Interface Matrix3fc
-
- All Known Implementing Classes:
Matrix3f
,Matrix3fStack
public interface Matrix3fc
Interface to a read-only view of a 3x3 matrix of single-precision floats.- Author:
- Kai Burjack
-
-
Method Summary
All Methods Instance Methods Abstract Methods Modifier and Type Method Description Matrix3f
add(Matrix3fc other, Matrix3f dest)
Component-wise addthis
andother
and store the result indest
.Matrix3f
cofactor(Matrix3f dest)
Compute the cofactor matrix ofthis
and store it intodest
.float
determinant()
Return the determinant of this matrix.boolean
equals(Matrix3fc m, float delta)
Compare the matrix elements ofthis
matrix with the given matrix using the givendelta
and return whether all of them are equal within a maximum difference ofdelta
.float[]
get(float[] arr)
Store this matrix into the supplied float array in column-major order.float[]
get(float[] arr, int offset)
Store this matrix into the supplied float array in column-major order at the given offset.float
get(int column, int row)
Get the matrix element value at the given column and row.java.nio.ByteBuffer
get(int index, java.nio.ByteBuffer buffer)
Store this matrix in column-major order into the suppliedByteBuffer
starting at the specified absolute buffer position/index.java.nio.FloatBuffer
get(int index, java.nio.FloatBuffer buffer)
Store this matrix in column-major order into the suppliedFloatBuffer
starting at the specified absolute buffer position/index.java.nio.ByteBuffer
get(java.nio.ByteBuffer buffer)
Store this matrix in column-major order into the suppliedByteBuffer
at the current bufferposition
.java.nio.FloatBuffer
get(java.nio.FloatBuffer buffer)
Store this matrix in column-major order into the suppliedFloatBuffer
at the current bufferposition
.Matrix3f
get(Matrix3f dest)
Get the current values ofthis
matrix and store them intodest
.Matrix4f
get(Matrix4f dest)
Get the current values ofthis
matrix and store them as the rotational component ofdest
.java.nio.ByteBuffer
get3x4(int index, java.nio.ByteBuffer buffer)
Store this matrix as 3x4 matrix in column-major order into the suppliedByteBuffer
starting at the specified absolute buffer position/index, with the m03, m13 and m23 components being zero.java.nio.FloatBuffer
get3x4(int index, java.nio.FloatBuffer buffer)
Store this matrix as 3x4 matrix in column-major order into the suppliedFloatBuffer
starting at the specified absolute buffer position/index, with the m03, m13 and m23 components being zero.java.nio.ByteBuffer
get3x4(java.nio.ByteBuffer buffer)
Store this matrix as 3x4 matrix in column-major order into the suppliedByteBuffer
at the current bufferposition
, with the m03, m13 and m23 components being zero.java.nio.FloatBuffer
get3x4(java.nio.FloatBuffer buffer)
Store this matrix as 3x4 matrix in column-major order into the suppliedFloatBuffer
at the current bufferposition
, with the m03, m13 and m23 components being zero.Vector3f
getColumn(int column, Vector3f dest)
Get the column at the givencolumn
index, starting with0
.Vector3f
getEulerAnglesXYZ(Vector3f dest)
Extract the Euler angles from the rotation represented bythis
matrix and store the extracted Euler angles indest
.Vector3f
getEulerAnglesZYX(Vector3f dest)
Extract the Euler angles from the rotation represented bythis
matrix and store the extracted Euler angles indest
.Quaterniond
getNormalizedRotation(Quaterniond dest)
Get the current values ofthis
matrix and store the represented rotation into the givenQuaterniond
.Quaternionf
getNormalizedRotation(Quaternionf dest)
Get the current values ofthis
matrix and store the represented rotation into the givenQuaternionf
.AxisAngle4f
getRotation(AxisAngle4f dest)
Get the current values ofthis
matrix and store the represented rotation into the givenAxisAngle4f
.Vector3f
getRow(int row, Vector3f dest)
Get the row at the givenrow
index, starting with0
.float
getRowColumn(int row, int column)
Get the matrix element value at the given row and column.Vector3f
getScale(Vector3f dest)
Get the scaling factors ofthis
matrix for the three base axes.Matrix3fc
getToAddress(long address)
Store this matrix in column-major order at the given off-heap address.java.nio.ByteBuffer
getTransposed(int index, java.nio.ByteBuffer buffer)
Store the transpose of this matrix in column-major order into the suppliedByteBuffer
starting at the specified absolute buffer position/index.java.nio.FloatBuffer
getTransposed(int index, java.nio.FloatBuffer buffer)
Store the transpose of this matrix in column-major order into the suppliedFloatBuffer
starting at the specified absolute buffer position/index.java.nio.ByteBuffer
getTransposed(java.nio.ByteBuffer buffer)
Store the transpose of this matrix in column-major order into the suppliedByteBuffer
at the current bufferposition
.java.nio.FloatBuffer
getTransposed(java.nio.FloatBuffer buffer)
Store the transpose of this matrix in column-major order into the suppliedFloatBuffer
at the current bufferposition
.Quaterniond
getUnnormalizedRotation(Quaterniond dest)
Get the current values ofthis
matrix and store the represented rotation into the givenQuaterniond
.Quaternionf
getUnnormalizedRotation(Quaternionf dest)
Get the current values ofthis
matrix and store the represented rotation into the givenQuaternionf
.Matrix3f
invert(Matrix3f dest)
Invert thethis
matrix and store the result indest
.boolean
isFinite()
Determine whether all matrix elements are finite floating-point values, that is, they are notNaN
and notinfinity
.Matrix3f
lerp(Matrix3fc other, float t, Matrix3f dest)
Linearly interpolatethis
andother
using the given interpolation factort
and store the result indest
.Matrix3f
lookAlong(float dirX, float dirY, float dirZ, float upX, float upY, float upZ, Matrix3f dest)
Apply a rotation transformation to this matrix to make-z
point alongdir
and store the result indest
.Matrix3f
lookAlong(Vector3fc dir, Vector3fc up, Matrix3f dest)
Apply a rotation transformation to this matrix to make-z
point alongdir
and store the result indest
.float
m00()
Return the value of the matrix element at column 0 and row 0.float
m01()
Return the value of the matrix element at column 0 and row 1.float
m02()
Return the value of the matrix element at column 0 and row 2.float
m10()
Return the value of the matrix element at column 1 and row 0.float
m11()
Return the value of the matrix element at column 1 and row 1.float
m12()
Return the value of the matrix element at column 1 and row 2.float
m20()
Return the value of the matrix element at column 2 and row 0.float
m21()
Return the value of the matrix element at column 2 and row 1.float
m22()
Return the value of the matrix element at column 2 and row 2.Matrix3f
mapnXnYnZ(Matrix3f dest)
Multiplythis
by the matrixMatrix3f
mapnXnYZ(Matrix3f dest)
Multiplythis
by the matrixMatrix3f
mapnXnZnY(Matrix3f dest)
Multiplythis
by the matrixMatrix3f
mapnXnZY(Matrix3f dest)
Multiplythis
by the matrixMatrix3f
mapnXYnZ(Matrix3f dest)
Multiplythis
by the matrixMatrix3f
mapnXZnY(Matrix3f dest)
Multiplythis
by the matrixMatrix3f
mapnXZY(Matrix3f dest)
Multiplythis
by the matrixMatrix3f
mapnYnXnZ(Matrix3f dest)
Multiplythis
by the matrixMatrix3f
mapnYnXZ(Matrix3f dest)
Multiplythis
by the matrixMatrix3f
mapnYnZnX(Matrix3f dest)
Multiplythis
by the matrixMatrix3f
mapnYnZX(Matrix3f dest)
Multiplythis
by the matrixMatrix3f
mapnYXnZ(Matrix3f dest)
Multiplythis
by the matrixMatrix3f
mapnYXZ(Matrix3f dest)
Multiplythis
by the matrixMatrix3f
mapnYZnX(Matrix3f dest)
Multiplythis
by the matrixMatrix3f
mapnYZX(Matrix3f dest)
Multiplythis
by the matrixMatrix3f
mapnZnXnY(Matrix3f dest)
Multiplythis
by the matrixMatrix3f
mapnZnXY(Matrix3f dest)
Multiplythis
by the matrixMatrix3f
mapnZnYnX(Matrix3f dest)
Multiplythis
by the matrixMatrix3f
mapnZnYX(Matrix3f dest)
Multiplythis
by the matrixMatrix3f
mapnZXnY(Matrix3f dest)
Multiplythis
by the matrixMatrix3f
mapnZXY(Matrix3f dest)
Multiplythis
by the matrixMatrix3f
mapnZYnX(Matrix3f dest)
Multiplythis
by the matrixMatrix3f
mapnZYX(Matrix3f dest)
Multiplythis
by the matrixMatrix3f
mapXnYnZ(Matrix3f dest)
Multiplythis
by the matrixMatrix3f
mapXnZnY(Matrix3f dest)
Multiplythis
by the matrixMatrix3f
mapXnZY(Matrix3f dest)
Multiplythis
by the matrixMatrix3f
mapXZnY(Matrix3f dest)
Multiplythis
by the matrixMatrix3f
mapXZY(Matrix3f dest)
Multiplythis
by the matrixMatrix3f
mapYnXnZ(Matrix3f dest)
Multiplythis
by the matrixMatrix3f
mapYnXZ(Matrix3f dest)
Multiplythis
by the matrixMatrix3f
mapYnZnX(Matrix3f dest)
Multiplythis
by the matrixMatrix3f
mapYnZX(Matrix3f dest)
Multiplythis
by the matrixMatrix3f
mapYXnZ(Matrix3f dest)
Multiplythis
by the matrixMatrix3f
mapYXZ(Matrix3f dest)
Multiplythis
by the matrixMatrix3f
mapYZnX(Matrix3f dest)
Multiplythis
by the matrixMatrix3f
mapYZX(Matrix3f dest)
Multiplythis
by the matrixMatrix3f
mapZnXnY(Matrix3f dest)
Multiplythis
by the matrixMatrix3f
mapZnXY(Matrix3f dest)
Multiplythis
by the matrixMatrix3f
mapZnYnX(Matrix3f dest)
Multiplythis
by the matrixMatrix3f
mapZnYX(Matrix3f dest)
Multiplythis
by the matrixMatrix3f
mapZXnY(Matrix3f dest)
Multiplythis
by the matrixMatrix3f
mapZXY(Matrix3f dest)
Multiplythis
by the matrixMatrix3f
mapZYnX(Matrix3f dest)
Multiplythis
by the matrixMatrix3f
mapZYX(Matrix3f dest)
Multiplythis
by the matrixMatrix3f
mul(Matrix3fc right, Matrix3f dest)
Multiply this matrix by the suppliedright
matrix and store the result indest
.Matrix3f
mulComponentWise(Matrix3fc other, Matrix3f dest)
Component-wise multiplythis
byother
and store the result indest
.Matrix3f
mulLocal(Matrix3fc left, Matrix3f dest)
Pre-multiply this matrix by the suppliedleft
matrix and store the result indest
.Matrix3f
negateX(Matrix3f dest)
Multiplythis
by the matrixMatrix3f
negateY(Matrix3f dest)
Multiplythis
by the matrixMatrix3f
negateZ(Matrix3f dest)
Multiplythis
by the matrixMatrix3f
normal(Matrix3f dest)
Compute a normal matrix fromthis
matrix and store it intodest
.Vector3f
normalizedPositiveX(Vector3f dir)
Obtain the direction of+X
before the transformation represented bythis
orthogonal matrix is applied.Vector3f
normalizedPositiveY(Vector3f dir)
Obtain the direction of+Y
before the transformation represented bythis
orthogonal matrix is applied.Vector3f
normalizedPositiveZ(Vector3f dir)
Obtain the direction of+Z
before the transformation represented bythis
orthogonal matrix is applied.Matrix3f
obliqueZ(float a, float b, Matrix3f dest)
Apply an oblique projection transformation to this matrix with the given values fora
andb
and store the result indest
.Vector3f
positiveX(Vector3f dir)
Obtain the direction of+X
before the transformation represented bythis
matrix is applied.Vector3f
positiveY(Vector3f dir)
Obtain the direction of+Y
before the transformation represented bythis
matrix is applied.Vector3f
positiveZ(Vector3f dir)
Obtain the direction of+Z
before the transformation represented bythis
matrix is applied.float
quadraticFormProduct(float x, float y, float z)
Compute(x, y, z)^T * this * (x, y, z)
.float
quadraticFormProduct(Vector3fc v)
Computev^T * this * v
.Matrix3f
reflect(float nx, float ny, float nz, Matrix3f dest)
Apply a mirror/reflection transformation to this matrix that reflects through the given plane specified via the plane normal(nx, ny, nz)
, and store the result indest
.Matrix3f
reflect(Quaternionfc orientation, Matrix3f dest)
Apply a mirror/reflection transformation to this matrix that reflects through a plane specified via the plane orientation, and store the result indest
.Matrix3f
reflect(Vector3fc normal, Matrix3f dest)
Apply a mirror/reflection transformation to this matrix that reflects through the given plane specified via the plane normal, and store the result indest
.Matrix3f
rotate(float ang, float x, float y, float z, Matrix3f dest)
Apply rotation to this matrix by rotating the given amount of radians about the given axis specified as x, y and z components, and store the result indest
.Matrix3f
rotate(float angle, Vector3fc axis, Matrix3f dest)
Apply a rotation transformation, rotating the given radians about the specified axis and store the result indest
.Matrix3f
rotate(AxisAngle4f axisAngle, Matrix3f dest)
Apply a rotation transformation, rotating about the givenAxisAngle4f
and store the result indest
.Matrix3f
rotate(Quaternionfc quat, Matrix3f dest)
Apply the rotation - and possibly scaling - transformation of the givenQuaternionfc
to this matrix and store the result indest
.Matrix3f
rotateLocal(float ang, float x, float y, float z, Matrix3f dest)
Pre-multiply a rotation to this matrix by rotating the given amount of radians about the specified(x, y, z)
axis and store the result indest
.Matrix3f
rotateLocal(Quaternionfc quat, Matrix3f dest)
Pre-multiply the rotation - and possibly scaling - transformation of the givenQuaternionfc
to this matrix and store the result indest
.Matrix3f
rotateLocalX(float ang, Matrix3f dest)
Pre-multiply a rotation around the X axis to this matrix by rotating the given amount of radians about the X axis and store the result indest
.Matrix3f
rotateLocalY(float ang, Matrix3f dest)
Pre-multiply a rotation around the Y axis to this matrix by rotating the given amount of radians about the Y axis and store the result indest
.Matrix3f
rotateLocalZ(float ang, Matrix3f dest)
Pre-multiply a rotation around the Z axis to this matrix by rotating the given amount of radians about the Z axis and store the result indest
.Matrix3f
rotateTowards(float dirX, float dirY, float dirZ, float upX, float upY, float upZ, Matrix3f dest)
Apply a model transformation to this matrix for a right-handed coordinate system, that aligns the local+Z
axis withdir
and store the result indest
.Matrix3f
rotateTowards(Vector3fc direction, Vector3fc up, Matrix3f dest)
Apply a model transformation to this matrix for a right-handed coordinate system, that aligns the local+Z
axis withdirection
and store the result indest
.Matrix3f
rotateX(float ang, Matrix3f dest)
Apply rotation about the X axis to this matrix by rotating the given amount of radians and store the result indest
.Matrix3f
rotateXYZ(float angleX, float angleY, float angleZ, Matrix3f dest)
Apply rotation ofangleX
radians about the X axis, followed by a rotation ofangleY
radians about the Y axis and followed by a rotation ofangleZ
radians about the Z axis and store the result indest
.Matrix3f
rotateY(float ang, Matrix3f dest)
Apply rotation about the Y axis to this matrix by rotating the given amount of radians and store the result indest
.Matrix3f
rotateYXZ(float angleY, float angleX, float angleZ, Matrix3f dest)
Apply rotation ofangleY
radians about the Y axis, followed by a rotation ofangleX
radians about the X axis and followed by a rotation ofangleZ
radians about the Z axis and store the result indest
.Matrix3f
rotateZ(float ang, Matrix3f dest)
Apply rotation about the Z axis to this matrix by rotating the given amount of radians and store the result indest
.Matrix3f
rotateZYX(float angleZ, float angleY, float angleX, Matrix3f dest)
Apply rotation ofangleZ
radians about the Z axis, followed by a rotation ofangleY
radians about the Y axis and followed by a rotation ofangleX
radians about the X axis and store the result indest
.Matrix3f
scale(float x, float y, float z, Matrix3f dest)
Apply scaling to this matrix by scaling the base axes by the given x, y and z factors and store the result indest
.Matrix3f
scale(float xyz, Matrix3f dest)
Apply scaling to this matrix by uniformly scaling all base axes by the givenxyz
factor and store the result indest
.Matrix3f
scale(Vector3fc xyz, Matrix3f dest)
Apply scaling tothis
matrix by scaling the base axes by the givenxyz.x
,xyz.y
andxyz.z
factors, respectively and store the result indest
.Matrix3f
scaleLocal(float x, float y, float z, Matrix3f dest)
Pre-multiply scaling tothis
matrix by scaling the base axes by the given x, y and z factors and store the result indest
.Matrix3f
sub(Matrix3fc subtrahend, Matrix3f dest)
Component-wise subtractsubtrahend
fromthis
and store the result indest
.Vector3f
transform(float x, float y, float z, Vector3f dest)
Transform the vector(x, y, z)
by this matrix and store the result indest
.Vector3f
transform(Vector3f v)
Transform the given vector by this matrix.Vector3f
transform(Vector3fc v, Vector3f dest)
Transform the given vector by this matrix and store the result indest
.Vector3f
transformTranspose(float x, float y, float z, Vector3f dest)
Transform the vector(x, y, z)
by the transpose of this matrix and store the result indest
.Vector3f
transformTranspose(Vector3f v)
Transform the given vector by the transpose of this matrix.Vector3f
transformTranspose(Vector3fc v, Vector3f dest)
Transform the given vector by the transpose of this matrix and store the result indest
.Matrix3f
transpose(Matrix3f dest)
Transposethis
matrix and store the result indest
.
-
-
-
Method Detail
-
m00
float m00()
Return the value of the matrix element at column 0 and row 0.- Returns:
- the value of the matrix element
-
m01
float m01()
Return the value of the matrix element at column 0 and row 1.- Returns:
- the value of the matrix element
-
m02
float m02()
Return the value of the matrix element at column 0 and row 2.- Returns:
- the value of the matrix element
-
m10
float m10()
Return the value of the matrix element at column 1 and row 0.- Returns:
- the value of the matrix element
-
m11
float m11()
Return the value of the matrix element at column 1 and row 1.- Returns:
- the value of the matrix element
-
m12
float m12()
Return the value of the matrix element at column 1 and row 2.- Returns:
- the value of the matrix element
-
m20
float m20()
Return the value of the matrix element at column 2 and row 0.- Returns:
- the value of the matrix element
-
m21
float m21()
Return the value of the matrix element at column 2 and row 1.- Returns:
- the value of the matrix element
-
m22
float m22()
Return the value of the matrix element at column 2 and row 2.- Returns:
- the value of the matrix element
-
mul
Matrix3f mul(Matrix3fc right, Matrix3f dest)
Multiply this matrix by the suppliedright
matrix and store the result indest
.If
M
isthis
matrix andR
theright
matrix, then the new matrix will beM * R
. So when transforming a vectorv
with the new matrix by usingM * R * v
, the transformation of the right matrix will be applied first!- Parameters:
right
- the right operand of the matrix multiplicationdest
- will hold the result- Returns:
- dest
-
mulLocal
Matrix3f mulLocal(Matrix3fc left, Matrix3f dest)
Pre-multiply this matrix by the suppliedleft
matrix and store the result indest
.If
M
isthis
matrix andL
theleft
matrix, then the new matrix will beL * M
. So when transforming a vectorv
with the new matrix by usingL * M * v
, the transformation ofthis
matrix will be applied first!- Parameters:
left
- the left operand of the matrix multiplicationdest
- the destination matrix, which will hold the result- Returns:
- dest
-
determinant
float determinant()
Return the determinant of this matrix.- Returns:
- the determinant
-
invert
Matrix3f invert(Matrix3f dest)
Invert thethis
matrix and store the result indest
.- Parameters:
dest
- will hold the result- Returns:
- dest
-
transpose
Matrix3f transpose(Matrix3f dest)
Transposethis
matrix and store the result indest
.- Parameters:
dest
- will hold the result- Returns:
- dest
-
get
Matrix3f get(Matrix3f dest)
Get the current values ofthis
matrix and store them intodest
.- Parameters:
dest
- the destination matrix- Returns:
- the passed in destination
-
get
Matrix4f get(Matrix4f dest)
Get the current values ofthis
matrix and store them as the rotational component ofdest
. All other values ofdest
will be set to identity.- Parameters:
dest
- the destination matrix- Returns:
- the passed in destination
- See Also:
Matrix4f.set(Matrix3fc)
-
getRotation
AxisAngle4f getRotation(AxisAngle4f dest)
Get the current values ofthis
matrix and store the represented rotation into the givenAxisAngle4f
.- Parameters:
dest
- the destinationAxisAngle4f
- Returns:
- the passed in destination
- See Also:
AxisAngle4f.set(Matrix3fc)
-
getUnnormalizedRotation
Quaternionf getUnnormalizedRotation(Quaternionf dest)
Get the current values ofthis
matrix and store the represented rotation into the givenQuaternionf
.This method assumes that the three column vectors of this matrix are not normalized and thus allows to ignore any additional scaling factor that is applied to the matrix.
- Parameters:
dest
- the destinationQuaternionf
- Returns:
- the passed in destination
- See Also:
Quaternionf.setFromUnnormalized(Matrix3fc)
-
getNormalizedRotation
Quaternionf getNormalizedRotation(Quaternionf dest)
Get the current values ofthis
matrix and store the represented rotation into the givenQuaternionf
.This method assumes that the three column vectors of this matrix are normalized.
- Parameters:
dest
- the destinationQuaternionf
- Returns:
- the passed in destination
- See Also:
Quaternionf.setFromNormalized(Matrix3fc)
-
getUnnormalizedRotation
Quaterniond getUnnormalizedRotation(Quaterniond dest)
Get the current values ofthis
matrix and store the represented rotation into the givenQuaterniond
.This method assumes that the three column vectors of this matrix are not normalized and thus allows to ignore any additional scaling factor that is applied to the matrix.
- Parameters:
dest
- the destinationQuaterniond
- Returns:
- the passed in destination
- See Also:
Quaterniond.setFromUnnormalized(Matrix3fc)
-
getNormalizedRotation
Quaterniond getNormalizedRotation(Quaterniond dest)
Get the current values ofthis
matrix and store the represented rotation into the givenQuaterniond
.This method assumes that the three column vectors of this matrix are normalized.
- Parameters:
dest
- the destinationQuaterniond
- Returns:
- the passed in destination
- See Also:
Quaterniond.setFromNormalized(Matrix3fc)
-
get
java.nio.FloatBuffer get(java.nio.FloatBuffer buffer)
Store this matrix in column-major order into the suppliedFloatBuffer
at the current bufferposition
.This method will not increment the position of the given FloatBuffer.
In order to specify the offset into the FloatBuffer at which the matrix is stored, use
get(int, FloatBuffer)
, taking the absolute position as parameter.- Parameters:
buffer
- will receive the values of this matrix in column-major order at its current position- Returns:
- the passed in buffer
- See Also:
get(int, FloatBuffer)
-
get
java.nio.FloatBuffer get(int index, java.nio.FloatBuffer buffer)
Store this matrix in column-major order into the suppliedFloatBuffer
starting at the specified absolute buffer position/index.This method will not increment the position of the given FloatBuffer.
- Parameters:
index
- the absolute position into the FloatBufferbuffer
- will receive the values of this matrix in column-major order- Returns:
- the passed in buffer
-
get
java.nio.ByteBuffer get(java.nio.ByteBuffer buffer)
Store this matrix in column-major order into the suppliedByteBuffer
at the current bufferposition
.This method will not increment the position of the given ByteBuffer.
In order to specify the offset into the ByteBuffer at which the matrix is stored, use
get(int, ByteBuffer)
, taking the absolute position as parameter.- Parameters:
buffer
- will receive the values of this matrix in column-major order at its current position- Returns:
- the passed in buffer
- See Also:
get(int, ByteBuffer)
-
get
java.nio.ByteBuffer get(int index, java.nio.ByteBuffer buffer)
Store this matrix in column-major order into the suppliedByteBuffer
starting at the specified absolute buffer position/index.This method will not increment the position of the given ByteBuffer.
- Parameters:
index
- the absolute position into the ByteBufferbuffer
- will receive the values of this matrix in column-major order- Returns:
- the passed in buffer
-
get3x4
java.nio.FloatBuffer get3x4(java.nio.FloatBuffer buffer)
Store this matrix as 3x4 matrix in column-major order into the suppliedFloatBuffer
at the current bufferposition
, with the m03, m13 and m23 components being zero.This method will not increment the position of the given FloatBuffer.
In order to specify the offset into the FloatBuffer at which the matrix is stored, use
get3x4(int, FloatBuffer)
, taking the absolute position as parameter.- Parameters:
buffer
- will receive the values of this 3x3 matrix as 3x4 matrix in column-major order at its current position- Returns:
- the passed in buffer
- See Also:
get3x4(int, FloatBuffer)
-
get3x4
java.nio.FloatBuffer get3x4(int index, java.nio.FloatBuffer buffer)
Store this matrix as 3x4 matrix in column-major order into the suppliedFloatBuffer
starting at the specified absolute buffer position/index, with the m03, m13 and m23 components being zero.This method will not increment the position of the given FloatBuffer.
- Parameters:
index
- the absolute position into the FloatBufferbuffer
- will receive the values of this 3x3 matrix as 3x4 matrix in column-major order- Returns:
- the passed in buffer
-
get3x4
java.nio.ByteBuffer get3x4(java.nio.ByteBuffer buffer)
Store this matrix as 3x4 matrix in column-major order into the suppliedByteBuffer
at the current bufferposition
, with the m03, m13 and m23 components being zero.This method will not increment the position of the given ByteBuffer.
In order to specify the offset into the ByteBuffer at which the matrix is stored, use
get3x4(int, ByteBuffer)
, taking the absolute position as parameter.- Parameters:
buffer
- will receive the values of this 3x3 matrix as 3x4 matrix in column-major order at its current position- Returns:
- the passed in buffer
- See Also:
get3x4(int, ByteBuffer)
-
get3x4
java.nio.ByteBuffer get3x4(int index, java.nio.ByteBuffer buffer)
Store this matrix as 3x4 matrix in column-major order into the suppliedByteBuffer
starting at the specified absolute buffer position/index, with the m03, m13 and m23 components being zero.This method will not increment the position of the given ByteBuffer.
- Parameters:
index
- the absolute position into the ByteBufferbuffer
- will receive the values of this 3x3 matrix as 3x4 matrix in column-major order- Returns:
- the passed in buffer
-
getTransposed
java.nio.FloatBuffer getTransposed(java.nio.FloatBuffer buffer)
Store the transpose of this matrix in column-major order into the suppliedFloatBuffer
at the current bufferposition
.This method will not increment the position of the given FloatBuffer.
In order to specify the offset into the FloatBuffer at which the matrix is stored, use
getTransposed(int, FloatBuffer)
, taking the absolute position as parameter.- Parameters:
buffer
- will receive the values of this matrix in column-major order at its current position- Returns:
- the passed in buffer
- See Also:
getTransposed(int, FloatBuffer)
-
getTransposed
java.nio.FloatBuffer getTransposed(int index, java.nio.FloatBuffer buffer)
Store the transpose of this matrix in column-major order into the suppliedFloatBuffer
starting at the specified absolute buffer position/index.This method will not increment the position of the given FloatBuffer.
- Parameters:
index
- the absolute position into the FloatBufferbuffer
- will receive the values of this matrix in column-major order- Returns:
- the passed in buffer
-
getTransposed
java.nio.ByteBuffer getTransposed(java.nio.ByteBuffer buffer)
Store the transpose of this matrix in column-major order into the suppliedByteBuffer
at the current bufferposition
.This method will not increment the position of the given ByteBuffer.
In order to specify the offset into the ByteBuffer at which the matrix is stored, use
getTransposed(int, ByteBuffer)
, taking the absolute position as parameter.- Parameters:
buffer
- will receive the values of this matrix in column-major order at its current position- Returns:
- the passed in buffer
- See Also:
getTransposed(int, ByteBuffer)
-
getTransposed
java.nio.ByteBuffer getTransposed(int index, java.nio.ByteBuffer buffer)
Store the transpose of this matrix in column-major order into the suppliedByteBuffer
starting at the specified absolute buffer position/index.This method will not increment the position of the given ByteBuffer.
- Parameters:
index
- the absolute position into the ByteBufferbuffer
- will receive the values of this matrix in column-major order- Returns:
- the passed in buffer
-
getToAddress
Matrix3fc getToAddress(long address)
Store this matrix in column-major order at the given off-heap address.This method will throw an
UnsupportedOperationException
when JOML is used with `-Djoml.nounsafe`.This method is unsafe as it can result in a crash of the JVM process when the specified address range does not belong to this process.
- Parameters:
address
- the off-heap address where to store this matrix- Returns:
- this
-
get
float[] get(float[] arr, int offset)
Store this matrix into the supplied float array in column-major order at the given offset.- Parameters:
arr
- the array to write the matrix values intooffset
- the offset into the array- Returns:
- the passed in array
-
get
float[] get(float[] arr)
Store this matrix into the supplied float array in column-major order.In order to specify an explicit offset into the array, use the method
get(float[], int)
.- Parameters:
arr
- the array to write the matrix values into- Returns:
- the passed in array
- See Also:
get(float[], int)
-
scale
Matrix3f scale(Vector3fc xyz, Matrix3f dest)
Apply scaling tothis
matrix by scaling the base axes by the givenxyz.x
,xyz.y
andxyz.z
factors, respectively and store the result indest
.If
M
isthis
matrix andS
the scaling matrix, then the new matrix will beM * S
. So when transforming a vectorv
with the new matrix by usingM * S * v
, the scaling will be applied first!- Parameters:
xyz
- the factors of the x, y and z component, respectivelydest
- will hold the result- Returns:
- dest
-
scale
Matrix3f scale(float x, float y, float z, Matrix3f dest)
Apply scaling to this matrix by scaling the base axes by the given x, y and z factors and store the result indest
.If
M
isthis
matrix andS
the scaling matrix, then the new matrix will beM * S
. So when transforming a vectorv
with the new matrix by usingM * S * v
, the scaling will be applied first!- Parameters:
x
- the factor of the x componenty
- the factor of the y componentz
- the factor of the z componentdest
- will hold the result- Returns:
- dest
-
scale
Matrix3f scale(float xyz, Matrix3f dest)
Apply scaling to this matrix by uniformly scaling all base axes by the givenxyz
factor and store the result indest
.If
M
isthis
matrix andS
the scaling matrix, then the new matrix will beM * S
. So when transforming a vectorv
with the new matrix by usingM * S * v
, the scaling will be applied first!- Parameters:
xyz
- the factor for all componentsdest
- will hold the result- Returns:
- dest
- See Also:
scale(float, float, float, Matrix3f)
-
scaleLocal
Matrix3f scaleLocal(float x, float y, float z, Matrix3f dest)
Pre-multiply scaling tothis
matrix by scaling the base axes by the given x, y and z factors and store the result indest
.If
M
isthis
matrix andS
the scaling matrix, then the new matrix will beS * M
. So when transforming a vectorv
with the new matrix by usingS * M * v
, the scaling will be applied last!- Parameters:
x
- the factor of the x componenty
- the factor of the y componentz
- the factor of the z componentdest
- will hold the result- Returns:
- dest
-
transform
Vector3f transform(Vector3f v)
Transform the given vector by this matrix.- Parameters:
v
- the vector to transform- Returns:
- v
-
transform
Vector3f transform(Vector3fc v, Vector3f dest)
Transform the given vector by this matrix and store the result indest
.- Parameters:
v
- the vector to transformdest
- will hold the result- Returns:
- dest
-
transform
Vector3f transform(float x, float y, float z, Vector3f dest)
Transform the vector(x, y, z)
by this matrix and store the result indest
.- Parameters:
x
- the x coordinate of the vector to transformy
- the y coordinate of the vector to transformz
- the z coordinate of the vector to transformdest
- will hold the result- Returns:
- dest
-
transformTranspose
Vector3f transformTranspose(Vector3f v)
Transform the given vector by the transpose of this matrix.- Parameters:
v
- the vector to transform- Returns:
- v
-
transformTranspose
Vector3f transformTranspose(Vector3fc v, Vector3f dest)
Transform the given vector by the transpose of this matrix and store the result indest
.- Parameters:
v
- the vector to transformdest
- will hold the result- Returns:
- dest
-
transformTranspose
Vector3f transformTranspose(float x, float y, float z, Vector3f dest)
Transform the vector(x, y, z)
by the transpose of this matrix and store the result indest
.- Parameters:
x
- the x coordinate of the vector to transformy
- the y coordinate of the vector to transformz
- the z coordinate of the vector to transformdest
- will hold the result- Returns:
- dest
-
rotateX
Matrix3f rotateX(float ang, Matrix3f dest)
Apply rotation about the X axis to this matrix by rotating the given amount of radians and store the result indest
.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
M
isthis
matrix andR
the rotation matrix, then the new matrix will beM * R
. So when transforming a vectorv
with the new matrix by usingM * R * v
, the rotation will be applied first!Reference: http://en.wikipedia.org
- Parameters:
ang
- the angle in radiansdest
- will hold the result- Returns:
- dest
-
rotateY
Matrix3f rotateY(float ang, Matrix3f dest)
Apply rotation about the Y axis to this matrix by rotating the given amount of radians and store the result indest
.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
M
isthis
matrix andR
the rotation matrix, then the new matrix will beM * R
. So when transforming a vectorv
with the new matrix by usingM * R * v
, the rotation will be applied first!Reference: http://en.wikipedia.org
- Parameters:
ang
- the angle in radiansdest
- will hold the result- Returns:
- dest
-
rotateZ
Matrix3f rotateZ(float ang, Matrix3f dest)
Apply rotation about the Z axis to this matrix by rotating the given amount of radians and store the result indest
.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
M
isthis
matrix andR
the rotation matrix, then the new matrix will beM * R
. So when transforming a vectorv
with the new matrix by usingM * R * v
, the rotation will be applied first!Reference: http://en.wikipedia.org
- Parameters:
ang
- the angle in radiansdest
- will hold the result- Returns:
- dest
-
rotateXYZ
Matrix3f rotateXYZ(float angleX, float angleY, float angleZ, Matrix3f dest)
Apply rotation ofangleX
radians about the X axis, followed by a rotation ofangleY
radians about the Y axis and followed by a rotation ofangleZ
radians about the Z axis and store the result indest
.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
M
isthis
matrix andR
the rotation matrix, then the new matrix will beM * R
. So when transforming a vectorv
with the new matrix by usingM * R * v
, the rotation will be applied first!This method is equivalent to calling:
rotateX(angleX, dest).rotateY(angleY).rotateZ(angleZ)
- Parameters:
angleX
- the angle to rotate about XangleY
- the angle to rotate about YangleZ
- the angle to rotate about Zdest
- will hold the result- Returns:
- dest
-
rotateZYX
Matrix3f rotateZYX(float angleZ, float angleY, float angleX, Matrix3f dest)
Apply rotation ofangleZ
radians about the Z axis, followed by a rotation ofangleY
radians about the Y axis and followed by a rotation ofangleX
radians about the X axis and store the result indest
.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
M
isthis
matrix andR
the rotation matrix, then the new matrix will beM * R
. So when transforming a vectorv
with the new matrix by usingM * R * v
, the rotation will be applied first!This method is equivalent to calling:
rotateZ(angleZ, dest).rotateY(angleY).rotateX(angleX)
- Parameters:
angleZ
- the angle to rotate about ZangleY
- the angle to rotate about YangleX
- the angle to rotate about Xdest
- will hold the result- Returns:
- dest
-
rotateYXZ
Matrix3f rotateYXZ(float angleY, float angleX, float angleZ, Matrix3f dest)
Apply rotation ofangleY
radians about the Y axis, followed by a rotation ofangleX
radians about the X axis and followed by a rotation ofangleZ
radians about the Z axis and store the result indest
.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
M
isthis
matrix andR
the rotation matrix, then the new matrix will beM * R
. So when transforming a vectorv
with the new matrix by usingM * R * v
, the rotation will be applied first!This method is equivalent to calling:
rotateY(angleY, dest).rotateX(angleX).rotateZ(angleZ)
- Parameters:
angleY
- the angle to rotate about YangleX
- the angle to rotate about XangleZ
- the angle to rotate about Zdest
- will hold the result- Returns:
- dest
-
rotate
Matrix3f rotate(float ang, float x, float y, float z, Matrix3f dest)
Apply rotation to this matrix by rotating the given amount of radians about the given axis specified as x, y and z components, and store the result indest
.The axis described by the three components needs to be a unit vector.
When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
M
isthis
matrix andR
the rotation matrix, then the new matrix will beM * R
. So when transforming a vectorv
with the new matrix by usingM * R * v
, the rotation will be applied first!Reference: http://en.wikipedia.org
- Parameters:
ang
- the angle in radiansx
- the x component of the axisy
- the y component of the axisz
- the z component of the axisdest
- will hold the result- Returns:
- dest
-
rotateLocal
Matrix3f rotateLocal(float ang, float x, float y, float z, Matrix3f dest)
Pre-multiply a rotation to this matrix by rotating the given amount of radians about the specified(x, y, z)
axis and store the result indest
.The axis described by the three components needs to be a unit vector.
When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
M
isthis
matrix andR
the rotation matrix, then the new matrix will beR * M
. So when transforming a vectorv
with the new matrix by usingR * M * v
, the rotation will be applied last!Reference: http://en.wikipedia.org
- Parameters:
ang
- the angle in radiansx
- the x component of the axisy
- the y component of the axisz
- the z component of the axisdest
- will hold the result- Returns:
- dest
-
rotateLocalX
Matrix3f rotateLocalX(float ang, Matrix3f dest)
Pre-multiply a rotation around the X axis to this matrix by rotating the given amount of radians about the X axis and store the result indest
.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
M
isthis
matrix andR
the rotation matrix, then the new matrix will beR * M
. So when transforming a vectorv
with the new matrix by usingR * M * v
, the rotation will be applied last!Reference: http://en.wikipedia.org
- Parameters:
ang
- the angle in radians to rotate about the X axisdest
- will hold the result- Returns:
- dest
-
rotateLocalY
Matrix3f rotateLocalY(float ang, Matrix3f dest)
Pre-multiply a rotation around the Y axis to this matrix by rotating the given amount of radians about the Y axis and store the result indest
.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
M
isthis
matrix andR
the rotation matrix, then the new matrix will beR * M
. So when transforming a vectorv
with the new matrix by usingR * M * v
, the rotation will be applied last!Reference: http://en.wikipedia.org
- Parameters:
ang
- the angle in radians to rotate about the Y axisdest
- will hold the result- Returns:
- dest
-
rotateLocalZ
Matrix3f rotateLocalZ(float ang, Matrix3f dest)
Pre-multiply a rotation around the Z axis to this matrix by rotating the given amount of radians about the Z axis and store the result indest
.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
M
isthis
matrix andR
the rotation matrix, then the new matrix will beR * M
. So when transforming a vectorv
with the new matrix by usingR * M * v
, the rotation will be applied last!Reference: http://en.wikipedia.org
- Parameters:
ang
- the angle in radians to rotate about the Z axisdest
- will hold the result- Returns:
- dest
-
rotate
Matrix3f rotate(Quaternionfc quat, Matrix3f dest)
Apply the rotation - and possibly scaling - transformation of the givenQuaternionfc
to this matrix and store the result indest
.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
M
isthis
matrix andQ
the rotation matrix obtained from the given quaternion, then the new matrix will beM * Q
. So when transforming a vectorv
with the new matrix by usingM * Q * v
, the quaternion rotation will be applied first!Reference: http://en.wikipedia.org
- Parameters:
quat
- theQuaternionfc
dest
- will hold the result- Returns:
- dest
-
rotateLocal
Matrix3f rotateLocal(Quaternionfc quat, Matrix3f dest)
Pre-multiply the rotation - and possibly scaling - transformation of the givenQuaternionfc
to this matrix and store the result indest
.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
M
isthis
matrix andQ
the rotation matrix obtained from the given quaternion, then the new matrix will beQ * M
. So when transforming a vectorv
with the new matrix by usingQ * M * v
, the quaternion rotation will be applied last!Reference: http://en.wikipedia.org
- Parameters:
quat
- theQuaternionfc
dest
- will hold the result- Returns:
- dest
-
rotate
Matrix3f rotate(AxisAngle4f axisAngle, Matrix3f dest)
Apply a rotation transformation, rotating about the givenAxisAngle4f
and store the result indest
.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
M
isthis
matrix andA
the rotation matrix obtained from the givenAxisAngle4f
, then the new matrix will beM * A
. So when transforming a vectorv
with the new matrix by usingM * A * v
, theAxisAngle4f
rotation will be applied first!Reference: http://en.wikipedia.org
- Parameters:
axisAngle
- theAxisAngle4f
(needs to benormalized
)dest
- will hold the result- Returns:
- dest
- See Also:
rotate(float, float, float, float, Matrix3f)
-
rotate
Matrix3f rotate(float angle, Vector3fc axis, Matrix3f dest)
Apply a rotation transformation, rotating the given radians about the specified axis and store the result indest
.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
M
isthis
matrix andA
the rotation matrix obtained from the given angle and axis, then the new matrix will beM * A
. So when transforming a vectorv
with the new matrix by usingM * A * v
, the axis-angle rotation will be applied first!Reference: http://en.wikipedia.org
- Parameters:
angle
- the angle in radiansaxis
- the rotation axis (needs to benormalized
)dest
- will hold the result- Returns:
- dest
- See Also:
rotate(float, float, float, float, Matrix3f)
-
lookAlong
Matrix3f lookAlong(Vector3fc dir, Vector3fc up, Matrix3f dest)
Apply a rotation transformation to this matrix to make-z
point alongdir
and store the result indest
.If
M
isthis
matrix andL
the lookalong rotation matrix, then the new matrix will beM * L
. So when transforming a vectorv
with the new matrix by usingM * L * v
, the lookalong rotation transformation will be applied first!- Parameters:
dir
- the direction in space to look alongup
- the direction of 'up'dest
- will hold the result- Returns:
- dest
- See Also:
lookAlong(float, float, float, float, float, float, Matrix3f)
-
lookAlong
Matrix3f lookAlong(float dirX, float dirY, float dirZ, float upX, float upY, float upZ, Matrix3f dest)
Apply a rotation transformation to this matrix to make-z
point alongdir
and store the result indest
.If
M
isthis
matrix andL
the lookalong rotation matrix, then the new matrix will beM * L
. So when transforming a vectorv
with the new matrix by usingM * L * v
, the lookalong rotation transformation will be applied first!- Parameters:
dirX
- the x-coordinate of the direction to look alongdirY
- the y-coordinate of the direction to look alongdirZ
- the z-coordinate of the direction to look alongupX
- the x-coordinate of the up vectorupY
- the y-coordinate of the up vectorupZ
- the z-coordinate of the up vectordest
- will hold the result- Returns:
- dest
-
getRow
Vector3f getRow(int row, Vector3f dest) throws java.lang.IndexOutOfBoundsException
Get the row at the givenrow
index, starting with0
.- Parameters:
row
- the row index in[0..2]
dest
- will hold the row components- Returns:
- the passed in destination
- Throws:
java.lang.IndexOutOfBoundsException
- ifrow
is not in[0..2]
-
getColumn
Vector3f getColumn(int column, Vector3f dest) throws java.lang.IndexOutOfBoundsException
Get the column at the givencolumn
index, starting with0
.- Parameters:
column
- the column index in[0..2]
dest
- will hold the column components- Returns:
- the passed in destination
- Throws:
java.lang.IndexOutOfBoundsException
- ifcolumn
is not in[0..2]
-
get
float get(int column, int row)
Get the matrix element value at the given column and row.- Parameters:
column
- the colum index in[0..2]
row
- the row index in[0..2]
- Returns:
- the element value
-
getRowColumn
float getRowColumn(int row, int column)
Get the matrix element value at the given row and column.- Parameters:
row
- the row index in[0..2]
column
- the colum index in[0..2]
- Returns:
- the element value
-
normal
Matrix3f normal(Matrix3f dest)
Compute a normal matrix fromthis
matrix and store it intodest
.The normal matrix of
m
is the transpose of the inverse ofm
.- Parameters:
dest
- will hold the result- Returns:
- dest
-
cofactor
Matrix3f cofactor(Matrix3f dest)
Compute the cofactor matrix ofthis
and store it intodest
.The cofactor matrix can be used instead of
normal(Matrix3f)
to transform normals when the orientation of the normals with respect to the surface should be preserved.- Parameters:
dest
- will hold the result- Returns:
- dest
-
getScale
Vector3f getScale(Vector3f dest)
Get the scaling factors ofthis
matrix for the three base axes.- Parameters:
dest
- will hold the scaling factors forx
,y
andz
- Returns:
- dest
-
positiveZ
Vector3f positiveZ(Vector3f dir)
Obtain the direction of+Z
before the transformation represented bythis
matrix is applied.This method is equivalent to the following code:
Matrix3f inv = new Matrix3f(this).invert(); inv.transform(dir.set(0, 0, 1)).normalize();
Ifthis
is already an orthogonal matrix, then consider usingnormalizedPositiveZ(Vector3f)
instead.Reference: http://www.euclideanspace.com
- Parameters:
dir
- will hold the direction of+Z
- Returns:
- dir
-
normalizedPositiveZ
Vector3f normalizedPositiveZ(Vector3f dir)
Obtain the direction of+Z
before the transformation represented bythis
orthogonal matrix is applied. This method only produces correct results ifthis
is an orthogonal matrix.This method is equivalent to the following code:
Matrix3f inv = new Matrix3f(this).transpose(); inv.transform(dir.set(0, 0, 1));
Reference: http://www.euclideanspace.com
- Parameters:
dir
- will hold the direction of+Z
- Returns:
- dir
-
positiveX
Vector3f positiveX(Vector3f dir)
Obtain the direction of+X
before the transformation represented bythis
matrix is applied.This method is equivalent to the following code:
Matrix3f inv = new Matrix3f(this).invert(); inv.transform(dir.set(1, 0, 0)).normalize();
Ifthis
is already an orthogonal matrix, then consider usingnormalizedPositiveX(Vector3f)
instead.Reference: http://www.euclideanspace.com
- Parameters:
dir
- will hold the direction of+X
- Returns:
- dir
-
normalizedPositiveX
Vector3f normalizedPositiveX(Vector3f dir)
Obtain the direction of+X
before the transformation represented bythis
orthogonal matrix is applied. This method only produces correct results ifthis
is an orthogonal matrix.This method is equivalent to the following code:
Matrix3f inv = new Matrix3f(this).transpose(); inv.transform(dir.set(1, 0, 0));
Reference: http://www.euclideanspace.com
- Parameters:
dir
- will hold the direction of+X
- Returns:
- dir
-
positiveY
Vector3f positiveY(Vector3f dir)
Obtain the direction of+Y
before the transformation represented bythis
matrix is applied.This method is equivalent to the following code:
Matrix3f inv = new Matrix3f(this).invert(); inv.transform(dir.set(0, 1, 0)).normalize();
Ifthis
is already an orthogonal matrix, then consider usingnormalizedPositiveY(Vector3f)
instead.Reference: http://www.euclideanspace.com
- Parameters:
dir
- will hold the direction of+Y
- Returns:
- dir
-
normalizedPositiveY
Vector3f normalizedPositiveY(Vector3f dir)
Obtain the direction of+Y
before the transformation represented bythis
orthogonal matrix is applied. This method only produces correct results ifthis
is an orthogonal matrix.This method is equivalent to the following code:
Matrix3f inv = new Matrix3f(this).transpose(); inv.transform(dir.set(0, 1, 0));
Reference: http://www.euclideanspace.com
- Parameters:
dir
- will hold the direction of+Y
- Returns:
- dir
-
add
Matrix3f add(Matrix3fc other, Matrix3f dest)
Component-wise addthis
andother
and store the result indest
.- Parameters:
other
- the other addenddest
- will hold the result- Returns:
- dest
-
sub
Matrix3f sub(Matrix3fc subtrahend, Matrix3f dest)
Component-wise subtractsubtrahend
fromthis
and store the result indest
.- Parameters:
subtrahend
- the subtrahenddest
- will hold the result- Returns:
- dest
-
mulComponentWise
Matrix3f mulComponentWise(Matrix3fc other, Matrix3f dest)
Component-wise multiplythis
byother
and store the result indest
.- Parameters:
other
- the other matrixdest
- will hold the result- Returns:
- dest
-
lerp
Matrix3f lerp(Matrix3fc other, float t, Matrix3f dest)
Linearly interpolatethis
andother
using the given interpolation factort
and store the result indest
.If
t
is0.0
then the result isthis
. If the interpolation factor is1.0
then the result isother
.- Parameters:
other
- the other matrixt
- the interpolation factor between 0.0 and 1.0dest
- will hold the result- Returns:
- dest
-
rotateTowards
Matrix3f rotateTowards(Vector3fc direction, Vector3fc up, Matrix3f dest)
Apply a model transformation to this matrix for a right-handed coordinate system, that aligns the local+Z
axis withdirection
and store the result indest
.If
M
isthis
matrix andL
the lookat matrix, then the new matrix will beM * L
. So when transforming a vectorv
with the new matrix by usingM * L * v
, the lookat transformation will be applied first!This method is equivalent to calling:
mul(new Matrix3f().lookAlong(new Vector3f(dir).negate(), up).invert(), dest)
- Parameters:
direction
- the direction to rotate towardsup
- the model's up vectordest
- will hold the result- Returns:
- dest
- See Also:
rotateTowards(float, float, float, float, float, float, Matrix3f)
-
rotateTowards
Matrix3f rotateTowards(float dirX, float dirY, float dirZ, float upX, float upY, float upZ, Matrix3f dest)
Apply a model transformation to this matrix for a right-handed coordinate system, that aligns the local+Z
axis withdir
and store the result indest
.If
M
isthis
matrix andL
the lookat matrix, then the new matrix will beM * L
. So when transforming a vectorv
with the new matrix by usingM * L * v
, the lookat transformation will be applied first!This method is equivalent to calling:
mul(new Matrix3f().lookAlong(-dirX, -dirY, -dirZ, upX, upY, upZ).invert(), dest)
- Parameters:
dirX
- the x-coordinate of the direction to rotate towardsdirY
- the y-coordinate of the direction to rotate towardsdirZ
- the z-coordinate of the direction to rotate towardsupX
- the x-coordinate of the up vectorupY
- the y-coordinate of the up vectorupZ
- the z-coordinate of the up vectordest
- will hold the result- Returns:
- dest
- See Also:
rotateTowards(Vector3fc, Vector3fc, Matrix3f)
-
getEulerAnglesXYZ
Vector3f getEulerAnglesXYZ(Vector3f dest)
Extract the Euler angles from the rotation represented bythis
matrix and store the extracted Euler angles indest
.This method assumes that
this
matrix only represents a rotation without scaling.The Euler angles are always returned as the angle around X in the
Vector3f.x
field, the angle around Y in theVector3f.y
field and the angle around Z in theVector3f.z
field of the suppliedVector3f
instance.Note that the returned Euler angles must be applied in the order
X * Y * Z
to obtain the identical matrix. This means that callingrotateXYZ(float, float, float, Matrix3f)
using the obtained Euler angles will yield the same rotation as the original matrix from which the Euler angles were obtained, so in the below code the matrixm2
should be identical tom
(disregarding possible floating-point inaccuracies).Matrix3f m = ...; // <- matrix only representing rotation Matrix3f n = new Matrix3f(); n.rotateXYZ(m.getEulerAnglesXYZ(new Vector3f()));
Reference: http://en.wikipedia.org/
- Parameters:
dest
- will hold the extracted Euler angles- Returns:
- dest
-
getEulerAnglesZYX
Vector3f getEulerAnglesZYX(Vector3f dest)
Extract the Euler angles from the rotation represented bythis
matrix and store the extracted Euler angles indest
.This method assumes that
this
matrix only represents a rotation without scaling.The Euler angles are always returned as the angle around X in the
Vector3f.x
field, the angle around Y in theVector3f.y
field and the angle around Z in theVector3f.z
field of the suppliedVector3f
instance.Note that the returned Euler angles must be applied in the order
Z * Y * X
to obtain the identical matrix. This means that callingrotateZYX(float, float, float, Matrix3f)
using the obtained Euler angles will yield the same rotation as the original matrix from which the Euler angles were obtained, so in the below code the matrixm2
should be identical tom
(disregarding possible floating-point inaccuracies).Matrix3f m = ...; // <- matrix only representing rotation Matrix3f n = new Matrix3f(); n.rotateZYX(m.getEulerAnglesZYX(new Vector3f()));
Reference: http://en.wikipedia.org/
- Parameters:
dest
- will hold the extracted Euler angles- Returns:
- dest
-
obliqueZ
Matrix3f obliqueZ(float a, float b, Matrix3f dest)
Apply an oblique projection transformation to this matrix with the given values fora
andb
and store the result indest
.If
M
isthis
matrix andO
the oblique transformation matrix, then the new matrix will beM * O
. So when transforming a vectorv
with the new matrix by usingM * O * v
, the oblique transformation will be applied first!The oblique transformation is defined as:
x' = x + a*z y' = y + a*z z' = z
or in matrix form:1 0 a 0 1 b 0 0 1
- Parameters:
a
- the value for the z factor that applies to xb
- the value for the z factor that applies to ydest
- will hold the result- Returns:
- dest
-
equals
boolean equals(Matrix3fc m, float delta)
Compare the matrix elements ofthis
matrix with the given matrix using the givendelta
and return whether all of them are equal within a maximum difference ofdelta
.Please note that this method is not used by any data structure such as
ArrayList
HashSet
orHashMap
and their operations, such asArrayList.contains(Object)
orHashSet.remove(Object)
, since those data structures only use theObject.equals(Object)
andObject.hashCode()
methods.- Parameters:
m
- the other matrixdelta
- the allowed maximum difference- Returns:
true
whether all of the matrix elements are equal;false
otherwise
-
reflect
Matrix3f reflect(float nx, float ny, float nz, Matrix3f dest)
Apply a mirror/reflection transformation to this matrix that reflects through the given plane specified via the plane normal(nx, ny, nz)
, and store the result indest
.If
M
isthis
matrix andR
the reflection matrix, then the new matrix will beM * R
. So when transforming a vectorv
with the new matrix by usingM * R * v
, the reflection will be applied first!- Parameters:
nx
- the x-coordinate of the plane normalny
- the y-coordinate of the plane normalnz
- the z-coordinate of the plane normaldest
- will hold the result- Returns:
- this
-
reflect
Matrix3f reflect(Quaternionfc orientation, Matrix3f dest)
Apply a mirror/reflection transformation to this matrix that reflects through a plane specified via the plane orientation, and store the result indest
.This method can be used to build a reflection transformation based on the orientation of a mirror object in the scene. It is assumed that the default mirror plane's normal is
(0, 0, 1)
. So, if the givenQuaternionfc
is the identity (does not apply any additional rotation), the reflection plane will bez=0
.If
M
isthis
matrix andR
the reflection matrix, then the new matrix will beM * R
. So when transforming a vectorv
with the new matrix by usingM * R * v
, the reflection will be applied first!- Parameters:
orientation
- the plane orientationdest
- will hold the result- Returns:
- this
-
reflect
Matrix3f reflect(Vector3fc normal, Matrix3f dest)
Apply a mirror/reflection transformation to this matrix that reflects through the given plane specified via the plane normal, and store the result indest
.If
M
isthis
matrix andR
the reflection matrix, then the new matrix will beM * R
. So when transforming a vectorv
with the new matrix by usingM * R * v
, the reflection will be applied first!- Parameters:
normal
- the plane normaldest
- will hold the result- Returns:
- this
-
isFinite
boolean isFinite()
Determine whether all matrix elements are finite floating-point values, that is, they are notNaN
and notinfinity
.- Returns:
true
if all components are finite floating-point values;false
otherwise
-
quadraticFormProduct
float quadraticFormProduct(float x, float y, float z)
Compute(x, y, z)^T * this * (x, y, z)
.- Parameters:
x
- the x coordinate of the vector to multiplyy
- the y coordinate of the vector to multiplyz
- the z coordinate of the vector to multiply- Returns:
- the result
-
quadraticFormProduct
float quadraticFormProduct(Vector3fc v)
Computev^T * this * v
.- Parameters:
v
- the vector to multiply- Returns:
- the result
-
mapXZY
Matrix3f mapXZY(Matrix3f dest)
Multiplythis
by the matrix1 0 0 0 0 1 0 1 0
and store the result indest
.- Parameters:
dest
- will hold the result- Returns:
- dest
-
mapXZnY
Matrix3f mapXZnY(Matrix3f dest)
Multiplythis
by the matrix1 0 0 0 0 -1 0 1 0
and store the result indest
.- Parameters:
dest
- will hold the result- Returns:
- dest
-
mapXnYnZ
Matrix3f mapXnYnZ(Matrix3f dest)
Multiplythis
by the matrix1 0 0 0 -1 0 0 0 -1
and store the result indest
.- Parameters:
dest
- will hold the result- Returns:
- dest
-
mapXnZY
Matrix3f mapXnZY(Matrix3f dest)
Multiplythis
by the matrix1 0 0 0 0 1 0 -1 0
and store the result indest
.- Parameters:
dest
- will hold the result- Returns:
- dest
-
mapXnZnY
Matrix3f mapXnZnY(Matrix3f dest)
Multiplythis
by the matrix1 0 0 0 0 -1 0 -1 0
and store the result indest
.- Parameters:
dest
- will hold the result- Returns:
- dest
-
mapYXZ
Matrix3f mapYXZ(Matrix3f dest)
Multiplythis
by the matrix0 1 0 1 0 0 0 0 1
and store the result indest
.- Parameters:
dest
- will hold the result- Returns:
- dest
-
mapYXnZ
Matrix3f mapYXnZ(Matrix3f dest)
Multiplythis
by the matrix0 1 0 1 0 0 0 0 -1
and store the result indest
.- Parameters:
dest
- will hold the result- Returns:
- dest
-
mapYZX
Matrix3f mapYZX(Matrix3f dest)
Multiplythis
by the matrix0 0 1 1 0 0 0 1 0
and store the result indest
.- Parameters:
dest
- will hold the result- Returns:
- dest
-
mapYZnX
Matrix3f mapYZnX(Matrix3f dest)
Multiplythis
by the matrix0 0 -1 1 0 0 0 1 0
and store the result indest
.- Parameters:
dest
- will hold the result- Returns:
- dest
-
mapYnXZ
Matrix3f mapYnXZ(Matrix3f dest)
Multiplythis
by the matrix0 -1 0 1 0 0 0 0 1
and store the result indest
.- Parameters:
dest
- will hold the result- Returns:
- dest
-
mapYnXnZ
Matrix3f mapYnXnZ(Matrix3f dest)
Multiplythis
by the matrix0 -1 0 1 0 0 0 0 -1
and store the result indest
.- Parameters:
dest
- will hold the result- Returns:
- dest
-
mapYnZX
Matrix3f mapYnZX(Matrix3f dest)
Multiplythis
by the matrix0 0 1 1 0 0 0 -1 0
and store the result indest
.- Parameters:
dest
- will hold the result- Returns:
- dest
-
mapYnZnX
Matrix3f mapYnZnX(Matrix3f dest)
Multiplythis
by the matrix0 0 -1 1 0 0 0 -1 0
and store the result indest
.- Parameters:
dest
- will hold the result- Returns:
- dest
-
mapZXY
Matrix3f mapZXY(Matrix3f dest)
Multiplythis
by the matrix0 1 0 0 0 1 1 0 0
and store the result indest
.- Parameters:
dest
- will hold the result- Returns:
- dest
-
mapZXnY
Matrix3f mapZXnY(Matrix3f dest)
Multiplythis
by the matrix0 1 0 0 0 -1 1 0 0
and store the result indest
.- Parameters:
dest
- will hold the result- Returns:
- dest
-
mapZYX
Matrix3f mapZYX(Matrix3f dest)
Multiplythis
by the matrix0 0 1 0 1 0 1 0 0
and store the result indest
.- Parameters:
dest
- will hold the result- Returns:
- dest
-
mapZYnX
Matrix3f mapZYnX(Matrix3f dest)
Multiplythis
by the matrix0 0 -1 0 1 0 1 0 0
and store the result indest
.- Parameters:
dest
- will hold the result- Returns:
- dest
-
mapZnXY
Matrix3f mapZnXY(Matrix3f dest)
Multiplythis
by the matrix0 -1 0 0 0 1 1 0 0
and store the result indest
.- Parameters:
dest
- will hold the result- Returns:
- dest
-
mapZnXnY
Matrix3f mapZnXnY(Matrix3f dest)
Multiplythis
by the matrix0 -1 0 0 0 -1 1 0 0
and store the result indest
.- Parameters:
dest
- will hold the result- Returns:
- dest
-
mapZnYX
Matrix3f mapZnYX(Matrix3f dest)
Multiplythis
by the matrix0 0 1 0 -1 0 1 0 0
and store the result indest
.- Parameters:
dest
- will hold the result- Returns:
- dest
-
mapZnYnX
Matrix3f mapZnYnX(Matrix3f dest)
Multiplythis
by the matrix0 0 -1 0 -1 0 1 0 0
and store the result indest
.- Parameters:
dest
- will hold the result- Returns:
- dest
-
mapnXYnZ
Matrix3f mapnXYnZ(Matrix3f dest)
Multiplythis
by the matrix-1 0 0 0 1 0 0 0 -1
and store the result indest
.- Parameters:
dest
- will hold the result- Returns:
- dest
-
mapnXZY
Matrix3f mapnXZY(Matrix3f dest)
Multiplythis
by the matrix-1 0 0 0 0 1 0 1 0
and store the result indest
.- Parameters:
dest
- will hold the result- Returns:
- dest
-
mapnXZnY
Matrix3f mapnXZnY(Matrix3f dest)
Multiplythis
by the matrix-1 0 0 0 0 -1 0 1 0
and store the result indest
.- Parameters:
dest
- will hold the result- Returns:
- dest
-
mapnXnYZ
Matrix3f mapnXnYZ(Matrix3f dest)
Multiplythis
by the matrix-1 0 0 0 -1 0 0 0 1
and store the result indest
.- Parameters:
dest
- will hold the result- Returns:
- dest
-
mapnXnYnZ
Matrix3f mapnXnYnZ(Matrix3f dest)
Multiplythis
by the matrix-1 0 0 0 -1 0 0 0 -1
and store the result indest
.- Parameters:
dest
- will hold the result- Returns:
- dest
-
mapnXnZY
Matrix3f mapnXnZY(Matrix3f dest)
Multiplythis
by the matrix-1 0 0 0 0 1 0 -1 0
and store the result indest
.- Parameters:
dest
- will hold the result- Returns:
- dest
-
mapnXnZnY
Matrix3f mapnXnZnY(Matrix3f dest)
Multiplythis
by the matrix-1 0 0 0 0 -1 0 -1 0
and store the result indest
.- Parameters:
dest
- will hold the result- Returns:
- dest
-
mapnYXZ
Matrix3f mapnYXZ(Matrix3f dest)
Multiplythis
by the matrix0 1 0 -1 0 0 0 0 1
and store the result indest
.- Parameters:
dest
- will hold the result- Returns:
- dest
-
mapnYXnZ
Matrix3f mapnYXnZ(Matrix3f dest)
Multiplythis
by the matrix0 1 0 -1 0 0 0 0 -1
and store the result indest
.- Parameters:
dest
- will hold the result- Returns:
- dest
-
mapnYZX
Matrix3f mapnYZX(Matrix3f dest)
Multiplythis
by the matrix0 0 1 -1 0 0 0 1 0
and store the result indest
.- Parameters:
dest
- will hold the result- Returns:
- dest
-
mapnYZnX
Matrix3f mapnYZnX(Matrix3f dest)
Multiplythis
by the matrix0 0 -1 -1 0 0 0 1 0
and store the result indest
.- Parameters:
dest
- will hold the result- Returns:
- dest
-
mapnYnXZ
Matrix3f mapnYnXZ(Matrix3f dest)
Multiplythis
by the matrix0 -1 0 -1 0 0 0 0 1
and store the result indest
.- Parameters:
dest
- will hold the result- Returns:
- dest
-
mapnYnXnZ
Matrix3f mapnYnXnZ(Matrix3f dest)
Multiplythis
by the matrix0 -1 0 -1 0 0 0 0 -1
and store the result indest
.- Parameters:
dest
- will hold the result- Returns:
- dest
-
mapnYnZX
Matrix3f mapnYnZX(Matrix3f dest)
Multiplythis
by the matrix0 0 1 -1 0 0 0 -1 0
and store the result indest
.- Parameters:
dest
- will hold the result- Returns:
- dest
-
mapnYnZnX
Matrix3f mapnYnZnX(Matrix3f dest)
Multiplythis
by the matrix0 0 -1 -1 0 0 0 -1 0
and store the result indest
.- Parameters:
dest
- will hold the result- Returns:
- dest
-
mapnZXY
Matrix3f mapnZXY(Matrix3f dest)
Multiplythis
by the matrix0 1 0 0 0 1 -1 0 0
and store the result indest
.- Parameters:
dest
- will hold the result- Returns:
- dest
-
mapnZXnY
Matrix3f mapnZXnY(Matrix3f dest)
Multiplythis
by the matrix0 1 0 0 0 -1 -1 0 0
and store the result indest
.- Parameters:
dest
- will hold the result- Returns:
- dest
-
mapnZYX
Matrix3f mapnZYX(Matrix3f dest)
Multiplythis
by the matrix0 0 1 0 1 0 -1 0 0
and store the result indest
.- Parameters:
dest
- will hold the result- Returns:
- dest
-
mapnZYnX
Matrix3f mapnZYnX(Matrix3f dest)
Multiplythis
by the matrix0 0 -1 0 1 0 -1 0 0
and store the result indest
.- Parameters:
dest
- will hold the result- Returns:
- dest
-
mapnZnXY
Matrix3f mapnZnXY(Matrix3f dest)
Multiplythis
by the matrix0 -1 0 0 0 1 -1 0 0
and store the result indest
.- Parameters:
dest
- will hold the result- Returns:
- dest
-
mapnZnXnY
Matrix3f mapnZnXnY(Matrix3f dest)
Multiplythis
by the matrix0 -1 0 0 0 -1 -1 0 0
and store the result indest
.- Parameters:
dest
- will hold the result- Returns:
- dest
-
mapnZnYX
Matrix3f mapnZnYX(Matrix3f dest)
Multiplythis
by the matrix0 0 1 0 -1 0 -1 0 0
and store the result indest
.- Parameters:
dest
- will hold the result- Returns:
- dest
-
mapnZnYnX
Matrix3f mapnZnYnX(Matrix3f dest)
Multiplythis
by the matrix0 0 -1 0 -1 0 -1 0 0
and store the result indest
.- Parameters:
dest
- will hold the result- Returns:
- dest
-
negateX
Matrix3f negateX(Matrix3f dest)
Multiplythis
by the matrix-1 0 0 0 1 0 0 0 1
and store the result indest
.- Parameters:
dest
- will hold the result- Returns:
- dest
-
negateY
Matrix3f negateY(Matrix3f dest)
Multiplythis
by the matrix1 0 0 0 -1 0 0 0 1
and store the result indest
.- Parameters:
dest
- will hold the result- Returns:
- dest
-
-