrix-1 0 0 0 0 0 -1 0 0 1 0 0
and store the result indest.- Parameters:
dest- will hold the result- Returns:
- dest
-
mapnXnYZ
Matrix4x3d mapnXnYZ(Matrix4x3d dest)
Multiplythisby the matrix-1 0 0 0 0 -1 0 0 0 0 1 0
and store the result indest.- Parameters:
dest- will hold the result- Returns:
- dest
-
mapnXnYnZ
Matrix4x3d mapnXnYnZ(Matrix4x3d dest)
Multiplythisby the matrix-1 0 0 0 0 -1 0 0 0 0 -1 0
and store the result indest.- Parameters:
dest- will hold the result- Returns:
- dest
-
mapnXnZY
Matrix4x3d mapnXnZY(Matrix4x3d dest)
Multiplythisby the matrix-1 0 0 0 0 0 1 0 0 -1 0 0
and store the result indest.- Parameters:
dest- will hold the result- Returns:
- dest
-
mapnXnZnY
Matrix4x3d mapnXnZnY(Matrix4x3d dest)
Multiplythisby the matrix-1 0 0 0 0 0 -1 0 0 -1 0 0
and store the result indest.- Parameters:
dest- will hold the result- Returns:
- dest
-
mapnYXZ
Matrix4x3d mapnYXZ(Matrix4x3d dest)
Multiplythisby the matrix0 1 0 0 -1 0 0 0 0 0 1 0
and store the result indest.- Parameters:
dest- will hold the result- Returns:
- dest
-
mapnYXnZ
Matrix4x3d mapnYXnZ(Matrix4x3d dest)
Multiplythisby the matrix0 1 0 0 -1 0 0 0 0 0 -1 0
and store the result indest.- Parameters:
dest- will hold the result- Returns:
- dest
-
mapnYZX
Matrix4x3d mapnYZX(Matrix4x3d dest)
Multiplythisby the matrix0 0 1 0 -1 0 0 0 0 1 0 0
and store the result indest.- Parameters:
dest- will hold the result- Returns:
- dest
-
mapnYZnX
Matrix4x3d mapnYZnX(Matrix4x3d dest)
Multiplythisby the matrix0 0 -1 0 -1 0 0 0 0 1 0 0
and store the result indest.- Parameters:
dest- will hold the result- Returns:
- dest
-
mapnYnXZ
Matrix4x3d mapnYnXZ(Matrix4x3d dest)
Multiplythisby the matrix0 -1 0 0 -1 0 0 0 0 0 1 0
and store the result indest.- Parameters:
dest- will hold the result- Returns:
- dest
-
mapnYnXnZ
Matrix4x3d mapnYnXnZ(Matrix4x3d dest)
Multiplythisby the matrix0 -1 0 0 -1 0 0 0 0 0 -1 0
and store the result indest.- Parameters:
dest- will hold the result- Returns:
- dest
-
mapnYnZX
Matrix4x3d mapnYnZX(Matrix4x3d dest)
Multiplythisby the matrix0 0 1 0 -1 0 0 0 0 -1 0 0
and store the result indest.- Parameters:
dest- will hold the result- Returns:
- dest
-
mapnYnZnX
Matrix4x3d mapnYnZnX(Matrix4x3d dest)
Multiplythisby the matrix0 0 -1 0 -1 0 0 0 0 -1 0 0
and store the result indest.- Parameters:
dest- will hold the result- Returns:
- dest
-
mapnZXY
Matrix4x3d mapnZXY(Matrix4x3d dest)
Multiplythisby the matrix0 1 0 0 0 0 1 0 -1 0 0 0
and store the result indest.- Parameters:
dest- will hold the result- Returns:
- dest
-
mapnZXnY
Matrix4x3d mapnZXnY(Matrix4x3d dest)
Multiplythisby the matrix0 1 0 0 0 0 -1 0 -1 0 0 0
and store the result indest.- Parameters:
dest- will hold the result- Returns:
- dest
-
mapnZYX
Matrix4x3d mapnZYX(Matrix4x3d dest)
Multiplythisby the matrix0 0 1 0 0 1 0 0 -1 0 0 0
and store the result indest.- Parameters:
dest- will hold the result- Returns:
- dest
-
mapnZYnX
Matrix4x3d mapnZYnX(Matrix4x3d dest)
Multiplythisby the matrix0 0 -1 0 0 1 0 0 -1 0 0 0
and store the result indest.- Parameters:
dest- will hold the result- Returns:
- dest
-
mapnZnXY
Matrix4x3d mapnZnXY(Matrix4x3d dest)
Multiplythisby the matrix0 -1 0 0 0 0 1 0 -1 0 0 0
and store the result indest.- Parameters:
dest- will hold the result- Returns:
- dest
-
mapnZnXnY
Matrix4x3d mapnZnXnY(Matrix4x3d dest)
Multiplythisby the matrix0 -1 0 0 0 0 -1 0 -1 0 0 0
and store the result indest.- Parameters:
dest- will hold the result- Returns:
- dest
-
mapnZnYX
Matrix4x3d mapnZnYX(Matrix4x3d dest)
Multiplythisby the matrix0 0 1 0 0 -1 0 0 -1 0 0 0
and store the result indest.- Parameters:
dest- will hold the result- Returns:
- dest
-
mapnZnYnX
Matrix4x3d mapnZnYnX(Matrix4x3d dest)
Multiplythisby the matrix0 0 -1 0 0 -1 0 0 -1 0 0 0
and store the result indest.- Parameters:
dest- will hold the result- Returns:
- dest
-
negateX
Matrix4x3d negateX(Matrix4x3d dest)
Multiplythisby the matrix-1 0 0 0 0 1 0 0 0 0 1 0
and store the result indest.- Parameters:
dest- will hold the result- Returns:
- dest
-
negateY
Matrix4x3d negateY(Matrix4x3d dest)
Multiplythisby the matrix1 0 0 0 0 -1 0 0 0 0 1 0
and store the result indest.- Parameters:
dest- will hold the result- Returns:
- dest
-
negateZ
Matrix4x3d negateZ(Matrix4x3d dest)
Multiplythisby the matrix1 0 0 0 0 1 0 0 0 0 -1 0
and store the result indest.- Parameters:
dest- will hold the result- Returns:
- dest
-
equals
boolean equals(Matrix4x3dc m, double delta)
Compare the matrix elements ofthismatrix with the given matrix using the givendeltaand return whether all of them are equal within a maximum difference ofdelta.Please note that this method is not used by any data structure such as
ArrayListHashSetorHashMapand their operations, such asArrayList.contains(Object)orHashSet.remove(Object), since those data structures only use theObject.equals(Object)andObject.hashCode()methods.- Parameters:
m- the other matrixdelta- the allowed maximum difference- Returns:
truewhether all of the matrix elements are equal;falseotherwise
-
isFinite
boolean isFinite()
Determine whether all matrix elements are finite floating-point values, that is, they are notNaNand notinfinity.- Returns:
trueif all components are finite floating-point values;falseotherwise
-
-