Class Matrix3f
- java.lang.Object
-
- org.joml.Matrix3f
-
- All Implemented Interfaces:
java.io.Externalizable
,java.io.Serializable
,java.lang.Cloneable
,Matrix3fc
- Direct Known Subclasses:
Matrix3fStack
public class Matrix3f extends java.lang.Object implements java.io.Externalizable, java.lang.Cloneable, Matrix3fc
Contains the definition of a 3x3 matrix of floats, and associated functions to transform it. The matrix is column-major to match OpenGL's interpretation, and it looks like this:m00 m10 m20
m01 m11 m21
m02 m12 m22- Author:
- Richard Greenlees, Kai Burjack
- See Also:
- Serialized Form
-
-
Constructor Summary
Constructors Constructor Description Matrix3f()
Matrix3f(float m00, float m01, float m02, float m10, float m11, float m12, float m20, float m21, float m22)
Create a new 3x3 matrix using the supplied float values.Matrix3f(java.nio.FloatBuffer buffer)
Create a newMatrix3f
by reading its 9 float components from the givenFloatBuffer
at the buffer's current position.Matrix3f(Matrix2fc mat)
Matrix3f(Matrix3fc mat)
Create a newMatrix3f
and make it a copy of the given matrix.Matrix3f(Matrix4fc mat)
Matrix3f(Vector3fc col0, Vector3fc col1, Vector3fc col2)
Create a newMatrix3f
and initialize its three columns using the supplied vectors.
-
Method Summary
All Methods Instance Methods Concrete Methods Modifier and Type Method Description Matrix3f
add(Matrix3fc other)
Component-wise addthis
andother
.Matrix3f
add(Matrix3fc other, Matrix3f dest)
Component-wise addthis
andother
and store the result indest
.java.lang.Object
clone()
Matrix3f
cofactor()
Compute the cofactor matrix ofthis
.Matrix3f
cofactor(Matrix3f dest)
Compute the cofactor matrix ofthis
and store it intodest
.float
determinant()
Return the determinant of this matrix.boolean
equals(java.lang.Object obj)
boolean
equals(Matrix3fc m, float delta)
Compare the matrix elements ofthis
matrix with the given matrix using the givendelta
and return whether all of them are equal within a maximum difference ofdelta
.float[]
get(float[] arr)
Store this matrix into the supplied float array in column-major order.float[]
get(float[] arr, int offset)
Store this matrix into the supplied float array in column-major order at the given offset.float
get(int column, int row)
Get the matrix element value at the given column and row.java.nio.ByteBuffer
get(int index, java.nio.ByteBuffer buffer)
Store this matrix in column-major order into the suppliedByteBuffer
starting at the specified absolute buffer position/index.java.nio.FloatBuffer
get(int index, java.nio.FloatBuffer buffer)
Store this matrix in column-major order into the suppliedFloatBuffer
starting at the specified absolute buffer position/index.java.nio.ByteBuffer
get(java.nio.ByteBuffer buffer)
Store this matrix in column-major order into the suppliedByteBuffer
at the current bufferposition
.java.nio.FloatBuffer
get(java.nio.FloatBuffer buffer)
Store this matrix in column-major order into the suppliedFloatBuffer
at the current bufferposition
.Matrix3f
get(Matrix3f dest)
Get the current values ofthis
matrix and store them intodest
.Matrix4f
get(Matrix4f dest)
Get the current values ofthis
matrix and store them as the rotational component ofdest
.java.nio.ByteBuffer
get3x4(int index, java.nio.ByteBuffer buffer)
Store this matrix as 3x4 matrix in column-major order into the suppliedByteBuffer
starting at the specified absolute buffer position/index, with the m03, m13 and m23 components being zero.java.nio.FloatBuffer
get3x4(int index, java.nio.FloatBuffer buffer)
Store this matrix as 3x4 matrix in column-major order into the suppliedFloatBuffer
starting at the specified absolute buffer position/index, with the m03, m13 and m23 components being zero.java.nio.ByteBuffer
get3x4(java.nio.ByteBuffer buffer)
Store this matrix as 3x4 matrix in column-major order into the suppliedByteBuffer
at the current bufferposition
, with the m03, m13 and m23 components being zero.java.nio.FloatBuffer
get3x4(java.nio.FloatBuffer buffer)
Store this matrix as 3x4 matrix in column-major order into the suppliedFloatBuffer
at the current bufferposition
, with the m03, m13 and m23 components being zero.Vector3f
getColumn(int column, Vector3f dest)
Get the column at the givencolumn
index, starting with0
.Vector3f
getEulerAnglesXYZ(Vector3f dest)
Extract the Euler angles from the rotation represented bythis
matrix and store the extracted Euler angles indest
.Vector3f
getEulerAnglesZYX(Vector3f dest)
Extract the Euler angles from the rotation represented bythis
matrix and store the extracted Euler angles indest
.Quaterniond
getNormalizedRotation(Quaterniond dest)
Get the current values ofthis
matrix and store the represented rotation into the givenQuaterniond
.Quaternionf
getNormalizedRotation(Quaternionf dest)
Get the current values ofthis
matrix and store the represented rotation into the givenQuaternionf
.AxisAngle4f
getRotation(AxisAngle4f dest)
Get the current values ofthis
matrix and store the represented rotation into the givenAxisAngle4f
.Vector3f
getRow(int row, Vector3f dest)
Get the row at the givenrow
index, starting with0
.float
getRowColumn(int row, int column)
Get the matrix element value at the given row and column.Vector3f
getScale(Vector3f dest)
Get the scaling factors ofthis
matrix for the three base axes.Matrix3fc
getToAddress(long address)
Store this matrix in column-major order at the given off-heap address.java.nio.ByteBuffer
getTransposed(int index, java.nio.ByteBuffer buffer)
Store the transpose of this matrix in column-major order into the suppliedByteBuffer
starting at the specified absolute buffer position/index.java.nio.FloatBuffer
getTransposed(int index, java.nio.FloatBuffer buffer)
Store the transpose of this matrix in column-major order into the suppliedFloatBuffer
starting at the specified absolute buffer position/index.java.nio.ByteBuffer
getTransposed(java.nio.ByteBuffer buffer)
Store the transpose of this matrix in column-major order into the suppliedByteBuffer
at the current bufferposition
.java.nio.FloatBuffer
getTransposed(java.nio.FloatBuffer buffer)
Store the transpose of this matrix in column-major order into the suppliedFloatBuffer
at the current bufferposition
.Quaterniond
getUnnormalizedRotation(Quaterniond dest)
Get the current values ofthis
matrix and store the represented rotation into the givenQuaterniond
.Quaternionf
getUnnormalizedRotation(Quaternionf dest)
Get the current values ofthis
matrix and store the represented rotation into the givenQuaternionf
.int
hashCode()
Matrix3f
identity()
Set this matrix to the identity.Matrix3f
invert()
Invert this matrix.Matrix3f
invert(Matrix3f dest)
Invert thethis
matrix and store the result indest
.boolean
isFinite()
Determine whether all matrix elements are finite floating-point values, that is, they are notNaN
and notinfinity
.Matrix3f
lerp(Matrix3fc other, float t)
Linearly interpolatethis
andother
using the given interpolation factort
and store the result inthis
.Matrix3f
lerp(Matrix3fc other, float t, Matrix3f dest)
Linearly interpolatethis
andother
using the given interpolation factort
and store the result indest
.Matrix3f
lookAlong(float dirX, float dirY, float dirZ, float upX, float upY, float upZ)
Apply a rotation transformation to this matrix to make-z
point alongdir
.Matrix3f
lookAlong(float dirX, float dirY, float dirZ, float upX, float upY, float upZ, Matrix3f dest)
Apply a rotation transformation to this matrix to make-z
point alongdir
and store the result indest
.Matrix3f
lookAlong(Vector3fc dir, Vector3fc up)
Apply a rotation transformation to this matrix to make-z
point alongdir
.Matrix3f
lookAlong(Vector3fc dir, Vector3fc up, Matrix3f dest)
Apply a rotation transformation to this matrix to make-z
point alongdir
and store the result indest
.float
m00()
Return the value of the matrix element at column 0 and row 0.Matrix3f
m00(float m00)
Set the value of the matrix element at column 0 and row 0.float
m01()
Return the value of the matrix element at column 0 and row 1.Matrix3f
m01(float m01)
Set the value of the matrix element at column 0 and row 1.float
m02()
Return the value of the matrix element at column 0 and row 2.Matrix3f
m02(float m02)
Set the value of the matrix element at column 0 and row 2.float
m10()
Return the value of the matrix element at column 1 and row 0.Matrix3f
m10(float m10)
Set the value of the matrix element at column 1 and row 0.float
m11()
Return the value of the matrix element at column 1 and row 1.Matrix3f
m11(float m11)
Set the value of the matrix element at column 1 and row 1.float
m12()
Return the value of the matrix element at column 1 and row 2.Matrix3f
m12(float m12)
Set the value of the matrix element at column 1 and row 2.float
m20()
Return the value of the matrix element at column 2 and row 0.Matrix3f
m20(float m20)
Set the value of the matrix element at column 2 and row 0.float
m21()
Return the value of the matrix element at column 2 and row 1.Matrix3f
m21(float m21)
Set the value of the matrix element at column 2 and row 1.float
m22()
Return the value of the matrix element at column 2 and row 2.Matrix3f
m22(float m22)
Set the value of the matrix element at column 2 and row 2.Matrix3f
mapnXnYnZ()
Multiplythis
by the matrixMatrix3f
mapnXnYnZ(Matrix3f dest)
Multiplythis
by the matrixMatrix3f
mapnXnYZ()
Multiplythis
by the matrixMatrix3f
mapnXnYZ(Matrix3f dest)
Multiplythis
by the matrixMatrix3f
mapnXnZnY()
Multiplythis
by the matrixMatrix3f
mapnXnZnY(Matrix3f dest)
Multiplythis
by the matrixMatrix3f
mapnXnZY()
Multiplythis
by the matrixMatrix3f
mapnXnZY(Matrix3f dest)
Multiplythis
by the matrixMatrix3f
mapnXYnZ()
Multiplythis
by the matrixMatrix3f
mapnXYnZ(Matrix3f dest)
Multiplythis
by the matrixMatrix3f
mapnXZnY()
Multiplythis
by the matrixMatrix3f
mapnXZnY(Matrix3f dest)
Multiplythis
by the matrixMatrix3f
mapnXZY()
Multiplythis
by the matrixMatrix3f
mapnXZY(Matrix3f dest)
Multiplythis
by the matrixMatrix3f
mapnYnXnZ()
Multiplythis
by the matrixMatrix3f
mapnYnXnZ(Matrix3f dest)
Multiplythis
by the matrixMatrix3f
mapnYnXZ()
Multiplythis
by the matrixMatrix3f
mapnYnXZ(Matrix3f dest)
Multiplythis
by the matrixMatrix3f
mapnYnZnX()
Multiplythis
by the matrixMatrix3f
mapnYnZnX(Matrix3f dest)
Multiplythis
by the matrixMatrix3f
mapnYnZX()
Multiplythis
by the matrixMatrix3f
mapnYnZX(Matrix3f dest)
Multiplythis
by the matrixMatrix3f
mapnYXnZ()
Multiplythis
by the matrixMatrix3f
mapnYXnZ(Matrix3f dest)
Multiplythis
by the matrixMatrix3f
mapnYXZ()
Multiplythis
by the matrixMatrix3f
mapnYXZ(Matrix3f dest)
Multiplythis
by the matrixMatrix3f
mapnYZnX()
Multiplythis
by the matrixMatrix3f
mapnYZnX(Matrix3f dest)
Multiplythis
by the matrixMatrix3f
mapnYZX()
Multiplythis
by the matrixMatrix3f
mapnYZX(Matrix3f dest)
Multiplythis
by the matrixMatrix3f
mapnZnXnY()
Multiplythis
by the matrixMatrix3f
mapnZnXnY(Matrix3f dest)
Multiplythis
by the matrixMatrix3f
mapnZnXY()
Multiplythis
by the matrixMatrix3f
mapnZnXY(Matrix3f dest)
Multiplythis
by the matrixMatrix3f
mapnZnYnX()
Multiplythis
by the matrixMatrix3f
mapnZnYnX(Matrix3f dest)
Multiplythis
by the matrixMatrix3f
mapnZnYX()
Multiplythis
by the matrixMatrix3f
mapnZnYX(Matrix3f dest)
Multiplythis
by the matrixMatrix3f
mapnZXnY()
Multiplythis
by the matrixMatrix3f
mapnZXnY(Matrix3f dest)
Multiplythis
by the matrixMatrix3f
mapnZXY()
Multiplythis
by the matrixMatrix3f
mapnZXY(Matrix3f dest)
Multiplythis
by the matrixMatrix3f
mapnZYnX()
Multiplythis
by the matrixMatrix3f
mapnZYnX(Matrix3f dest)
Multiplythis
by the matrixMatrix3f
mapnZYX()
Multiplythis
by the matrixMatrix3f
mapnZYX(Matrix3f dest)
Multiplythis
by the matrixMatrix3f
mapXnYnZ()
Multiplythis
by the matrixMatrix3f
mapXnYnZ(Matrix3f dest)
Multiplythis
by the matrixMatrix3f
mapXnZnY()
Multiplythis
by the matrixMatrix3f
mapXnZnY(Matrix3f dest)
Multiplythis
by the matrixMatrix3f
mapXnZY()
Multiplythis
by the matrixMatrix3f
mapXnZY(Matrix3f dest)
Multiplythis
by the matrixMatrix3f
mapXZnY()
Multiplythis
by the matrixMatrix3f
mapXZnY(Matrix3f dest)
Multiplythis
by the matrixMatrix3f
mapXZY()
Multiplythis
by the matrixMatrix3f
mapXZY(Matrix3f dest)
Multiplythis
by the matrixMatrix3f
mapYnXnZ()
Multiplythis
by the matrixMatrix3f
mapYnXnZ(Matrix3f dest)
Multiplythis
by the matrixMatrix3f
mapYnXZ()
Multiplythis
by the matrixMatrix3f
mapYnXZ(Matrix3f dest)
Multiplythis
by the matrixMatrix3f
mapYnZnX()
Multiplythis
by the matrixMatrix3f
mapYnZnX(Matrix3f dest)
Multiplythis
by the matrixMatrix3f
mapYnZX()
Multiplythis
by the matrixMatrix3f
mapYnZX(Matrix3f dest)
Multiplythis
by the matrixMatrix3f
mapYXnZ()
Multiplythis
by the matrixMatrix3f
mapYXnZ(Matrix3f dest)
Multiplythis
by the matrixMatrix3f
mapYXZ()
Multiplythis
by the matrixMatrix3f
mapYXZ(Matrix3f dest)
Multiplythis
by the matrixMatrix3f
mapYZnX()
Multiplythis
by the matrixMatrix3f
mapYZnX(Matrix3f dest)
Multiplythis
by the matrixMatrix3f
mapYZX()
Multiplythis
by the matrixMatrix3f
mapYZX(Matrix3f dest)
Multiplythis
by the matrixMatrix3f
mapZnXnY()
Multiplythis
by the matrixMatrix3f
mapZnXnY(Matrix3f dest)
Multiplythis
by the matrixMatrix3f
mapZnXY()
Multiplythis
by the matrixMatrix3f
mapZnXY(Matrix3f dest)
Multiplythis
by the matrixMatrix3f
mapZnYnX()
Multiplythis
by the matrixMatrix3f
mapZnYnX(Matrix3f dest)
Multiplythis
by the matrixMatrix3f
mapZnYX()
Multiplythis
by the matrixMatrix3f
mapZnYX(Matrix3f dest)
Multiplythis
by the matrixMatrix3f
mapZXnY()
Multiplythis
by the matrixMatrix3f
mapZXnY(Matrix3f dest)
Multiplythis
by the matrixMatrix3f
mapZXY()
Multiplythis
by the matrixMatrix3f
mapZXY(Matrix3f dest)
Multiplythis
by the matrixMatrix3f
mapZYnX()
Multiplythis
by the matrixMatrix3f
mapZYnX(Matrix3f dest)
Multiplythis
by the matrixMatrix3f
mapZYX()
Multiplythis
by the matrixMatrix3f
mapZYX(Matrix3f dest)
Multiplythis
by the matrixMatrix3f
mul(Matrix3fc right)
Multiply this matrix by the suppliedright
matrix.Matrix3f
mul(Matrix3fc right, Matrix3f dest)
Multiply this matrix by the suppliedright
matrix and store the result indest
.Matrix3f
mulComponentWise(Matrix3fc other)
Component-wise multiplythis
byother
.Matrix3f
mulComponentWise(Matrix3fc other, Matrix3f dest)
Component-wise multiplythis
byother
and store the result indest
.Matrix3f
mulLocal(Matrix3fc left)
Pre-multiply this matrix by the suppliedleft
matrix and store the result inthis
.Matrix3f
mulLocal(Matrix3fc left, Matrix3f dest)
Pre-multiply this matrix by the suppliedleft
matrix and store the result indest
.Matrix3f
negateX()
Multiplythis
by the matrixMatrix3f
negateX(Matrix3f dest)
Multiplythis
by the matrixMatrix3f
negateY()
Multiplythis
by the matrixMatrix3f
negateY(Matrix3f dest)
Multiplythis
by the matrixMatrix3f
negateZ()
Multiplythis
by the matrixMatrix3f
negateZ(Matrix3f dest)
Multiplythis
by the matrixMatrix3f
normal()
Setthis
matrix to its own normal matrix.Matrix3f
normal(Matrix3f dest)
Compute a normal matrix fromthis
matrix and store it intodest
.Vector3f
normalizedPositiveX(Vector3f dir)
Obtain the direction of+X
before the transformation represented bythis
orthogonal matrix is applied.Vector3f
normalizedPositiveY(Vector3f dir)
Obtain the direction of+Y
before the transformation represented bythis
orthogonal matrix is applied.Vector3f
normalizedPositiveZ(Vector3f dir)
Obtain the direction of+Z
before the transformation represented bythis
orthogonal matrix is applied.Matrix3f
obliqueZ(float a, float b)
Apply an oblique projection transformation to this matrix with the given values fora
andb
.Matrix3f
obliqueZ(float a, float b, Matrix3f dest)
Apply an oblique projection transformation to this matrix with the given values fora
andb
and store the result indest
.Vector3f
positiveX(Vector3f dir)
Obtain the direction of+X
before the transformation represented bythis
matrix is applied.Vector3f
positiveY(Vector3f dir)
Obtain the direction of+Y
before the transformation represented bythis
matrix is applied.Vector3f
positiveZ(Vector3f dir)
Obtain the direction of+Z
before the transformation represented bythis
matrix is applied.float
quadraticFormProduct(float x, float y, float z)
Compute(x, y, z)^T * this * (x, y, z)
.float
quadraticFormProduct(Vector3fc v)
Computev^T * this * v
.void
readExternal(java.io.ObjectInput in)
Matrix3f
reflect(float nx, float ny, float nz)
Apply a mirror/reflection transformation to this matrix that reflects through the given plane specified via the plane normal.Matrix3f
reflect(float nx, float ny, float nz, Matrix3f dest)
Apply a mirror/reflection transformation to this matrix that reflects through the given plane specified via the plane normal(nx, ny, nz)
, and store the result indest
.Matrix3f
reflect(Quaternionfc orientation)
Apply a mirror/reflection transformation to this matrix that reflects about a plane specified via the plane orientation.Matrix3f
reflect(Quaternionfc orientation, Matrix3f dest)
Apply a mirror/reflection transformation to this matrix that reflects through a plane specified via the plane orientation, and store the result indest
.Matrix3f
reflect(Vector3fc normal)
Apply a mirror/reflection transformation to this matrix that reflects through the given plane specified via the plane normal.Matrix3f
reflect(Vector3fc normal, Matrix3f dest)
Apply a mirror/reflection transformation to this matrix that reflects through the given plane specified via the plane normal, and store the result indest
.Matrix3f
reflection(float nx, float ny, float nz)
Set this matrix to a mirror/reflection transformation that reflects through the given plane specified via the plane normal.Matrix3f
reflection(Quaternionfc orientation)
Set this matrix to a mirror/reflection transformation that reflects through a plane specified via the plane orientation.Matrix3f
reflection(Vector3fc normal)
Set this matrix to a mirror/reflection transformation that reflects through the given plane specified via the plane normal.Matrix3f
rotate(float ang, float x, float y, float z)
Apply rotation to this matrix by rotating the given amount of radians about the given axis specified as x, y and z components.Matrix3f
rotate(float ang, float x, float y, float z, Matrix3f dest)
Apply rotation to this matrix by rotating the given amount of radians about the given axis specified as x, y and z components, and store the result indest
.Matrix3f
rotate(float angle, Vector3fc axis)
Apply a rotation transformation, rotating the given radians about the specified axis, to this matrix.Matrix3f
rotate(float angle, Vector3fc axis, Matrix3f dest)
Apply a rotation transformation, rotating the given radians about the specified axis and store the result indest
.Matrix3f
rotate(AxisAngle4f axisAngle)
Apply a rotation transformation, rotating about the givenAxisAngle4f
, to this matrix.Matrix3f
rotate(AxisAngle4f axisAngle, Matrix3f dest)
Apply a rotation transformation, rotating about the givenAxisAngle4f
and store the result indest
.Matrix3f
rotate(Quaternionfc quat)
Apply the rotation - and possibly scaling - transformation of the givenQuaternionfc
to this matrix.Matrix3f
rotate(Quaternionfc quat, Matrix3f dest)
Apply the rotation - and possibly scaling - transformation of the givenQuaternionfc
to this matrix and store the result indest
.Matrix3f
rotateLocal(float ang, float x, float y, float z)
Pre-multiply a rotation to this matrix by rotating the given amount of radians about the specified(x, y, z)
axis.Matrix3f
rotateLocal(float ang, float x, float y, float z, Matrix3f dest)
Pre-multiply a rotation to this matrix by rotating the given amount of radians about the specified(x, y, z)
axis and store the result indest
.Matrix3f
rotateLocal(Quaternionfc quat)
Pre-multiply the rotation - and possibly scaling - transformation of the givenQuaternionfc
to this matrix.Matrix3f
rotateLocal(Quaternionfc quat, Matrix3f dest)
Pre-multiply the rotation - and possibly scaling - transformation of the givenQuaternionfc
to this matrix and store the result indest
.Matrix3f
rotateLocalX(float ang)
Pre-multiply a rotation to this matrix by rotating the given amount of radians about the X axis.Matrix3f
rotateLocalX(float ang, Matrix3f dest)
Pre-multiply a rotation around the X axis to this matrix by rotating the given amount of radians about the X axis and store the result indest
.Matrix3f
rotateLocalY(float ang)
Pre-multiply a rotation to this matrix by rotating the given amount of radians about the Y axis.Matrix3f
rotateLocalY(float ang, Matrix3f dest)
Pre-multiply a rotation around the Y axis to this matrix by rotating the given amount of radians about the Y axis and store the result indest
.Matrix3f
rotateLocalZ(float ang)
Pre-multiply a rotation to this matrix by rotating the given amount of radians about the Z axis.Matrix3f
rotateLocalZ(float ang, Matrix3f dest)
Pre-multiply a rotation around the Z axis to this matrix by rotating the given amount of radians about the Z axis and store the result indest
.Matrix3f
rotateTowards(float dirX, float dirY, float dirZ, float upX, float upY, float upZ)
Apply a model transformation to this matrix for a right-handed coordinate system, that aligns the local+Z
axis withdirection
.Matrix3f
rotateTowards(float dirX, float dirY, float dirZ, float upX, float upY, float upZ, Matrix3f dest)
Apply a model transformation to this matrix for a right-handed coordinate system, that aligns the local+Z
axis withdir
and store the result indest
.Matrix3f
rotateTowards(Vector3fc direction, Vector3fc up)
Apply a model transformation to this matrix for a right-handed coordinate system, that aligns the local+Z
axis withdirection
.Matrix3f
rotateTowards(Vector3fc direction, Vector3fc up, Matrix3f dest)
Apply a model transformation to this matrix for a right-handed coordinate system, that aligns the local+Z
axis withdirection
and store the result indest
.Matrix3f
rotateX(float ang)
Apply rotation about the X axis to this matrix by rotating the given amount of radians.Matrix3f
rotateX(float ang, Matrix3f dest)
Apply rotation about the X axis to this matrix by rotating the given amount of radians and store the result indest
.Matrix3f
rotateXYZ(float angleX, float angleY, float angleZ)
Apply rotation ofangleX
radians about the X axis, followed by a rotation ofangleY
radians about the Y axis and followed by a rotation ofangleZ
radians about the Z axis.Matrix3f
rotateXYZ(float angleX, float angleY, float angleZ, Matrix3f dest)
Apply rotation ofangleX
radians about the X axis, followed by a rotation ofangleY
radians about the Y axis and followed by a rotation ofangleZ
radians about the Z axis and store the result indest
.Matrix3f
rotateXYZ(Vector3f angles)
Apply rotation ofangles.x
radians about the X axis, followed by a rotation ofangles.y
radians about the Y axis and followed by a rotation ofangles.z
radians about the Z axis.Matrix3f
rotateY(float ang)
Apply rotation about the Y axis to this matrix by rotating the given amount of radians.Matrix3f
rotateY(float ang, Matrix3f dest)
Apply rotation about the Y axis to this matrix by rotating the given amount of radians and store the result indest
.Matrix3f
rotateYXZ(float angleY, float angleX, float angleZ)
Apply rotation ofangleY
radians about the Y axis, followed by a rotation ofangleX
radians about the X axis and followed by a rotation ofangleZ
radians about the Z axis.Matrix3f
rotateYXZ(float angleY, float angleX, float angleZ, Matrix3f dest)
Apply rotation ofangleY
radians about the Y axis, followed by a rotation ofangleX
radians about the X axis and followed by a rotation ofangleZ
radians about the Z axis and store the result indest
.Matrix3f
rotateYXZ(Vector3f angles)
Apply rotation ofangles.y
radians about the Y axis, followed by a rotation ofangles.x
radians about the X axis and followed by a rotation ofangles.z
radians about the Z axis.Matrix3f
rotateZ(float ang)
Apply rotation about the Z axis to this matrix by rotating the given amount of radians.Matrix3f
rotateZ(float ang, Matrix3f dest)
Apply rotation about the Z axis to this matrix by rotating the given amount of radians and store the result indest
.Matrix3f
rotateZYX(float angleZ, float angleY, float angleX)
Apply rotation ofangleZ
radians about the Z axis, followed by a rotation ofangleY
radians about the Y axis and followed by a rotation ofangleX
radians about the X axis.Matrix3f
rotateZYX(float angleZ, float angleY, float angleX, Matrix3f dest)
Apply rotation ofangleZ
radians about the Z axis, followed by a rotation ofangleY
radians about the Y axis and followed by a rotation ofangleX
radians about the X axis and store the result indest
.Matrix3f
rotateZYX(Vector3f angles)
Apply rotation ofangles.z
radians about the Z axis, followed by a rotation ofangles.y
radians about the Y axis and followed by a rotation ofangles.x
radians about the X axis.Matrix3f
rotation(float angle, float x, float y, float z)
Set this matrix to a rotation matrix which rotates the given radians about a given axis.Matrix3f
rotation(float angle, Vector3fc axis)
Set this matrix to a rotation matrix which rotates the given radians about a given axis.Matrix3f
rotation(AxisAngle4f axisAngle)
Set this matrix to a rotation transformation using the givenAxisAngle4f
.Matrix3f
rotation(Quaternionfc quat)
Set this matrix to the rotation - and possibly scaling - transformation of the givenQuaternionfc
.Matrix3f
rotationTowards(float dirX, float dirY, float dirZ, float upX, float upY, float upZ)
Set this matrix to a model transformation for a right-handed coordinate system, that aligns the local-z
axis withcenter - eye
.Matrix3f
rotationTowards(Vector3fc dir, Vector3fc up)
Set this matrix to a model transformation for a right-handed coordinate system, that aligns the local-z
axis withcenter - eye
.Matrix3f
rotationX(float ang)
Set this matrix to a rotation transformation about the X axis.Matrix3f
rotationXYZ(float angleX, float angleY, float angleZ)
Set this matrix to a rotation ofangleX
radians about the X axis, followed by a rotation ofangleY
radians about the Y axis and followed by a rotation ofangleZ
radians about the Z axis.Matrix3f
rotationY(float ang)
Set this matrix to a rotation transformation about the Y axis.Matrix3f
rotationYXZ(float angleY, float angleX, float angleZ)
Set this matrix to a rotation ofangleY
radians about the Y axis, followed by a rotation ofangleX
radians about the X axis and followed by a rotation ofangleZ
radians about the Z axis.Matrix3f
rotationZ(float ang)
Set this matrix to a rotation transformation about the Z axis.Matrix3f
rotationZYX(float angleZ, float angleY, float angleX)
Set this matrix to a rotation ofangleZ
radians about the Z axis, followed by a rotation ofangleY
radians about the Y axis and followed by a rotation ofangleX
radians about the X axis.Matrix3f
scale(float xyz)
Apply scaling to this matrix by uniformly scaling all base axes by the givenxyz
factor.Matrix3f
scale(float x, float y, float z)
Apply scaling to this matrix by scaling the base axes by the given x, y and z factors.Matrix3f
scale(float x, float y, float z, Matrix3f dest)
Apply scaling to this matrix by scaling the base axes by the given x, y and z factors and store the result indest
.Matrix3f
scale(float xyz, Matrix3f dest)
Apply scaling to this matrix by uniformly scaling all base axes by the givenxyz
factor and store the result indest
.Matrix3f
scale(Vector3fc xyz)
Apply scaling to this matrix by scaling the base axes by the givenxyz.x
,xyz.y
andxyz.z
factors, respectively.Matrix3f
scale(Vector3fc xyz, Matrix3f dest)
Apply scaling tothis
matrix by scaling the base axes by the givenxyz.x
,xyz.y
andxyz.z
factors, respectively and store the result indest
.Matrix3f
scaleLocal(float x, float y, float z)
Pre-multiply scaling to this matrix by scaling the base axes by the given x, y and z factors.Matrix3f
scaleLocal(float x, float y, float z, Matrix3f dest)
Pre-multiply scaling tothis
matrix by scaling the base axes by the given x, y and z factors and store the result indest
.Matrix3f
scaling(float factor)
Set this matrix to be a simple scale matrix, which scales all axes uniformly by the given factor.Matrix3f
scaling(float x, float y, float z)
Set this matrix to be a simple scale matrix.Matrix3f
scaling(Vector3fc xyz)
Set this matrix to be a simple scale matrix which scales the base axes byxyz.x
,xyz.y
andxyz.z
respectively.Matrix3f
set(float[] m)
Set the values in this matrix based on the supplied float array.Matrix3f
set(float m00, float m01, float m02, float m10, float m11, float m12, float m20, float m21, float m22)
Set the values within this matrix to the supplied float values.Matrix3f
set(int column, int row, float value)
Set the matrix element at the given column and row to the specified value.Matrix3f
set(int index, java.nio.ByteBuffer buffer)
Set the values of this matrix by reading 9 float values from the givenByteBuffer
in column-major order, starting at the specified absolute buffer position/index.Matrix3f
set(int index, java.nio.FloatBuffer buffer)
Set the values of this matrix by reading 9 float values from the givenFloatBuffer
in column-major order, starting at the specified absolute buffer position/index.Matrix3f
set(java.nio.ByteBuffer buffer)
Set the values of this matrix by reading 9 float values from the givenByteBuffer
in column-major order, starting at its current position.Matrix3f
set(java.nio.FloatBuffer buffer)
Set the values of this matrix by reading 9 float values from the givenFloatBuffer
in column-major order, starting at its current position.Matrix3f
set(AxisAngle4d axisAngle)
Set this matrix to be equivalent to the rotation specified by the givenAxisAngle4d
.Matrix3f
set(AxisAngle4f axisAngle)
Set this matrix to be equivalent to the rotation specified by the givenAxisAngle4f
.Matrix3f
set(Matrix2fc mat)
Matrix3f
set(Matrix3fc m)
Set the elements of this matrix to the ones inm
.Matrix3f
set(Matrix4fc mat)
Set the elements of this matrix to the upper left 3x3 of the givenMatrix4fc
.Matrix3f
set(Matrix4x3fc m)
Set the elements of this matrix to the left 3x3 submatrix ofm
.Matrix3f
set(Quaterniondc q)
Set this matrix to a rotation - and possibly scaling - equivalent to the given quaternion.Matrix3f
set(Quaternionfc q)
Set this matrix to be equivalent to the rotation - and possibly scaling - specified by the givenQuaternionfc
.Matrix3f
set(Vector3fc col0, Vector3fc col1, Vector3fc col2)
Set the three columns of this matrix to the supplied vectors, respectively.Matrix3f
setColumn(int column, float x, float y, float z)
Set the column at the givencolumn
index, starting with0
.Matrix3f
setColumn(int column, Vector3fc src)
Set the column at the givencolumn
index, starting with0
.Matrix3f
setFromAddress(long address)
Set the values of this matrix by reading 9 float values from off-heap memory in column-major order, starting at the given address.Matrix3f
setLookAlong(float dirX, float dirY, float dirZ, float upX, float upY, float upZ)
Set this matrix to a rotation transformation to make-z
point alongdir
.Matrix3f
setLookAlong(Vector3fc dir, Vector3fc up)
Set this matrix to a rotation transformation to make-z
point alongdir
.Matrix3f
setRow(int row, float x, float y, float z)
Set the row at the givenrow
index, starting with0
.Matrix3f
setRow(int row, Vector3fc src)
Set the row at the givenrow
index, starting with0
.Matrix3f
setRowColumn(int row, int column, float value)
Set the matrix element at the given row and column to the specified value.Matrix3f
setSkewSymmetric(float a, float b, float c)
Set this matrix to a skew-symmetric matrix using the following layout:Matrix3f
setTransposed(Matrix3fc m)
Store the values of the transpose of the given matrixm
intothis
matrix.Matrix3f
sub(Matrix3fc subtrahend)
Component-wise subtractsubtrahend
fromthis
.Matrix3f
sub(Matrix3fc subtrahend, Matrix3f dest)
Component-wise subtractsubtrahend
fromthis
and store the result indest
.Matrix3f
swap(Matrix3f other)
Exchange the values ofthis
matrix with the givenother
matrix.java.lang.String
toString()
Return a string representation of this matrix.java.lang.String
toString(java.text.NumberFormat formatter)
Return a string representation of this matrix by formatting the matrix elements with the givenNumberFormat
.Vector3f
transform(float x, float y, float z, Vector3f dest)
Transform the vector(x, y, z)
by this matrix and store the result indest
.Vector3f
transform(Vector3f v)
Transform the given vector by this matrix.Vector3f
transform(Vector3fc v, Vector3f dest)
Transform the given vector by this matrix and store the result indest
.Vector3f
transformTranspose(float x, float y, float z, Vector3f dest)
Transform the vector(x, y, z)
by the transpose of this matrix and store the result indest
.Vector3f
transformTranspose(Vector3f v)
Transform the given vector by the transpose of this matrix.Vector3f
transformTranspose(Vector3fc v, Vector3f dest)
Transform the given vector by the transpose of this matrix and store the result indest
.Matrix3f
transpose()
Transpose this matrix.Matrix3f
transpose(Matrix3f dest)
Transposethis
matrix and store the result indest
.void
writeExternal(java.io.ObjectOutput out)
Matrix3f
zero()
Set all values within this matrix to zero.
-
-
-
Constructor Detail
-
Matrix3f
public Matrix3f()
-
Matrix3f
public Matrix3f(Matrix2fc mat)
Create a newMatrix3f
by setting its uppper left 2x2 submatrix to the values of the givenMatrix2fc
and the rest to identity.- Parameters:
mat
- theMatrix2fc
-
Matrix3f
public Matrix3f(Matrix3fc mat)
Create a newMatrix3f
and make it a copy of the given matrix.- Parameters:
mat
- theMatrix3fc
to copy the values from
-
Matrix3f
public Matrix3f(float m00, float m01, float m02, float m10, float m11, float m12, float m20, float m21, float m22)
Create a new 3x3 matrix using the supplied float values. The order of the parameter is column-major, so the first three parameters specify the three elements of the first column.- Parameters:
m00
- the value of m00m01
- the value of m01m02
- the value of m02m10
- the value of m10m11
- the value of m11m12
- the value of m12m20
- the value of m20m21
- the value of m21m22
- the value of m22
-
Matrix3f
public Matrix3f(java.nio.FloatBuffer buffer)
Create a newMatrix3f
by reading its 9 float components from the givenFloatBuffer
at the buffer's current position.That FloatBuffer is expected to hold the values in column-major order.
The buffer's position will not be changed by this method.
- Parameters:
buffer
- theFloatBuffer
to read the matrix values from
-
-
Method Detail
-
m00
public float m00()
Description copied from interface:Matrix3fc
Return the value of the matrix element at column 0 and row 0.
-
m01
public float m01()
Description copied from interface:Matrix3fc
Return the value of the matrix element at column 0 and row 1.
-
m02
public float m02()
Description copied from interface:Matrix3fc
Return the value of the matrix element at column 0 and row 2.
-
m10
public float m10()
Description copied from interface:Matrix3fc
Return the value of the matrix element at column 1 and row 0.
-
m11
public float m11()
Description copied from interface:Matrix3fc
Return the value of the matrix element at column 1 and row 1.
-
m12
public float m12()
Description copied from interface:Matrix3fc
Return the value of the matrix element at column 1 and row 2.
-
m20
public float m20()
Description copied from interface:Matrix3fc
Return the value of the matrix element at column 2 and row 0.
-
m21
public float m21()
Description copied from interface:Matrix3fc
Return the value of the matrix element at column 2 and row 1.
-
m22
public float m22()
Description copied from interface:Matrix3fc
Return the value of the matrix element at column 2 and row 2.
-
m00
public Matrix3f m00(float m00)
Set the value of the matrix element at column 0 and row 0.- Parameters:
m00
- the new value- Returns:
- this
-
m01
public Matrix3f m01(float m01)
Set the value of the matrix element at column 0 and row 1.- Parameters:
m01
- the new value- Returns:
- this
-
m02
public Matrix3f m02(float m02)
Set the value of the matrix element at column 0 and row 2.- Parameters:
m02
- the new value- Returns:
- this
-
m10
public Matrix3f m10(float m10)
Set the value of the matrix element at column 1 and row 0.- Parameters:
m10
- the new value- Returns:
- this
-
m11
public Matrix3f m11(float m11)
Set the value of the matrix element at column 1 and row 1.- Parameters:
m11
- the new value- Returns:
- this
-
m12
public Matrix3f m12(float m12)
Set the value of the matrix element at column 1 and row 2.- Parameters:
m12
- the new value- Returns:
- this
-
m20
public Matrix3f m20(float m20)
Set the value of the matrix element at column 2 and row 0.- Parameters:
m20
- the new value- Returns:
- this
-
m21
public Matrix3f m21(float m21)
Set the value of the matrix element at column 2 and row 1.- Parameters:
m21
- the new value- Returns:
- this
-
m22
public Matrix3f m22(float m22)
Set the value of the matrix element at column 2 and row 2.- Parameters:
m22
- the new value- Returns:
- this
-
set
public Matrix3f set(Matrix3fc m)
Set the elements of this matrix to the ones inm
.- Parameters:
m
- the matrix to copy the elements from- Returns:
- this
-
setTransposed
public Matrix3f setTransposed(Matrix3fc m)
Store the values of the transpose of the given matrixm
intothis
matrix.- Parameters:
m
- the matrix to copy the transposed values from- Returns:
- this
-
set
public Matrix3f set(Matrix4x3fc m)
Set the elements of this matrix to the left 3x3 submatrix ofm
.- Parameters:
m
- the matrix to copy the elements from- Returns:
- this
-
set
public Matrix3f set(Matrix4fc mat)
Set the elements of this matrix to the upper left 3x3 of the givenMatrix4fc
.- Parameters:
mat
- theMatrix4fc
to copy the values from- Returns:
- this
-
set
public Matrix3f set(Matrix2fc mat)
- Parameters:
mat
- theMatrix2fc
- Returns:
- this
- See Also:
Matrix3f(Matrix2fc)
-
set
public Matrix3f set(AxisAngle4f axisAngle)
Set this matrix to be equivalent to the rotation specified by the givenAxisAngle4f
.- Parameters:
axisAngle
- theAxisAngle4f
- Returns:
- this
-
set
public Matrix3f set(AxisAngle4d axisAngle)
Set this matrix to be equivalent to the rotation specified by the givenAxisAngle4d
.- Parameters:
axisAngle
- theAxisAngle4d
- Returns:
- this
-
set
public Matrix3f set(Quaternionfc q)
Set this matrix to be equivalent to the rotation - and possibly scaling - specified by the givenQuaternionfc
.This method is equivalent to calling:
rotation(q)
Reference: http://www.euclideanspace.com/
- Parameters:
q
- theQuaternionfc
- Returns:
- this
- See Also:
rotation(Quaternionfc)
-
set
public Matrix3f set(Quaterniondc q)
Set this matrix to a rotation - and possibly scaling - equivalent to the given quaternion.Reference: http://www.euclideanspace.com/
- Parameters:
q
- the quaternion- Returns:
- this
-
mul
public Matrix3f mul(Matrix3fc right)
Multiply this matrix by the suppliedright
matrix.If
M
isthis
matrix andR
theright
matrix, then the new matrix will beM * R
. So when transforming a vectorv
with the new matrix by usingM * R * v
, the transformation of the right matrix will be applied first!- Parameters:
right
- the right operand of the matrix multiplication- Returns:
- this
-
mul
public Matrix3f mul(Matrix3fc right, Matrix3f dest)
Description copied from interface:Matrix3fc
Multiply this matrix by the suppliedright
matrix and store the result indest
.If
M
isthis
matrix andR
theright
matrix, then the new matrix will beM * R
. So when transforming a vectorv
with the new matrix by usingM * R * v
, the transformation of the right matrix will be applied first!
-
mulLocal
public Matrix3f mulLocal(Matrix3fc left)
Pre-multiply this matrix by the suppliedleft
matrix and store the result inthis
.If
M
isthis
matrix andL
theleft
matrix, then the new matrix will beL * M
. So when transforming a vectorv
with the new matrix by usingL * M * v
, the transformation ofthis
matrix will be applied first!- Parameters:
left
- the left operand of the matrix multiplication- Returns:
- this
-
mulLocal
public Matrix3f mulLocal(Matrix3fc left, Matrix3f dest)
Description copied from interface:Matrix3fc
Pre-multiply this matrix by the suppliedleft
matrix and store the result indest
.If
M
isthis
matrix andL
theleft
matrix, then the new matrix will beL * M
. So when transforming a vectorv
with the new matrix by usingL * M * v
, the transformation ofthis
matrix will be applied first!
-
set
public Matrix3f set(float m00, float m01, float m02, float m10, float m11, float m12, float m20, float m21, float m22)
Set the values within this matrix to the supplied float values. The result looks like this:m00, m10, m20
m01, m11, m21
m02, m12, m22- Parameters:
m00
- the new value of m00m01
- the new value of m01m02
- the new value of m02m10
- the new value of m10m11
- the new value of m11m12
- the new value of m12m20
- the new value of m20m21
- the new value of m21m22
- the new value of m22- Returns:
- this
-
set
public Matrix3f set(float[] m)
Set the values in this matrix based on the supplied float array. The result looks like this:0, 3, 6
1, 4, 7
2, 5, 8
This method only uses the first 9 values, all others are ignored.- Parameters:
m
- the array to read the matrix values from- Returns:
- this
-
set
public Matrix3f set(Vector3fc col0, Vector3fc col1, Vector3fc col2)
Set the three columns of this matrix to the supplied vectors, respectively.- Parameters:
col0
- the first columncol1
- the second columncol2
- the third column- Returns:
- this
-
determinant
public float determinant()
Description copied from interface:Matrix3fc
Return the determinant of this matrix.- Specified by:
determinant
in interfaceMatrix3fc
- Returns:
- the determinant
-
invert
public Matrix3f invert()
Invert this matrix.- Returns:
- this
-
invert
public Matrix3f invert(Matrix3f dest)
Description copied from interface:Matrix3fc
Invert thethis
matrix and store the result indest
.
-
transpose
public Matrix3f transpose()
Transpose this matrix.- Returns:
- this
-
transpose
public Matrix3f transpose(Matrix3f dest)
Description copied from interface:Matrix3fc
Transposethis
matrix and store the result indest
.
-
toString
public java.lang.String toString()
Return a string representation of this matrix.This method creates a new
DecimalFormat
on every invocation with the format string "0.000E0;-
".- Overrides:
toString
in classjava.lang.Object
- Returns:
- the string representation
-
toString
public java.lang.String toString(java.text.NumberFormat formatter)
Return a string representation of this matrix by formatting the matrix elements with the givenNumberFormat
.- Parameters:
formatter
- theNumberFormat
used to format the matrix values with- Returns:
- the string representation
-
get
public Matrix3f get(Matrix3f dest)
Get the current values ofthis
matrix and store them intodest
.This is the reverse method of
set(Matrix3fc)
and allows to obtain intermediate calculation results when chaining multiple transformations.- Specified by:
get
in interfaceMatrix3fc
- Parameters:
dest
- the destination matrix- Returns:
- the passed in destination
- See Also:
set(Matrix3fc)
-
get
public Matrix4f get(Matrix4f dest)
Description copied from interface:Matrix3fc
Get the current values ofthis
matrix and store them as the rotational component ofdest
. All other values ofdest
will be set to identity.- Specified by:
get
in interfaceMatrix3fc
- Parameters:
dest
- the destination matrix- Returns:
- the passed in destination
- See Also:
Matrix4f.set(Matrix3fc)
-
getRotation
public AxisAngle4f getRotation(AxisAngle4f dest)
Description copied from interface:Matrix3fc
Get the current values ofthis
matrix and store the represented rotation into the givenAxisAngle4f
.- Specified by:
getRotation
in interfaceMatrix3fc
- Parameters:
dest
- the destinationAxisAngle4f
- Returns:
- the passed in destination
- See Also:
AxisAngle4f.set(Matrix3fc)
-
getUnnormalizedRotation
public Quaternionf getUnnormalizedRotation(Quaternionf dest)
Description copied from interface:Matrix3fc
Get the current values ofthis
matrix and store the represented rotation into the givenQuaternionf
.This method assumes that the three column vectors of this matrix are not normalized and thus allows to ignore any additional scaling factor that is applied to the matrix.
- Specified by:
getUnnormalizedRotation
in interfaceMatrix3fc
- Parameters:
dest
- the destinationQuaternionf
- Returns:
- the passed in destination
- See Also:
Quaternionf.setFromUnnormalized(Matrix3fc)
-
getNormalizedRotation
public Quaternionf getNormalizedRotation(Quaternionf dest)
Description copied from interface:Matrix3fc
Get the current values ofthis
matrix and store the represented rotation into the givenQuaternionf
.This method assumes that the three column vectors of this matrix are normalized.
- Specified by:
getNormalizedRotation
in interfaceMatrix3fc
- Parameters:
dest
- the destinationQuaternionf
- Returns:
- the passed in destination
- See Also:
Quaternionf.setFromNormalized(Matrix3fc)
-
getUnnormalizedRotation
public Quaterniond getUnnormalizedRotation(Quaterniond dest)
Description copied from interface:Matrix3fc
Get the current values ofthis
matrix and store the represented rotation into the givenQuaterniond
.This method assumes that the three column vectors of this matrix are not normalized and thus allows to ignore any additional scaling factor that is applied to the matrix.
- Specified by:
getUnnormalizedRotation
in interfaceMatrix3fc
- Parameters:
dest
- the destinationQuaterniond
- Returns:
- the passed in destination
- See Also:
Quaterniond.setFromUnnormalized(Matrix3fc)
-
getNormalizedRotation
public Quaterniond getNormalizedRotation(Quaterniond dest)
Description copied from interface:Matrix3fc
Get the current values ofthis
matrix and store the represented rotation into the givenQuaterniond
.This method assumes that the three column vectors of this matrix are normalized.
- Specified by:
getNormalizedRotation
in interfaceMatrix3fc
- Parameters:
dest
- the destinationQuaterniond
- Returns:
- the passed in destination
- See Also:
Quaterniond.setFromNormalized(Matrix3fc)
-
get
public java.nio.FloatBuffer get(java.nio.FloatBuffer buffer)
Description copied from interface:Matrix3fc
Store this matrix in column-major order into the suppliedFloatBuffer
at the current bufferposition
.This method will not increment the position of the given FloatBuffer.
In order to specify the offset into the FloatBuffer at which the matrix is stored, use
Matrix3fc.get(int, FloatBuffer)
, taking the absolute position as parameter.- Specified by:
get
in interfaceMatrix3fc
- Parameters:
buffer
- will receive the values of this matrix in column-major order at its current position- Returns:
- the passed in buffer
- See Also:
Matrix3fc.get(int, FloatBuffer)
-
get
public java.nio.FloatBuffer get(int index, java.nio.FloatBuffer buffer)
Description copied from interface:Matrix3fc
Store this matrix in column-major order into the suppliedFloatBuffer
starting at the specified absolute buffer position/index.This method will not increment the position of the given FloatBuffer.
-
get
public java.nio.ByteBuffer get(java.nio.ByteBuffer buffer)
Description copied from interface:Matrix3fc
Store this matrix in column-major order into the suppliedByteBuffer
at the current bufferposition
.This method will not increment the position of the given ByteBuffer.
In order to specify the offset into the ByteBuffer at which the matrix is stored, use
Matrix3fc.get(int, ByteBuffer)
, taking the absolute position as parameter.- Specified by:
get
in interfaceMatrix3fc
- Parameters:
buffer
- will receive the values of this matrix in column-major order at its current position- Returns:
- the passed in buffer
- See Also:
Matrix3fc.get(int, ByteBuffer)
-
get
public java.nio.ByteBuffer get(int index, java.nio.ByteBuffer buffer)
Description copied from interface:Matrix3fc
Store this matrix in column-major order into the suppliedByteBuffer
starting at the specified absolute buffer position/index.This method will not increment the position of the given ByteBuffer.
-
get3x4
public java.nio.FloatBuffer get3x4(java.nio.FloatBuffer buffer)
Description copied from interface:Matrix3fc
Store this matrix as 3x4 matrix in column-major order into the suppliedFloatBuffer
at the current bufferposition
, with the m03, m13 and m23 components being zero.This method will not increment the position of the given FloatBuffer.
In order to specify the offset into the FloatBuffer at which the matrix is stored, use
Matrix3fc.get3x4(int, FloatBuffer)
, taking the absolute position as parameter.- Specified by:
get3x4
in interfaceMatrix3fc
- Parameters:
buffer
- will receive the values of this 3x3 matrix as 3x4 matrix in column-major order at its current position- Returns:
- the passed in buffer
- See Also:
Matrix3fc.get3x4(int, FloatBuffer)
-
get3x4
public java.nio.FloatBuffer get3x4(int index, java.nio.FloatBuffer buffer)
Description copied from interface:Matrix3fc
Store this matrix as 3x4 matrix in column-major order into the suppliedFloatBuffer
starting at the specified absolute buffer position/index, with the m03, m13 and m23 components being zero.This method will not increment the position of the given FloatBuffer.
-
get3x4
public java.nio.ByteBuffer get3x4(java.nio.ByteBuffer buffer)
Description copied from interface:Matrix3fc
Store this matrix as 3x4 matrix in column-major order into the suppliedByteBuffer
at the current bufferposition
, with the m03, m13 and m23 components being zero.This method will not increment the position of the given ByteBuffer.
In order to specify the offset into the ByteBuffer at which the matrix is stored, use
Matrix3fc.get3x4(int, ByteBuffer)
, taking the absolute position as parameter.- Specified by:
get3x4
in interfaceMatrix3fc
- Parameters:
buffer
- will receive the values of this 3x3 matrix as 3x4 matrix in column-major order at its current position- Returns:
- the passed in buffer
- See Also:
Matrix3fc.get3x4(int, ByteBuffer)
-
get3x4
public java.nio.ByteBuffer get3x4(int index, java.nio.ByteBuffer buffer)
Description copied from interface:Matrix3fc
Store this matrix as 3x4 matrix in column-major order into the suppliedByteBuffer
starting at the specified absolute buffer position/index, with the m03, m13 and m23 components being zero.This method will not increment the position of the given ByteBuffer.
-
getTransposed
public java.nio.FloatBuffer getTransposed(java.nio.FloatBuffer buffer)
Description copied from interface:Matrix3fc
Store the transpose of this matrix in column-major order into the suppliedFloatBuffer
at the current bufferposition
.This method will not increment the position of the given FloatBuffer.
In order to specify the offset into the FloatBuffer at which the matrix is stored, use
Matrix3fc.getTransposed(int, FloatBuffer)
, taking the absolute position as parameter.- Specified by:
getTransposed
in interfaceMatrix3fc
- Parameters:
buffer
- will receive the values of this matrix in column-major order at its current position- Returns:
- the passed in buffer
- See Also:
Matrix3fc.getTransposed(int, FloatBuffer)
-
getTransposed
public java.nio.FloatBuffer getTransposed(int index, java.nio.FloatBuffer buffer)
Description copied from interface:Matrix3fc
Store the transpose of this matrix in column-major order into the suppliedFloatBuffer
starting at the specified absolute buffer position/index.This method will not increment the position of the given FloatBuffer.
- Specified by:
getTransposed
in interfaceMatrix3fc
- Parameters:
index
- the absolute position into the FloatBufferbuffer
- will receive the values of this matrix in column-major order- Returns:
- the passed in buffer
-
getTransposed
public java.nio.ByteBuffer getTransposed(java.nio.ByteBuffer buffer)
Description copied from interface:Matrix3fc
Store the transpose of this matrix in column-major order into the suppliedByteBuffer
at the current bufferposition
.This method will not increment the position of the given ByteBuffer.
In order to specify the offset into the ByteBuffer at which the matrix is stored, use
Matrix3fc.getTransposed(int, ByteBuffer)
, taking the absolute position as parameter.- Specified by:
getTransposed
in interfaceMatrix3fc
- Parameters:
buffer
- will receive the values of this matrix in column-major order at its current position- Returns:
- the passed in buffer
- See Also:
Matrix3fc.getTransposed(int, ByteBuffer)
-
getTransposed
public java.nio.ByteBuffer getTransposed(int index, java.nio.ByteBuffer buffer)
Description copied from interface:Matrix3fc
Store the transpose of this matrix in column-major order into the suppliedByteBuffer
starting at the specified absolute buffer position/index.This method will not increment the position of the given ByteBuffer.
- Specified by:
getTransposed
in interfaceMatrix3fc
- Parameters:
index
- the absolute position into the ByteBufferbuffer
- will receive the values of this matrix in column-major order- Returns:
- the passed in buffer
-
getToAddress
public Matrix3fc getToAddress(long address)
Description copied from interface:Matrix3fc
Store this matrix in column-major order at the given off-heap address.This method will throw an
UnsupportedOperationException
when JOML is used with `-Djoml.nounsafe`.This method is unsafe as it can result in a crash of the JVM process when the specified address range does not belong to this process.
- Specified by:
getToAddress
in interfaceMatrix3fc
- Parameters:
address
- the off-heap address where to store this matrix- Returns:
- this
-
get
public float[] get(float[] arr, int offset)
Description copied from interface:Matrix3fc
Store this matrix into the supplied float array in column-major order at the given offset.
-
get
public float[] get(float[] arr)
Description copied from interface:Matrix3fc
Store this matrix into the supplied float array in column-major order.In order to specify an explicit offset into the array, use the method
Matrix3fc.get(float[], int)
.- Specified by:
get
in interfaceMatrix3fc
- Parameters:
arr
- the array to write the matrix values into- Returns:
- the passed in array
- See Also:
Matrix3fc.get(float[], int)
-
set
public Matrix3f set(java.nio.FloatBuffer buffer)
Set the values of this matrix by reading 9 float values from the givenFloatBuffer
in column-major order, starting at its current position.The FloatBuffer is expected to contain the values in column-major order.
The position of the FloatBuffer will not be changed by this method.
- Parameters:
buffer
- the FloatBuffer to read the matrix values from in column-major order- Returns:
- this
-
set
public Matrix3f set(java.nio.ByteBuffer buffer)
Set the values of this matrix by reading 9 float values from the givenByteBuffer
in column-major order, starting at its current position.The ByteBuffer is expected to contain the values in column-major order.
The position of the ByteBuffer will not be changed by this method.
- Parameters:
buffer
- the ByteBuffer to read the matrix values from in column-major order- Returns:
- this
-
set
public Matrix3f set(int index, java.nio.FloatBuffer buffer)
Set the values of this matrix by reading 9 float values from the givenFloatBuffer
in column-major order, starting at the specified absolute buffer position/index.The FloatBuffer is expected to contain the values in column-major order.
The position of the FloatBuffer will not be changed by this method.
- Parameters:
index
- the absolute position into the FloatBufferbuffer
- the FloatBuffer to read the matrix values from in column-major order- Returns:
- this
-
set
public Matrix3f set(int index, java.nio.ByteBuffer buffer)
Set the values of this matrix by reading 9 float values from the givenByteBuffer
in column-major order, starting at the specified absolute buffer position/index.The ByteBuffer is expected to contain the values in column-major order.
The position of the ByteBuffer will not be changed by this method.
- Parameters:
index
- the absolute position into the ByteBufferbuffer
- the ByteBuffer to read the matrix values from in column-major order- Returns:
- this
-
setFromAddress
public Matrix3f setFromAddress(long address)
Set the values of this matrix by reading 9 float values from off-heap memory in column-major order, starting at the given address.This method will throw an
UnsupportedOperationException
when JOML is used with `-Djoml.nounsafe`.This method is unsafe as it can result in a crash of the JVM process when the specified address range does not belong to this process.
- Parameters:
address
- the off-heap memory address to read the matrix values from in column-major order- Returns:
- this
-
zero
public Matrix3f zero()
Set all values within this matrix to zero.- Returns:
- this
-
identity
public Matrix3f identity()
Set this matrix to the identity.- Returns:
- this
-
scale
public Matrix3f scale(Vector3fc xyz, Matrix3f dest)
Description copied from interface:Matrix3fc
Apply scaling tothis
matrix by scaling the base axes by the givenxyz.x
,xyz.y
andxyz.z
factors, respectively and store the result indest
.If
M
isthis
matrix andS
the scaling matrix, then the new matrix will beM * S
. So when transforming a vectorv
with the new matrix by usingM * S * v
, the scaling will be applied first!
-
scale
public Matrix3f scale(Vector3fc xyz)
Apply scaling to this matrix by scaling the base axes by the givenxyz.x
,xyz.y
andxyz.z
factors, respectively.If
M
isthis
matrix andS
the scaling matrix, then the new matrix will beM * S
. So when transforming a vectorv
with the new matrix by usingM * S * v
, the scaling will be applied first!- Parameters:
xyz
- the factors of the x, y and z component, respectively- Returns:
- this
-
scale
public Matrix3f scale(float x, float y, float z, Matrix3f dest)
Description copied from interface:Matrix3fc
Apply scaling to this matrix by scaling the base axes by the given x, y and z factors and store the result indest
.If
M
isthis
matrix andS
the scaling matrix, then the new matrix will beM * S
. So when transforming a vectorv
with the new matrix by usingM * S * v
, the scaling will be applied first!
-
scale
public Matrix3f scale(float x, float y, float z)
Apply scaling to this matrix by scaling the base axes by the given x, y and z factors.If
M
isthis
matrix andS
the scaling matrix, then the new matrix will beM * S
. So when transforming a vectorv
with the new matrix by usingM * S * v
, the scaling will be applied first!- Parameters:
x
- the factor of the x componenty
- the factor of the y componentz
- the factor of the z component- Returns:
- this
-
scale
public Matrix3f scale(float xyz, Matrix3f dest)
Description copied from interface:Matrix3fc
Apply scaling to this matrix by uniformly scaling all base axes by the givenxyz
factor and store the result indest
.If
M
isthis
matrix andS
the scaling matrix, then the new matrix will beM * S
. So when transforming a vectorv
with the new matrix by usingM * S * v
, the scaling will be applied first!- Specified by:
scale
in interfaceMatrix3fc
- Parameters:
xyz
- the factor for all componentsdest
- will hold the result- Returns:
- dest
- See Also:
Matrix3fc.scale(float, float, float, Matrix3f)
-
scale
public Matrix3f scale(float xyz)
Apply scaling to this matrix by uniformly scaling all base axes by the givenxyz
factor.If
M
isthis
matrix andS
the scaling matrix, then the new matrix will beM * S
. So when transforming a vectorv
with the new matrix by usingM * S * v
, the scaling will be applied first!- Parameters:
xyz
- the factor for all components- Returns:
- this
- See Also:
scale(float, float, float)
-
scaleLocal
public Matrix3f scaleLocal(float x, float y, float z, Matrix3f dest)
Description copied from interface:Matrix3fc
Pre-multiply scaling tothis
matrix by scaling the base axes by the given x, y and z factors and store the result indest
.If
M
isthis
matrix andS
the scaling matrix, then the new matrix will beS * M
. So when transforming a vectorv
with the new matrix by usingS * M * v
, the scaling will be applied last!- Specified by:
scaleLocal
in interfaceMatrix3fc
- Parameters:
x
- the factor of the x componenty
- the factor of the y componentz
- the factor of the z componentdest
- will hold the result- Returns:
- dest
-
scaleLocal
public Matrix3f scaleLocal(float x, float y, float z)
Pre-multiply scaling to this matrix by scaling the base axes by the given x, y and z factors.If
M
isthis
matrix andS
the scaling matrix, then the new matrix will beS * M
. So when transforming a vectorv
with the new matrix by usingS * M * v
, the scaling will be applied last!- Parameters:
x
- the factor of the x componenty
- the factor of the y componentz
- the factor of the z component- Returns:
- this
-
scaling
public Matrix3f scaling(float factor)
Set this matrix to be a simple scale matrix, which scales all axes uniformly by the given factor.The resulting matrix can be multiplied against another transformation matrix to obtain an additional scaling.
In order to post-multiply a scaling transformation directly to a matrix, use
scale()
instead.- Parameters:
factor
- the scale factor in x, y and z- Returns:
- this
- See Also:
scale(float)
-
scaling
public Matrix3f scaling(float x, float y, float z)
Set this matrix to be a simple scale matrix.- Parameters:
x
- the scale in xy
- the scale in yz
- the scale in z- Returns:
- this
-
scaling
public Matrix3f scaling(Vector3fc xyz)
Set this matrix to be a simple scale matrix which scales the base axes byxyz.x
,xyz.y
andxyz.z
respectively.The resulting matrix can be multiplied against another transformation matrix to obtain an additional scaling.
In order to post-multiply a scaling transformation directly to a matrix use
scale()
instead.- Parameters:
xyz
- the scale in x, y and z respectively- Returns:
- this
- See Also:
scale(Vector3fc)
-
rotation
public Matrix3f rotation(float angle, Vector3fc axis)
Set this matrix to a rotation matrix which rotates the given radians about a given axis.The axis described by the
axis
vector needs to be a unit vector.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
The resulting matrix can be multiplied against another transformation matrix to obtain an additional rotation.
In order to post-multiply a rotation transformation directly to a matrix, use
rotate()
instead.- Parameters:
angle
- the angle in radiansaxis
- the axis to rotate about (needs to benormalized
)- Returns:
- this
- See Also:
rotate(float, Vector3fc)
-
rotation
public Matrix3f rotation(AxisAngle4f axisAngle)
Set this matrix to a rotation transformation using the givenAxisAngle4f
.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
The resulting matrix can be multiplied against another transformation matrix to obtain an additional rotation.
In order to apply the rotation transformation to an existing transformation, use
rotate()
instead.Reference: http://en.wikipedia.org
- Parameters:
axisAngle
- theAxisAngle4f
(needs to benormalized
)- Returns:
- this
- See Also:
rotate(AxisAngle4f)
-
rotation
public Matrix3f rotation(float angle, float x, float y, float z)
Set this matrix to a rotation matrix which rotates the given radians about a given axis.The axis described by the three components needs to be a unit vector.
When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
The resulting matrix can be multiplied against another transformation matrix to obtain an additional rotation.
In order to apply the rotation transformation to an existing transformation, use
rotate()
instead.Reference: http://en.wikipedia.org
- Parameters:
angle
- the angle in radiansx
- the x-component of the rotation axisy
- the y-component of the rotation axisz
- the z-component of the rotation axis- Returns:
- this
- See Also:
rotate(float, float, float, float)
-
rotationX
public Matrix3f rotationX(float ang)
Set this matrix to a rotation transformation about the X axis.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
Reference: http://en.wikipedia.org
- Parameters:
ang
- the angle in radians- Returns:
- this
-
rotationY
public Matrix3f rotationY(float ang)
Set this matrix to a rotation transformation about the Y axis.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
Reference: http://en.wikipedia.org
- Parameters:
ang
- the angle in radians- Returns:
- this
-
rotationZ
public Matrix3f rotationZ(float ang)
Set this matrix to a rotation transformation about the Z axis.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
Reference: http://en.wikipedia.org
- Parameters:
ang
- the angle in radians- Returns:
- this
-
rotationXYZ
public Matrix3f rotationXYZ(float angleX, float angleY, float angleZ)
Set this matrix to a rotation ofangleX
radians about the X axis, followed by a rotation ofangleY
radians about the Y axis and followed by a rotation ofangleZ
radians about the Z axis.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
This method is equivalent to calling:
rotationX(angleX).rotateY(angleY).rotateZ(angleZ)
- Parameters:
angleX
- the angle to rotate about XangleY
- the angle to rotate about YangleZ
- the angle to rotate about Z- Returns:
- this
-
rotationZYX
public Matrix3f rotationZYX(float angleZ, float angleY, float angleX)
Set this matrix to a rotation ofangleZ
radians about the Z axis, followed by a rotation ofangleY
radians about the Y axis and followed by a rotation ofangleX
radians about the X axis.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
This method is equivalent to calling:
rotationZ(angleZ).rotateY(angleY).rotateX(angleX)
- Parameters:
angleZ
- the angle to rotate about ZangleY
- the angle to rotate about YangleX
- the angle to rotate about X- Returns:
- this
-
rotationYXZ
public Matrix3f rotationYXZ(float angleY, float angleX, float angleZ)
Set this matrix to a rotation ofangleY
radians about the Y axis, followed by a rotation ofangleX
radians about the X axis and followed by a rotation ofangleZ
radians about the Z axis.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
This method is equivalent to calling:
rotationY(angleY).rotateX(angleX).rotateZ(angleZ)
- Parameters:
angleY
- the angle to rotate about YangleX
- the angle to rotate about XangleZ
- the angle to rotate about Z- Returns:
- this
-
rotation
public Matrix3f rotation(Quaternionfc quat)
Set this matrix to the rotation - and possibly scaling - transformation of the givenQuaternionfc
.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
The resulting matrix can be multiplied against another transformation matrix to obtain an additional rotation.
In order to apply the rotation transformation to an existing transformation, use
rotate()
instead.Reference: http://en.wikipedia.org
- Parameters:
quat
- theQuaternionfc
- Returns:
- this
- See Also:
rotate(Quaternionfc)
-
transform
public Vector3f transform(Vector3f v)
Description copied from interface:Matrix3fc
Transform the given vector by this matrix.
-
transform
public Vector3f transform(Vector3fc v, Vector3f dest)
Description copied from interface:Matrix3fc
Transform the given vector by this matrix and store the result indest
.
-
transform
public Vector3f transform(float x, float y, float z, Vector3f dest)
Description copied from interface:Matrix3fc
Transform the vector(x, y, z)
by this matrix and store the result indest
.
-
transformTranspose
public Vector3f transformTranspose(Vector3f v)
Description copied from interface:Matrix3fc
Transform the given vector by the transpose of this matrix.- Specified by:
transformTranspose
in interfaceMatrix3fc
- Parameters:
v
- the vector to transform- Returns:
- v
-
transformTranspose
public Vector3f transformTranspose(Vector3fc v, Vector3f dest)
Description copied from interface:Matrix3fc
Transform the given vector by the transpose of this matrix and store the result indest
.- Specified by:
transformTranspose
in interfaceMatrix3fc
- Parameters:
v
- the vector to transformdest
- will hold the result- Returns:
- dest
-
transformTranspose
public Vector3f transformTranspose(float x, float y, float z, Vector3f dest)
Description copied from interface:Matrix3fc
Transform the vector(x, y, z)
by the transpose of this matrix and store the result indest
.- Specified by:
transformTranspose
in interfaceMatrix3fc
- Parameters:
x
- the x coordinate of the vector to transformy
- the y coordinate of the vector to transformz
- the z coordinate of the vector to transformdest
- will hold the result- Returns:
- dest
-
writeExternal
public void writeExternal(java.io.ObjectOutput out) throws java.io.IOException
- Specified by:
writeExternal
in interfacejava.io.Externalizable
- Throws:
java.io.IOException
-
readExternal
public void readExternal(java.io.ObjectInput in) throws java.io.IOException
- Specified by:
readExternal
in interfacejava.io.Externalizable
- Throws:
java.io.IOException
-
rotateX
public Matrix3f rotateX(float ang, Matrix3f dest)
Description copied from interface:Matrix3fc
Apply rotation about the X axis to this matrix by rotating the given amount of radians and store the result indest
.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
M
isthis
matrix andR
the rotation matrix, then the new matrix will beM * R
. So when transforming a vectorv
with the new matrix by usingM * R * v
, the rotation will be applied first!Reference: http://en.wikipedia.org
-
rotateX
public Matrix3f rotateX(float ang)
Apply rotation about the X axis to this matrix by rotating the given amount of radians.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
M
isthis
matrix andR
the rotation matrix, then the new matrix will beM * R
. So when transforming a vectorv
with the new matrix by usingM * R * v
, the rotation will be applied first!Reference: http://en.wikipedia.org
- Parameters:
ang
- the angle in radians- Returns:
- this
-
rotateY
public Matrix3f rotateY(float ang, Matrix3f dest)
Description copied from interface:Matrix3fc
Apply rotation about the Y axis to this matrix by rotating the given amount of radians and store the result indest
.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
M
isthis
matrix andR
the rotation matrix, then the new matrix will beM * R
. So when transforming a vectorv
with the new matrix by usingM * R * v
, the rotation will be applied first!Reference: http://en.wikipedia.org
-
rotateY
public Matrix3f rotateY(float ang)
Apply rotation about the Y axis to this matrix by rotating the given amount of radians.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
M
isthis
matrix andR
the rotation matrix, then the new matrix will beM * R
. So when transforming a vectorv
with the new matrix by usingM * R * v
, the rotation will be applied first!Reference: http://en.wikipedia.org
- Parameters:
ang
- the angle in radians- Returns:
- this
-
rotateZ
public Matrix3f rotateZ(float ang, Matrix3f dest)
Description copied from interface:Matrix3fc
Apply rotation about the Z axis to this matrix by rotating the given amount of radians and store the result indest
.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
M
isthis
matrix andR
the rotation matrix, then the new matrix will beM * R
. So when transforming a vectorv
with the new matrix by usingM * R * v
, the rotation will be applied first!Reference: http://en.wikipedia.org
-
rotateZ
public Matrix3f rotateZ(float ang)
Apply rotation about the Z axis to this matrix by rotating the given amount of radians.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
M
isthis
matrix andR
the rotation matrix, then the new matrix will beM * R
. So when transforming a vectorv
with the new matrix by usingM * R * v
, the rotation will be applied first!Reference: http://en.wikipedia.org
- Parameters:
ang
- the angle in radians- Returns:
- this
-
rotateXYZ
public Matrix3f rotateXYZ(Vector3f angles)
Apply rotation ofangles.x
radians about the X axis, followed by a rotation ofangles.y
radians about the Y axis and followed by a rotation ofangles.z
radians about the Z axis.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
M
isthis
matrix andR
the rotation matrix, then the new matrix will beM * R
. So when transforming a vectorv
with the new matrix by usingM * R * v
, the rotation will be applied first!This method is equivalent to calling:
rotateX(angles.x).rotateY(angles.y).rotateZ(angles.z)
- Parameters:
angles
- the Euler angles- Returns:
- this
-
rotateXYZ
public Matrix3f rotateXYZ(float angleX, float angleY, float angleZ)
Apply rotation ofangleX
radians about the X axis, followed by a rotation ofangleY
radians about the Y axis and followed by a rotation ofangleZ
radians about the Z axis.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
M
isthis
matrix andR
the rotation matrix, then the new matrix will beM * R
. So when transforming a vectorv
with the new matrix by usingM * R * v
, the rotation will be applied first!This method is equivalent to calling:
rotateX(angleX).rotateY(angleY).rotateZ(angleZ)
- Parameters:
angleX
- the angle to rotate about XangleY
- the angle to rotate about YangleZ
- the angle to rotate about Z- Returns:
- this
-
rotateXYZ
public Matrix3f rotateXYZ(float angleX, float angleY, float angleZ, Matrix3f dest)
Description copied from interface:Matrix3fc
Apply rotation ofangleX
radians about the X axis, followed by a rotation ofangleY
radians about the Y axis and followed by a rotation ofangleZ
radians about the Z axis and store the result indest
.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
M
isthis
matrix andR
the rotation matrix, then the new matrix will beM * R
. So when transforming a vectorv
with the new matrix by usingM * R * v
, the rotation will be applied first!This method is equivalent to calling:
rotateX(angleX, dest).rotateY(angleY).rotateZ(angleZ)
-
rotateZYX
public Matrix3f rotateZYX(Vector3f angles)
Apply rotation ofangles.z
radians about the Z axis, followed by a rotation ofangles.y
radians about the Y axis and followed by a rotation ofangles.x
radians about the X axis.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
M
isthis
matrix andR
the rotation matrix, then the new matrix will beM * R
. So when transforming a vectorv
with the new matrix by usingM * R * v
, the rotation will be applied first!This method is equivalent to calling:
rotateZ(angles.z).rotateY(angles.y).rotateX(angles.x)
- Parameters:
angles
- the Euler angles- Returns:
- this
-
rotateZYX
public Matrix3f rotateZYX(float angleZ, float angleY, float angleX)
Apply rotation ofangleZ
radians about the Z axis, followed by a rotation ofangleY
radians about the Y axis and followed by a rotation ofangleX
radians about the X axis.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
M
isthis
matrix andR
the rotation matrix, then the new matrix will beM * R
. So when transforming a vectorv
with the new matrix by usingM * R * v
, the rotation will be applied first!This method is equivalent to calling:
rotateZ(angleZ).rotateY(angleY).rotateX(angleX)
- Parameters:
angleZ
- the angle to rotate about ZangleY
- the angle to rotate about YangleX
- the angle to rotate about X- Returns:
- this
-
rotateZYX
public Matrix3f rotateZYX(float angleZ, float angleY, float angleX, Matrix3f dest)
Description copied from interface:Matrix3fc
Apply rotation ofangleZ
radians about the Z axis, followed by a rotation ofangleY
radians about the Y axis and followed by a rotation ofangleX
radians about the X axis and store the result indest
.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
M
isthis
matrix andR
the rotation matrix, then the new matrix will beM * R
. So when transforming a vectorv
with the new matrix by usingM * R * v
, the rotation will be applied first!This method is equivalent to calling:
rotateZ(angleZ, dest).rotateY(angleY).rotateX(angleX)
-
rotateYXZ
public Matrix3f rotateYXZ(Vector3f angles)
Apply rotation ofangles.y
radians about the Y axis, followed by a rotation ofangles.x
radians about the X axis and followed by a rotation ofangles.z
radians about the Z axis.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
M
isthis
matrix andR
the rotation matrix, then the new matrix will beM * R
. So when transforming a vectorv
with the new matrix by usingM * R * v
, the rotation will be applied first!This method is equivalent to calling:
rotateY(angles.y).rotateX(angles.x).rotateZ(angles.z)
- Parameters:
angles
- the Euler angles- Returns:
- this
-
rotateYXZ
public Matrix3f rotateYXZ(float angleY, float angleX, float angleZ)
Apply rotation ofangleY
radians about the Y axis, followed by a rotation ofangleX
radians about the X axis and followed by a rotation ofangleZ
radians about the Z axis.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
M
isthis
matrix andR
the rotation matrix, then the new matrix will beM * R
. So when transforming a vectorv
with the new matrix by usingM * R * v
, the rotation will be applied first!This method is equivalent to calling:
rotateY(angleY).rotateX(angleX).rotateZ(angleZ)
- Parameters:
angleY
- the angle to rotate about YangleX
- the angle to rotate about XangleZ
- the angle to rotate about Z- Returns:
- this
-
rotateYXZ
public Matrix3f rotateYXZ(float angleY, float angleX, float angleZ, Matrix3f dest)
Description copied from interface:Matrix3fc
Apply rotation ofangleY
radians about the Y axis, followed by a rotation ofangleX
radians about the X axis and followed by a rotation ofangleZ
radians about the Z axis and store the result indest
.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
M
isthis
matrix andR
the rotation matrix, then the new matrix will beM * R
. So when transforming a vectorv
with the new matrix by usingM * R * v
, the rotation will be applied first!This method is equivalent to calling:
rotateY(angleY, dest).rotateX(angleX).rotateZ(angleZ)
-
rotate
public Matrix3f rotate(float ang, float x, float y, float z)
Apply rotation to this matrix by rotating the given amount of radians about the given axis specified as x, y and z components.The axis described by the three components needs to be a unit vector.
When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
M
isthis
matrix andR
the rotation matrix, then the new matrix will beM * R
. So when transforming a vectorv
with the new matrix by usingM * R * v
, the rotation will be applied first!Reference: http://en.wikipedia.org
- Parameters:
ang
- the angle in radiansx
- the x component of the axisy
- the y component of the axisz
- the z component of the axis- Returns:
- this
-
rotate
public Matrix3f rotate(float ang, float x, float y, float z, Matrix3f dest)
Description copied from interface:Matrix3fc
Apply rotation to this matrix by rotating the given amount of radians about the given axis specified as x, y and z components, and store the result indest
.The axis described by the three components needs to be a unit vector.
When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
M
isthis
matrix andR
the rotation matrix, then the new matrix will beM * R
. So when transforming a vectorv
with the new matrix by usingM * R * v
, the rotation will be applied first!Reference: http://en.wikipedia.org
-
rotateLocal
public Matrix3f rotateLocal(float ang, float x, float y, float z, Matrix3f dest)
Pre-multiply a rotation to this matrix by rotating the given amount of radians about the specified(x, y, z)
axis and store the result indest
.The axis described by the three components needs to be a unit vector.
When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
M
isthis
matrix andR
the rotation matrix, then the new matrix will beR * M
. So when transforming a vectorv
with the new matrix by usingR * M * v
, the rotation will be applied last!In order to set the matrix to a rotation matrix without pre-multiplying the rotation transformation, use
rotation()
.Reference: http://en.wikipedia.org
- Specified by:
rotateLocal
in interfaceMatrix3fc
- Parameters:
ang
- the angle in radiansx
- the x component of the axisy
- the y component of the axisz
- the z component of the axisdest
- will hold the result- Returns:
- dest
- See Also:
rotation(float, float, float, float)
-
rotateLocal
public Matrix3f rotateLocal(float ang, float x, float y, float z)
Pre-multiply a rotation to this matrix by rotating the given amount of radians about the specified(x, y, z)
axis.The axis described by the three components needs to be a unit vector.
When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
M
isthis
matrix andR
the rotation matrix, then the new matrix will beR * M
. So when transforming a vectorv
with the new matrix by usingR * M * v
, the rotation will be applied last!In order to set the matrix to a rotation matrix without pre-multiplying the rotation transformation, use
rotation()
.Reference: http://en.wikipedia.org
- Parameters:
ang
- the angle in radiansx
- the x component of the axisy
- the y component of the axisz
- the z component of the axis- Returns:
- this
- See Also:
rotation(float, float, float, float)
-
rotateLocalX
public Matrix3f rotateLocalX(float ang, Matrix3f dest)
Pre-multiply a rotation around the X axis to this matrix by rotating the given amount of radians about the X axis and store the result indest
.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
M
isthis
matrix andR
the rotation matrix, then the new matrix will beR * M
. So when transforming a vectorv
with the new matrix by usingR * M * v
, the rotation will be applied last!In order to set the matrix to a rotation matrix without pre-multiplying the rotation transformation, use
rotationX()
.Reference: http://en.wikipedia.org
- Specified by:
rotateLocalX
in interfaceMatrix3fc
- Parameters:
ang
- the angle in radians to rotate about the X axisdest
- will hold the result- Returns:
- dest
- See Also:
rotationX(float)
-
rotateLocalX
public Matrix3f rotateLocalX(float ang)
Pre-multiply a rotation to this matrix by rotating the given amount of radians about the X axis.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
M
isthis
matrix andR
the rotation matrix, then the new matrix will beR * M
. So when transforming a vectorv
with the new matrix by usingR * M * v
, the rotation will be applied last!In order to set the matrix to a rotation matrix without pre-multiplying the rotation transformation, use
rotationX()
.Reference: http://en.wikipedia.org
- Parameters:
ang
- the angle in radians to rotate about the X axis- Returns:
- this
- See Also:
rotationX(float)
-
rotateLocalY
public Matrix3f rotateLocalY(float ang, Matrix3f dest)
Pre-multiply a rotation around the Y axis to this matrix by rotating the given amount of radians about the Y axis and store the result indest
.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
M
isthis
matrix andR
the rotation matrix, then the new matrix will beR * M
. So when transforming a vectorv
with the new matrix by usingR * M * v
, the rotation will be applied last!In order to set the matrix to a rotation matrix without pre-multiplying the rotation transformation, use
rotationY()
.Reference: http://en.wikipedia.org
- Specified by:
rotateLocalY
in interfaceMatrix3fc
- Parameters:
ang
- the angle in radians to rotate about the Y axisdest
- will hold the result- Returns:
- dest
- See Also:
rotationY(float)
-
rotateLocalY
public Matrix3f rotateLocalY(float ang)
Pre-multiply a rotation to this matrix by rotating the given amount of radians about the Y axis.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
M
isthis
matrix andR
the rotation matrix, then the new matrix will beR * M
. So when transforming a vectorv
with the new matrix by usingR * M * v
, the rotation will be applied last!In order to set the matrix to a rotation matrix without pre-multiplying the rotation transformation, use
rotationY()
.Reference: http://en.wikipedia.org
- Parameters:
ang
- the angle in radians to rotate about the Y axis- Returns:
- this
- See Also:
rotationY(float)
-
rotateLocalZ
public Matrix3f rotateLocalZ(float ang, Matrix3f dest)
Pre-multiply a rotation around the Z axis to this matrix by rotating the given amount of radians about the Z axis and store the result indest
.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
M
isthis
matrix andR
the rotation matrix, then the new matrix will beR * M
. So when transforming a vectorv
with the new matrix by usingR * M * v
, the rotation will be applied last!In order to set the matrix to a rotation matrix without pre-multiplying the rotation transformation, use
rotationZ()
.Reference: http://en.wikipedia.org
- Specified by:
rotateLocalZ
in interfaceMatrix3fc
- Parameters:
ang
- the angle in radians to rotate about the Z axisdest
- will hold the result- Returns:
- dest
- See Also:
rotationZ(float)
-
rotateLocalZ
public Matrix3f rotateLocalZ(float ang)
Pre-multiply a rotation to this matrix by rotating the given amount of radians about the Z axis.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
M
isthis
matrix andR
the rotation matrix, then the new matrix will beR * M
. So when transforming a vectorv
with the new matrix by usingR * M * v
, the rotation will be applied last!In order to set the matrix to a rotation matrix without pre-multiplying the rotation transformation, use
rotationY()
.Reference: http://en.wikipedia.org
- Parameters:
ang
- the angle in radians to rotate about the Z axis- Returns:
- this
- See Also:
rotationY(float)
-
rotate
public Matrix3f rotate(Quaternionfc quat)
Apply the rotation - and possibly scaling - transformation of the givenQuaternionfc
to this matrix.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
M
isthis
matrix andQ
the rotation matrix obtained from the given quaternion, then the new matrix will beM * Q
. So when transforming a vectorv
with the new matrix by usingM * Q * v
, the quaternion rotation will be applied first!In order to set the matrix to a rotation transformation without post-multiplying, use
rotation(Quaternionfc)
.Reference: http://en.wikipedia.org
- Parameters:
quat
- theQuaternionfc
- Returns:
- this
- See Also:
rotation(Quaternionfc)
-
rotate
public Matrix3f rotate(Quaternionfc quat, Matrix3f dest)
Apply the rotation - and possibly scaling - transformation of the givenQuaternionfc
to this matrix and store the result indest
.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
M
isthis
matrix andQ
the rotation matrix obtained from the given quaternion, then the new matrix will beM * Q
. So when transforming a vectorv
with the new matrix by usingM * Q * v
, the quaternion rotation will be applied first!In order to set the matrix to a rotation transformation without post-multiplying, use
rotation(Quaternionfc)
.Reference: http://en.wikipedia.org
- Specified by:
rotate
in interfaceMatrix3fc
- Parameters:
quat
- theQuaternionfc
dest
- will hold the result- Returns:
- dest
- See Also:
rotation(Quaternionfc)
-
rotateLocal
public Matrix3f rotateLocal(Quaternionfc quat, Matrix3f dest)
Pre-multiply the rotation - and possibly scaling - transformation of the givenQuaternionfc
to this matrix and store the result indest
.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
M
isthis
matrix andQ
the rotation matrix obtained from the given quaternion, then the new matrix will beQ * M
. So when transforming a vectorv
with the new matrix by usingQ * M * v
, the quaternion rotation will be applied last!In order to set the matrix to a rotation transformation without pre-multiplying, use
rotation(Quaternionfc)
.Reference: http://en.wikipedia.org
- Specified by:
rotateLocal
in interfaceMatrix3fc
- Parameters:
quat
- theQuaternionfc
dest
- will hold the result- Returns:
- dest
- See Also:
rotation(Quaternionfc)
-
rotateLocal
public Matrix3f rotateLocal(Quaternionfc quat)
Pre-multiply the rotation - and possibly scaling - transformation of the givenQuaternionfc
to this matrix.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
M
isthis
matrix andQ
the rotation matrix obtained from the given quaternion, then the new matrix will beQ * M
. So when transforming a vectorv
with the new matrix by usingQ * M * v
, the quaternion rotation will be applied last!In order to set the matrix to a rotation transformation without pre-multiplying, use
rotation(Quaternionfc)
.Reference: http://en.wikipedia.org
- Parameters:
quat
- theQuaternionfc
- Returns:
- this
- See Also:
rotation(Quaternionfc)
-
rotate
public Matrix3f rotate(AxisAngle4f axisAngle)
Apply a rotation transformation, rotating about the givenAxisAngle4f
, to this matrix.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
M
isthis
matrix andA
the rotation matrix obtained from the givenAxisAngle4f
, then the new matrix will beM * A
. So when transforming a vectorv
with the new matrix by usingM * A * v
, theAxisAngle4f
rotation will be applied first!In order to set the matrix to a rotation transformation without post-multiplying, use
rotation(AxisAngle4f)
.Reference: http://en.wikipedia.org
- Parameters:
axisAngle
- theAxisAngle4f
(needs to benormalized
)- Returns:
- this
- See Also:
rotate(float, float, float, float)
,rotation(AxisAngle4f)
-
rotate
public Matrix3f rotate(AxisAngle4f axisAngle, Matrix3f dest)
Apply a rotation transformation, rotating about the givenAxisAngle4f
and store the result indest
.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
M
isthis
matrix andA
the rotation matrix obtained from the givenAxisAngle4f
, then the new matrix will beM * A
. So when transforming a vectorv
with the new matrix by usingM * A * v
, theAxisAngle4f
rotation will be applied first!In order to set the matrix to a rotation transformation without post-multiplying, use
rotation(AxisAngle4f)
.Reference: http://en.wikipedia.org
- Specified by:
rotate
in interfaceMatrix3fc
- Parameters:
axisAngle
- theAxisAngle4f
(needs to benormalized
)dest
- will hold the result- Returns:
- dest
- See Also:
rotate(float, float, float, float)
,rotation(AxisAngle4f)
-
rotate
public Matrix3f rotate(float angle, Vector3fc axis)
Apply a rotation transformation, rotating the given radians about the specified axis, to this matrix.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
M
isthis
matrix andA
the rotation matrix obtained from the given angle and axis, then the new matrix will beM * A
. So when transforming a vectorv
with the new matrix by usingM * A * v
, the axis-angle rotation will be applied first!In order to set the matrix to a rotation transformation without post-multiplying, use
rotation(float, Vector3fc)
.Reference: http://en.wikipedia.org
- Parameters:
angle
- the angle in radiansaxis
- the rotation axis (needs to benormalized
)- Returns:
- this
- See Also:
rotate(float, float, float, float)
,rotation(float, Vector3fc)
-
rotate
public Matrix3f rotate(float angle, Vector3fc axis, Matrix3f dest)
Apply a rotation transformation, rotating the given radians about the specified axis and store the result indest
.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
M
isthis
matrix andA
the rotation matrix obtained from the given angle and axis, then the new matrix will beM * A
. So when transforming a vectorv
with the new matrix by usingM * A * v
, the axis-angle rotation will be applied first!In order to set the matrix to a rotation transformation without post-multiplying, use
rotation(float, Vector3fc)
.Reference: http://en.wikipedia.org
- Specified by:
rotate
in interfaceMatrix3fc
- Parameters:
angle
- the angle in radiansaxis
- the rotation axis (needs to benormalized
)dest
- will hold the result- Returns:
- dest
- See Also:
rotate(float, float, float, float)
,rotation(float, Vector3fc)
-
lookAlong
public Matrix3f lookAlong(Vector3fc dir, Vector3fc up)
Apply a rotation transformation to this matrix to make-z
point alongdir
.If
M
isthis
matrix andL
the lookalong rotation matrix, then the new matrix will beM * L
. So when transforming a vectorv
with the new matrix by usingM * L * v
, the lookalong rotation transformation will be applied first!In order to set the matrix to a lookalong transformation without post-multiplying it, use
setLookAlong()
.- Parameters:
dir
- the direction in space to look alongup
- the direction of 'up'- Returns:
- this
- See Also:
lookAlong(float, float, float, float, float, float)
,setLookAlong(Vector3fc, Vector3fc)
-
lookAlong
public Matrix3f lookAlong(Vector3fc dir, Vector3fc up, Matrix3f dest)
Apply a rotation transformation to this matrix to make-z
point alongdir
and store the result indest
.If
M
isthis
matrix andL
the lookalong rotation matrix, then the new matrix will beM * L
. So when transforming a vectorv
with the new matrix by usingM * L * v
, the lookalong rotation transformation will be applied first!In order to set the matrix to a lookalong transformation without post-multiplying it, use
setLookAlong()
.- Specified by:
lookAlong
in interfaceMatrix3fc
- Parameters:
dir
- the direction in space to look alongup
- the direction of 'up'dest
- will hold the result- Returns:
- dest
- See Also:
lookAlong(float, float, float, float, float, float)
,setLookAlong(Vector3fc, Vector3fc)
-
lookAlong
public Matrix3f lookAlong(float dirX, float dirY, float dirZ, float upX, float upY, float upZ, Matrix3f dest)
Apply a rotation transformation to this matrix to make-z
point alongdir
and store the result indest
.If
M
isthis
matrix andL
the lookalong rotation matrix, then the new matrix will beM * L
. So when transforming a vectorv
with the new matrix by usingM * L * v
, the lookalong rotation transformation will be applied first!In order to set the matrix to a lookalong transformation without post-multiplying it, use
setLookAlong()
- Specified by:
lookAlong
in interfaceMatrix3fc
- Parameters:
dirX
- the x-coordinate of the direction to look alongdirY
- the y-coordinate of the direction to look alongdirZ
- the z-coordinate of the direction to look alongupX
- the x-coordinate of the up vectorupY
- the y-coordinate of the up vectorupZ
- the z-coordinate of the up vectordest
- will hold the result- Returns:
- dest
- See Also:
setLookAlong(float, float, float, float, float, float)
-
lookAlong
public Matrix3f lookAlong(float dirX, float dirY, float dirZ, float upX, float upY, float upZ)
Apply a rotation transformation to this matrix to make-z
point alongdir
.If
M
isthis
matrix andL
the lookalong rotation matrix, then the new matrix will beM * L
. So when transforming a vectorv
with the new matrix by usingM * L * v
, the lookalong rotation transformation will be applied first!In order to set the matrix to a lookalong transformation without post-multiplying it, use
setLookAlong()
- Parameters:
dirX
- the x-coordinate of the direction to look alongdirY
- the y-coordinate of the direction to look alongdirZ
- the z-coordinate of the direction to look alongupX
- the x-coordinate of the up vectorupY
- the y-coordinate of the up vectorupZ
- the z-coordinate of the up vector- Returns:
- this
- See Also:
setLookAlong(float, float, float, float, float, float)
-
setLookAlong
public Matrix3f setLookAlong(Vector3fc dir, Vector3fc up)
Set this matrix to a rotation transformation to make-z
point alongdir
.In order to apply the lookalong transformation to any previous existing transformation, use
lookAlong(Vector3fc, Vector3fc)
.- Parameters:
dir
- the direction in space to look alongup
- the direction of 'up'- Returns:
- this
- See Also:
setLookAlong(Vector3fc, Vector3fc)
,lookAlong(Vector3fc, Vector3fc)
-
setLookAlong
public Matrix3f setLookAlong(float dirX, float dirY, float dirZ, float upX, float upY, float upZ)
Set this matrix to a rotation transformation to make-z
point alongdir
.In order to apply the lookalong transformation to any previous existing transformation, use
lookAlong()
- Parameters:
dirX
- the x-coordinate of the direction to look alongdirY
- the y-coordinate of the direction to look alongdirZ
- the z-coordinate of the direction to look alongupX
- the x-coordinate of the up vectorupY
- the y-coordinate of the up vectorupZ
- the z-coordinate of the up vector- Returns:
- this
- See Also:
setLookAlong(float, float, float, float, float, float)
,lookAlong(float, float, float, float, float, float)
-
getRow
public Vector3f getRow(int row, Vector3f dest) throws java.lang.IndexOutOfBoundsException
Description copied from interface:Matrix3fc
Get the row at the givenrow
index, starting with0
.
-
setRow
public Matrix3f setRow(int row, Vector3fc src) throws java.lang.IndexOutOfBoundsException
Set the row at the givenrow
index, starting with0
.- Parameters:
row
- the row index in[0..2]
src
- the row components to set- Returns:
- this
- Throws:
java.lang.IndexOutOfBoundsException
- ifrow
is not in[0..2]
-
setRow
public Matrix3f setRow(int row, float x, float y, float z) throws java.lang.IndexOutOfBoundsException
Set the row at the givenrow
index, starting with0
.- Parameters:
row
- the row index in[0..2]
x
- the first element in the rowy
- the second element in the rowz
- the third element in the row- Returns:
- this
- Throws:
java.lang.IndexOutOfBoundsException
- ifrow
is not in[0..2]
-
getColumn
public Vector3f getColumn(int column, Vector3f dest) throws java.lang.IndexOutOfBoundsException
Description copied from interface:Matrix3fc
Get the column at the givencolumn
index, starting with0
.
-
setColumn
public Matrix3f setColumn(int column, Vector3fc src) throws java.lang.IndexOutOfBoundsException
Set the column at the givencolumn
index, starting with0
.- Parameters:
column
- the column index in[0..2]
src
- the column components to set- Returns:
- this
- Throws:
java.lang.IndexOutOfBoundsException
- ifcolumn
is not in[0..2]
-
setColumn
public Matrix3f setColumn(int column, float x, float y, float z) throws java.lang.IndexOutOfBoundsException
Set the column at the givencolumn
index, starting with0
.- Parameters:
column
- the column index in[0..2]
x
- the first element in the columny
- the second element in the columnz
- the third element in the column- Returns:
- this
- Throws:
java.lang.IndexOutOfBoundsException
- ifcolumn
is not in[0..2]
-
get
public float get(int column, int row)
Description copied from interface:Matrix3fc
Get the matrix element value at the given column and row.
-
set
public Matrix3f set(int column, int row, float value)
Set the matrix element at the given column and row to the specified value.- Parameters:
column
- the colum index in[0..2]
row
- the row index in[0..2]
value
- the value- Returns:
- this
-
getRowColumn
public float getRowColumn(int row, int column)
Description copied from interface:Matrix3fc
Get the matrix element value at the given row and column.- Specified by:
getRowColumn
in interfaceMatrix3fc
- Parameters:
row
- the row index in[0..2]
column
- the colum index in[0..2]
- Returns:
- the element value
-
setRowColumn
public Matrix3f setRowColumn(int row, int column, float value)
Set the matrix element at the given row and column to the specified value.- Parameters:
row
- the row index in[0..2]
column
- the colum index in[0..2]
value
- the value- Returns:
- this
-
normal
public Matrix3f normal()
Setthis
matrix to its own normal matrix.The normal matrix of
m
is the transpose of the inverse ofm
.Please note that, if
this
is an orthogonal matrix or a matrix whose columns are orthogonal vectors, then this method need not be invoked, since in that casethis
itself is its normal matrix. In this case, useset(Matrix3fc)
to set a given Matrix3f to this matrix.- Returns:
- this
- See Also:
set(Matrix3fc)
-
normal
public Matrix3f normal(Matrix3f dest)
Compute a normal matrix fromthis
matrix and store it intodest
.The normal matrix of
m
is the transpose of the inverse ofm
.Please note that, if
this
is an orthogonal matrix or a matrix whose columns are orthogonal vectors, then this method need not be invoked, since in that casethis
itself is its normal matrix. In this case, useset(Matrix3fc)
to set a given Matrix3f to this matrix.- Specified by:
normal
in interfaceMatrix3fc
- Parameters:
dest
- will hold the result- Returns:
- dest
- See Also:
set(Matrix3fc)
-
cofactor
public Matrix3f cofactor()
Compute the cofactor matrix ofthis
.The cofactor matrix can be used instead of
normal()
to transform normals when the orientation of the normals with respect to the surface should be preserved.- Returns:
- this
-
cofactor
public Matrix3f cofactor(Matrix3f dest)
Compute the cofactor matrix ofthis
and store it intodest
.The cofactor matrix can be used instead of
normal(Matrix3f)
to transform normals when the orientation of the normals with respect to the surface should be preserved.
-
getScale
public Vector3f getScale(Vector3f dest)
Description copied from interface:Matrix3fc
Get the scaling factors ofthis
matrix for the three base axes.
-
positiveZ
public Vector3f positiveZ(Vector3f dir)
Description copied from interface:Matrix3fc
Obtain the direction of+Z
before the transformation represented bythis
matrix is applied.This method is equivalent to the following code:
Matrix3f inv = new Matrix3f(this).invert(); inv.transform(dir.set(0, 0, 1)).normalize();
Ifthis
is already an orthogonal matrix, then consider usingMatrix3fc.normalizedPositiveZ(Vector3f)
instead.Reference: http://www.euclideanspace.com
-
normalizedPositiveZ
public Vector3f normalizedPositiveZ(Vector3f dir)
Description copied from interface:Matrix3fc
Obtain the direction of+Z
before the transformation represented bythis
orthogonal matrix is applied. This method only produces correct results ifthis
is an orthogonal matrix.This method is equivalent to the following code:
Matrix3f inv = new Matrix3f(this).transpose(); inv.transform(dir.set(0, 0, 1));
Reference: http://www.euclideanspace.com
- Specified by:
normalizedPositiveZ
in interfaceMatrix3fc
- Parameters:
dir
- will hold the direction of+Z
- Returns:
- dir
-
positiveX
public Vector3f positiveX(Vector3f dir)
Description copied from interface:Matrix3fc
Obtain the direction of+X
before the transformation represented bythis
matrix is applied.This method is equivalent to the following code:
Matrix3f inv = new Matrix3f(this).invert(); inv.transform(dir.set(1, 0, 0)).normalize();
Ifthis
is already an orthogonal matrix, then consider usingMatrix3fc.normalizedPositiveX(Vector3f)
instead.Reference: http://www.euclideanspace.com
-
normalizedPositiveX
public Vector3f normalizedPositiveX(Vector3f dir)
Description copied from interface:Matrix3fc
Obtain the direction of+X
before the transformation represented bythis
orthogonal matrix is applied. This method only produces correct results ifthis
is an orthogonal matrix.This method is equivalent to the following code:
Matrix3f inv = new Matrix3f(this).transpose(); inv.transform(dir.set(1, 0, 0));
Reference: http://www.euclideanspace.com
- Specified by:
normalizedPositiveX
in interfaceMatrix3fc
- Parameters:
dir
- will hold the direction of+X
- Returns:
- dir
-
positiveY
public Vector3f positiveY(Vector3f dir)
Description copied from interface:Matrix3fc
Obtain the direction of+Y
before the transformation represented bythis
matrix is applied.This method is equivalent to the following code:
Matrix3f inv = new Matrix3f(this).invert(); inv.transform(dir.set(0, 1, 0)).normalize();
Ifthis
is already an orthogonal matrix, then consider usingMatrix3fc.normalizedPositiveY(Vector3f)
instead.Reference: http://www.euclideanspace.com
-
normalizedPositiveY
public Vector3f normalizedPositiveY(Vector3f dir)
Description copied from interface:Matrix3fc
Obtain the direction of+Y
before the transformation represented bythis
orthogonal matrix is applied. This method only produces correct results ifthis
is an orthogonal matrix.This method is equivalent to the following code:
Matrix3f inv = new Matrix3f(this).transpose(); inv.transform(dir.set(0, 1, 0));
Reference: http://www.euclideanspace.com
- Specified by:
normalizedPositiveY
in interfaceMatrix3fc
- Parameters:
dir
- will hold the direction of+Y
- Returns:
- dir
-
hashCode
public int hashCode()
- Overrides:
hashCode
in classjava.lang.Object
-
equals
public boolean equals(java.lang.Object obj)
- Overrides:
equals
in classjava.lang.Object
-
equals
public boolean equals(Matrix3fc m, float delta)
Description copied from interface:Matrix3fc
Compare the matrix elements ofthis
matrix with the given matrix using the givendelta
and return whether all of them are equal within a maximum difference ofdelta
.Please note that this method is not used by any data structure such as
ArrayList
HashSet
orHashMap
and their operations, such asArrayList.contains(Object)
orHashSet.remove(Object)
, since those data structures only use theObject.equals(Object)
andObject.hashCode()
methods.
-
swap
public Matrix3f swap(Matrix3f other)
Exchange the values ofthis
matrix with the givenother
matrix.- Parameters:
other
- the other matrix to exchange the values with- Returns:
- this
-
add
public Matrix3f add(Matrix3fc other)
Component-wise addthis
andother
.- Parameters:
other
- the other addend- Returns:
- this
-
add
public Matrix3f add(Matrix3fc other, Matrix3f dest)
Description copied from interface:Matrix3fc
Component-wise addthis
andother
and store the result indest
.
-
sub
public Matrix3f sub(Matrix3fc subtrahend)
Component-wise subtractsubtrahend
fromthis
.- Parameters:
subtrahend
- the subtrahend- Returns:
- this
-
sub
public Matrix3f sub(Matrix3fc subtrahend, Matrix3f dest)
Description copied from interface:Matrix3fc
Component-wise subtractsubtrahend
fromthis
and store the result indest
.
-
mulComponentWise
public Matrix3f mulComponentWise(Matrix3fc other)
Component-wise multiplythis
byother
.- Parameters:
other
- the other matrix- Returns:
- this
-
mulComponentWise
public Matrix3f mulComponentWise(Matrix3fc other, Matrix3f dest)
Description copied from interface:Matrix3fc
Component-wise multiplythis
byother
and store the result indest
.- Specified by:
mulComponentWise
in interfaceMatrix3fc
- Parameters:
other
- the other matrixdest
- will hold the result- Returns:
- dest
-
setSkewSymmetric
public Matrix3f setSkewSymmetric(float a, float b, float c)
Set this matrix to a skew-symmetric matrix using the following layout:0, a, -b -a, 0, c b, -c, 0
Reference: https://en.wikipedia.org- Parameters:
a
- the value used for the matrix elements m01 and m10b
- the value used for the matrix elements m02 and m20c
- the value used for the matrix elements m12 and m21- Returns:
- this
-
lerp
public Matrix3f lerp(Matrix3fc other, float t)
Linearly interpolatethis
andother
using the given interpolation factort
and store the result inthis
.If
t
is0.0
then the result isthis
. If the interpolation factor is1.0
then the result isother
.- Parameters:
other
- the other matrixt
- the interpolation factor between 0.0 and 1.0- Returns:
- this
-
lerp
public Matrix3f lerp(Matrix3fc other, float t, Matrix3f dest)
Description copied from interface:Matrix3fc
Linearly interpolatethis
andother
using the given interpolation factort
and store the result indest
.If
t
is0.0
then the result isthis
. If the interpolation factor is1.0
then the result isother
.
-
rotateTowards
public Matrix3f rotateTowards(Vector3fc direction, Vector3fc up, Matrix3f dest)
Apply a model transformation to this matrix for a right-handed coordinate system, that aligns the local+Z
axis withdirection
and store the result indest
.If
M
isthis
matrix andL
the lookat matrix, then the new matrix will beM * L
. So when transforming a vectorv
with the new matrix by usingM * L * v
, the lookat transformation will be applied first!In order to set the matrix to a rotation transformation without post-multiplying it, use
rotationTowards()
.This method is equivalent to calling:
mul(new Matrix3f().lookAlong(new Vector3f(dir).negate(), up).invert(), dest)
- Specified by:
rotateTowards
in interfaceMatrix3fc
- Parameters:
direction
- the direction to rotate towardsup
- the model's up vectordest
- will hold the result- Returns:
- dest
- See Also:
rotateTowards(float, float, float, float, float, float, Matrix3f)
,rotationTowards(Vector3fc, Vector3fc)
-
rotateTowards
public Matrix3f rotateTowards(Vector3fc direction, Vector3fc up)
Apply a model transformation to this matrix for a right-handed coordinate system, that aligns the local+Z
axis withdirection
.If
M
isthis
matrix andL
the lookat matrix, then the new matrix will beM * L
. So when transforming a vectorv
with the new matrix by usingM * L * v
, the lookat transformation will be applied first!In order to set the matrix to a rotation transformation without post-multiplying it, use
rotationTowards()
.This method is equivalent to calling:
mul(new Matrix3f().lookAlong(new Vector3f(dir).negate(), up).invert())
- Parameters:
direction
- the direction to orient towardsup
- the up vector- Returns:
- this
- See Also:
rotateTowards(float, float, float, float, float, float)
,rotationTowards(Vector3fc, Vector3fc)
-
rotateTowards
public Matrix3f rotateTowards(float dirX, float dirY, float dirZ, float upX, float upY, float upZ)
Apply a model transformation to this matrix for a right-handed coordinate system, that aligns the local+Z
axis withdirection
.If
M
isthis
matrix andL
the lookat matrix, then the new matrix will beM * L
. So when transforming a vectorv
with the new matrix by usingM * L * v
, the lookat transformation will be applied first!In order to set the matrix to a rotation transformation without post-multiplying it, use
rotationTowards()
.This method is equivalent to calling:
mul(new Matrix3f().lookAlong(-dirX, -dirY, -dirZ, upX, upY, upZ).invert())
- Parameters:
dirX
- the x-coordinate of the direction to rotate towardsdirY
- the y-coordinate of the direction to rotate towardsdirZ
- the z-coordinate of the direction to rotate towardsupX
- the x-coordinate of the up vectorupY
- the y-coordinate of the up vectorupZ
- the z-coordinate of the up vector- Returns:
- this
- See Also:
rotateTowards(Vector3fc, Vector3fc)
,rotationTowards(float, float, float, float, float, float)
-
rotateTowards
public Matrix3f rotateTowards(float dirX, float dirY, float dirZ, float upX, float upY, float upZ, Matrix3f dest)
Apply a model transformation to this matrix for a right-handed coordinate system, that aligns the local+Z
axis withdir
and store the result indest
.If
M
isthis
matrix andL
the lookat matrix, then the new matrix will beM * L
. So when transforming a vectorv
with the new matrix by usingM * L * v
, the lookat transformation will be applied first!In order to set the matrix to a rotation transformation without post-multiplying it, use
rotationTowards()
.This method is equivalent to calling:
mul(new Matrix3f().lookAlong(-dirX, -dirY, -dirZ, upX, upY, upZ).invert(), dest)
- Specified by:
rotateTowards
in interfaceMatrix3fc
- Parameters:
dirX
- the x-coordinate of the direction to rotate towardsdirY
- the y-coordinate of the direction to rotate towardsdirZ
- the z-coordinate of the direction to rotate towardsupX
- the x-coordinate of the up vectorupY
- the y-coordinate of the up vectorupZ
- the z-coordinate of the up vectordest
- will hold the result- Returns:
- dest
- See Also:
rotateTowards(Vector3fc, Vector3fc)
,rotationTowards(float, float, float, float, float, float)
-
rotationTowards
public Matrix3f rotationTowards(Vector3fc dir, Vector3fc up)
Set this matrix to a model transformation for a right-handed coordinate system, that aligns the local-z
axis withcenter - eye
.In order to apply the rotation transformation to a previous existing transformation, use
rotateTowards
.This method is equivalent to calling:
setLookAlong(new Vector3f(dir).negate(), up).invert()
- Parameters:
dir
- the direction to orient the local -z axis towardsup
- the up vector- Returns:
- this
- See Also:
rotationTowards(Vector3fc, Vector3fc)
,rotateTowards(float, float, float, float, float, float)
-
rotationTowards
public Matrix3f rotationTowards(float dirX, float dirY, float dirZ, float upX, float upY, float upZ)
Set this matrix to a model transformation for a right-handed coordinate system, that aligns the local-z
axis withcenter - eye
.In order to apply the rotation transformation to a previous existing transformation, use
rotateTowards
.This method is equivalent to calling:
setLookAlong(-dirX, -dirY, -dirZ, upX, upY, upZ).invert()
- Parameters:
dirX
- the x-coordinate of the direction to rotate towardsdirY
- the y-coordinate of the direction to rotate towardsdirZ
- the z-coordinate of the direction to rotate towardsupX
- the x-coordinate of the up vectorupY
- the y-coordinate of the up vectorupZ
- the z-coordinate of the up vector- Returns:
- this
- See Also:
rotateTowards(Vector3fc, Vector3fc)
,rotationTowards(float, float, float, float, float, float)
-
getEulerAnglesZYX
public Vector3f getEulerAnglesZYX(Vector3f dest)
Description copied from interface:Matrix3fc
Extract the Euler angles from the rotation represented bythis
matrix and store the extracted Euler angles indest
.This method assumes that
this
matrix only represents a rotation without scaling.The Euler angles are always returned as the angle around X in the
Vector3f.x
field, the angle around Y in theVector3f.y
field and the angle around Z in theVector3f.z
field of the suppliedVector3f
instance.Note that the returned Euler angles must be applied in the order
Z * Y * X
to obtain the identical matrix. This means that callingMatrix3fc.rotateZYX(float, float, float, Matrix3f)
using the obtained Euler angles will yield the same rotation as the original matrix from which the Euler angles were obtained, so in the below code the matrixm2
should be identical tom
(disregarding possible floating-point inaccuracies).Matrix3f m = ...; // <- matrix only representing rotation Matrix3f n = new Matrix3f(); n.rotateZYX(m.getEulerAnglesZYX(new Vector3f()));
Reference: http://en.wikipedia.org/
- Specified by:
getEulerAnglesZYX
in interfaceMatrix3fc
- Parameters:
dest
- will hold the extracted Euler angles- Returns:
- dest
-
getEulerAnglesXYZ
public Vector3f getEulerAnglesXYZ(Vector3f dest)
Description copied from interface:Matrix3fc
Extract the Euler angles from the rotation represented bythis
matrix and store the extracted Euler angles indest
.This method assumes that
this
matrix only represents a rotation without scaling.The Euler angles are always returned as the angle around X in the
Vector3f.x
field, the angle around Y in theVector3f.y
field and the angle around Z in theVector3f.z
field of the suppliedVector3f
instance.Note that the returned Euler angles must be applied in the order
X * Y * Z
to obtain the identical matrix. This means that callingMatrix3fc.rotateXYZ(float, float, float, Matrix3f)
using the obtained Euler angles will yield the same rotation as the original matrix from which the Euler angles were obtained, so in the below code the matrixm2
should be identical tom
(disregarding possible floating-point inaccuracies).Matrix3f m = ...; // <- matrix only representing rotation Matrix3f n = new Matrix3f(); n.rotateXYZ(m.getEulerAnglesXYZ(new Vector3f()));
Reference: http://en.wikipedia.org/
- Specified by:
getEulerAnglesXYZ
in interfaceMatrix3fc
- Parameters:
dest
- will hold the extracted Euler angles- Returns:
- dest
-
obliqueZ
public Matrix3f obliqueZ(float a, float b)
Apply an oblique projection transformation to this matrix with the given values fora
andb
.If
M
isthis
matrix andO
the oblique transformation matrix, then the new matrix will beM * O
. So when transforming a vectorv
with the new matrix by usingM * O * v
, the oblique transformation will be applied first!The oblique transformation is defined as:
x' = x + a*z y' = y + a*z z' = z
or in matrix form:1 0 a 0 1 b 0 0 1
- Parameters:
a
- the value for the z factor that applies to xb
- the value for the z factor that applies to y- Returns:
- this
-
obliqueZ
public Matrix3f obliqueZ(float a, float b, Matrix3f dest)
Apply an oblique projection transformation to this matrix with the given values fora
andb
and store the result indest
.If
M
isthis
matrix andO
the oblique transformation matrix, then the new matrix will beM * O
. So when transforming a vectorv
with the new matrix by usingM * O * v
, the oblique transformation will be applied first!The oblique transformation is defined as:
x' = x + a*z y' = y + a*z z' = z
or in matrix form:1 0 a 0 1 b 0 0 1
-
reflect
public Matrix3f reflect(float nx, float ny, float nz, Matrix3f dest)
Description copied from interface:Matrix3fc
Apply a mirror/reflection transformation to this matrix that reflects through the given plane specified via the plane normal(nx, ny, nz)
, and store the result indest
.If
M
isthis
matrix andR
the reflection matrix, then the new matrix will beM * R
. So when transforming a vectorv
with the new matrix by usingM * R * v
, the reflection will be applied first!
-
reflect
public Matrix3f reflect(float nx, float ny, float nz)
Apply a mirror/reflection transformation to this matrix that reflects through the given plane specified via the plane normal.If
M
isthis
matrix andR
the reflection matrix, then the new matrix will beM * R
. So when transforming a vectorv
with the new matrix by usingM * R * v
, the reflection will be applied first!- Parameters:
nx
- the x-coordinate of the plane normalny
- the y-coordinate of the plane normalnz
- the z-coordinate of the plane normal- Returns:
- this
-
reflect
public Matrix3f reflect(Vector3fc normal)
Apply a mirror/reflection transformation to this matrix that reflects through the given plane specified via the plane normal.If
M
isthis
matrix andR
the reflection matrix, then the new matrix will beM * R
. So when transforming a vectorv
with the new matrix by usingM * R * v
, the reflection will be applied first!- Parameters:
normal
- the plane normal- Returns:
- this
-
reflect
public Matrix3f reflect(Quaternionfc orientation)
Apply a mirror/reflection transformation to this matrix that reflects about a plane specified via the plane orientation.This method can be used to build a reflection transformation based on the orientation of a mirror object in the scene. It is assumed that the default mirror plane's normal is
(0, 0, 1)
. So, if the givenQuaternionfc
is the identity (does not apply any additional rotation), the reflection plane will bez=0
.If
M
isthis
matrix andR
the reflection matrix, then the new matrix will beM * R
. So when transforming a vectorv
with the new matrix by usingM * R * v
, the reflection will be applied first!- Parameters:
orientation
- the plane orientation- Returns:
- this
-
reflect
public Matrix3f reflect(Quaternionfc orientation, Matrix3f dest)
Description copied from interface:Matrix3fc
Apply a mirror/reflection transformation to this matrix that reflects through a plane specified via the plane orientation, and store the result indest
.This method can be used to build a reflection transformation based on the orientation of a mirror object in the scene. It is assumed that the default mirror plane's normal is
(0, 0, 1)
. So, if the givenQuaternionfc
is the identity (does not apply any additional rotation), the reflection plane will bez=0
.If
M
isthis
matrix andR
the reflection matrix, then the new matrix will beM * R
. So when transforming a vectorv
with the new matrix by usingM * R * v
, the reflection will be applied first!
-
reflect
public Matrix3f reflect(Vector3fc normal, Matrix3f dest)
Description copied from interface:Matrix3fc
Apply a mirror/reflection transformation to this matrix that reflects through the given plane specified via the plane normal, and store the result indest
.If
M
isthis
matrix andR
the reflection matrix, then the new matrix will beM * R
. So when transforming a vectorv
with the new matrix by usingM * R * v
, the reflection will be applied first!
-
reflection
public Matrix3f reflection(float nx, float ny, float nz)
Set this matrix to a mirror/reflection transformation that reflects through the given plane specified via the plane normal.- Parameters:
nx
- the x-coordinate of the plane normalny
- the y-coordinate of the plane normalnz
- the z-coordinate of the plane normal- Returns:
- this
-
reflection
public Matrix3f reflection(Vector3fc normal)
Set this matrix to a mirror/reflection transformation that reflects through the given plane specified via the plane normal.- Parameters:
normal
- the plane normal- Returns:
- this
-
reflection
public Matrix3f reflection(Quaternionfc orientation)
Set this matrix to a mirror/reflection transformation that reflects through a plane specified via the plane orientation.This method can be used to build a reflection transformation based on the orientation of a mirror object in the scene. It is assumed that the default mirror plane's normal is
(0, 0, 1)
. So, if the givenQuaternionfc
is the identity (does not apply any additional rotation), the reflection plane will bez=0
, offset by the givenpoint
.- Parameters:
orientation
- the plane orientation- Returns:
- this
-
isFinite
public boolean isFinite()
Description copied from interface:Matrix3fc
Determine whether all matrix elements are finite floating-point values, that is, they are notNaN
and notinfinity
.
-
quadraticFormProduct
public float quadraticFormProduct(float x, float y, float z)
Description copied from interface:Matrix3fc
Compute(x, y, z)^T * this * (x, y, z)
.- Specified by:
quadraticFormProduct
in interfaceMatrix3fc
- Parameters:
x
- the x coordinate of the vector to multiplyy
- the y coordinate of the vector to multiplyz
- the z coordinate of the vector to multiply- Returns:
- the result
-
quadraticFormProduct
public float quadraticFormProduct(Vector3fc v)
Description copied from interface:Matrix3fc
Computev^T * this * v
.- Specified by:
quadraticFormProduct
in interfaceMatrix3fc
- Parameters:
v
- the vector to multiply- Returns:
- the result
-
mapXZY
public Matrix3f mapXZY()
Multiplythis
by the matrix1 0 0 0 0 1 0 1 0
- Returns:
- this
-
mapXZY
public Matrix3f mapXZY(Matrix3f dest)
Description copied from interface:Matrix3fc
Multiplythis
by the matrix1 0 0 0 0 1 0 1 0
and store the result indest
.
-
mapXZnY
public Matrix3f mapXZnY()
Multiplythis
by the matrix1 0 0 0 0 -1 0 1 0
- Returns:
- this
-
mapXZnY
public Matrix3f mapXZnY(Matrix3f dest)
Description copied from interface:Matrix3fc
Multiplythis
by the matrix1 0 0 0 0 -1 0 1 0
and store the result indest
.
-
mapXnYnZ
public Matrix3f mapXnYnZ()
Multiplythis
by the matrix1 0 0 0 -1 0 0 0 -1
- Returns:
- this
-
mapXnYnZ
public Matrix3f mapXnYnZ(Matrix3f dest)
Description copied from interface:Matrix3fc
Multiplythis
by the matrix1 0 0 0 -1 0 0 0 -1
and store the result indest
.
-
mapXnZY
public Matrix3f mapXnZY()
Multiplythis
by the matrix1 0 0 0 0 1 0 -1 0
- Returns:
- this
-
mapXnZY
public Matrix3f mapXnZY(Matrix3f dest)
Description copied from interface:Matrix3fc
Multiplythis
by the matrix1 0 0 0 0 1 0 -1 0
and store the result indest
.
-
mapXnZnY
public Matrix3f mapXnZnY()
Multiplythis
by the matrix1 0 0 0 0 -1 0 -1 0
- Returns:
- this
-
mapXnZnY
public Matrix3f mapXnZnY(Matrix3f dest)
Description copied from interface:Matrix3fc
Multiplythis
by the matrix1 0 0 0 0 -1 0 -1 0
and store the result indest
.
-
mapYXZ
public Matrix3f mapYXZ()
Multiplythis
by the matrix0 1 0 1 0 0 0 0 1
- Returns:
- this
-
mapYXZ
public Matrix3f mapYXZ(Matrix3f dest)
Description copied from interface:Matrix3fc
Multiplythis
by the matrix0 1 0 1 0 0 0 0 1
and store the result indest
.
-
mapYXnZ
public Matrix3f mapYXnZ()
Multiplythis
by the matrix0 1 0 1 0 0 0 0 -1
- Returns:
- this
-
mapYXnZ
public Matrix3f mapYXnZ(Matrix3f dest)
Description copied from interface:Matrix3fc
Multiplythis
by the matrix0 1 0 1 0 0 0 0 -1
and store the result indest
.
-
mapYZX
public Matrix3f mapYZX()
Multiplythis
by the matrix0 0 1 1 0 0 0 1 0
- Returns:
- this
-
mapYZX
public Matrix3f mapYZX(Matrix3f dest)
Description copied from interface:Matrix3fc
Multiplythis
by the matrix0 0 1 1 0 0 0 1 0
and store the result indest
.
-
mapYZnX
public Matrix3f mapYZnX()
Multiplythis
by the matrix0 0 -1 1 0 0 0 1 0
- Returns:
- this
-
mapYZnX
public Matrix3f mapYZnX(Matrix3f dest)
Description copied from interface:Matrix3fc
Multiplythis
by the matrix0 0 -1 1 0 0 0 1 0
and store the result indest
.
-
mapYnXZ
public Matrix3f mapYnXZ()
Multiplythis
by the matrix0 -1 0 1 0 0 0 0 1
- Returns:
- this
-
mapYnXZ
public Matrix3f mapYnXZ(Matrix3f dest)
Description copied from interface:Matrix3fc
Multiplythis
by the matrix0 -1 0 1 0 0 0 0 1
and store the result indest
.
-
mapYnXnZ
public Matrix3f mapYnXnZ()
Multiplythis
by the matrix0 -1 0 1 0 0 0 0 -1
- Returns:
- this
-
mapYnXnZ
public Matrix3f mapYnXnZ(Matrix3f dest)
Description copied from interface:Matrix3fc
Multiplythis
by the matrix0 -1 0 1 0 0 0 0 -1
and store the result indest
.
-
mapYnZX
public Matrix3f mapYnZX()
Multiplythis
by the matrix0 0 1 1 0 0 0 -1 0
- Returns:
- this
-
mapYnZX
public Matrix3f mapYnZX(Matrix3f dest)
Description copied from interface:Matrix3fc
Multiplythis
by the matrix0 0 1 1 0 0 0 -1 0
and store the result indest
.
-
mapYnZnX
public Matrix3f mapYnZnX()
Multiplythis
by the matrix0 0 -1 1 0 0 0 -1 0
- Returns:
- this
-
mapYnZnX
public Matrix3f mapYnZnX(Matrix3f dest)
Description copied from interface:Matrix3fc
Multiplythis
by the matrix0 0 -1 1 0 0 0 -1 0
and store the result indest
.
-
mapZXY
public Matrix3f mapZXY()
Multiplythis
by the matrix0 1 0 0 0 1 1 0 0
- Returns:
- this
-
mapZXY
public Matrix3f mapZXY(Matrix3f dest)
Description copied from interface:Matrix3fc
Multiplythis
by the matrix0 1 0 0 0 1 1 0 0
and store the result indest
.
-
mapZXnY
public Matrix3f mapZXnY()
Multiplythis
by the matrix0 1 0 0 0 -1 1 0 0
- Returns:
- this
-
mapZXnY
public Matrix3f mapZXnY(Matrix3f dest)
Description copied from interface:Matrix3fc
Multiplythis
by the matrix0 1 0 0 0 -1 1 0 0
and store the result indest
.
-
mapZYX
public Matrix3f mapZYX()
Multiplythis
by the matrix0 0 1 0 1 0 1 0 0
- Returns:
- this
-
mapZYX
public Matrix3f mapZYX(Matrix3f dest)
Description copied from interface:Matrix3fc
Multiplythis
by the matrix0 0 1 0 1 0 1 0 0
and store the result indest
.
-
mapZYnX
public Matrix3f mapZYnX()
Multiplythis
by the matrix0 0 -1 0 1 0 1 0 0
- Returns:
- this
-
mapZYnX
public Matrix3f mapZYnX(Matrix3f dest)
Description copied from interface:Matrix3fc
Multiplythis
by the matrix0 0 -1 0 1 0 1 0 0
and store the result indest
.
-
mapZnXY
public Matrix3f mapZnXY()
Multiplythis
by the matrix0 -1 0 0 0 1 1 0 0
- Returns:
- this
-
mapZnXY
public Matrix3f mapZnXY(Matrix3f dest)
Description copied from interface:Matrix3fc
Multiplythis
by the matrix0 -1 0 0 0 1 1 0 0
and store the result indest
.
-
mapZnXnY
public Matrix3f mapZnXnY()
Multiplythis
by the matrix0 -1 0 0 0 -1 1 0 0
- Returns:
- this
-
mapZnXnY
public Matrix3f mapZnXnY(Matrix3f dest)
Description copied from interface:Matrix3fc
Multiplythis
by the matrix0 -1 0 0 0 -1 1 0 0
and store the result indest
.
-
mapZnYX
public Matrix3f mapZnYX()
Multiplythis
by the matrix0 0 1 0 -1 0 1 0 0
- Returns:
- this
-
mapZnYX
public Matrix3f mapZnYX(Matrix3f dest)
Description copied from interface:Matrix3fc
Multiplythis
by the matrix0 0 1 0 -1 0 1 0 0
and store the result indest
.
-
mapZnYnX
public Matrix3f mapZnYnX()
Multiplythis
by the matrix0 0 -1 0 -1 0 1 0 0
- Returns:
- this
-
mapZnYnX
public Matrix3f mapZnYnX(Matrix3f dest)
Description copied from interface:Matrix3fc
Multiplythis
by the matrix0 0 -1 0 -1 0 1 0 0
and store the result indest
.
-
mapnXYnZ
public Matrix3f mapnXYnZ()
Multiplythis
by the matrix-1 0 0 0 1 0 0 0 -1
- Returns:
- this
-
mapnXYnZ
public Matrix3f mapnXYnZ(Matrix3f dest)
Description copied from interface:Matrix3fc
Multiplythis
by the matrix-1 0 0 0 1 0 0 0 -1
and store the result indest
.
-
mapnXZY
public Matrix3f mapnXZY()
Multiplythis
by the matrix-1 0 0 0 0 1 0 1 0
- Returns:
- this
-
mapnXZY
public Matrix3f mapnXZY(Matrix3f dest)
Description copied from interface:Matrix3fc
Multiplythis
by the matrix-1 0 0 0 0 1 0 1 0
and store the result indest
.
-
mapnXZnY
public Matrix3f mapnXZnY()
Multiplythis
by the matrix-1 0 0 0 0 -1 0 1 0
- Returns:
- this
-
mapnXZnY
public Matrix3f mapnXZnY(Matrix3f dest)
Description copied from interface:Matrix3fc
Multiplythis
by the matrix-1 0 0 0 0 -1 0 1 0
and store the result indest
.
-
mapnXnYZ
public Matrix3f mapnXnYZ()
Multiplythis
by the matrix-1 0 0 0 -1 0 0 0 1
- Returns:
- this
-
mapnXnYZ
public Matrix3f mapnXnYZ(Matrix3f dest)
Description copied from interface:Matrix3fc
Multiplythis
by the matrix-1 0 0 0 -1 0 0 0 1
and store the result indest
.
-
mapnXnYnZ
public Matrix3f mapnXnYnZ()
Multiplythis
by the matrix-1 0 0 0 -1 0 0 0 -1
- Returns:
- this
-
mapnXnYnZ
public Matrix3f mapnXnYnZ(Matrix3f dest)
Description copied from interface:Matrix3fc
Multiplythis
by the matrix-1 0 0 0 -1 0 0 0 -1
and store the result indest
.
-
mapnXnZY
public Matrix3f mapnXnZY()
Multiplythis
by the matrix-1 0 0 0 0 1 0 -1 0
- Returns:
- this
-
mapnXnZY
public Matrix3f mapnXnZY(Matrix3f dest)
Description copied from interface:Matrix3fc
Multiplythis
by the matrix-1 0 0 0 0 1 0 -1 0
and store the result indest
.
-
mapnXnZnY
public Matrix3f mapnXnZnY()
Multiplythis
by the matrix-1 0 0 0 0 -1 0 -1 0
- Returns:
- this
-
mapnXnZnY
public Matrix3f mapnXnZnY(Matrix3f dest)
Description copied from interface:Matrix3fc
Multiplythis
by the matrix-1 0 0 0 0 -1 0 -1 0
and store the result indest
.
-
mapnYXZ
public Matrix3f mapnYXZ()
Multiplythis
by the matrix0 1 0 -1 0 0 0 0 1
- Returns:
- this
-
mapnYXZ
public Matrix3f mapnYXZ(Matrix3f dest)
Description copied from interface:Matrix3fc
Multiplythis
by the matrix0 1 0 -1 0 0 0 0 1
and store the result indest
.
-
mapnYXnZ
public Matrix3f mapnYXnZ()
Multiplythis
by the matrix0 1 0 -1 0 0 0 0 -1
- Returns:
- this
-
mapnYXnZ
public Matrix3f mapnYXnZ(Matrix3f dest)
Description copied from interface:Matrix3fc
Multiplythis
by the matrix0 1 0 -1 0 0 0 0 -1
and store the result indest
.
-
mapnYZX
public Matrix3f mapnYZX()
Multiplythis
by the matrix0 0 1 -1 0 0 0 1 0
- Returns:
- this
-
mapnYZX
public Matrix3f mapnYZX(Matrix3f dest)
Description copied from interface:Matrix3fc
Multiplythis
by the matrix0 0 1 -1 0 0 0 1 0
and store the result indest
.
-
mapnYZnX
public Matrix3f mapnYZnX()
Multiplythis
by the matrix0 0 -1 -1 0 0 0 1 0
- Returns:
- this
-
mapnYZnX
public Matrix3f mapnYZnX(Matrix3f dest)
Description copied from interface:Matrix3fc
Multiplythis
by the matrix0 0 -1 -1 0 0 0 1 0
and store the result indest
.
-
mapnYnXZ
public Matrix3f mapnYnXZ()
Multiplythis
by the matrix0 -1 0 -1 0 0 0 0 1
- Returns:
- this
-
mapnYnXZ
public Matrix3f mapnYnXZ(Matrix3f dest)
Description copied from interface:Matrix3fc
Multiplythis
by the matrix0 -1 0 -1 0 0 0 0 1
and store the result indest
.
-
mapnYnXnZ
public Matrix3f mapnYnXnZ()
Multiplythis
by the matrix0 -1 0 -1 0 0 0 0 -1
- Returns:
- this
-
mapnYnXnZ
public Matrix3f mapnYnXnZ(Matrix3f dest)
Description copied from interface:Matrix3fc
Multiplythis
by the matrix0 -1 0 -1 0 0 0 0 -1
and store the result indest
.
-
mapnYnZX
public Matrix3f mapnYnZX()
Multiplythis
by the matrix0 0 1 -1 0 0 0 -1 0
- Returns:
- this
-
mapnYnZX
public Matrix3f mapnYnZX(Matrix3f dest)
Description copied from interface:Matrix3fc
Multiplythis
by the matrix0 0 1 -1 0 0 0 -1 0
and store the result indest
.
-
mapnYnZnX
public Matrix3f mapnYnZnX()
Multiplythis
by the matrix0 0 -1 -1 0 0 0 -1 0
- Returns:
- this
-
mapnYnZnX
public Matrix3f mapnYnZnX(Matrix3f dest)
Description copied from interface:Matrix3fc
Multiplythis
by the matrix0 0 -1 -1 0 0 0 -1 0
and store the result indest
.
-
mapnZXY
public Matrix3f mapnZXY()
Multiplythis
by the matrix0 1 0 0 0 1 -1 0 0
- Returns:
- this
-
mapnZXY
public Matrix3f mapnZXY(Matrix3f dest)
Description copied from interface:Matrix3fc
Multiplythis
by the matrix0 1 0 0 0 1 -1 0 0
and store the result indest
.
-
mapnZXnY
public Matrix3f mapnZXnY()
Multiplythis
by the matrix0 1 0 0 0 -1 -1 0 0
- Returns:
- this
-
mapnZXnY
public Matrix3f mapnZXnY(Matrix3f dest)
Description copied from interface:Matrix3fc
Multiplythis
by the matrix0 1 0 0 0 -1 -1 0 0
and store the result indest
.
-
mapnZYX
public Matrix3f mapnZYX()
Multiplythis
by the matrix0 0 1 0 1 0 -1 0 0
- Returns:
- this
-
mapnZYX
public Matrix3f mapnZYX(Matrix3f dest)
Description copied from interface:Matrix3fc
Multiplythis
by the matrix0 0 1 0 1 0 -1 0 0
and store the result indest
.
-
mapnZYnX
public Matrix3f mapnZYnX()
Multiplythis
by the matrix0 0 -1 0 1 0 -1 0 0
- Returns:
- this
-
mapnZYnX
public Matrix3f mapnZYnX(Matrix3f dest)
Description copied from interface:Matrix3fc
Multiplythis
by the matrix0 0 -1 0 1 0 -1 0 0
and store the result indest
.
-
mapnZnXY
public Matrix3f mapnZnXY()
Multiplythis
by the matrix0 -1 0 0 0 1 -1 0 0
- Returns:
- this
-
mapnZnXY
public Matrix3f mapnZnXY(Matrix3f dest)
Description copied from interface:Matrix3fc
Multiplythis
by the matrix0 -1 0 0 0 1 -1 0 0
and store the result indest
.
-
mapnZnXnY
public Matrix3f mapnZnXnY()
Multiplythis
by the matrix0 -1 0 0 0 -1 -1 0 0
- Returns:
- this
-
mapnZnXnY
public Matrix3f mapnZnXnY(Matrix3f dest)
Description copied from interface:Matrix3fc
Multiplythis
by the matrix0 -1 0 0 0 -1 -1 0 0
and store the result indest
.
-
mapnZnYX
public Matrix3f mapnZnYX()
Multiplythis
by the matrix0 0 1 0 -1 0 -1 0 0
- Returns:
- this
-
mapnZnYX
public Matrix3f mapnZnYX(Matrix3f dest)
Description copied from interface:Matrix3fc
Multiplythis
by the matrix0 0 1 0 -1 0 -1 0 0
and store the result indest
.
-
mapnZnYnX
public Matrix3f mapnZnYnX()
Multiplythis
by the matrix0 0 -1 0 -1 0 -1 0 0
- Returns:
- this
-
mapnZnYnX
public Matrix3f mapnZnYnX(Matrix3f dest)
Description copied from interface:Matrix3fc
Multiplythis
by the matrix0 0 -1 0 -1 0 -1 0 0
and store the result indest
.
-
negateX
public Matrix3f negateX()
Multiplythis
by the matrix-1 0 0 0 1 0 0 0 1
- Returns:
- this
-
negateX
public Matrix3f negateX(Matrix3f dest)
Description copied from interface:Matrix3fc
Multiplythis
by the matrix-1 0 0 0 1 0 0 0 1
and store the result indest
.
-
negateY
public Matrix3f negateY()
Multiplythis
by the matrix1 0 0 0 -1 0 0 0 1
- Returns:
- this
-
negateY
public Matrix3f negateY(Matrix3f dest)
Description copied from interface:Matrix3fc
Multiplythis
by the matrix1 0 0 0 -1 0 0 0 1
and store the result indest
.
-
negateZ
public Matrix3f negateZ()
Multiplythis
by the matrix1 0 0 0 1 0 0 0 -1
- Returns:
- this
-
negateZ
public Matrix3f negateZ(Matrix3f dest)
Description copied from interface:Matrix3fc
Multiplythis
by the matrix1 0 0 0 1 0 0 0 -1
and store the result indest
.
-
clone
public java.lang.Object clone() throws java.lang.CloneNotSupportedException
- Overrides:
clone
in classjava.lang.Object
- Throws:
java.lang.CloneNotSupportedException
-
-