Package org.joml

Class Vector3d

  • All Implemented Interfaces:
    java.io.Externalizable, java.io.Serializable, java.lang.Cloneable, Vector3dc

    public class Vector3d
    extends java.lang.Object
    implements java.io.Externalizable, java.lang.Cloneable, Vector3dc
    Contains the definition of a Vector comprising 3 doubles and associated transformations.
    Author:
    Richard Greenlees, Kai Burjack, F. Neurath
    See Also:
    Serialized Form
    • Field Summary

      Fields 
      Modifier and Type Field Description
      double x
      The x component of the vector.
      double y
      The y component of the vector.
      double z
      The z component of the vector.
    • Constructor Summary

      Constructors 
      Constructor Description
      Vector3d()
      Create a new Vector3d with all components set to zero.
      Vector3d​(double d)
      Create a new Vector3d and initialize all three components with the given value.
      Vector3d​(double[] xyz)
      Create a new Vector3d and initialize its three components from the first three elements of the given array.
      Vector3d​(double x, double y, double z)
      Create a new Vector3d with the given component values.
      Vector3d​(float[] xyz)
      Create a new Vector3d and initialize its three components from the first three elements of the given array.
      Vector3d​(int index, java.nio.ByteBuffer buffer)
      Create a new Vector3d and read this vector from the supplied ByteBuffer starting at the specified absolute buffer position/index.
      Vector3d​(int index, java.nio.DoubleBuffer buffer)
      Create a new Vector3d and read this vector from the supplied DoubleBuffer starting at the specified absolute buffer position/index.
      Vector3d​(java.nio.ByteBuffer buffer)
      Create a new Vector3d and read this vector from the supplied ByteBuffer at the current buffer position.
      Vector3d​(java.nio.DoubleBuffer buffer)
      Create a new Vector3d and read this vector from the supplied DoubleBuffer at the current buffer position.
      Vector3d​(Vector2dc v, double z)
      Create a new Vector3d with the first two components from the given v and the given z
      Vector3d​(Vector2fc v, double z)
      Create a new Vector3d with the first two components from the given v and the given z
      Vector3d​(Vector2ic v, double z)
      Create a new Vector3d with the first two components from the given v and the given z
      Vector3d​(Vector3dc v)
      Create a new Vector3d whose values will be copied from the given vector.
      Vector3d​(Vector3fc v)
      Create a new Vector3d whose values will be copied from the given vector.
      Vector3d​(Vector3ic v)
      Create a new Vector3d whose values will be copied from the given vector.
    • Method Summary

      All Methods Static Methods Instance Methods Concrete Methods 
      Modifier and Type Method Description
      Vector3d absolute()
      Set this vector's components to their respective absolute values.
      Vector3d absolute​(Vector3d dest)
      Compute the absolute values of the individual components of this and store the result in dest.
      Vector3d add​(double x, double y, double z)
      Increment the components of this vector by the given values.
      Vector3d add​(double x, double y, double z, Vector3d dest)
      Increment the components of this vector by the given values and store the result in dest.
      Vector3d add​(Vector3dc v)
      Add the supplied vector to this one.
      Vector3d add​(Vector3dc v, Vector3d dest)
      Add the supplied vector to this one and store the result in dest.
      Vector3d add​(Vector3fc v)
      Add the supplied vector to this one.
      Vector3d add​(Vector3fc v, Vector3d dest)
      Add the supplied vector to this one and store the result in dest.
      double angle​(Vector3dc v)
      Return the angle between this vector and the supplied vector.
      double angleCos​(Vector3dc v)
      Return the cosine of the angle between this vector and the supplied vector.
      double angleSigned​(double x, double y, double z, double nx, double ny, double nz)
      Return the signed angle between this vector and the supplied vector with respect to the plane with the given normal vector (nx, ny, nz).
      double angleSigned​(Vector3dc v, Vector3dc n)
      Return the signed angle between this vector and the supplied vector with respect to the plane with the given normal vector n.
      Vector3d ceil()
      Set each component of this vector to the smallest (closest to negative infinity) double value that is greater than or equal to that component and is equal to a mathematical integer.
      Vector3d ceil​(Vector3d dest)
      Compute for each component of this vector the smallest (closest to negative infinity) double value that is greater than or equal to that component and is equal to a mathematical integer and store the result in dest.
      java.lang.Object clone()  
      Vector3d cross​(double x, double y, double z)
      Set this vector to be the cross product of itself and (x, y, z).
      Vector3d cross​(double x, double y, double z, Vector3d dest)
      Compute the cross product of this vector and (x, y, z) and store the result in dest.
      Vector3d cross​(Vector3dc v)
      Set this vector to be the cross product of this and v2.
      Vector3d cross​(Vector3dc v, Vector3d dest)
      Calculate the cross product of this and v2 and store the result in dest.
      double distance​(double x, double y, double z)
      Return the distance between this vector and (x, y, z).
      static double distance​(double x1, double y1, double z1, double x2, double y2, double z2)
      Return the distance between (x1, y1, z1) and (x2, y2, z2).
      double distance​(Vector3dc v)
      Return the distance between this vector and v.
      double distanceSquared​(double x, double y, double z)
      Return the square of the distance between this vector and (x, y, z).
      static double distanceSquared​(double x1, double y1, double z1, double x2, double y2, double z2)
      Return the squared distance between (x1, y1, z1) and (x2, y2, z2).
      double distanceSquared​(Vector3dc v)
      Return the square of the distance between this vector and v.
      Vector3d div​(double scalar)
      Divide this Vector3d by the given scalar value.
      Vector3d div​(double x, double y, double z)
      Divide the components of this Vector3d by the given scalar values and store the result in this.
      Vector3d div​(double x, double y, double z, Vector3d dest)
      Divide the components of this Vector3f by the given scalar values and store the result in dest.
      Vector3d div​(double scalar, Vector3d dest)
      Divide this Vector3d by the given scalar value and store the result in dest.
      Vector3d div​(Vector3d v)
      Divide this Vector3d component-wise by another Vector3dc.
      Vector3d div​(Vector3dc v, Vector3d dest)
      Divide this by v component-wise and store the result into dest.
      Vector3d div​(Vector3fc v)
      Divide this Vector3d component-wise by another Vector3fc.
      Vector3d div​(Vector3fc v, Vector3d dest)
      Divide this Vector3d component-wise by another Vector3f and store the result in dest.
      double dot​(double x, double y, double z)
      Return the dot product of this vector and the vector (x, y, z).
      double dot​(Vector3dc v)
      Return the dot product of this vector and the supplied vector.
      boolean equals​(double x, double y, double z)
      Compare the vector components of this vector with the given (x, y, z) and return whether all of them are equal.
      boolean equals​(java.lang.Object obj)  
      boolean equals​(Vector3dc v, double delta)
      Compare the vector components of this vector with the given vector using the given delta and return whether all of them are equal within a maximum difference of delta.
      Vector3d floor()
      Set each component of this vector to the largest (closest to positive infinity) double value that is less than or equal to that component and is equal to a mathematical integer.
      Vector3d floor​(Vector3d dest)
      Compute for each component of this vector the largest (closest to positive infinity) double value that is less than or equal to that component and is equal to a mathematical integer and store the result in dest.
      Vector3d fma​(double a, Vector3dc b)
      Add the component-wise multiplication of a * b to this vector.
      Vector3d fma​(double a, Vector3dc b, Vector3d dest)
      Add the component-wise multiplication of a * b to this vector and store the result in dest.
      Vector3d fma​(double a, Vector3fc b)
      Add the component-wise multiplication of a * b to this vector.
      Vector3d fma​(double a, Vector3fc b, Vector3d dest)
      Add the component-wise multiplication of a * b to this vector and store the result in dest.
      Vector3d fma​(Vector3dc a, Vector3dc b)
      Add the component-wise multiplication of a * b to this vector.
      Vector3d fma​(Vector3dc a, Vector3dc b, Vector3d dest)
      Add the component-wise multiplication of a * b to this vector and store the result in dest.
      Vector3d fma​(Vector3dc a, Vector3fc b, Vector3d dest)
      Add the component-wise multiplication of a * b to this vector and store the result in dest.
      Vector3d fma​(Vector3fc a, Vector3fc b)
      Add the component-wise multiplication of a * b to this vector.
      Vector3d fma​(Vector3fc a, Vector3fc b, Vector3d dest)
      Add the component-wise multiplication of a * b to this vector and store the result in dest.
      double get​(int component)
      Get the value of the specified component of this vector.
      java.nio.ByteBuffer get​(int index, java.nio.ByteBuffer buffer)
      Store this vector into the supplied ByteBuffer starting at the specified absolute buffer position/index.
      java.nio.DoubleBuffer get​(int index, java.nio.DoubleBuffer buffer)
      Store this vector into the supplied DoubleBuffer starting at the specified absolute buffer position/index.
      java.nio.FloatBuffer get​(int index, java.nio.FloatBuffer buffer)
      Store this vector into the supplied FloatBuffer starting at the specified absolute buffer position/index.
      Vector3i get​(int mode, Vector3i dest)
      Set the components of the given vector dest to those of this vector using the given RoundingMode.
      java.nio.ByteBuffer get​(java.nio.ByteBuffer buffer)
      Store this vector into the supplied ByteBuffer at the current buffer position.
      java.nio.DoubleBuffer get​(java.nio.DoubleBuffer buffer)
      Store this vector into the supplied DoubleBuffer at the current buffer position.
      java.nio.FloatBuffer get​(java.nio.FloatBuffer buffer)
      Store this vector into the supplied FloatBuffer at the current buffer position.
      Vector3d get​(Vector3d dest)
      Set the components of the given vector dest to those of this vector.
      Vector3f get​(Vector3f dest)
      Set the components of the given vector dest to those of this vector.
      java.nio.ByteBuffer getf​(int index, java.nio.ByteBuffer buffer)
      Store this vector into the supplied ByteBuffer starting at the specified absolute buffer position/index.
      java.nio.ByteBuffer getf​(java.nio.ByteBuffer buffer)
      Store this vector into the supplied ByteBuffer at the current buffer position.
      Vector3dc getToAddress​(long address)
      Store this vector at the given off-heap memory address.
      Vector3d half​(double x, double y, double z)
      Compute the half vector between this and the vector (x, y, z).
      Vector3d half​(double x, double y, double z, Vector3d dest)
      Compute the half vector between this and the vector (x, y, z) and store the result in dest.
      Vector3d half​(Vector3dc other)
      Compute the half vector between this and the other vector.
      Vector3d half​(Vector3dc other, Vector3d dest)
      Compute the half vector between this and the other vector and store the result in dest.
      int hashCode()  
      Vector3d hermite​(Vector3dc t0, Vector3dc v1, Vector3dc t1, double t, Vector3d dest)
      Compute a hermite interpolation between this vector and its associated tangent t0 and the given vector v with its tangent t1 and store the result in dest.
      boolean isFinite()
      Determine whether all components are finite floating-point values, that is, they are not NaN and not infinity.
      double length()
      Return the length of this vector.
      static double length​(double x, double y, double z)
      Get the length of a 3-dimensional double-precision vector.
      double lengthSquared()
      Return the length squared of this vector.
      static double lengthSquared​(double x, double y, double z)
      Get the length squared of a 3-dimensional double-precision vector.
      Vector3d lerp​(Vector3dc other, double t)
      Linearly interpolate this and other using the given interpolation factor t and store the result in this.
      Vector3d lerp​(Vector3dc other, double t, Vector3d dest)
      Linearly interpolate this and other using the given interpolation factor t and store the result in dest.
      Vector3d max​(Vector3dc v)
      Set the components of this vector to be the component-wise maximum of this and the other vector.
      Vector3d max​(Vector3dc v, Vector3d dest)
      Set the components of dest to be the component-wise maximum of this and the other vector.
      int maxComponent()
      Determine the component with the biggest absolute value.
      Vector3d min​(Vector3dc v)
      Set the components of this vector to be the component-wise minimum of this and the other vector.
      Vector3d min​(Vector3dc v, Vector3d dest)
      Set the components of dest to be the component-wise minimum of this and the other vector.
      int minComponent()
      Determine the component with the smallest (towards zero) absolute value.
      Vector3d mul​(double scalar)
      Multiply this Vector3d by the given scalar value.
      Vector3d mul​(double x, double y, double z)
      Multiply the components of this Vector3d by the given scalar values and store the result in this.
      Vector3d mul​(double x, double y, double z, Vector3d dest)
      Multiply the components of this Vector3f by the given scalar values and store the result in dest.
      Vector3d mul​(double scalar, Vector3d dest)
      Multiply this Vector3d by the given scalar value and store the result in dest.
      Vector3d mul​(Matrix3dc mat)
      Multiply the given matrix mat with this Vector3d.
      Vector3d mul​(Matrix3dc mat, Vector3d dest)
      Multiply the given matrix mat with this and store the result in dest.
      Vector3f mul​(Matrix3dc mat, Vector3f dest)
      Multiply the given matrix mat with this and store the result in dest.
      Vector3d mul​(Matrix3fc mat)
      Multiply the given matrix mat with this Vector3d.
      Vector3d mul​(Matrix3fc mat, Vector3d dest)
      Multiply the given matrix mat with this and store the result in dest.
      Vector3d mul​(Matrix3x2dc mat)
      Multiply the given matrix with this Vector3d by assuming a third row in the matrix of (0, 0, 1) and store the result in this.
      Vector3d mul​(Matrix3x2dc mat, Vector3d dest)
      Multiply the given matrix mat with this by assuming a third row in the matrix of (0, 0, 1) and store the result in dest.
      Vector3d mul​(Matrix3x2fc mat)
      Multiply the given matrix with this Vector3d by assuming a third row in the matrix of (0, 0, 1) and store the result in this.
      Vector3d mul​(Matrix3x2fc mat, Vector3d dest)
      Multiply the given matrix mat with this by assuming a third row in the matrix of (0, 0, 1) and store the result in dest.
      Vector3d mul​(Vector3dc v)
      Multiply this Vector3d component-wise by another Vector3dc.
      Vector3d mul​(Vector3dc v, Vector3d dest)
      Multiply this by v component-wise and store the result into dest.
      Vector3d mul​(Vector3fc v)
      Multiply this Vector3d component-wise by another Vector3fc.
      Vector3d mul​(Vector3fc v, Vector3d dest)
      Multiply this Vector3d component-wise by another Vector3f and store the result in dest.
      Vector3d mulAdd​(double a, Vector3dc b)
      Add the component-wise multiplication of this * a to b and store the result in this.
      Vector3d mulAdd​(double a, Vector3dc b, Vector3d dest)
      Add the component-wise multiplication of this * a to b and store the result in dest.
      Vector3d mulAdd​(Vector3dc a, Vector3dc b)
      Add the component-wise multiplication of this * a to b and store the result in this.
      Vector3d mulAdd​(Vector3dc a, Vector3dc b, Vector3d dest)
      Add the component-wise multiplication of this * a to b and store the result in dest.
      Vector3d mulAdd​(Vector3fc a, Vector3dc b, Vector3d dest)
      Add the component-wise multiplication of this * a to b and store the result in dest.
      Vector3d mulDirection​(Matrix4dc mat)
      Multiply the given 4x4 matrix mat with this.
      Vector3d mulDirection​(Matrix4dc mat, Vector3d dest)
      Multiply the given 4x4 matrix mat with this and store the result in dest.
      Vector3d mulDirection​(Matrix4fc mat)
      Multiply the given 4x4 matrix mat with this.
      Vector3d mulDirection​(Matrix4fc mat, Vector3d dest)
      Multiply the given 4x4 matrix mat with this and store the result in dest.
      Vector3d mulDirection​(Matrix4x3dc mat)
      Multiply the given 4x3 matrix mat with this.
      Vector3d mulDirection​(Matrix4x3dc mat, Vector3d dest)
      Multiply the given 4x3 matrix mat with this and store the result in dest.
      Vector3d mulDirection​(Matrix4x3fc mat)
      Multiply the given 4x3 matrix mat with this.
      Vector3d mulDirection​(Matrix4x3fc mat, Vector3d dest)
      Multiply the given 4x3 matrix mat with this and store the result in dest.
      Vector3d mulPosition​(Matrix4dc mat)
      Multiply the given 4x4 matrix mat with this.
      Vector3d mulPosition​(Matrix4dc mat, Vector3d dest)
      Multiply the given 4x4 matrix mat with this and store the result in dest.
      Vector3d mulPosition​(Matrix4fc mat)
      Multiply the given 4x4 matrix mat with this.
      Vector3d mulPosition​(Matrix4fc mat, Vector3d dest)
      Multiply the given 4x4 matrix mat with this and store the result in dest.
      Vector3d mulPosition​(Matrix4x3dc mat)
      Multiply the given 4x3 matrix mat with this.
      Vector3d mulPosition​(Matrix4x3dc mat, Vector3d dest)
      Multiply the given 4x3 matrix mat with this and store the result in dest.
      Vector3d mulPosition​(Matrix4x3fc mat)
      Multiply the given 4x3 matrix mat with this.
      Vector3d mulPosition​(Matrix4x3fc mat, Vector3d dest)
      Multiply the given 4x3 matrix mat with this and store the result in dest.
      double mulPositionW​(Matrix4dc mat)
      Multiply the given 4x4 matrix mat with this and return the w component of the resulting 4D vector.
      double mulPositionW​(Matrix4dc mat, Vector3d dest)
      Multiply the given 4x4 matrix mat with this, store the result in dest and return the w component of the resulting 4D vector.
      double mulPositionW​(Matrix4fc mat)
      Multiply the given 4x4 matrix mat with this and return the w component of the resulting 4D vector.
      double mulPositionW​(Matrix4fc mat, Vector3d dest)
      Multiply the given 4x4 matrix mat with this, store the result in dest and return the w component of the resulting 4D vector.
      Vector3d mulProject​(Matrix4dc mat)
      Multiply the given matrix mat this Vector3d, perform perspective division.
      Vector3d mulProject​(Matrix4dc mat, double w, Vector3d dest)
      Multiply the given matrix mat with this Vector3d, perform perspective division and store the result in dest.
      Vector3d mulProject​(Matrix4dc mat, Vector3d dest)
      Multiply the given matrix mat with this Vector3d, perform perspective division and store the result in dest.
      Vector3d mulProject​(Matrix4fc mat)
      Multiply the given matrix mat with this Vector3d, perform perspective division.
      Vector3d mulProject​(Matrix4fc mat, Vector3d dest)
      Multiply the given matrix mat with this Vector3d, perform perspective division and store the result in dest.
      Vector3d mulTranspose​(Matrix3dc mat)
      Multiply the transpose of the given matrix with this Vector3d and store the result in this.
      Vector3d mulTranspose​(Matrix3dc mat, Vector3d dest)
      Multiply the transpose of the given matrix with this Vector3f and store the result in dest.
      Vector3d mulTranspose​(Matrix3fc mat)
      Multiply the transpose of the given matrix with this Vector3d and store the result in this.
      Vector3d mulTranspose​(Matrix3fc mat, Vector3d dest)
      Multiply the transpose of the given matrix with this Vector3f and store the result in dest.
      Vector3d mulTransposeDirection​(Matrix4dc mat)
      Multiply the transpose of the given 4x4 matrix mat with this.
      Vector3d mulTransposeDirection​(Matrix4dc mat, Vector3d dest)
      Multiply the transpose of the given 4x4 matrix mat with this and store the result in dest.
      Vector3d mulTransposeDirection​(Matrix4fc mat)
      Multiply the transpose of the given 4x4 matrix mat with this.
      Vector3d mulTransposeDirection​(Matrix4fc mat, Vector3d dest)
      Multiply the transpose of the given 4x4 matrix mat with this and store the result in dest.
      Vector3d mulTransposePosition​(Matrix4dc mat)
      Multiply the transpose of the given 4x4 matrix mat with this.
      Vector3d mulTransposePosition​(Matrix4dc mat, Vector3d dest)
      Multiply the transpose of the given 4x4 matrix mat with this and store the result in dest.
      Vector3d mulTransposePosition​(Matrix4fc mat)
      Multiply the transpose of the given 4x4 matrix mat with this.
      Vector3d mulTransposePosition​(Matrix4fc mat, Vector3d dest)
      Multiply the transpose of the given 4x4 matrix mat with this and store the result in dest.
      Vector3d negate()
      Negate this vector.
      Vector3d negate​(Vector3d dest)
      Negate this vector and store the result in dest.
      Vector3d normalize()
      Normalize this vector.
      Vector3d normalize​(double length)
      Scale this vector to have the given length.
      Vector3d normalize​(double length, Vector3d dest)
      Scale this vector to have the given length and store the result in dest.
      Vector3d normalize​(Vector3d dest)
      Normalize this vector and store the result in dest.
      Vector3d orthogonalize​(Vector3dc v)
      Transform this vector so that it is orthogonal to the given vector v and normalize the result.
      Vector3d orthogonalize​(Vector3dc v, Vector3d dest)
      Transform this vector so that it is orthogonal to the given vector v, normalize the result and store it into dest.
      Vector3d orthogonalizeUnit​(Vector3dc v)
      Transform this vector so that it is orthogonal to the given unit vector v and normalize the result.
      Vector3d orthogonalizeUnit​(Vector3dc v, Vector3d dest)
      Transform this vector so that it is orthogonal to the given unit vector v, normalize the result and store it into dest.
      void readExternal​(java.io.ObjectInput in)  
      Vector3d reflect​(double x, double y, double z)
      Reflect this vector about the given normal vector.
      Vector3d reflect​(double x, double y, double z, Vector3d dest)
      Reflect this vector about the given normal vector and store the result in dest.
      Vector3d reflect​(Vector3dc normal)
      Reflect this vector about the given normal vector.
      Vector3d reflect​(Vector3dc normal, Vector3d dest)
      Reflect this vector about the given normal vector and store the result in dest.
      Vector3d rotate​(Quaterniondc quat)
      Rotate this vector by the given quaternion quat and store the result in this.
      Vector3d rotate​(Quaterniondc quat, Vector3d dest)
      Rotate this vector by the given quaternion quat and store the result in dest.
      Vector3d rotateAxis​(double angle, double x, double y, double z)
      Rotate this vector the specified radians around the given rotation axis.
      Vector3d rotateAxis​(double angle, double aX, double aY, double aZ, Vector3d dest)
      Rotate this vector the specified radians around the given rotation axis and store the result into dest.
      Vector3d rotateX​(double angle)
      Rotate this vector the specified radians around the X axis.
      Vector3d rotateX​(double angle, Vector3d dest)
      Rotate this vector the specified radians around the X axis and store the result into dest.
      Vector3d rotateY​(double angle)
      Rotate this vector the specified radians around the Y axis.
      Vector3d rotateY​(double angle, Vector3d dest)
      Rotate this vector the specified radians around the Y axis and store the result into dest.
      Vector3d rotateZ​(double angle)
      Rotate this vector the specified radians around the Z axis.
      Vector3d rotateZ​(double angle, Vector3d dest)
      Rotate this vector the specified radians around the Z axis and store the result into dest.
      Quaterniond rotationTo​(double toDirX, double toDirY, double toDirZ, Quaterniond dest)
      Compute the quaternion representing a rotation of this vector to point along (toDirX, toDirY, toDirZ) and store the result in dest.
      Quaterniond rotationTo​(Vector3dc toDir, Quaterniond dest)
      Compute the quaternion representing a rotation of this vector to point along toDir and store the result in dest.
      Vector3d round()
      Set each component of this vector to the closest double that is equal to a mathematical integer, with ties rounding to positive infinity.
      Vector3d round​(Vector3d dest)
      Compute for each component of this vector the closest double that is equal to a mathematical integer, with ties rounding to positive infinity and store the result in dest.
      Vector3d set​(double d)
      Set the x, y, and z components to the supplied value.
      Vector3d set​(double[] xyz)
      Set the three components of this vector to the first three elements of the given array.
      Vector3d set​(double x, double y, double z)
      Set the x, y and z components to the supplied values.
      Vector3d set​(float[] xyz)
      Set the three components of this vector to the first three elements of the given array.
      Vector3d set​(int index, java.nio.ByteBuffer buffer)
      Read this vector from the supplied ByteBuffer starting at the specified absolute buffer position/index.
      Vector3d set​(int index, java.nio.DoubleBuffer buffer)
      Read this vector from the supplied DoubleBuffer starting at the specified absolute buffer position/index.
      Vector3d set​(java.nio.ByteBuffer buffer)
      Read this vector from the supplied ByteBuffer at the current buffer position.
      Vector3d set​(java.nio.DoubleBuffer buffer)
      Read this vector from the supplied DoubleBuffer at the current buffer position.
      Vector3d set​(Vector2dc v, double z)
      Set the first two components from the given v and the z component from the given z
      Vector3d set​(Vector2fc v, double z)
      Set the first two components from the given v and the z component from the given z
      Vector3d set​(Vector2ic v, double z)
      Set the first two components from the given v and the z component from the given z
      Vector3d set​(Vector3dc v)
      Set the x, y and z components to match the supplied vector.
      Vector3d set​(Vector3fc v)
      Set the x, y and z components to match the supplied vector.
      Vector3d set​(Vector3ic v)
      Set the x, y and z components to match the supplied vector.
      Vector3d setComponent​(int component, double value)
      Set the value of the specified component of this vector.
      Vector3d setFromAddress​(long address)
      Set the values of this vector by reading 3 double values from off-heap memory, starting at the given address.
      Vector3d smoothStep​(Vector3dc v, double t, Vector3d dest)
      Compute a smooth-step (i.e.
      Vector3d sub​(double x, double y, double z)
      Subtract (x, y, z) from this vector.
      Vector3d sub​(double x, double y, double z, Vector3d dest)
      Subtract (x, y, z) from this vector and store the result in dest.
      Vector3d sub​(Vector3dc v)
      Subtract the supplied vector from this one.
      Vector3d sub​(Vector3dc v, Vector3d dest)
      Subtract the supplied vector from this one and store the result in dest.
      Vector3d sub​(Vector3fc v)
      Subtract the supplied vector from this one.
      Vector3d sub​(Vector3fc v, Vector3d dest)
      Subtract the supplied vector from this one and store the result in dest.
      java.lang.String toString()
      Return a string representation of this vector.
      java.lang.String toString​(java.text.NumberFormat formatter)
      Return a string representation of this vector by formatting the vector components with the given NumberFormat.
      void writeExternal​(java.io.ObjectOutput out)  
      double x()  
      double y()  
      double z()  
      Vector3d zero()
      Set all components to zero.
      • Methods inherited from class java.lang.Object

        finalize, getClass, notify, notifyAll, wait, wait, wait
    • Field Detail

      • x

        public double x
        The x component of the vector.
      • y

        public double y
        The y component of the vector.
      • z

        public double z
        The z component of the vector.
    • Constructor Detail

      • Vector3d

        public Vector3d()
        Create a new Vector3d with all components set to zero.
      • Vector3d

        public Vector3d​(double d)
        Create a new Vector3d and initialize all three components with the given value.
        Parameters:
        d - the value of all three components
      • Vector3d

        public Vector3d​(double x,
                        double y,
                        double z)
        Create a new Vector3d with the given component values.
        Parameters:
        x - the value of x
        y - the value of y
        z - the value of z
      • Vector3d

        public Vector3d​(Vector3fc v)
        Create a new Vector3d whose values will be copied from the given vector.
        Parameters:
        v - provides the initial values for the new vector
      • Vector3d

        public Vector3d​(Vector3ic v)
        Create a new Vector3d whose values will be copied from the given vector.
        Parameters:
        v - provides the initial values for the new vector
      • Vector3d

        public Vector3d​(Vector2fc v,
                        double z)
        Create a new Vector3d with the first two components from the given v and the given z
        Parameters:
        v - the Vector2fc to copy the values from
        z - the z component
      • Vector3d

        public Vector3d​(Vector2ic v,
                        double z)
        Create a new Vector3d with the first two components from the given v and the given z
        Parameters:
        v - the Vector2ic to copy the values from
        z - the z component
      • Vector3d

        public Vector3d​(Vector3dc v)
        Create a new Vector3d whose values will be copied from the given vector.
        Parameters:
        v - provides the initial values for the new vector
      • Vector3d

        public Vector3d​(Vector2dc v,
                        double z)
        Create a new Vector3d with the first two components from the given v and the given z
        Parameters:
        v - the Vector2d to copy the values from
        z - the z component
      • Vector3d

        public Vector3d​(double[] xyz)
        Create a new Vector3d and initialize its three components from the first three elements of the given array.
        Parameters:
        xyz - the array containing at least three elements
      • Vector3d

        public Vector3d​(float[] xyz)
        Create a new Vector3d and initialize its three components from the first three elements of the given array.
        Parameters:
        xyz - the array containing at least three elements
      • Vector3d

        public Vector3d​(java.nio.ByteBuffer buffer)
        Create a new Vector3d and read this vector from the supplied ByteBuffer at the current buffer position.

        This method will not increment the position of the given ByteBuffer.

        In order to specify the offset into the ByteBuffer at which the vector is read, use Vector3d(int, ByteBuffer), taking the absolute position as parameter.

        Parameters:
        buffer - values will be read in x, y, z order
        See Also:
        Vector3d(int, ByteBuffer)
      • Vector3d

        public Vector3d​(int index,
                        java.nio.ByteBuffer buffer)
        Create a new Vector3d and read this vector from the supplied ByteBuffer starting at the specified absolute buffer position/index.

        This method will not increment the position of the given ByteBuffer.

        Parameters:
        index - the absolute position into the ByteBuffer
        buffer - values will be read in x, y, z order
      • Vector3d

        public Vector3d​(java.nio.DoubleBuffer buffer)
        Create a new Vector3d and read this vector from the supplied DoubleBuffer at the current buffer position.

        This method will not increment the position of the given DoubleBuffer.

        In order to specify the offset into the DoubleBuffer at which the vector is read, use Vector3d(int, DoubleBuffer), taking the absolute position as parameter.

        Parameters:
        buffer - values will be read in x, y, z order
        See Also:
        Vector3d(int, DoubleBuffer)
      • Vector3d

        public Vector3d​(int index,
                        java.nio.DoubleBuffer buffer)
        Create a new Vector3d and read this vector from the supplied DoubleBuffer starting at the specified absolute buffer position/index.

        This method will not increment the position of the given DoubleBuffer.

        Parameters:
        index - the absolute position into the DoubleBuffer
        buffer - values will be read in x, y, z order
    • Method Detail

      • x

        public double x()
        Specified by:
        x in interface Vector3dc
        Returns:
        the value of the x component
      • y

        public double y()
        Specified by:
        y in interface Vector3dc
        Returns:
        the value of the y component
      • z

        public double z()
        Specified by:
        z in interface Vector3dc
        Returns:
        the value of the z component
      • set

        public Vector3d set​(Vector3dc v)
        Set the x, y and z components to match the supplied vector.
        Parameters:
        v - the vector to set this vector's components from
        Returns:
        this
      • set

        public Vector3d set​(Vector3ic v)
        Set the x, y and z components to match the supplied vector.
        Parameters:
        v - the vector to set this vector's components from
        Returns:
        this
      • set

        public Vector3d set​(Vector2dc v,
                            double z)
        Set the first two components from the given v and the z component from the given z
        Parameters:
        v - the Vector2dc to copy the values from
        z - the z component
        Returns:
        this
      • set

        public Vector3d set​(Vector2ic v,
                            double z)
        Set the first two components from the given v and the z component from the given z
        Parameters:
        v - the Vector2ic to copy the values from
        z - the z component
        Returns:
        this
      • set

        public Vector3d set​(Vector3fc v)
        Set the x, y and z components to match the supplied vector.
        Parameters:
        v - the vector to set this vector's components from
        Returns:
        this
      • set

        public Vector3d set​(Vector2fc v,
                            double z)
        Set the first two components from the given v and the z component from the given z
        Parameters:
        v - the Vector2fc to copy the values from
        z - the z component
        Returns:
        this
      • set

        public Vector3d set​(double d)
        Set the x, y, and z components to the supplied value.
        Parameters:
        d - the value of all three components
        Returns:
        this
      • set

        public Vector3d set​(double x,
                            double y,
                            double z)
        Set the x, y and z components to the supplied values.
        Parameters:
        x - the x component
        y - the y component
        z - the z component
        Returns:
        this
      • set

        public Vector3d set​(double[] xyz)
        Set the three components of this vector to the first three elements of the given array.
        Parameters:
        xyz - the array containing at least three elements
        Returns:
        this
      • set

        public Vector3d set​(float[] xyz)
        Set the three components of this vector to the first three elements of the given array.
        Parameters:
        xyz - the array containing at least three elements
        Returns:
        this
      • set

        public Vector3d set​(java.nio.ByteBuffer buffer)
        Read this vector from the supplied ByteBuffer at the current buffer position.

        This method will not increment the position of the given ByteBuffer.

        In order to specify the offset into the ByteBuffer at which the vector is read, use set(int, ByteBuffer), taking the absolute position as parameter.

        Parameters:
        buffer - values will be read in x, y, z order
        Returns:
        this
        See Also:
        set(int, ByteBuffer)
      • set

        public Vector3d set​(int index,
                            java.nio.ByteBuffer buffer)
        Read this vector from the supplied ByteBuffer starting at the specified absolute buffer position/index.

        This method will not increment the position of the given ByteBuffer.

        Parameters:
        index - the absolute position into the ByteBuffer
        buffer - values will be read in x, y, z order
        Returns:
        this
      • set

        public Vector3d set​(java.nio.DoubleBuffer buffer)
        Read this vector from the supplied DoubleBuffer at the current buffer position.

        This method will not increment the position of the given DoubleBuffer.

        In order to specify the offset into the DoubleBuffer at which the vector is read, use set(int, DoubleBuffer), taking the absolute position as parameter.

        Parameters:
        buffer - values will be read in x, y, z order
        Returns:
        this
        See Also:
        set(int, DoubleBuffer)
      • set

        public Vector3d set​(int index,
                            java.nio.DoubleBuffer buffer)
        Read this vector from the supplied DoubleBuffer starting at the specified absolute buffer position/index.

        This method will not increment the position of the given DoubleBuffer.

        Parameters:
        index - the absolute position into the DoubleBuffer
        buffer - values will be read in x, y, z order
        Returns:
        this
      • setFromAddress

        public Vector3d setFromAddress​(long address)
        Set the values of this vector by reading 3 double values from off-heap memory, starting at the given address.

        This method will throw an UnsupportedOperationException when JOML is used with `-Djoml.nounsafe`.

        This method is unsafe as it can result in a crash of the JVM process when the specified address range does not belong to this process.

        Parameters:
        address - the off-heap memory address to read the vector values from
        Returns:
        this
      • setComponent

        public Vector3d setComponent​(int component,
                                     double value)
                              throws java.lang.IllegalArgumentException
        Set the value of the specified component of this vector.
        Parameters:
        component - the component whose value to set, within [0..2]
        value - the value to set
        Returns:
        this
        Throws:
        java.lang.IllegalArgumentException - if component is not within [0..2]
      • get

        public java.nio.ByteBuffer get​(java.nio.ByteBuffer buffer)
        Description copied from interface: Vector3dc
        Store this vector into the supplied ByteBuffer at the current buffer position.

        This method will not increment the position of the given ByteBuffer.

        In order to specify the offset into the ByteBuffer at which the vector is stored, use Vector3dc.get(int, ByteBuffer), taking the absolute position as parameter.

        Specified by:
        get in interface Vector3dc
        Parameters:
        buffer - will receive the values of this vector in x, y, z order
        Returns:
        the passed in buffer
        See Also:
        Vector3dc.get(int, ByteBuffer)
      • get

        public java.nio.ByteBuffer get​(int index,
                                       java.nio.ByteBuffer buffer)
        Description copied from interface: Vector3dc
        Store this vector into the supplied ByteBuffer starting at the specified absolute buffer position/index.

        This method will not increment the position of the given ByteBuffer.

        Specified by:
        get in interface Vector3dc
        Parameters:
        index - the absolute position into the ByteBuffer
        buffer - will receive the values of this vector in x, y, z order
        Returns:
        the passed in buffer
      • get

        public java.nio.DoubleBuffer get​(java.nio.DoubleBuffer buffer)
        Description copied from interface: Vector3dc
        Store this vector into the supplied DoubleBuffer at the current buffer position.

        This method will not increment the position of the given DoubleBuffer.

        In order to specify the offset into the DoubleBuffer at which the vector is stored, use Vector3dc.get(int, DoubleBuffer), taking the absolute position as parameter.

        Specified by:
        get in interface Vector3dc
        Parameters:
        buffer - will receive the values of this vector in x, y, z order
        Returns:
        the passed in buffer
        See Also:
        Vector3dc.get(int, DoubleBuffer)
      • get

        public java.nio.DoubleBuffer get​(int index,
                                         java.nio.DoubleBuffer buffer)
        Description copied from interface: Vector3dc
        Store this vector into the supplied DoubleBuffer starting at the specified absolute buffer position/index.

        This method will not increment the position of the given DoubleBuffer.

        Specified by:
        get in interface Vector3dc
        Parameters:
        index - the absolute position into the DoubleBuffer
        buffer - will receive the values of this vector in x, y, z order
        Returns:
        the passed in buffer
      • getf

        public java.nio.ByteBuffer getf​(java.nio.ByteBuffer buffer)
        Description copied from interface: Vector3dc
        Store this vector into the supplied ByteBuffer at the current buffer position.

        This method will not increment the position of the given ByteBuffer.

        In order to specify the offset into the ByteBuffer at which the vector is stored, use Vector3dc.get(int, ByteBuffer), taking the absolute position as parameter.

        Please note that due to this vector storing double values those values will potentially lose precision when they are converted to float values before being put into the given ByteBuffer.

        Specified by:
        getf in interface Vector3dc
        Parameters:
        buffer - will receive the values of this vector in x, y, z order
        Returns:
        the passed in buffer
        See Also:
        Vector3dc.get(int, ByteBuffer)
      • getf

        public java.nio.ByteBuffer getf​(int index,
                                        java.nio.ByteBuffer buffer)
        Description copied from interface: Vector3dc
        Store this vector into the supplied ByteBuffer starting at the specified absolute buffer position/index.

        This method will not increment the position of the given ByteBuffer.

        Please note that due to this vector storing double values those values will potentially lose precision when they are converted to float values before being put into the given ByteBuffer.

        Specified by:
        getf in interface Vector3dc
        Parameters:
        index - the absolute position into the ByteBuffer
        buffer - will receive the values of this vector in x, y, z order
        Returns:
        the passed in buffer
      • get

        public java.nio.FloatBuffer get​(java.nio.FloatBuffer buffer)
        Description copied from interface: Vector3dc
        Store this vector into the supplied FloatBuffer at the current buffer position.

        This method will not increment the position of the given FloatBuffer.

        In order to specify the offset into the FloatBuffer at which the vector is stored, use Vector3dc.get(int, FloatBuffer), taking the absolute position as parameter.

        Please note that due to this vector storing double values those values will potentially lose precision when they are converted to float values before being put into the given FloatBuffer.

        Specified by:
        get in interface Vector3dc
        Parameters:
        buffer - will receive the values of this vector in x, y, z order
        Returns:
        the passed in buffer
        See Also:
        Vector3dc.get(int, DoubleBuffer)
      • get

        public java.nio.FloatBuffer get​(int index,
                                        java.nio.FloatBuffer buffer)
        Description copied from interface: Vector3dc
        Store this vector into the supplied FloatBuffer starting at the specified absolute buffer position/index.

        This method will not increment the position of the given FloatBuffer.

        Please note that due to this vector storing double values those values will potentially lose precision when they are converted to float values before being put into the given FloatBuffer.

        Specified by:
        get in interface Vector3dc
        Parameters:
        index - the absolute position into the FloatBuffer
        buffer - will receive the values of this vector in x, y, z order
        Returns:
        the passed in buffer
      • getToAddress

        public Vector3dc getToAddress​(long address)
        Description copied from interface: Vector3dc
        Store this vector at the given off-heap memory address.

        This method will throw an UnsupportedOperationException when JOML is used with `-Djoml.nounsafe`.

        This method is unsafe as it can result in a crash of the JVM process when the specified address range does not belong to this process.

        Specified by:
        getToAddress in interface Vector3dc
        Parameters:
        address - the off-heap address where to store this vector
        Returns:
        this
      • sub

        public Vector3d sub​(Vector3dc v)
        Subtract the supplied vector from this one.
        Parameters:
        v - the vector to subtract from this
        Returns:
        this
      • sub

        public Vector3d sub​(Vector3dc v,
                            Vector3d dest)
        Description copied from interface: Vector3dc
        Subtract the supplied vector from this one and store the result in dest.
        Specified by:
        sub in interface Vector3dc
        Parameters:
        v - the vector to subtract from this
        dest - will hold the result
        Returns:
        dest
      • sub

        public Vector3d sub​(Vector3fc v)
        Subtract the supplied vector from this one.
        Parameters:
        v - the vector to subtract from this
        Returns:
        this
      • sub

        public Vector3d sub​(Vector3fc v,
                            Vector3d dest)
        Description copied from interface: Vector3dc
        Subtract the supplied vector from this one and store the result in dest.
        Specified by:
        sub in interface Vector3dc
        Parameters:
        v - the vector to subtract from this
        dest - will hold the result
        Returns:
        dest
      • sub

        public Vector3d sub​(double x,
                            double y,
                            double z)
        Subtract (x, y, z) from this vector.
        Parameters:
        x - the x component to subtract
        y - the y component to subtract
        z - the z component to subtract
        Returns:
        this
      • sub

        public Vector3d sub​(double x,
                            double y,
                            double z,
                            Vector3d dest)
        Description copied from interface: Vector3dc
        Subtract (x, y, z) from this vector and store the result in dest.
        Specified by:
        sub in interface Vector3dc
        Parameters:
        x - the x component to subtract
        y - the y component to subtract
        z - the z component to subtract
        dest - will hold the result
        Returns:
        dest
      • add

        public Vector3d add​(Vector3dc v)
        Add the supplied vector to this one.
        Parameters:
        v - the vector to add
        Returns:
        this
      • add

        public Vector3d add​(Vector3dc v,
                            Vector3d dest)
        Description copied from interface: Vector3dc
        Add the supplied vector to this one and store the result in dest.
        Specified by:
        add in interface Vector3dc
        Parameters:
        v - the vector to add
        dest - will hold the result
        Returns:
        dest
      • add

        public Vector3d add​(Vector3fc v)
        Add the supplied vector to this one.
        Parameters:
        v - the vector to add
        Returns:
        this
      • add

        public Vector3d add​(Vector3fc v,
                            Vector3d dest)
        Description copied from interface: Vector3dc
        Add the supplied vector to this one and store the result in dest.
        Specified by:
        add in interface Vector3dc
        Parameters:
        v - the vector to add
        dest - will hold the result
        Returns:
        dest
      • add

        public Vector3d add​(double x,
                            double y,
                            double z)
        Increment the components of this vector by the given values.
        Parameters:
        x - the x component to add
        y - the y component to add
        z - the z component to add
        Returns:
        this
      • add

        public Vector3d add​(double x,
                            double y,
                            double z,
                            Vector3d dest)
        Description copied from interface: Vector3dc
        Increment the components of this vector by the given values and store the result in dest.
        Specified by:
        add in interface Vector3dc
        Parameters:
        x - the x component to add
        y - the y component to add
        z - the z component to add
        dest - will hold the result
        Returns:
        dest
      • fma

        public Vector3d fma​(Vector3dc a,
                            Vector3dc b)
        Add the component-wise multiplication of a * b to this vector.
        Parameters:
        a - the first multiplicand
        b - the second multiplicand
        Returns:
        this
      • fma

        public Vector3d fma​(double a,
                            Vector3dc b)
        Add the component-wise multiplication of a * b to this vector.
        Parameters:
        a - the first multiplicand
        b - the second multiplicand
        Returns:
        this
      • fma

        public Vector3d fma​(Vector3fc a,
                            Vector3fc b)
        Add the component-wise multiplication of a * b to this vector.
        Parameters:
        a - the first multiplicand
        b - the second multiplicand
        Returns:
        this
      • fma

        public Vector3d fma​(Vector3fc a,
                            Vector3fc b,
                            Vector3d dest)
        Description copied from interface: Vector3dc
        Add the component-wise multiplication of a * b to this vector and store the result in dest.
        Specified by:
        fma in interface Vector3dc
        Parameters:
        a - the first multiplicand
        b - the second multiplicand
        dest - will hold the result
        Returns:
        dest
      • fma

        public Vector3d fma​(double a,
                            Vector3fc b)
        Add the component-wise multiplication of a * b to this vector.
        Parameters:
        a - the first multiplicand
        b - the second multiplicand
        Returns:
        this
      • fma

        public Vector3d fma​(Vector3dc a,
                            Vector3dc b,
                            Vector3d dest)
        Description copied from interface: Vector3dc
        Add the component-wise multiplication of a * b to this vector and store the result in dest.
        Specified by:
        fma in interface Vector3dc
        Parameters:
        a - the first multiplicand
        b - the second multiplicand
        dest - will hold the result
        Returns:
        dest
      • fma

        public Vector3d fma​(double a,
                            Vector3dc b,
                            Vector3d dest)
        Description copied from interface: Vector3dc
        Add the component-wise multiplication of a * b to this vector and store the result in dest.
        Specified by:
        fma in interface Vector3dc
        Parameters:
        a - the first multiplicand
        b - the second multiplicand
        dest - will hold the result
        Returns:
        dest
      • fma

        public Vector3d fma​(Vector3dc a,
                            Vector3fc b,
                            Vector3d dest)
        Description copied from interface: Vector3dc
        Add the component-wise multiplication of a * b to this vector and store the result in dest.
        Specified by:
        fma in interface Vector3dc
        Parameters:
        a - the first multiplicand
        b - the second multiplicand
        dest - will hold the result
        Returns:
        dest
      • fma

        public Vector3d fma​(double a,
                            Vector3fc b,
                            Vector3d dest)
        Description copied from interface: Vector3dc
        Add the component-wise multiplication of a * b to this vector and store the result in dest.
        Specified by:
        fma in interface Vector3dc
        Parameters:
        a - the first multiplicand
        b - the second multiplicand
        dest - will hold the result
        Returns:
        dest
      • mulAdd

        public Vector3d mulAdd​(Vector3dc a,
                               Vector3dc b)
        Add the component-wise multiplication of this * a to b and store the result in this.
        Parameters:
        a - the multiplicand
        b - the addend
        Returns:
        this
      • mulAdd

        public Vector3d mulAdd​(double a,
                               Vector3dc b)
        Add the component-wise multiplication of this * a to b and store the result in this.
        Parameters:
        a - the multiplicand
        b - the addend
        Returns:
        this
      • mulAdd

        public Vector3d mulAdd​(Vector3dc a,
                               Vector3dc b,
                               Vector3d dest)
        Description copied from interface: Vector3dc
        Add the component-wise multiplication of this * a to b and store the result in dest.
        Specified by:
        mulAdd in interface Vector3dc
        Parameters:
        a - the multiplicand
        b - the addend
        dest - will hold the result
        Returns:
        dest
      • mulAdd

        public Vector3d mulAdd​(double a,
                               Vector3dc b,
                               Vector3d dest)
        Description copied from interface: Vector3dc
        Add the component-wise multiplication of this * a to b and store the result in dest.
        Specified by:
        mulAdd in interface Vector3dc
        Parameters:
        a - the multiplicand
        b - the addend
        dest - will hold the result
        Returns:
        dest
      • mulAdd

        public Vector3d mulAdd​(Vector3fc a,
                               Vector3dc b,
                               Vector3d dest)
        Description copied from interface: Vector3dc
        Add the component-wise multiplication of this * a to b and store the result in dest.
        Specified by:
        mulAdd in interface Vector3dc
        Parameters:
        a - the multiplicand
        b - the addend
        dest - will hold the result
        Returns:
        dest
      • mul

        public Vector3d mul​(Vector3dc v)
        Multiply this Vector3d component-wise by another Vector3dc.
        Parameters:
        v - the vector to multiply by
        Returns:
        this
      • mul

        public Vector3d mul​(Vector3fc v)
        Multiply this Vector3d component-wise by another Vector3fc.
        Parameters:
        v - the vector to multiply by
        Returns:
        this
      • mul

        public Vector3d mul​(Vector3fc v,
                            Vector3d dest)
        Description copied from interface: Vector3dc
        Multiply this Vector3d component-wise by another Vector3f and store the result in dest.
        Specified by:
        mul in interface Vector3dc
        Parameters:
        v - the vector to multiply by
        dest - will hold the result
        Returns:
        dest
      • mul

        public Vector3d mul​(Vector3dc v,
                            Vector3d dest)
        Description copied from interface: Vector3dc
        Multiply this by v component-wise and store the result into dest.
        Specified by:
        mul in interface Vector3dc
        Parameters:
        v - the vector to multiply by
        dest - will hold the result
        Returns:
        dest
      • div

        public Vector3d div​(Vector3d v)
        Divide this Vector3d component-wise by another Vector3dc.
        Parameters:
        v - the vector to divide by
        Returns:
        this
      • div

        public Vector3d div​(Vector3fc v)
        Divide this Vector3d component-wise by another Vector3fc.
        Parameters:
        v - the vector to divide by
        Returns:
        this
      • div

        public Vector3d div​(Vector3fc v,
                            Vector3d dest)
        Description copied from interface: Vector3dc
        Divide this Vector3d component-wise by another Vector3f and store the result in dest.
        Specified by:
        div in interface Vector3dc
        Parameters:
        v - the vector to divide by
        dest - will hold the result
        Returns:
        dest
      • div

        public Vector3d div​(Vector3dc v,
                            Vector3d dest)
        Description copied from interface: Vector3dc
        Divide this by v component-wise and store the result into dest.
        Specified by:
        div in interface Vector3dc
        Parameters:
        v - the vector to divide by
        dest - will hold the result
        Returns:
        dest
      • mulProject

        public Vector3d mulProject​(Matrix4dc mat,
                                   double w,
                                   Vector3d dest)
        Description copied from interface: Vector3dc
        Multiply the given matrix mat with this Vector3d, perform perspective division and store the result in dest.

        This method uses the given w as the fourth vector component.

        Specified by:
        mulProject in interface Vector3dc
        Parameters:
        mat - the matrix to multiply this vector by
        w - the w component to use
        dest - will hold the result
        Returns:
        dest
      • mulProject

        public Vector3d mulProject​(Matrix4dc mat,
                                   Vector3d dest)
        Description copied from interface: Vector3dc
        Multiply the given matrix mat with this Vector3d, perform perspective division and store the result in dest.

        This method uses w=1.0 as the fourth vector component.

        Specified by:
        mulProject in interface Vector3dc
        Parameters:
        mat - the matrix to multiply this vector by
        dest - will hold the result
        Returns:
        dest
      • mulProject

        public Vector3d mulProject​(Matrix4dc mat)
        Multiply the given matrix mat this Vector3d, perform perspective division.

        This method uses w=1.0 as the fourth vector component.

        Parameters:
        mat - the matrix to multiply this vector by
        Returns:
        this
      • mulProject

        public Vector3d mulProject​(Matrix4fc mat,
                                   Vector3d dest)
        Description copied from interface: Vector3dc
        Multiply the given matrix mat with this Vector3d, perform perspective division and store the result in dest.

        This method uses w=1.0 as the fourth vector component.

        Specified by:
        mulProject in interface Vector3dc
        Parameters:
        mat - the matrix to multiply this vector by
        dest - will hold the result
        Returns:
        dest
      • mulProject

        public Vector3d mulProject​(Matrix4fc mat)
        Multiply the given matrix mat with this Vector3d, perform perspective division.

        This method uses w=1.0 as the fourth vector component.

        Parameters:
        mat - the matrix to multiply this vector by
        Returns:
        this
      • mul

        public Vector3d mul​(Matrix3fc mat)
        Multiply the given matrix mat with this Vector3d.
        Parameters:
        mat - the matrix to multiply this vector by
        Returns:
        this
      • mul

        public Vector3d mul​(Matrix3dc mat)
        Multiply the given matrix mat with this Vector3d.
        Parameters:
        mat - the matrix to multiply this vector by
        Returns:
        this
      • mul

        public Vector3d mul​(Matrix3dc mat,
                            Vector3d dest)
        Description copied from interface: Vector3dc
        Multiply the given matrix mat with this and store the result in dest.
        Specified by:
        mul in interface Vector3dc
        Parameters:
        mat - the matrix to multiply this vector by
        dest - will hold the result
        Returns:
        dest
      • mul

        public Vector3f mul​(Matrix3dc mat,
                            Vector3f dest)
        Description copied from interface: Vector3dc
        Multiply the given matrix mat with this and store the result in dest.
        Specified by:
        mul in interface Vector3dc
        Parameters:
        mat - the matrix to multiply this vector by
        dest - will hold the result
        Returns:
        dest
      • mul

        public Vector3d mul​(Matrix3fc mat,
                            Vector3d dest)
        Description copied from interface: Vector3dc
        Multiply the given matrix mat with this and store the result in dest.
        Specified by:
        mul in interface Vector3dc
        Parameters:
        mat - the matrix to multiply this vector by
        dest - will hold the result
        Returns:
        dest
      • mul

        public Vector3d mul​(Matrix3x2dc mat)
        Multiply the given matrix with this Vector3d by assuming a third row in the matrix of (0, 0, 1) and store the result in this.
        Parameters:
        mat - the matrix
        Returns:
        this
      • mul

        public Vector3d mul​(Matrix3x2dc mat,
                            Vector3d dest)
        Description copied from interface: Vector3dc
        Multiply the given matrix mat with this by assuming a third row in the matrix of (0, 0, 1) and store the result in dest.
        Specified by:
        mul in interface Vector3dc
        Parameters:
        mat - the matrix to multiply this vector by
        dest - will hold the result
        Returns:
        dest
      • mul

        public Vector3d mul​(Matrix3x2fc mat)
        Multiply the given matrix with this Vector3d by assuming a third row in the matrix of (0, 0, 1) and store the result in this.
        Parameters:
        mat - the matrix
        Returns:
        this
      • mul

        public Vector3d mul​(Matrix3x2fc mat,
                            Vector3d dest)
        Description copied from interface: Vector3dc
        Multiply the given matrix mat with this by assuming a third row in the matrix of (0, 0, 1) and store the result in dest.
        Specified by:
        mul in interface Vector3dc
        Parameters:
        mat - the matrix to multiply this vector by
        dest - will hold the result
        Returns:
        dest
      • mulTranspose

        public Vector3d mulTranspose​(Matrix3dc mat)
        Multiply the transpose of the given matrix with this Vector3d and store the result in this.
        Parameters:
        mat - the matrix
        Returns:
        this
      • mulTranspose

        public Vector3d mulTranspose​(Matrix3dc mat,
                                     Vector3d dest)
        Description copied from interface: Vector3dc
        Multiply the transpose of the given matrix with this Vector3f and store the result in dest.
        Specified by:
        mulTranspose in interface Vector3dc
        Parameters:
        mat - the matrix
        dest - will hold the result
        Returns:
        dest
      • mulTranspose

        public Vector3d mulTranspose​(Matrix3fc mat)
        Multiply the transpose of the given matrix with this Vector3d and store the result in this.
        Parameters:
        mat - the matrix
        Returns:
        this
      • mulTranspose

        public Vector3d mulTranspose​(Matrix3fc mat,
                                     Vector3d dest)
        Description copied from interface: Vector3dc
        Multiply the transpose of the given matrix with this Vector3f and store the result in dest.
        Specified by:
        mulTranspose in interface Vector3dc
        Parameters:
        mat - the matrix
        dest - will hold the result
        Returns:
        dest
      • mulPosition

        public Vector3d mulPosition​(Matrix4fc mat)
        Multiply the given 4x4 matrix mat with this.

        This method assumes the w component of this to be 1.0.

        Parameters:
        mat - the matrix to multiply this vector by
        Returns:
        this
      • mulPosition

        public Vector3d mulPosition​(Matrix4dc mat)
        Multiply the given 4x4 matrix mat with this.

        This method assumes the w component of this to be 1.0.

        Parameters:
        mat - the matrix to multiply this vector by
        Returns:
        this
      • mulPosition

        public Vector3d mulPosition​(Matrix4x3dc mat)
        Multiply the given 4x3 matrix mat with this.

        This method assumes the w component of this to be 1.0.

        Parameters:
        mat - the matrix to multiply this vector by
        Returns:
        this
      • mulPosition

        public Vector3d mulPosition​(Matrix4x3fc mat)
        Multiply the given 4x3 matrix mat with this.

        This method assumes the w component of this to be 1.0.

        Parameters:
        mat - the matrix to multiply this vector by
        Returns:
        this
      • mulPosition

        public Vector3d mulPosition​(Matrix4dc mat,
                                    Vector3d dest)
        Description copied from interface: Vector3dc
        Multiply the given 4x4 matrix mat with this and store the result in dest.

        This method assumes the w component of this to be 1.0.

        Specified by:
        mulPosition in interface Vector3dc
        Parameters:
        mat - the matrix to multiply this vector by
        dest - will hold the result
        Returns:
        dest
      • mulPosition

        public Vector3d mulPosition​(Matrix4fc mat,
                                    Vector3d dest)
        Description copied from interface: Vector3dc
        Multiply the given 4x4 matrix mat with this and store the result in dest.

        This method assumes the w component of this to be 1.0.

        Specified by:
        mulPosition in interface Vector3dc
        Parameters:
        mat - the matrix to multiply this vector by
        dest - will hold the result
        Returns:
        dest
      • mulPosition

        public Vector3d mulPosition​(Matrix4x3dc mat,
                                    Vector3d dest)
        Description copied from interface: Vector3dc
        Multiply the given 4x3 matrix mat with this and store the result in dest.

        This method assumes the w component of this to be 1.0.

        Specified by:
        mulPosition in interface Vector3dc
        Parameters:
        mat - the matrix to multiply this vector by
        dest - will hold the result
        Returns:
        dest
      • mulPosition

        public Vector3d mulPosition​(Matrix4x3fc mat,
                                    Vector3d dest)
        Description copied from interface: Vector3dc
        Multiply the given 4x3 matrix mat with this and store the result in dest.

        This method assumes the w component of this to be 1.0.

        Specified by:
        mulPosition in interface Vector3dc
        Parameters:
        mat - the matrix to multiply this vector by
        dest - will hold the result
        Returns:
        dest
      • mulTransposePosition

        public Vector3d mulTransposePosition​(Matrix4dc mat)
        Multiply the transpose of the given 4x4 matrix mat with this.

        This method assumes the w component of this to be 1.0.

        Parameters:
        mat - the matrix whose transpose to multiply this vector by
        Returns:
        this
      • mulTransposePosition

        public Vector3d mulTransposePosition​(Matrix4dc mat,
                                             Vector3d dest)
        Description copied from interface: Vector3dc
        Multiply the transpose of the given 4x4 matrix mat with this and store the result in dest.

        This method assumes the w component of this to be 1.0.

        Specified by:
        mulTransposePosition in interface Vector3dc
        Parameters:
        mat - the matrix whose transpose to multiply this vector by
        dest - will hold the result
        Returns:
        dest
      • mulTransposePosition

        public Vector3d mulTransposePosition​(Matrix4fc mat)
        Multiply the transpose of the given 4x4 matrix mat with this.

        This method assumes the w component of this to be 1.0.

        Parameters:
        mat - the matrix whose transpose to multiply this vector by
        Returns:
        this
      • mulTransposePosition

        public Vector3d mulTransposePosition​(Matrix4fc mat,
                                             Vector3d dest)
        Description copied from interface: Vector3dc
        Multiply the transpose of the given 4x4 matrix mat with this and store the result in dest.

        This method assumes the w component of this to be 1.0.

        Specified by:
        mulTransposePosition in interface Vector3dc
        Parameters:
        mat - the matrix whose transpose to multiply this vector by
        dest - will hold the result
        Returns:
        dest
      • mulPositionW

        public double mulPositionW​(Matrix4fc mat)
        Multiply the given 4x4 matrix mat with this and return the w component of the resulting 4D vector.

        This method assumes the w component of this to be 1.0.

        Parameters:
        mat - the matrix to multiply this vector by
        Returns:
        the w component of the resulting 4D vector after multiplication
      • mulPositionW

        public double mulPositionW​(Matrix4fc mat,
                                   Vector3d dest)
        Description copied from interface: Vector3dc
        Multiply the given 4x4 matrix mat with this, store the result in dest and return the w component of the resulting 4D vector.

        This method assumes the w component of this to be 1.0.

        Specified by:
        mulPositionW in interface Vector3dc
        Parameters:
        mat - the matrix to multiply this vector by
        dest - will hold the (x, y, z) components of the resulting vector
        Returns:
        the w component of the resulting 4D vector after multiplication
      • mulPositionW

        public double mulPositionW​(Matrix4dc mat)
        Multiply the given 4x4 matrix mat with this and return the w component of the resulting 4D vector.

        This method assumes the w component of this to be 1.0.

        Parameters:
        mat - the matrix to multiply this vector by
        Returns:
        the w component of the resulting 4D vector after multiplication
      • mulPositionW

        public double mulPositionW​(Matrix4dc mat,
                                   Vector3d dest)
        Description copied from interface: Vector3dc
        Multiply the given 4x4 matrix mat with this, store the result in dest and return the w component of the resulting 4D vector.

        This method assumes the w component of this to be 1.0.

        Specified by:
        mulPositionW in interface Vector3dc
        Parameters:
        mat - the matrix to multiply this vector by
        dest - will hold the (x, y, z) components of the resulting vector
        Returns:
        the w component of the resulting 4D vector after multiplication
      • mulDirection

        public Vector3d mulDirection​(Matrix4fc mat)
        Multiply the given 4x4 matrix mat with this.

        This method assumes the w component of this to be 0.0.

        Parameters:
        mat - the matrix to multiply this vector by
        Returns:
        this
      • mulDirection

        public Vector3d mulDirection​(Matrix4dc mat)
        Multiply the given 4x4 matrix mat with this.

        This method assumes the w component of this to be 0.0.

        Parameters:
        mat - the matrix to multiply this vector by
        Returns:
        this
      • mulDirection

        public Vector3d mulDirection​(Matrix4x3dc mat)
        Multiply the given 4x3 matrix mat with this.

        This method assumes the w component of this to be 0.0.

        Parameters:
        mat - the matrix to multiply this vector by
        Returns:
        this
      • mulDirection

        public Vector3d mulDirection​(Matrix4x3fc mat)
        Multiply the given 4x3 matrix mat with this.

        This method assumes the w component of this to be 0.0.

        Parameters:
        mat - the matrix to multiply this vector by
        Returns:
        this
      • mulDirection

        public Vector3d mulDirection​(Matrix4dc mat,
                                     Vector3d dest)
        Description copied from interface: Vector3dc
        Multiply the given 4x4 matrix mat with this and store the result in dest.

        This method assumes the w component of this to be 0.0.

        Specified by:
        mulDirection in interface Vector3dc
        Parameters:
        mat - the matrix to multiply this vector by
        dest - will hold the result
        Returns:
        dest
      • mulDirection

        public Vector3d mulDirection​(Matrix4fc mat,
                                     Vector3d dest)
        Description copied from interface: Vector3dc
        Multiply the given 4x4 matrix mat with this and store the result in dest.

        This method assumes the w component of this to be 0.0.

        Specified by:
        mulDirection in interface Vector3dc
        Parameters:
        mat - the matrix to multiply this vector by
        dest - will hold the result
        Returns:
        dest
      • mulDirection

        public Vector3d mulDirection​(Matrix4x3dc mat,
                                     Vector3d dest)
        Description copied from interface: Vector3dc
        Multiply the given 4x3 matrix mat with this and store the result in dest.

        This method assumes the w component of this to be 0.0.

        Specified by:
        mulDirection in interface Vector3dc
        Parameters:
        mat - the matrix to multiply this vector by
        dest - will hold the result
        Returns:
        dest
      • mulDirection

        public Vector3d mulDirection​(Matrix4x3fc mat,
                                     Vector3d dest)
        Description copied from interface: Vector3dc
        Multiply the given 4x3 matrix mat with this and store the result in dest.

        This method assumes the w component of this to be 0.0.

        Specified by:
        mulDirection in interface Vector3dc
        Parameters:
        mat - the matrix to multiply this vector by
        dest - will hold the result
        Returns:
        dest
      • mulTransposeDirection

        public Vector3d mulTransposeDirection​(Matrix4dc mat)
        Multiply the transpose of the given 4x4 matrix mat with this.

        This method assumes the w component of this to be 0.0.

        Parameters:
        mat - the matrix whose transpose to multiply this vector by
        Returns:
        this
      • mulTransposeDirection

        public Vector3d mulTransposeDirection​(Matrix4dc mat,
                                              Vector3d dest)
        Description copied from interface: Vector3dc
        Multiply the transpose of the given 4x4 matrix mat with this and store the result in dest.

        This method assumes the w component of this to be 0.0.

        Specified by:
        mulTransposeDirection in interface Vector3dc
        Parameters:
        mat - the matrix whose transpose to multiply this vector by
        dest - will hold the result
        Returns:
        dest
      • mulTransposeDirection

        public Vector3d mulTransposeDirection​(Matrix4fc mat)
        Multiply the transpose of the given 4x4 matrix mat with this.

        This method assumes the w component of this to be 0.0.

        Parameters:
        mat - the matrix whose transpose to multiply this vector by
        Returns:
        this
      • mulTransposeDirection

        public Vector3d mulTransposeDirection​(Matrix4fc mat,
                                              Vector3d dest)
        Description copied from interface: Vector3dc
        Multiply the transpose of the given 4x4 matrix mat with this and store the result in dest.

        This method assumes the w component of this to be 0.0.

        Specified by:
        mulTransposeDirection in interface Vector3dc
        Parameters:
        mat - the matrix whose transpose to multiply this vector by
        dest - will hold the result
        Returns:
        dest
      • mul

        public Vector3d mul​(double scalar)
        Multiply this Vector3d by the given scalar value.
        Parameters:
        scalar - the scalar to multiply this vector by
        Returns:
        this
      • mul

        public Vector3d mul​(double scalar,
                            Vector3d dest)
        Description copied from interface: Vector3dc
        Multiply this Vector3d by the given scalar value and store the result in dest.
        Specified by:
        mul in interface Vector3dc
        Parameters:
        scalar - the scalar factor
        dest - will hold the result
        Returns:
        dest
      • mul

        public Vector3d mul​(double x,
                            double y,
                            double z)
        Multiply the components of this Vector3d by the given scalar values and store the result in this.
        Parameters:
        x - the x component to multiply this vector by
        y - the y component to multiply this vector by
        z - the z component to multiply this vector by
        Returns:
        this
      • mul

        public Vector3d mul​(double x,
                            double y,
                            double z,
                            Vector3d dest)
        Description copied from interface: Vector3dc
        Multiply the components of this Vector3f by the given scalar values and store the result in dest.
        Specified by:
        mul in interface Vector3dc
        Parameters:
        x - the x component to multiply this vector by
        y - the y component to multiply this vector by
        z - the z component to multiply this vector by
        dest - will hold the result
        Returns:
        dest
      • rotationTo

        public Quaterniond rotationTo​(Vector3dc toDir,
                                      Quaterniond dest)
        Description copied from interface: Vector3dc
        Compute the quaternion representing a rotation of this vector to point along toDir and store the result in dest.

        Because there can be multiple possible rotations, this method chooses the one with the shortest arc.

        Specified by:
        rotationTo in interface Vector3dc
        Parameters:
        toDir - the destination direction
        dest - will hold the result
        Returns:
        dest
        See Also:
        Quaterniond.rotationTo(Vector3dc, Vector3dc)
      • rotationTo

        public Quaterniond rotationTo​(double toDirX,
                                      double toDirY,
                                      double toDirZ,
                                      Quaterniond dest)
        Description copied from interface: Vector3dc
        Compute the quaternion representing a rotation of this vector to point along (toDirX, toDirY, toDirZ) and store the result in dest.

        Because there can be multiple possible rotations, this method chooses the one with the shortest arc.

        Specified by:
        rotationTo in interface Vector3dc
        Parameters:
        toDirX - the x coordinate of the destination direction
        toDirY - the y coordinate of the destination direction
        toDirZ - the z coordinate of the destination direction
        dest - will hold the result
        Returns:
        dest
        See Also:
        Quaterniond.rotationTo(double, double, double, double, double, double)
      • rotateAxis

        public Vector3d rotateAxis​(double angle,
                                   double x,
                                   double y,
                                   double z)
        Rotate this vector the specified radians around the given rotation axis.
        Parameters:
        angle - the angle in radians
        x - the x component of the rotation axis
        y - the y component of the rotation axis
        z - the z component of the rotation axis
        Returns:
        this
      • rotateAxis

        public Vector3d rotateAxis​(double angle,
                                   double aX,
                                   double aY,
                                   double aZ,
                                   Vector3d dest)
        Description copied from interface: Vector3dc
        Rotate this vector the specified radians around the given rotation axis and store the result into dest.
        Specified by:
        rotateAxis in interface Vector3dc
        Parameters:
        angle - the angle in radians
        aX - the x component of the rotation axis
        aY - the y component of the rotation axis
        aZ - the z component of the rotation axis
        dest - will hold the result
        Returns:
        dest
      • rotateX

        public Vector3d rotateX​(double angle)
        Rotate this vector the specified radians around the X axis.
        Parameters:
        angle - the angle in radians
        Returns:
        this
      • rotateX

        public Vector3d rotateX​(double angle,
                                Vector3d dest)
        Description copied from interface: Vector3dc
        Rotate this vector the specified radians around the X axis and store the result into dest.
        Specified by:
        rotateX in interface Vector3dc
        Parameters:
        angle - the angle in radians
        dest - will hold the result
        Returns:
        dest
      • rotateY

        public Vector3d rotateY​(double angle)
        Rotate this vector the specified radians around the Y axis.
        Parameters:
        angle - the angle in radians
        Returns:
        this
      • rotateY

        public Vector3d rotateY​(double angle,
                                Vector3d dest)
        Description copied from interface: Vector3dc
        Rotate this vector the specified radians around the Y axis and store the result into dest.
        Specified by:
        rotateY in interface Vector3dc
        Parameters:
        angle - the angle in radians
        dest - will hold the result
        Returns:
        dest
      • rotateZ

        public Vector3d rotateZ​(double angle)
        Rotate this vector the specified radians around the Z axis.
        Parameters:
        angle - the angle in radians
        Returns:
        this
      • rotateZ

        public Vector3d rotateZ​(double angle,
                                Vector3d dest)
        Description copied from interface: Vector3dc
        Rotate this vector the specified radians around the Z axis and store the result into dest.
        Specified by:
        rotateZ in interface Vector3dc
        Parameters:
        angle - the angle in radians
        dest - will hold the result
        Returns:
        dest
      • div

        public Vector3d div​(double scalar)
        Divide this Vector3d by the given scalar value.
        Parameters:
        scalar - the scalar to divide this vector by
        Returns:
        this
      • div

        public Vector3d div​(double scalar,
                            Vector3d dest)
        Description copied from interface: Vector3dc
        Divide this Vector3d by the given scalar value and store the result in dest.
        Specified by:
        div in interface Vector3dc
        Parameters:
        scalar - the scalar to divide this vector by
        dest - will hold the result
        Returns:
        dest
      • div

        public Vector3d div​(double x,
                            double y,
                            double z)
        Divide the components of this Vector3d by the given scalar values and store the result in this.
        Parameters:
        x - the x component to divide this vector by
        y - the y component to divide this vector by
        z - the z component to divide this vector by
        Returns:
        this
      • div

        public Vector3d div​(double x,
                            double y,
                            double z,
                            Vector3d dest)
        Description copied from interface: Vector3dc
        Divide the components of this Vector3f by the given scalar values and store the result in dest.
        Specified by:
        div in interface Vector3dc
        Parameters:
        x - the x component to divide this vector by
        y - the y component to divide this vector by
        z - the z component to divide this vector by
        dest - will hold the result
        Returns:
        dest
      • lengthSquared

        public double lengthSquared()
        Description copied from interface: Vector3dc
        Return the length squared of this vector.
        Specified by:
        lengthSquared in interface Vector3dc
        Returns:
        the length squared
      • lengthSquared

        public static double lengthSquared​(double x,
                                           double y,
                                           double z)
        Get the length squared of a 3-dimensional double-precision vector.
        Parameters:
        x - The vector's x component
        y - The vector's y component
        z - The vector's z component
        Returns:
        the length squared of the given vector
      • length

        public double length()
        Description copied from interface: Vector3dc
        Return the length of this vector.
        Specified by:
        length in interface Vector3dc
        Returns:
        the length
      • length

        public static double length​(double x,
                                    double y,
                                    double z)
        Get the length of a 3-dimensional double-precision vector.
        Parameters:
        x - The vector's x component
        y - The vector's y component
        z - The vector's z component
        Returns:
        the length of the given vector
      • normalize

        public Vector3d normalize()
        Normalize this vector.
        Returns:
        this
      • normalize

        public Vector3d normalize​(Vector3d dest)
        Description copied from interface: Vector3dc
        Normalize this vector and store the result in dest.
        Specified by:
        normalize in interface Vector3dc
        Parameters:
        dest - will hold the result
        Returns:
        dest
      • normalize

        public Vector3d normalize​(double length)
        Scale this vector to have the given length.
        Parameters:
        length - the desired length
        Returns:
        this
      • normalize

        public Vector3d normalize​(double length,
                                  Vector3d dest)
        Description copied from interface: Vector3dc
        Scale this vector to have the given length and store the result in dest.
        Specified by:
        normalize in interface Vector3dc
        Parameters:
        length - the desired length
        dest - will hold the result
        Returns:
        dest
      • cross

        public Vector3d cross​(Vector3dc v)
        Set this vector to be the cross product of this and v2.
        Parameters:
        v - the other vector
        Returns:
        this
      • cross

        public Vector3d cross​(double x,
                              double y,
                              double z)
        Set this vector to be the cross product of itself and (x, y, z).
        Parameters:
        x - the x component of the other vector
        y - the y component of the other vector
        z - the z component of the other vector
        Returns:
        this
      • cross

        public Vector3d cross​(Vector3dc v,
                              Vector3d dest)
        Description copied from interface: Vector3dc
        Calculate the cross product of this and v2 and store the result in dest.
        Specified by:
        cross in interface Vector3dc
        Parameters:
        v - the other vector
        dest - will hold the result
        Returns:
        dest
      • cross

        public Vector3d cross​(double x,
                              double y,
                              double z,
                              Vector3d dest)
        Description copied from interface: Vector3dc
        Compute the cross product of this vector and (x, y, z) and store the result in dest.
        Specified by:
        cross in interface Vector3dc
        Parameters:
        x - the x component of the other vector
        y - the y component of the other vector
        z - the z component of the other vector
        dest - will hold the result
        Returns:
        dest
      • distance

        public double distance​(Vector3dc v)
        Description copied from interface: Vector3dc
        Return the distance between this vector and v.
        Specified by:
        distance in interface Vector3dc
        Parameters:
        v - the other vector
        Returns:
        the distance
      • distance

        public double distance​(double x,
                               double y,
                               double z)
        Description copied from interface: Vector3dc
        Return the distance between this vector and (x, y, z).
        Specified by:
        distance in interface Vector3dc
        Parameters:
        x - the x component of the other vector
        y - the y component of the other vector
        z - the z component of the other vector
        Returns:
        the euclidean distance
      • distanceSquared

        public double distanceSquared​(Vector3dc v)
        Description copied from interface: Vector3dc
        Return the square of the distance between this vector and v.
        Specified by:
        distanceSquared in interface Vector3dc
        Parameters:
        v - the other vector
        Returns:
        the squared of the distance
      • distanceSquared

        public double distanceSquared​(double x,
                                      double y,
                                      double z)
        Description copied from interface: Vector3dc
        Return the square of the distance between this vector and (x, y, z).
        Specified by:
        distanceSquared in interface Vector3dc
        Parameters:
        x - the x component of the other vector
        y - the y component of the other vector
        z - the z component of the other vector
        Returns:
        the square of the distance
      • distance

        public static double distance​(double x1,
                                      double y1,
                                      double z1,
                                      double x2,
                                      double y2,
                                      double z2)
        Return the distance between (x1, y1, z1) and (x2, y2, z2).
        Parameters:
        x1 - the x component of the first vector
        y1 - the y component of the first vector
        z1 - the z component of the first vector
        x2 - the x component of the second vector
        y2 - the y component of the second vector
        z2 - the z component of the second vector
        Returns:
        the euclidean distance
      • distanceSquared

        public static double distanceSquared​(double x1,
                                             double y1,
                                             double z1,
                                             double x2,
                                             double y2,
                                             double z2)
        Return the squared distance between (x1, y1, z1) and (x2, y2, z2).
        Parameters:
        x1 - the x component of the first vector
        y1 - the y component of the first vector
        z1 - the z component of the first vector
        x2 - the x component of the second vector
        y2 - the y component of the second vector
        z2 - the z component of the second vector
        Returns:
        the euclidean distance squared
      • dot

        public double dot​(Vector3dc v)
        Description copied from interface: Vector3dc
        Return the dot product of this vector and the supplied vector.
        Specified by:
        dot in interface Vector3dc
        Parameters:
        v - the other vector
        Returns:
        the dot product
      • dot

        public double dot​(double x,
                          double y,
                          double z)
        Description copied from interface: Vector3dc
        Return the dot product of this vector and the vector (x, y, z).
        Specified by:
        dot in interface Vector3dc
        Parameters:
        x - the x component of the other vector
        y - the y component of the other vector
        z - the z component of the other vector
        Returns:
        the dot product
      • angleCos

        public double angleCos​(Vector3dc v)
        Description copied from interface: Vector3dc
        Return the cosine of the angle between this vector and the supplied vector. Use this instead of Math.cos(angle(v)).
        Specified by:
        angleCos in interface Vector3dc
        Parameters:
        v - the other vector
        Returns:
        the cosine of the angle
        See Also:
        Vector3dc.angle(Vector3dc)
      • angleSigned

        public double angleSigned​(Vector3dc v,
                                  Vector3dc n)
        Description copied from interface: Vector3dc
        Return the signed angle between this vector and the supplied vector with respect to the plane with the given normal vector n.
        Specified by:
        angleSigned in interface Vector3dc
        Parameters:
        v - the other vector
        n - the plane's normal vector
        Returns:
        the angle, in radians
        See Also:
        Vector3dc.angleCos(Vector3dc)
      • angleSigned

        public double angleSigned​(double x,
                                  double y,
                                  double z,
                                  double nx,
                                  double ny,
                                  double nz)
        Description copied from interface: Vector3dc
        Return the signed angle between this vector and the supplied vector with respect to the plane with the given normal vector (nx, ny, nz).
        Specified by:
        angleSigned in interface Vector3dc
        Parameters:
        x - the x coordinate of the other vector
        y - the y coordinate of the other vector
        z - the z coordinate of the other vector
        nx - the x coordinate of the plane's normal vector
        ny - the y coordinate of the plane's normal vector
        nz - the z coordinate of the plane's normal vector
        Returns:
        the angle, in radians
      • min

        public Vector3d min​(Vector3dc v)
        Set the components of this vector to be the component-wise minimum of this and the other vector.
        Parameters:
        v - the other vector
        Returns:
        this
      • min

        public Vector3d min​(Vector3dc v,
                            Vector3d dest)
        Description copied from interface: Vector3dc
        Set the components of dest to be the component-wise minimum of this and the other vector.
        Specified by:
        min in interface Vector3dc
        Parameters:
        v - the other vector
        dest - will hold the result
        Returns:
        dest
      • max

        public Vector3d max​(Vector3dc v)
        Set the components of this vector to be the component-wise maximum of this and the other vector.
        Parameters:
        v - the other vector
        Returns:
        this
      • max

        public Vector3d max​(Vector3dc v,
                            Vector3d dest)
        Description copied from interface: Vector3dc
        Set the components of dest to be the component-wise maximum of this and the other vector.
        Specified by:
        max in interface Vector3dc
        Parameters:
        v - the other vector
        dest - will hold the result
        Returns:
        dest
      • zero

        public Vector3d zero()
        Set all components to zero.
        Returns:
        this
      • toString

        public java.lang.String toString()
        Return a string representation of this vector.

        This method creates a new DecimalFormat on every invocation with the format string "0.000E0;-".

        Overrides:
        toString in class java.lang.Object
        Returns:
        the string representation
      • toString

        public java.lang.String toString​(java.text.NumberFormat formatter)
        Return a string representation of this vector by formatting the vector components with the given NumberFormat.
        Parameters:
        formatter - the NumberFormat used to format the vector components with
        Returns:
        the string representation
      • writeExternal

        public void writeExternal​(java.io.ObjectOutput out)
                           throws java.io.IOException
        Specified by:
        writeExternal in interface java.io.Externalizable
        Throws:
        java.io.IOException
      • readExternal

        public void readExternal​(java.io.ObjectInput in)
                          throws java.io.IOException,
                                 java.lang.ClassNotFoundException
        Specified by:
        readExternal in interface java.io.Externalizable
        Throws:
        java.io.IOException
        java.lang.ClassNotFoundException
      • negate

        public Vector3d negate()
        Negate this vector.
        Returns:
        this
      • negate

        public Vector3d negate​(Vector3d dest)
        Description copied from interface: Vector3dc
        Negate this vector and store the result in dest.
        Specified by:
        negate in interface Vector3dc
        Parameters:
        dest - will hold the result
        Returns:
        dest
      • absolute

        public Vector3d absolute()
        Set this vector's components to their respective absolute values.
        Returns:
        this
      • absolute

        public Vector3d absolute​(Vector3d dest)
        Description copied from interface: Vector3dc
        Compute the absolute values of the individual components of this and store the result in dest.
        Specified by:
        absolute in interface Vector3dc
        Parameters:
        dest - will hold the result
        Returns:
        dest
      • hashCode

        public int hashCode()
        Overrides:
        hashCode in class java.lang.Object
      • equals

        public boolean equals​(java.lang.Object obj)
        Overrides:
        equals in class java.lang.Object
      • equals

        public boolean equals​(Vector3dc v,
                              double delta)
        Description copied from interface: Vector3dc
        Compare the vector components of this vector with the given vector using the given delta and return whether all of them are equal within a maximum difference of delta.

        Please note that this method is not used by any data structure such as ArrayList HashSet or HashMap and their operations, such as ArrayList.contains(Object) or HashSet.remove(Object), since those data structures only use the Object.equals(Object) and Object.hashCode() methods.

        Specified by:
        equals in interface Vector3dc
        Parameters:
        v - the other vector
        delta - the allowed maximum difference
        Returns:
        true whether all of the vector components are equal; false otherwise
      • equals

        public boolean equals​(double x,
                              double y,
                              double z)
        Description copied from interface: Vector3dc
        Compare the vector components of this vector with the given (x, y, z) and return whether all of them are equal.
        Specified by:
        equals in interface Vector3dc
        Parameters:
        x - the x component to compare to
        y - the y component to compare to
        z - the z component to compare to
        Returns:
        true if all the vector components are equal
      • reflect

        public Vector3d reflect​(Vector3dc normal)
        Reflect this vector about the given normal vector.
        Parameters:
        normal - the vector to reflect about
        Returns:
        this
      • reflect

        public Vector3d reflect​(double x,
                                double y,
                                double z)
        Reflect this vector about the given normal vector.
        Parameters:
        x - the x component of the normal
        y - the y component of the normal
        z - the z component of the normal
        Returns:
        this
      • reflect

        public Vector3d reflect​(Vector3dc normal,
                                Vector3d dest)
        Description copied from interface: Vector3dc
        Reflect this vector about the given normal vector and store the result in dest.
        Specified by:
        reflect in interface Vector3dc
        Parameters:
        normal - the vector to reflect about
        dest - will hold the result
        Returns:
        dest
      • reflect

        public Vector3d reflect​(double x,
                                double y,
                                double z,
                                Vector3d dest)
        Description copied from interface: Vector3dc
        Reflect this vector about the given normal vector and store the result in dest.
        Specified by:
        reflect in interface Vector3dc
        Parameters:
        x - the x component of the normal
        y - the y component of the normal
        z - the z component of the normal
        dest - will hold the result
        Returns:
        dest
      • half

        public Vector3d half​(Vector3dc other)
        Compute the half vector between this and the other vector.
        Parameters:
        other - the other vector
        Returns:
        this
      • half

        public Vector3d half​(double x,
                             double y,
                             double z)
        Compute the half vector between this and the vector (x, y, z).
        Parameters:
        x - the x component of the other vector
        y - the y component of the other vector
        z - the z component of the other vector
        Returns:
        this
      • half

        public Vector3d half​(Vector3dc other,
                             Vector3d dest)
        Description copied from interface: Vector3dc
        Compute the half vector between this and the other vector and store the result in dest.
        Specified by:
        half in interface Vector3dc
        Parameters:
        other - the other vector
        dest - will hold the result
        Returns:
        dest
      • half

        public Vector3d half​(double x,
                             double y,
                             double z,
                             Vector3d dest)
        Description copied from interface: Vector3dc
        Compute the half vector between this and the vector (x, y, z) and store the result in dest.
        Specified by:
        half in interface Vector3dc
        Parameters:
        x - the x component of the other vector
        y - the y component of the other vector
        z - the z component of the other vector
        dest - will hold the result
        Returns:
        dest
      • smoothStep

        public Vector3d smoothStep​(Vector3dc v,
                                   double t,
                                   Vector3d dest)
        Description copied from interface: Vector3dc
        Compute a smooth-step (i.e. hermite with zero tangents) interpolation between this vector and the given vector v and store the result in dest.
        Specified by:
        smoothStep in interface Vector3dc
        Parameters:
        v - the other vector
        t - the interpolation factor, within [0..1]
        dest - will hold the result
        Returns:
        dest
      • hermite

        public Vector3d hermite​(Vector3dc t0,
                                Vector3dc v1,
                                Vector3dc t1,
                                double t,
                                Vector3d dest)
        Description copied from interface: Vector3dc
        Compute a hermite interpolation between this vector and its associated tangent t0 and the given vector v with its tangent t1 and store the result in dest.
        Specified by:
        hermite in interface Vector3dc
        Parameters:
        t0 - the tangent of this vector
        v1 - the other vector
        t1 - the tangent of the other vector
        t - the interpolation factor, within [0..1]
        dest - will hold the result
        Returns:
        dest
      • lerp

        public Vector3d lerp​(Vector3dc other,
                             double t)
        Linearly interpolate this and other using the given interpolation factor t and store the result in this.

        If t is 0.0 then the result is this. If the interpolation factor is 1.0 then the result is other.

        Parameters:
        other - the other vector
        t - the interpolation factor between 0.0 and 1.0
        Returns:
        this
      • lerp

        public Vector3d lerp​(Vector3dc other,
                             double t,
                             Vector3d dest)
        Description copied from interface: Vector3dc
        Linearly interpolate this and other using the given interpolation factor t and store the result in dest.

        If t is 0.0 then the result is this. If the interpolation factor is 1.0 then the result is other.

        Specified by:
        lerp in interface Vector3dc
        Parameters:
        other - the other vector
        t - the interpolation factor between 0.0 and 1.0
        dest - will hold the result
        Returns:
        dest
      • get

        public double get​(int component)
                   throws java.lang.IllegalArgumentException
        Description copied from interface: Vector3dc
        Get the value of the specified component of this vector.
        Specified by:
        get in interface Vector3dc
        Parameters:
        component - the component, within [0..2]
        Returns:
        the value
        Throws:
        java.lang.IllegalArgumentException - if component is not within [0..2]
      • get

        public Vector3i get​(int mode,
                            Vector3i dest)
        Description copied from interface: Vector3dc
        Set the components of the given vector dest to those of this vector using the given RoundingMode.
        Specified by:
        get in interface Vector3dc
        Parameters:
        mode - the RoundingMode to use
        dest - will hold the result
        Returns:
        dest
      • get

        public Vector3f get​(Vector3f dest)
        Description copied from interface: Vector3dc
        Set the components of the given vector dest to those of this vector.
        Specified by:
        get in interface Vector3dc
        Parameters:
        dest - will hold the result
        Returns:
        dest
      • get

        public Vector3d get​(Vector3d dest)
        Description copied from interface: Vector3dc
        Set the components of the given vector dest to those of this vector.
        Specified by:
        get in interface Vector3dc
        Parameters:
        dest - will hold the result
        Returns:
        dest
      • maxComponent

        public int maxComponent()
        Description copied from interface: Vector3dc
        Determine the component with the biggest absolute value.
        Specified by:
        maxComponent in interface Vector3dc
        Returns:
        the component index, within [0..2]
      • minComponent

        public int minComponent()
        Description copied from interface: Vector3dc
        Determine the component with the smallest (towards zero) absolute value.
        Specified by:
        minComponent in interface Vector3dc
        Returns:
        the component index, within [0..2]
      • orthogonalize

        public Vector3d orthogonalize​(Vector3dc v,
                                      Vector3d dest)
        Description copied from interface: Vector3dc
        Transform this vector so that it is orthogonal to the given vector v, normalize the result and store it into dest.

        Reference: Gram–Schmidt process

        Specified by:
        orthogonalize in interface Vector3dc
        Parameters:
        v - the reference vector which the result should be orthogonal to
        dest - will hold the result
        Returns:
        dest
      • orthogonalize

        public Vector3d orthogonalize​(Vector3dc v)
        Transform this vector so that it is orthogonal to the given vector v and normalize the result.

        Reference: Gram–Schmidt process

        Parameters:
        v - the reference vector which the result should be orthogonal to
        Returns:
        this
      • orthogonalizeUnit

        public Vector3d orthogonalizeUnit​(Vector3dc v,
                                          Vector3d dest)
        Description copied from interface: Vector3dc
        Transform this vector so that it is orthogonal to the given unit vector v, normalize the result and store it into dest.

        The vector v is assumed to be a unit vector.

        Reference: Gram–Schmidt process

        Specified by:
        orthogonalizeUnit in interface Vector3dc
        Parameters:
        v - the reference unit vector which the result should be orthogonal to
        dest - will hold the result
        Returns:
        dest
      • orthogonalizeUnit

        public Vector3d orthogonalizeUnit​(Vector3dc v)
        Transform this vector so that it is orthogonal to the given unit vector v and normalize the result.

        The vector v is assumed to be a unit vector.

        Reference: Gram–Schmidt process

        Parameters:
        v - the reference unit vector which the result should be orthogonal to
        Returns:
        this
      • floor

        public Vector3d floor()
        Set each component of this vector to the largest (closest to positive infinity) double value that is less than or equal to that component and is equal to a mathematical integer.
        Returns:
        this
      • floor

        public Vector3d floor​(Vector3d dest)
        Description copied from interface: Vector3dc
        Compute for each component of this vector the largest (closest to positive infinity) double value that is less than or equal to that component and is equal to a mathematical integer and store the result in dest.
        Specified by:
        floor in interface Vector3dc
        Parameters:
        dest - will hold the result
        Returns:
        dest
      • ceil

        public Vector3d ceil()
        Set each component of this vector to the smallest (closest to negative infinity) double value that is greater than or equal to that component and is equal to a mathematical integer.
        Returns:
        this
      • ceil

        public Vector3d ceil​(Vector3d dest)
        Description copied from interface: Vector3dc
        Compute for each component of this vector the smallest (closest to negative infinity) double value that is greater than or equal to that component and is equal to a mathematical integer and store the result in dest.
        Specified by:
        ceil in interface Vector3dc
        Parameters:
        dest - will hold the result
        Returns:
        dest
      • round

        public Vector3d round()
        Set each component of this vector to the closest double that is equal to a mathematical integer, with ties rounding to positive infinity.
        Returns:
        this
      • round

        public Vector3d round​(Vector3d dest)
        Description copied from interface: Vector3dc
        Compute for each component of this vector the closest double that is equal to a mathematical integer, with ties rounding to positive infinity and store the result in dest.
        Specified by:
        round in interface Vector3dc
        Parameters:
        dest - will hold the result
        Returns:
        dest
      • isFinite

        public boolean isFinite()
        Description copied from interface: Vector3dc
        Determine whether all components are finite floating-point values, that is, they are not NaN and not infinity.
        Specified by:
        isFinite in interface Vector3dc
        Returns:
        true if all components are finite floating-point values; false otherwise
      • clone

        public java.lang.Object clone()
                               throws java.lang.CloneNotSupportedException
        Overrides:
        clone in class java.lang.Object
        Throws:
        java.lang.CloneNotSupportedException