Class Matrix4x3f
- java.lang.Object
-
- org.joml.Matrix4x3f
-
- All Implemented Interfaces:
java.io.Externalizable
,java.io.Serializable
,java.lang.Cloneable
,Matrix4x3fc
- Direct Known Subclasses:
Matrix4x3fStack
public class Matrix4x3f extends java.lang.Object implements java.io.Externalizable, java.lang.Cloneable, Matrix4x3fc
Contains the definition of an affine 4x3 matrix (4 columns, 3 rows) of floats, and associated functions to transform it. The matrix is column-major to match OpenGL's interpretation, and it looks like this:m00 m10 m20 m30
m01 m11 m21 m31
m02 m12 m22 m32- Author:
- Richard Greenlees, Kai Burjack
- See Also:
- Serialized Form
-
-
Field Summary
-
Fields inherited from interface org.joml.Matrix4x3fc
PLANE_NX, PLANE_NY, PLANE_NZ, PLANE_PX, PLANE_PY, PLANE_PZ, PROPERTY_IDENTITY, PROPERTY_ORTHONORMAL, PROPERTY_TRANSLATION
-
-
Constructor Summary
Constructors Constructor Description Matrix4x3f()
Create a newMatrix4x3f
and set it toidentity
.Matrix4x3f(float m00, float m01, float m02, float m10, float m11, float m12, float m20, float m21, float m22, float m30, float m31, float m32)
Create a new 4x4 matrix using the supplied float values.Matrix4x3f(java.nio.FloatBuffer buffer)
Create a newMatrix4x3f
by reading its 12 float components from the givenFloatBuffer
at the buffer's current position.Matrix4x3f(Matrix3fc mat)
Create a newMatrix4x3f
by setting its left 3x3 submatrix to the values of the givenMatrix3fc
and the rest to identity.Matrix4x3f(Matrix4x3fc mat)
Create a newMatrix4x3f
and make it a copy of the given matrix.Matrix4x3f(Vector3fc col0, Vector3fc col1, Vector3fc col2, Vector3fc col3)
Create a newMatrix4x3f
and initialize its four columns using the supplied vectors.
-
Method Summary
All Methods Instance Methods Concrete Methods Modifier and Type Method Description Matrix4x3f
add(Matrix4x3fc other)
Component-wise addthis
andother
.Matrix4x3f
add(Matrix4x3fc other, Matrix4x3f dest)
Component-wise addthis
andother
and store the result indest
.Matrix4x3f
arcball(float radius, float centerX, float centerY, float centerZ, float angleX, float angleY)
Apply an arcball view transformation to this matrix with the givenradius
and center(centerX, centerY, centerZ)
position of the arcball and the specified X and Y rotation angles.Matrix4x3f
arcball(float radius, float centerX, float centerY, float centerZ, float angleX, float angleY, Matrix4x3f dest)
Apply an arcball view transformation to this matrix with the givenradius
and center(centerX, centerY, centerZ)
position of the arcball and the specified X and Y rotation angles, and store the result indest
.Matrix4x3f
arcball(float radius, Vector3fc center, float angleX, float angleY)
Apply an arcball view transformation to this matrix with the givenradius
andcenter
position of the arcball and the specified X and Y rotation angles.Matrix4x3f
arcball(float radius, Vector3fc center, float angleX, float angleY, Matrix4x3f dest)
Apply an arcball view transformation to this matrix with the givenradius
andcenter
position of the arcball and the specified X and Y rotation angles, and store the result indest
.Matrix4x3f
assume(int properties)
Assume the given properties about this matrix.Matrix4x3f
billboardCylindrical(Vector3fc objPos, Vector3fc targetPos, Vector3fc up)
Set this matrix to a cylindrical billboard transformation that rotates the local +Z axis of a given object with positionobjPos
towards a target position attargetPos
while constraining a cylindrical rotation around the givenup
vector.Matrix4x3f
billboardSpherical(Vector3fc objPos, Vector3fc targetPos)
Set this matrix to a spherical billboard transformation that rotates the local +Z axis of a given object with positionobjPos
towards a target position attargetPos
using a shortest arc rotation by not preserving any up vector of the object.Matrix4x3f
billboardSpherical(Vector3fc objPos, Vector3fc targetPos, Vector3fc up)
Set this matrix to a spherical billboard transformation that rotates the local +Z axis of a given object with positionobjPos
towards a target position attargetPos
.java.lang.Object
clone()
Matrix4x3f
cofactor3x3()
Compute the cofactor matrix of the left 3x3 submatrix ofthis
.Matrix3f
cofactor3x3(Matrix3f dest)
Compute the cofactor matrix of the left 3x3 submatrix ofthis
and store it intodest
.Matrix4x3f
cofactor3x3(Matrix4x3f dest)
Compute the cofactor matrix of the left 3x3 submatrix ofthis
and store it intodest
.float
determinant()
Return the determinant of this matrix.Matrix4x3f
determineProperties()
Compute and set the matrix properties returned byproperties()
based on the current matrix element values.boolean
equals(java.lang.Object obj)
boolean
equals(Matrix4x3fc m, float delta)
Compare the matrix elements ofthis
matrix with the given matrix using the givendelta
and return whether all of them are equal within a maximum difference ofdelta
.Matrix4x3f
fma(Matrix4x3fc other, float otherFactor)
Component-wise addthis
andother
by first multiplying each component ofother
byotherFactor
and adding that result tothis
.Matrix4x3f
fma(Matrix4x3fc other, float otherFactor, Matrix4x3f dest)
Component-wise addthis
andother
by first multiplying each component ofother
byotherFactor
, adding that tothis
and storing the final result indest
.Vector4f
frustumPlane(int which, Vector4f dest)
Calculate a frustum plane ofthis
matrix, which can be a projection matrix or a combined modelview-projection matrix, and store the result in the givendest
.float[]
get(float[] arr)
Store this matrix into the supplied float array in column-major order.float[]
get(float[] arr, int offset)
Store this matrix into the supplied float array in column-major order at the given offset.java.nio.ByteBuffer
get(int index, java.nio.ByteBuffer buffer)
Store this matrix in column-major order into the suppliedByteBuffer
starting at the specified absolute buffer position/index.java.nio.FloatBuffer
get(int index, java.nio.FloatBuffer buffer)
Store this matrix in column-major order into the suppliedFloatBuffer
starting at the specified absolute buffer position/index.java.nio.ByteBuffer
get(java.nio.ByteBuffer buffer)
Store this matrix in column-major order into the suppliedByteBuffer
at the current bufferposition
.java.nio.FloatBuffer
get(java.nio.FloatBuffer buffer)
Store this matrix in column-major order into the suppliedFloatBuffer
at the current bufferposition
.Matrix4d
get(Matrix4d dest)
Get the current values ofthis
matrix and store them into the upper 4x3 submatrix ofdest
.Matrix4f
get(Matrix4f dest)
Get the current values ofthis
matrix and store them into the upper 4x3 submatrix ofdest
.Matrix4x3d
get(Matrix4x3d dest)
Get the current values ofthis
matrix and store them intodest
.Matrix4x3f
get(Matrix4x3f dest)
Get the current values ofthis
matrix and store them intodest
.java.nio.ByteBuffer
get3x4(int index, java.nio.ByteBuffer buffer)
Store the left 3x3 submatrix as 3x4 matrix in column-major order into the suppliedByteBuffer
starting at the specified absolute buffer position/index, with the m03, m13 and m23 components being zero.java.nio.FloatBuffer
get3x4(int index, java.nio.FloatBuffer buffer)
Store the left 3x3 submatrix as 3x4 matrix in column-major order into the suppliedFloatBuffer
starting at the specified absolute buffer position/index, with the m03, m13 and m23 components being zero.java.nio.ByteBuffer
get3x4(java.nio.ByteBuffer buffer)
Store the left 3x3 submatrix as 3x4 matrix in column-major order into the suppliedByteBuffer
at the current bufferposition
, with the m03, m13 and m23 components being zero.java.nio.FloatBuffer
get3x4(java.nio.FloatBuffer buffer)
Store the left 3x3 submatrix as 3x4 matrix in column-major order into the suppliedFloatBuffer
at the current bufferposition
, with the m03, m13 and m23 components being zero.float[]
get4x4(float[] arr)
Store a 4x4 matrix in column-major order into the supplied array, where the upper 4x3 submatrix isthis
and the last row is(0, 0, 0, 1)
.float[]
get4x4(float[] arr, int offset)
Store a 4x4 matrix in column-major order into the supplied array at the given offset, where the upper 4x3 submatrix isthis
and the last row is(0, 0, 0, 1)
.java.nio.ByteBuffer
get4x4(int index, java.nio.ByteBuffer buffer)
Store a 4x4 matrix in column-major order into the suppliedByteBuffer
starting at the specified absolute buffer position/index, where the upper 4x3 submatrix isthis
and the last row is(0, 0, 0, 1)
.java.nio.FloatBuffer
get4x4(int index, java.nio.FloatBuffer buffer)
Store a 4x4 matrix in column-major order into the suppliedFloatBuffer
starting at the specified absolute buffer position/index, where the upper 4x3 submatrix isthis
and the last row is(0, 0, 0, 1)
.java.nio.ByteBuffer
get4x4(java.nio.ByteBuffer buffer)
Store a 4x4 matrix in column-major order into the suppliedByteBuffer
at the current bufferposition
, where the upper 4x3 submatrix isthis
and the last row is(0, 0, 0, 1)
.java.nio.FloatBuffer
get4x4(java.nio.FloatBuffer buffer)
Store a 4x4 matrix in column-major order into the suppliedFloatBuffer
at the current bufferposition
, where the upper 4x3 submatrix isthis
and the last row is(0, 0, 0, 1)
.Vector3f
getColumn(int column, Vector3f dest)
Get the column at the givencolumn
index, starting with0
.Vector3f
getEulerAnglesXYZ(Vector3f dest)
Extract the Euler angles from the rotation represented by the left 3x3 submatrix ofthis
and store the extracted Euler angles indest
.Vector3f
getEulerAnglesZYX(Vector3f dest)
Extract the Euler angles from the rotation represented by the left 3x3 submatrix ofthis
and store the extracted Euler angles indest
.Quaterniond
getNormalizedRotation(Quaterniond dest)
Get the current values ofthis
matrix and store the represented rotation into the givenQuaterniond
.Quaternionf
getNormalizedRotation(Quaternionf dest)
Get the current values ofthis
matrix and store the represented rotation into the givenQuaternionf
.AxisAngle4d
getRotation(AxisAngle4d dest)
Get the rotational component ofthis
matrix and store the represented rotation into the givenAxisAngle4d
.AxisAngle4f
getRotation(AxisAngle4f dest)
Get the rotational component ofthis
matrix and store the represented rotation into the givenAxisAngle4f
.Vector4f
getRow(int row, Vector4f dest)
Get the row at the givenrow
index, starting with0
.Vector3f
getScale(Vector3f dest)
Get the scaling factors ofthis
matrix for the three base axes.Matrix4x3fc
getToAddress(long address)
Store this matrix in column-major order at the given off-heap address.Vector3f
getTranslation(Vector3f dest)
Get only the translation components(m30, m31, m32)
of this matrix and store them in the given vectorxyz
.float[]
getTransposed(float[] arr)
Store this matrix into the supplied float array in row-major order.float[]
getTransposed(float[] arr, int offset)
Store this matrix into the supplied float array in row-major order at the given offset.java.nio.ByteBuffer
getTransposed(int index, java.nio.ByteBuffer buffer)
Store this matrix in row-major order into the suppliedByteBuffer
starting at the specified absolute buffer position/index.java.nio.FloatBuffer
getTransposed(int index, java.nio.FloatBuffer buffer)
Store this matrix in row-major order into the suppliedFloatBuffer
starting at the specified absolute buffer position/index.java.nio.ByteBuffer
getTransposed(java.nio.ByteBuffer buffer)
Store this matrix in row-major order into the suppliedByteBuffer
at the current bufferposition
.java.nio.FloatBuffer
getTransposed(java.nio.FloatBuffer buffer)
Store this matrix in row-major order into the suppliedFloatBuffer
at the current bufferposition
.Quaterniond
getUnnormalizedRotation(Quaterniond dest)
Get the current values ofthis
matrix and store the represented rotation into the givenQuaterniond
.Quaternionf
getUnnormalizedRotation(Quaternionf dest)
Get the current values ofthis
matrix and store the represented rotation into the givenQuaternionf
.int
hashCode()
Matrix4x3f
identity()
Reset this matrix to the identity.Matrix4x3f
invert()
Invert this matrix.Matrix4f
invert(Matrix4f dest)
Invert this matrix and write the result as the top 4x3 matrix intodest
and set all other values ofdest
to identity..Matrix4x3f
invert(Matrix4x3f dest)
Invert this matrix and write the result intodest
.Matrix4x3f
invertOrtho()
Invertthis
orthographic projection matrix.Matrix4x3f
invertOrtho(Matrix4x3f dest)
Invertthis
orthographic projection matrix and store the result into the givendest
.boolean
isFinite()
Determine whether all matrix elements are finite floating-point values, that is, they are notNaN
and notinfinity
.Matrix4x3f
lerp(Matrix4x3fc other, float t)
Linearly interpolatethis
andother
using the given interpolation factort
and store the result inthis
.Matrix4x3f
lerp(Matrix4x3fc other, float t, Matrix4x3f dest)
Linearly interpolatethis
andother
using the given interpolation factort
and store the result indest
.Matrix4x3f
lookAlong(float dirX, float dirY, float dirZ, float upX, float upY, float upZ)
Apply a rotation transformation to this matrix to make-z
point alongdir
.Matrix4x3f
lookAlong(float dirX, float dirY, float dirZ, float upX, float upY, float upZ, Matrix4x3f dest)
Apply a rotation transformation to this matrix to make-z
point alongdir
and store the result indest
.Matrix4x3f
lookAlong(Vector3fc dir, Vector3fc up)
Apply a rotation transformation to this matrix to make-z
point alongdir
.Matrix4x3f
lookAlong(Vector3fc dir, Vector3fc up, Matrix4x3f dest)
Apply a rotation transformation to this matrix to make-z
point alongdir
and store the result indest
.Matrix4x3f
lookAt(float eyeX, float eyeY, float eyeZ, float centerX, float centerY, float centerZ, float upX, float upY, float upZ)
Apply a "lookat" transformation to this matrix for a right-handed coordinate system, that aligns-z
withcenter - eye
.Matrix4x3f
lookAt(float eyeX, float eyeY, float eyeZ, float centerX, float centerY, float centerZ, float upX, float upY, float upZ, Matrix4x3f dest)
Apply a "lookat" transformation to this matrix for a right-handed coordinate system, that aligns-z
withcenter - eye
and store the result indest
.Matrix4x3f
lookAt(Vector3fc eye, Vector3fc center, Vector3fc up)
Apply a "lookat" transformation to this matrix for a right-handed coordinate system, that aligns-z
withcenter - eye
.Matrix4x3f
lookAt(Vector3fc eye, Vector3fc center, Vector3fc up, Matrix4x3f dest)
Apply a "lookat" transformation to this matrix for a right-handed coordinate system, that aligns-z
withcenter - eye
and store the result indest
.Matrix4x3f
lookAtLH(float eyeX, float eyeY, float eyeZ, float centerX, float centerY, float centerZ, float upX, float upY, float upZ)
Apply a "lookat" transformation to this matrix for a left-handed coordinate system, that aligns+z
withcenter - eye
.Matrix4x3f
lookAtLH(float eyeX, float eyeY, float eyeZ, float centerX, float centerY, float centerZ, float upX, float upY, float upZ, Matrix4x3f dest)
Apply a "lookat" transformation to this matrix for a left-handed coordinate system, that aligns+z
withcenter - eye
and store the result indest
.Matrix4x3f
lookAtLH(Vector3fc eye, Vector3fc center, Vector3fc up)
Apply a "lookat" transformation to this matrix for a left-handed coordinate system, that aligns+z
withcenter - eye
.Matrix4x3f
lookAtLH(Vector3fc eye, Vector3fc center, Vector3fc up, Matrix4x3f dest)
Apply a "lookat" transformation to this matrix for a left-handed coordinate system, that aligns+z
withcenter - eye
and store the result indest
.float
m00()
Return the value of the matrix element at column 0 and row 0.Matrix4x3f
m00(float m00)
Set the value of the matrix element at column 0 and row 0.float
m01()
Return the value of the matrix element at column 0 and row 1.Matrix4x3f
m01(float m01)
Set the value of the matrix element at column 0 and row 1.float
m02()
Return the value of the matrix element at column 0 and row 2.Matrix4x3f
m02(float m02)
Set the value of the matrix element at column 0 and row 2.float
m10()
Return the value of the matrix element at column 1 and row 0.Matrix4x3f
m10(float m10)
Set the value of the matrix element at column 1 and row 0.float
m11()
Return the value of the matrix element at column 1 and row 1.Matrix4x3f
m11(float m11)
Set the value of the matrix element at column 1 and row 1.float
m12()
Return the value of the matrix element at column 1 and row 2.Matrix4x3f
m12(float m12)
Set the value of the matrix element at column 1 and row 2.float
m20()
Return the value of the matrix element at column 2 and row 0.Matrix4x3f
m20(float m20)
Set the value of the matrix element at column 2 and row 0.float
m21()
Return the value of the matrix element at column 2 and row 1.Matrix4x3f
m21(float m21)
Set the value of the matrix element at column 2 and row 1.float
m22()
Return the value of the matrix element at column 2 and row 2.Matrix4x3f
m22(float m22)
Set the value of the matrix element at column 2 and row 2.float
m30()
Return the value of the matrix element at column 3 and row 0.Matrix4x3f
m30(float m30)
Set the value of the matrix element at column 3 and row 0.float
m31()
Return the value of the matrix element at column 3 and row 1.Matrix4x3f
m31(float m31)
Set the value of the matrix element at column 3 and row 1.float
m32()
Return the value of the matrix element at column 3 and row 2.Matrix4x3f
m32(float m32)
Set the value of the matrix element at column 3 and row 2.Matrix4x3f
mapnXnYnZ()
Multiplythis
by the matrixMatrix4x3f
mapnXnYnZ(Matrix4x3f dest)
Multiplythis
by the matrixMatrix4x3f
mapnXnYZ()
Multiplythis
by the matrixMatrix4x3f
mapnXnYZ(Matrix4x3f dest)
Multiplythis
by the matrixMatrix4x3f
mapnXnZnY()
Multiplythis
by the matrixMatrix4x3f
mapnXnZnY(Matrix4x3f dest)
Multiplythis
by the matrixMatrix4x3f
mapnXnZY()
Multiplythis
by the matrixMatrix4x3f
mapnXnZY(Matrix4x3f dest)
Multiplythis
by the matrixMatrix4x3f
mapnXYnZ()
Multiplythis
by the matrixMatrix4x3f
mapnXYnZ(Matrix4x3f dest)
Multiplythis
by the matrixMatrix4x3f
mapnXZnY()
Multiplythis
by the matrixMatrix4x3f
mapnXZnY(Matrix4x3f dest)
Multiplythis
by the matrixMatrix4x3f
mapnXZY()
Multiplythis
by the matrixMatrix4x3f
mapnXZY(Matrix4x3f dest)
Multiplythis
by the matrixMatrix4x3f
mapnYnXnZ()
Multiplythis
by the matrixMatrix4x3f
mapnYnXnZ(Matrix4x3f dest)
Multiplythis
by the matrixMatrix4x3f
mapnYnXZ()
Multiplythis
by the matrixMatrix4x3f
mapnYnXZ(Matrix4x3f dest)
Multiplythis
by the matrixMatrix4x3f
mapnYnZnX()
Multiplythis
by the matrixMatrix4x3f
mapnYnZnX(Matrix4x3f dest)
Multiplythis
by the matrixMatrix4x3f
mapnYnZX()
Multiplythis
by the matrixMatrix4x3f
mapnYnZX(Matrix4x3f dest)
Multiplythis
by the matrixMatrix4x3f
mapnYXnZ()
Multiplythis
by the matrixMatrix4x3f
mapnYXnZ(Matrix4x3f dest)
Multiplythis
by the matrixMatrix4x3f
mapnYXZ()
Multiplythis
by the matrixMatrix4x3f
mapnYXZ(Matrix4x3f dest)
Multiplythis
by the matrixMatrix4x3f
mapnYZnX()
Multiplythis
by the matrixMatrix4x3f
mapnYZnX(Matrix4x3f dest)
Multiplythis
by the matrixMatrix4x3f
mapnYZX()
Multiplythis
by the matrixMatrix4x3f
mapnYZX(Matrix4x3f dest)
Multiplythis
by the matrixMatrix4x3f
mapnZnXnY()
Multiplythis
by the matrixMatrix4x3f
mapnZnXnY(Matrix4x3f dest)
Multiplythis
by the matrixMatrix4x3f
mapnZnXY()
Multiplythis
by the matrixMatrix4x3f
mapnZnXY(Matrix4x3f dest)
Multiplythis
by the matrixMatrix4x3f
mapnZnYnX()
Multiplythis
by the matrixMatrix4x3f
mapnZnYnX(Matrix4x3f dest)
Multiplythis
by the matrixMatrix4x3f
mapnZnYX()
Multiplythis
by the matrixMatrix4x3f
mapnZnYX(Matrix4x3f dest)
Multiplythis
by the matrixMatrix4x3f
mapnZXnY()
Multiplythis
by the matrixMatrix4x3f
mapnZXnY(Matrix4x3f dest)
Multiplythis
by the matrixMatrix4x3f
mapnZXY()
Multiplythis
by the matrixMatrix4x3f
mapnZXY(Matrix4x3f dest)
Multiplythis
by the matrixMatrix4x3f
mapnZYnX()
Multiplythis
by the matrixMatrix4x3f
mapnZYnX(Matrix4x3f dest)
Multiplythis
by the matrixMatrix4x3f
mapnZYX()
Multiplythis
by the matrixMatrix4x3f
mapnZYX(Matrix4x3f dest)
Multiplythis
by the matrixMatrix4x3f
mapXnYnZ()
Multiplythis
by the matrixMatrix4x3f
mapXnYnZ(Matrix4x3f dest)
Multiplythis
by the matrixMatrix4x3f
mapXnZnY()
Multiplythis
by the matrixMatrix4x3f
mapXnZnY(Matrix4x3f dest)
Multiplythis
by the matrixMatrix4x3f
mapXnZY()
Multiplythis
by the matrixMatrix4x3f
mapXnZY(Matrix4x3f dest)
Multiplythis
by the matrixMatrix4x3f
mapXZnY()
Multiplythis
by the matrixMatrix4x3f
mapXZnY(Matrix4x3f dest)
Multiplythis
by the matrixMatrix4x3f
mapXZY()
Multiplythis
by the matrixMatrix4x3f
mapXZY(Matrix4x3f dest)
Multiplythis
by the matrixMatrix4x3f
mapYnXnZ()
Multiplythis
by the matrixMatrix4x3f
mapYnXnZ(Matrix4x3f dest)
Multiplythis
by the matrixMatrix4x3f
mapYnXZ()
Multiplythis
by the matrixMatrix4x3f
mapYnXZ(Matrix4x3f dest)
Multiplythis
by the matrixMatrix4x3f
mapYnZnX()
Multiplythis
by the matrixMatrix4x3f
mapYnZnX(Matrix4x3f dest)
Multiplythis
by the matrixMatrix4x3f
mapYnZX()
Multiplythis
by the matrixMatrix4x3f
mapYnZX(Matrix4x3f dest)
Multiplythis
by the matrixMatrix4x3f
mapYXnZ()
Multiplythis
by the matrixMatrix4x3f
mapYXnZ(Matrix4x3f dest)
Multiplythis
by the matrixMatrix4x3f
mapYXZ()
Multiplythis
by the matrixMatrix4x3f
mapYXZ(Matrix4x3f dest)
Multiplythis
by the matrixMatrix4x3f
mapYZnX()
Multiplythis
by the matrixMatrix4x3f
mapYZnX(Matrix4x3f dest)
Multiplythis
by the matrixMatrix4x3f
mapYZX()
Multiplythis
by the matrixMatrix4x3f
mapYZX(Matrix4x3f dest)
Multiplythis
by the matrixMatrix4x3f
mapZnXnY()
Multiplythis
by the matrixMatrix4x3f
mapZnXnY(Matrix4x3f dest)
Multiplythis
by the matrixMatrix4x3f
mapZnXY()
Multiplythis
by the matrixMatrix4x3f
mapZnXY(Matrix4x3f dest)
Multiplythis
by the matrixMatrix4x3f
mapZnYnX()
Multiplythis
by the matrixMatrix4x3f
mapZnYnX(Matrix4x3f dest)
Multiplythis
by the matrixMatrix4x3f
mapZnYX()
Multiplythis
by the matrixMatrix4x3f
mapZnYX(Matrix4x3f dest)
Multiplythis
by the matrixMatrix4x3f
mapZXnY()
Multiplythis
by the matrixMatrix4x3f
mapZXnY(Matrix4x3f dest)
Multiplythis
by the matrixMatrix4x3f
mapZXY()
Multiplythis
by the matrixMatrix4x3f
mapZXY(Matrix4x3f dest)
Multiplythis
by the matrixMatrix4x3f
mapZYnX()
Multiplythis
by the matrixMatrix4x3f
mapZYnX(Matrix4x3f dest)
Multiplythis
by the matrixMatrix4x3f
mapZYX()
Multiplythis
by the matrixMatrix4x3f
mapZYX(Matrix4x3f dest)
Multiplythis
by the matrixMatrix4x3f
mul(Matrix4x3fc right)
Multiply this matrix by the suppliedright
matrix and store the result inthis
.Matrix4x3f
mul(Matrix4x3fc right, Matrix4x3f dest)
Multiply this matrix by the suppliedright
matrix and store the result indest
.Matrix4x3f
mul3x3(float rm00, float rm01, float rm02, float rm10, float rm11, float rm12, float rm20, float rm21, float rm22)
Multiplythis
by the 4x3 matrix with the column vectors(rm00, rm01, rm02)
,(rm10, rm11, rm12)
,(rm20, rm21, rm22)
and(0, 0, 0)
.Matrix4x3f
mul3x3(float rm00, float rm01, float rm02, float rm10, float rm11, float rm12, float rm20, float rm21, float rm22, Matrix4x3f dest)
Multiplythis
by the 4x3 matrix with the column vectors(rm00, rm01, rm02)
,(rm10, rm11, rm12)
,(rm20, rm21, rm22)
and(0, 0, 0)
and store the result indest
.Matrix4x3f
mulComponentWise(Matrix4x3fc other)
Component-wise multiplythis
byother
.Matrix4x3f
mulComponentWise(Matrix4x3fc other, Matrix4x3f dest)
Component-wise multiplythis
byother
and store the result indest
.Matrix4x3f
mulOrtho(Matrix4x3fc view)
Multiplythis
orthographic projection matrix by the suppliedview
matrix.Matrix4x3f
mulOrtho(Matrix4x3fc view, Matrix4x3f dest)
Multiplythis
orthographic projection matrix by the suppliedview
matrix and store the result indest
.Matrix4x3f
mulTranslation(Matrix4x3fc right, Matrix4x3f dest)
Multiply this matrix, which is assumed to only contain a translation, by the suppliedright
matrix and store the result indest
.Matrix4x3f
negateX()
Multiplythis
by the matrixMatrix4x3f
negateX(Matrix4x3f dest)
Multiplythis
by the matrixMatrix4x3f
negateY()
Multiplythis
by the matrixMatrix4x3f
negateY(Matrix4x3f dest)
Multiplythis
by the matrixMatrix4x3f
negateZ()
Multiplythis
by the matrixMatrix4x3f
negateZ(Matrix4x3f dest)
Multiplythis
by the matrixMatrix4x3f
normal()
Compute a normal matrix from the left 3x3 submatrix ofthis
and store it into the left 3x3 submatrix ofthis
.Matrix3f
normal(Matrix3f dest)
Compute a normal matrix from the left 3x3 submatrix ofthis
and store it intodest
.Matrix4x3f
normal(Matrix4x3f dest)
Compute a normal matrix from the left 3x3 submatrix ofthis
and store it into the left 3x3 submatrix ofdest
.Matrix4x3f
normalize3x3()
Normalize the left 3x3 submatrix of this matrix.Matrix3f
normalize3x3(Matrix3f dest)
Normalize the left 3x3 submatrix of this matrix and store the result indest
.Matrix4x3f
normalize3x3(Matrix4x3f dest)
Normalize the left 3x3 submatrix of this matrix and store the result indest
.Vector3f
normalizedPositiveX(Vector3f dir)
Obtain the direction of+X
before the transformation represented bythis
orthogonal matrix is applied.Vector3f
normalizedPositiveY(Vector3f dir)
Obtain the direction of+Y
before the transformation represented bythis
orthogonal matrix is applied.Vector3f
normalizedPositiveZ(Vector3f dir)
Obtain the direction of+Z
before the transformation represented bythis
orthogonal matrix is applied.Matrix4x3f
obliqueZ(float a, float b)
Apply an oblique projection transformation to this matrix with the given values fora
andb
.Matrix4x3f
obliqueZ(float a, float b, Matrix4x3f dest)
Apply an oblique projection transformation to this matrix with the given values fora
andb
and store the result indest
.Vector3f
origin(Vector3f origin)
Obtain the position that gets transformed to the origin bythis
matrix.Matrix4x3f
ortho(float left, float right, float bottom, float top, float zNear, float zFar)
Apply an orthographic projection transformation for a right-handed coordinate system using OpenGL's NDC z range of[-1..+1]
to this matrix.Matrix4x3f
ortho(float left, float right, float bottom, float top, float zNear, float zFar, boolean zZeroToOne)
Apply an orthographic projection transformation for a right-handed coordinate system using the given NDC z range to this matrix.Matrix4x3f
ortho(float left, float right, float bottom, float top, float zNear, float zFar, boolean zZeroToOne, Matrix4x3f dest)
Apply an orthographic projection transformation for a right-handed coordinate system using the given NDC z range to this matrix and store the result indest
.Matrix4x3f
ortho(float left, float right, float bottom, float top, float zNear, float zFar, Matrix4x3f dest)
Apply an orthographic projection transformation for a right-handed coordinate system using OpenGL's NDC z range of[-1..+1]
to this matrix and store the result indest
.Matrix4x3f
ortho2D(float left, float right, float bottom, float top)
Apply an orthographic projection transformation for a right-handed coordinate system to this matrix.Matrix4x3f
ortho2D(float left, float right, float bottom, float top, Matrix4x3f dest)
Apply an orthographic projection transformation for a right-handed coordinate system to this matrix and store the result indest
.Matrix4x3f
ortho2DLH(float left, float right, float bottom, float top)
Apply an orthographic projection transformation for a left-handed coordinate system to this matrix.Matrix4x3f
ortho2DLH(float left, float right, float bottom, float top, Matrix4x3f dest)
Apply an orthographic projection transformation for a left-handed coordinate system to this matrix and store the result indest
.Matrix4x3f
orthoLH(float left, float right, float bottom, float top, float zNear, float zFar)
Apply an orthographic projection transformation for a left-handed coordiante system using OpenGL's NDC z range of[-1..+1]
to this matrix.Matrix4x3f
orthoLH(float left, float right, float bottom, float top, float zNear, float zFar, boolean zZeroToOne)
Apply an orthographic projection transformation for a left-handed coordiante system using the given NDC z range to this matrix.Matrix4x3f
orthoLH(float left, float right, float bottom, float top, float zNear, float zFar, boolean zZeroToOne, Matrix4x3f dest)
Apply an orthographic projection transformation for a left-handed coordiante system using the given NDC z range to this matrix and store the result indest
.Matrix4x3f
orthoLH(float left, float right, float bottom, float top, float zNear, float zFar, Matrix4x3f dest)
Apply an orthographic projection transformation for a left-handed coordiante system using OpenGL's NDC z range of[-1..+1]
to this matrix and store the result indest
.Matrix4x3f
orthoSymmetric(float width, float height, float zNear, float zFar)
Apply a symmetric orthographic projection transformation for a right-handed coordinate system using OpenGL's NDC z range of[-1..+1]
to this matrix.Matrix4x3f
orthoSymmetric(float width, float height, float zNear, float zFar, boolean zZeroToOne)
Apply a symmetric orthographic projection transformation for a right-handed coordinate system using the given NDC z range to this matrix.Matrix4x3f
orthoSymmetric(float width, float height, float zNear, float zFar, boolean zZeroToOne, Matrix4x3f dest)
Apply a symmetric orthographic projection transformation for a right-handed coordinate system using the given NDC z range to this matrix and store the result indest
.Matrix4x3f
orthoSymmetric(float width, float height, float zNear, float zFar, Matrix4x3f dest)
Apply a symmetric orthographic projection transformation for a right-handed coordinate system using OpenGL's NDC z range of[-1..+1]
to this matrix and store the result indest
.Matrix4x3f
orthoSymmetricLH(float width, float height, float zNear, float zFar)
Apply a symmetric orthographic projection transformation for a left-handed coordinate system using OpenGL's NDC z range of[-1..+1]
to this matrix.Matrix4x3f
orthoSymmetricLH(float width, float height, float zNear, float zFar, boolean zZeroToOne)
Apply a symmetric orthographic projection transformation for a left-handed coordinate system using the given NDC z range to this matrix.Matrix4x3f
orthoSymmetricLH(float width, float height, float zNear, float zFar, boolean zZeroToOne, Matrix4x3f dest)
Apply a symmetric orthographic projection transformation for a left-handed coordinate system using the given NDC z range to this matrix and store the result indest
.Matrix4x3f
orthoSymmetricLH(float width, float height, float zNear, float zFar, Matrix4x3f dest)
Apply a symmetric orthographic projection transformation for a left-handed coordinate system using OpenGL's NDC z range of[-1..+1]
to this matrix and store the result indest
.Matrix4x3f
pick(float x, float y, float width, float height, int[] viewport)
Apply a picking transformation to this matrix using the given window coordinates(x, y)
as the pick center and the given(width, height)
as the size of the picking region in window coordinates.Matrix4x3f
pick(float x, float y, float width, float height, int[] viewport, Matrix4x3f dest)
Apply a picking transformation to this matrix using the given window coordinates(x, y)
as the pick center and the given(width, height)
as the size of the picking region in window coordinates, and store the result indest
.Vector3f
positiveX(Vector3f dir)
Obtain the direction of+X
before the transformation represented bythis
matrix is applied.Vector3f
positiveY(Vector3f dir)
Obtain the direction of+Y
before the transformation represented bythis
matrix is applied.Vector3f
positiveZ(Vector3f dir)
Obtain the direction of+Z
before the transformation represented bythis
matrix is applied.int
properties()
void
readExternal(java.io.ObjectInput in)
Matrix4x3f
reflect(float a, float b, float c, float d)
Apply a mirror/reflection transformation to this matrix that reflects about the given plane specified via the equationx*a + y*b + z*c + d = 0
.Matrix4x3f
reflect(float nx, float ny, float nz, float px, float py, float pz)
Apply a mirror/reflection transformation to this matrix that reflects about the given plane specified via the plane normal and a point on the plane.Matrix4x3f
reflect(float nx, float ny, float nz, float px, float py, float pz, Matrix4x3f dest)
Apply a mirror/reflection transformation to this matrix that reflects about the given plane specified via the plane normal and a point on the plane, and store the result indest
.Matrix4x3f
reflect(float a, float b, float c, float d, Matrix4x3f dest)
Apply a mirror/reflection transformation to this matrix that reflects about the given plane specified via the equationx*a + y*b + z*c + d = 0
and store the result indest
.Matrix4x3f
reflect(Quaternionfc orientation, Vector3fc point)
Apply a mirror/reflection transformation to this matrix that reflects about a plane specified via the plane orientation and a point on the plane.Matrix4x3f
reflect(Quaternionfc orientation, Vector3fc point, Matrix4x3f dest)
Apply a mirror/reflection transformation to this matrix that reflects about a plane specified via the plane orientation and a point on the plane, and store the result indest
.Matrix4x3f
reflect(Vector3fc normal, Vector3fc point)
Apply a mirror/reflection transformation to this matrix that reflects about the given plane specified via the plane normal and a point on the plane.Matrix4x3f
reflect(Vector3fc normal, Vector3fc point, Matrix4x3f dest)
Apply a mirror/reflection transformation to this matrix that reflects about the given plane specified via the plane normal and a point on the plane, and store the result indest
.Matrix4x3f
reflection(float a, float b, float c, float d)
Set this matrix to a mirror/reflection transformation that reflects about the given plane specified via the equationx*a + y*b + z*c + d = 0
.Matrix4x3f
reflection(float nx, float ny, float nz, float px, float py, float pz)
Set this matrix to a mirror/reflection transformation that reflects about the given plane specified via the plane normal and a point on the plane.Matrix4x3f
reflection(Quaternionfc orientation, Vector3fc point)
Set this matrix to a mirror/reflection transformation that reflects about a plane specified via the plane orientation and a point on the plane.Matrix4x3f
reflection(Vector3fc normal, Vector3fc point)
Set this matrix to a mirror/reflection transformation that reflects about the given plane specified via the plane normal and a point on the plane.Matrix4x3f
rotate(float ang, float x, float y, float z)
Apply rotation to this matrix by rotating the given amount of radians about the specified(x, y, z)
axis.Matrix4x3f
rotate(float ang, float x, float y, float z, Matrix4x3f dest)
Apply rotation to this matrix by rotating the given amount of radians about the specified(x, y, z)
axis and store the result indest
.Matrix4x3f
rotate(float angle, Vector3fc axis)
Apply a rotation transformation, rotating the given radians about the specified axis, to this matrix.Matrix4x3f
rotate(float angle, Vector3fc axis, Matrix4x3f dest)
Apply a rotation transformation, rotating the given radians about the specified axis and store the result indest
.Matrix4x3f
rotate(AxisAngle4f axisAngle)
Apply a rotation transformation, rotating about the givenAxisAngle4f
, to this matrix.Matrix4x3f
rotate(AxisAngle4f axisAngle, Matrix4x3f dest)
Apply a rotation transformation, rotating about the givenAxisAngle4f
and store the result indest
.Matrix4x3f
rotate(Quaternionfc quat)
Apply the rotation - and possibly scaling - transformation of the givenQuaternionfc
to this matrix.Matrix4x3f
rotate(Quaternionfc quat, Matrix4x3f dest)
Apply the rotation - and possibly scaling - transformation of the givenQuaternionfc
to this matrix and store the result indest
.Matrix4x3f
rotateAround(Quaternionfc quat, float ox, float oy, float oz)
Apply the rotation transformation of the givenQuaternionfc
to this matrix while using(ox, oy, oz)
as the rotation origin.Matrix4x3f
rotateAround(Quaternionfc quat, float ox, float oy, float oz, Matrix4x3f dest)
Apply the rotation - and possibly scaling - transformation of the givenQuaternionfc
to this matrix while using(ox, oy, oz)
as the rotation origin, and store the result indest
.Matrix4x3f
rotateLocal(float ang, float x, float y, float z)
Pre-multiply a rotation to this matrix by rotating the given amount of radians about the specified(x, y, z)
axis.Matrix4x3f
rotateLocal(float ang, float x, float y, float z, Matrix4x3f dest)
Pre-multiply a rotation to this matrix by rotating the given amount of radians about the specified(x, y, z)
axis and store the result indest
.Matrix4x3f
rotateLocal(Quaternionfc quat)
Pre-multiply the rotation - and possibly scaling - transformation of the givenQuaternionfc
to this matrix.Matrix4x3f
rotateLocal(Quaternionfc quat, Matrix4x3f dest)
Pre-multiply the rotation - and possibly scaling - transformation of the givenQuaternionfc
to this matrix and store the result indest
.Matrix4x3f
rotateLocalX(float ang)
Pre-multiply a rotation to this matrix by rotating the given amount of radians about the X axis.Matrix4x3f
rotateLocalX(float ang, Matrix4x3f dest)
Pre-multiply a rotation around the X axis to this matrix by rotating the given amount of radians about the X axis and store the result indest
.Matrix4x3f
rotateLocalY(float ang)
Pre-multiply a rotation to this matrix by rotating the given amount of radians about the Y axis.Matrix4x3f
rotateLocalY(float ang, Matrix4x3f dest)
Pre-multiply a rotation around the Y axis to this matrix by rotating the given amount of radians about the Y axis and store the result indest
.Matrix4x3f
rotateLocalZ(float ang)
Pre-multiply a rotation to this matrix by rotating the given amount of radians about the Z axis.Matrix4x3f
rotateLocalZ(float ang, Matrix4x3f dest)
Pre-multiply a rotation around the Z axis to this matrix by rotating the given amount of radians about the Z axis and store the result indest
.Matrix4x3f
rotateTowards(float dirX, float dirY, float dirZ, float upX, float upY, float upZ)
Apply a model transformation to this matrix for a right-handed coordinate system, that aligns the local+Z
axis with(dirX, dirY, dirZ)
.Matrix4x3f
rotateTowards(float dirX, float dirY, float dirZ, float upX, float upY, float upZ, Matrix4x3f dest)
Apply a model transformation to this matrix for a right-handed coordinate system, that aligns the local+Z
axis with(dirX, dirY, dirZ)
and store the result indest
.Matrix4x3f
rotateTowards(Vector3fc dir, Vector3fc up)
Apply a model transformation to this matrix for a right-handed coordinate system, that aligns the local+Z
axis withdir
.Matrix4x3f
rotateTowards(Vector3fc dir, Vector3fc up, Matrix4x3f dest)
Apply a model transformation to this matrix for a right-handed coordinate system, that aligns the local+Z
axis withdir
and store the result indest
.Matrix4x3f
rotateTranslation(float ang, float x, float y, float z, Matrix4x3f dest)
Apply rotation to this matrix, which is assumed to only contain a translation, by rotating the given amount of radians about the specified(x, y, z)
axis and store the result indest
.Matrix4x3f
rotateTranslation(Quaternionfc quat, Matrix4x3f dest)
Apply the rotation - and possibly scaling - transformation of the givenQuaternionfc
to this matrix, which is assumed to only contain a translation, and store the result indest
.Matrix4x3f
rotateX(float ang)
Apply rotation about the X axis to this matrix by rotating the given amount of radians.Matrix4x3f
rotateX(float ang, Matrix4x3f dest)
Apply rotation about the X axis to this matrix by rotating the given amount of radians and store the result indest
.Matrix4x3f
rotateXYZ(float angleX, float angleY, float angleZ)
Apply rotation ofangleX
radians about the X axis, followed by a rotation ofangleY
radians about the Y axis and followed by a rotation ofangleZ
radians about the Z axis.Matrix4x3f
rotateXYZ(float angleX, float angleY, float angleZ, Matrix4x3f dest)
Apply rotation ofangleX
radians about the X axis, followed by a rotation ofangleY
radians about the Y axis and followed by a rotation ofangleZ
radians about the Z axis and store the result indest
.Matrix4x3f
rotateXYZ(Vector3f angles)
Apply rotation ofangles.x
radians about the X axis, followed by a rotation ofangles.y
radians about the Y axis and followed by a rotation ofangles.z
radians about the Z axis.Matrix4x3f
rotateY(float ang)
Apply rotation about the Y axis to this matrix by rotating the given amount of radians.Matrix4x3f
rotateY(float ang, Matrix4x3f dest)
Apply rotation about the Y axis to this matrix by rotating the given amount of radians and store the result indest
.Matrix4x3f
rotateYXZ(float angleY, float angleX, float angleZ)
Apply rotation ofangleY
radians about the Y axis, followed by a rotation ofangleX
radians about the X axis and followed by a rotation ofangleZ
radians about the Z axis.Matrix4x3f
rotateYXZ(float angleY, float angleX, float angleZ, Matrix4x3f dest)
Apply rotation ofangleY
radians about the Y axis, followed by a rotation ofangleX
radians about the X axis and followed by a rotation ofangleZ
radians about the Z axis and store the result indest
.Matrix4x3f
rotateYXZ(Vector3f angles)
Apply rotation ofangles.y
radians about the Y axis, followed by a rotation ofangles.x
radians about the X axis and followed by a rotation ofangles.z
radians about the Z axis.Matrix4x3f
rotateZ(float ang)
Apply rotation about the Z axis to this matrix by rotating the given amount of radians.Matrix4x3f
rotateZ(float ang, Matrix4x3f dest)
Apply rotation about the Z axis to this matrix by rotating the given amount of radians and store the result indest
.Matrix4x3f
rotateZYX(float angleZ, float angleY, float angleX)
Apply rotation ofangleZ
radians about the Z axis, followed by a rotation ofangleY
radians about the Y axis and followed by a rotation ofangleX
radians about the X axis.Matrix4x3f
rotateZYX(float angleZ, float angleY, float angleX, Matrix4x3f dest)
Apply rotation ofangleZ
radians about the Z axis, followed by a rotation ofangleY
radians about the Y axis and followed by a rotation ofangleX
radians about the X axis and store the result indest
.Matrix4x3f
rotateZYX(Vector3f angles)
Apply rotation ofangles.z
radians about the Z axis, followed by a rotation ofangles.y
radians about the Y axis and followed by a rotation ofangles.x
radians about the X axis.Matrix4x3f
rotation(float angle, float x, float y, float z)
Set this matrix to a rotation matrix which rotates the given radians about a given axis.Matrix4x3f
rotation(float angle, Vector3fc axis)
Set this matrix to a rotation matrix which rotates the given radians about a given axis.Matrix4x3f
rotation(AxisAngle4f axisAngle)
Set this matrix to a rotation transformation using the givenAxisAngle4f
.Matrix4x3f
rotation(Quaternionfc quat)
Set this matrix to the rotation - and possibly scaling - transformation of the givenQuaternionfc
.Matrix4x3f
rotationAround(Quaternionfc quat, float ox, float oy, float oz)
Set this matrix to a transformation composed of a rotation of the specifiedQuaternionfc
while using(ox, oy, oz)
as the rotation origin.Matrix4x3f
rotationTowards(float dirX, float dirY, float dirZ, float upX, float upY, float upZ)
Set this matrix to a model transformation for a right-handed coordinate system, that aligns the local-z
axis with(dirX, dirY, dirZ)
.Matrix4x3f
rotationTowards(Vector3fc dir, Vector3fc up)
Set this matrix to a model transformation for a right-handed coordinate system, that aligns the local-z
axis withdir
.Matrix4x3f
rotationX(float ang)
Set this matrix to a rotation transformation about the X axis.Matrix4x3f
rotationXYZ(float angleX, float angleY, float angleZ)
Set this matrix to a rotation ofangleX
radians about the X axis, followed by a rotation ofangleY
radians about the Y axis and followed by a rotation ofangleZ
radians about the Z axis.Matrix4x3f
rotationY(float ang)
Set this matrix to a rotation transformation about the Y axis.Matrix4x3f
rotationYXZ(float angleY, float angleX, float angleZ)
Set this matrix to a rotation ofangleY
radians about the Y axis, followed by a rotation ofangleX
radians about the X axis and followed by a rotation ofangleZ
radians about the Z axis.Matrix4x3f
rotationZ(float ang)
Set this matrix to a rotation transformation about the Z axis.Matrix4x3f
rotationZYX(float angleZ, float angleY, float angleX)
Set this matrix to a rotation ofangleZ
radians about the Z axis, followed by a rotation ofangleY
radians about the Y axis and followed by a rotation ofangleX
radians about the X axis.Matrix4x3f
scale(float xyz)
Apply scaling to this matrix by uniformly scaling all base axes by the givenxyz
factor.Matrix4x3f
scale(float x, float y, float z)
Apply scaling to this matrix by scaling the base axes by the given x, y and z factors.Matrix4x3f
scale(float x, float y, float z, Matrix4x3f dest)
Apply scaling tothis
matrix by scaling the base axes by the given x, y and z factors and store the result indest
.Matrix4x3f
scale(float xyz, Matrix4x3f dest)
Apply scaling to this matrix by uniformly scaling all base axes by the givenxyz
factor and store the result indest
.Matrix4x3f
scale(Vector3fc xyz)
Apply scaling to this matrix by scaling the base axes by the givenxyz.x
,xyz.y
andxyz.z
factors, respectively.Matrix4x3f
scale(Vector3fc xyz, Matrix4x3f dest)
Apply scaling tothis
matrix by scaling the base axes by the givenxyz.x
,xyz.y
andxyz.z
factors, respectively and store the result indest
.Matrix4x3f
scaleAround(float factor, float ox, float oy, float oz)
Apply scaling to this matrix by scaling all three base axes by the givenfactor
while using(ox, oy, oz)
as the scaling origin.Matrix4x3f
scaleAround(float sx, float sy, float sz, float ox, float oy, float oz)
Apply scaling to this matrix by scaling the base axes by the given sx, sy and sz factors while using(ox, oy, oz)
as the scaling origin.Matrix4x3f
scaleAround(float sx, float sy, float sz, float ox, float oy, float oz, Matrix4x3f dest)
Apply scaling tothis
matrix by scaling the base axes by the given sx, sy and sz factors while using(ox, oy, oz)
as the scaling origin, and store the result indest
.Matrix4x3f
scaleAround(float factor, float ox, float oy, float oz, Matrix4x3f dest)
Apply scaling to this matrix by scaling all three base axes by the givenfactor
while using(ox, oy, oz)
as the scaling origin, and store the result indest
.Matrix4x3f
scaleLocal(float x, float y, float z)
Pre-multiply scaling to this matrix by scaling the base axes by the given x, y and z factors.Matrix4x3f
scaleLocal(float x, float y, float z, Matrix4x3f dest)
Pre-multiply scaling tothis
matrix by scaling the base axes by the given x, y and z factors and store the result indest
.Matrix4x3f
scaleXY(float x, float y)
Apply scaling to this matrix by scaling the X axis byx
and the Y axis byy
.Matrix4x3f
scaleXY(float x, float y, Matrix4x3f dest)
Apply scaling to this matrix by by scaling the X axis byx
and the Y axis byy
and store the result indest
.Matrix4x3f
scaling(float factor)
Set this matrix to be a simple scale matrix, which scales all axes uniformly by the given factor.Matrix4x3f
scaling(float x, float y, float z)
Set this matrix to be a simple scale matrix.Matrix4x3f
scaling(Vector3fc xyz)
Set this matrix to be a simple scale matrix which scales the base axes byxyz.x
,xyz.y
andxyz.z
respectively.Matrix4x3f
set(float[] m)
Set the values in the matrix using a float array that contains the matrix elements in column-major order.Matrix4x3f
set(float[] m, int off)
Set the values in the matrix using a float array that contains the matrix elements in column-major order.Matrix4x3f
set(float m00, float m01, float m02, float m10, float m11, float m12, float m20, float m21, float m22, float m30, float m31, float m32)
Set the values within this matrix to the supplied float values.Matrix4x3f
set(int index, java.nio.ByteBuffer buffer)
Set the values of this matrix by reading 12 float values from the givenByteBuffer
in column-major order, starting at the specified absolute buffer position/index.Matrix4x3f
set(int index, java.nio.FloatBuffer buffer)
Set the values of this matrix by reading 12 float values from the givenFloatBuffer
in column-major order, starting at the specified absolute buffer position/index.Matrix4x3f
set(java.nio.ByteBuffer buffer)
Set the values of this matrix by reading 12 float values from the givenByteBuffer
in column-major order, starting at its current position.Matrix4x3f
set(java.nio.FloatBuffer buffer)
Set the values of this matrix by reading 12 float values from the givenFloatBuffer
in column-major order, starting at its current position.Matrix4x3f
set(AxisAngle4d axisAngle)
Set this matrix to be equivalent to the rotation specified by the givenAxisAngle4d
.Matrix4x3f
set(AxisAngle4f axisAngle)
Set this matrix to be equivalent to the rotation specified by the givenAxisAngle4f
.Matrix4x3f
set(Matrix3fc mat)
Set the left 3x3 submatrix of thisMatrix4x3f
to the givenMatrix3fc
and the rest to identity.Matrix4x3f
set(Matrix4fc m)
Store the values of the upper 4x3 submatrix ofm
intothis
matrix.Matrix4x3f
set(Matrix4x3fc m)
Store the values of the given matrixm
intothis
matrix.Matrix4x3f
set(Quaterniondc q)
Set this matrix to be equivalent to the rotation - and possibly scaling - specified by the givenQuaterniondc
.Matrix4x3f
set(Quaternionfc q)
Set this matrix to be equivalent to the rotation - and possibly scaling - specified by the givenQuaternionfc
.Matrix4x3f
set(Vector3fc col0, Vector3fc col1, Vector3fc col2, Vector3fc col3)
Set the four columns of this matrix to the supplied vectors, respectively.Matrix4x3f
set3x3(Matrix3fc mat)
Set the left 3x3 submatrix of thisMatrix4x3f
to the givenMatrix3fc
and don't change the other elements.Matrix4x3f
set3x3(Matrix4x3fc mat)
Set the left 3x3 submatrix of thisMatrix4x3f
to that of the givenMatrix4x3fc
and don't change the other elements.Matrix4x3f
setColumn(int column, Vector3fc src)
Set the column at the givencolumn
index, starting with0
.Matrix4x3f
setFromAddress(long address)
Set the values of this matrix by reading 12 float values from off-heap memory in column-major order, starting at the given address.Matrix4x3f
setLookAlong(float dirX, float dirY, float dirZ, float upX, float upY, float upZ)
Set this matrix to a rotation transformation to make-z
point alongdir
.Matrix4x3f
setLookAlong(Vector3fc dir, Vector3fc up)
Set this matrix to a rotation transformation to make-z
point alongdir
.Matrix4x3f
setLookAt(float eyeX, float eyeY, float eyeZ, float centerX, float centerY, float centerZ, float upX, float upY, float upZ)
Set this matrix to be a "lookat" transformation for a right-handed coordinate system, that aligns-z
withcenter - eye
.Matrix4x3f
setLookAt(Vector3fc eye, Vector3fc center, Vector3fc up)
Set this matrix to be a "lookat" transformation for a right-handed coordinate system, that aligns-z
withcenter - eye
.Matrix4x3f
setLookAtLH(float eyeX, float eyeY, float eyeZ, float centerX, float centerY, float centerZ, float upX, float upY, float upZ)
Set this matrix to be a "lookat" transformation for a left-handed coordinate system, that aligns+z
withcenter - eye
.Matrix4x3f
setLookAtLH(Vector3fc eye, Vector3fc center, Vector3fc up)
Set this matrix to be a "lookat" transformation for a left-handed coordinate system, that aligns+z
withcenter - eye
.Matrix4x3f
setOrtho(float left, float right, float bottom, float top, float zNear, float zFar)
Set this matrix to be an orthographic projection transformation for a right-handed coordinate system using OpenGL's NDC z range of[-1..+1]
.Matrix4x3f
setOrtho(float left, float right, float bottom, float top, float zNear, float zFar, boolean zZeroToOne)
Set this matrix to be an orthographic projection transformation for a right-handed coordinate system using the given NDC z range.Matrix4x3f
setOrtho2D(float left, float right, float bottom, float top)
Set this matrix to be an orthographic projection transformation for a right-handed coordinate system.Matrix4x3f
setOrtho2DLH(float left, float right, float bottom, float top)
Set this matrix to be an orthographic projection transformation for a left-handed coordinate system.Matrix4x3f
setOrthoLH(float left, float right, float bottom, float top, float zNear, float zFar)
Set this matrix to be an orthographic projection transformation for a left-handed coordinate system using OpenGL's NDC z range of[-1..+1]
.Matrix4x3f
setOrthoLH(float left, float right, float bottom, float top, float zNear, float zFar, boolean zZeroToOne)
Set this matrix to be an orthographic projection transformation for a left-handed coordinate system using the given NDC z range.Matrix4x3f
setOrthoSymmetric(float width, float height, float zNear, float zFar)
Set this matrix to be a symmetric orthographic projection transformation for a right-handed coordinate system using OpenGL's NDC z range of[-1..+1]
.Matrix4x3f
setOrthoSymmetric(float width, float height, float zNear, float zFar, boolean zZeroToOne)
Set this matrix to be a symmetric orthographic projection transformation for a right-handed coordinate system using the given NDC z range.Matrix4x3f
setOrthoSymmetricLH(float width, float height, float zNear, float zFar)
Set this matrix to be a symmetric orthographic projection transformation for a left-handed coordinate system using OpenGL's NDC z range of[-1..+1]
.Matrix4x3f
setOrthoSymmetricLH(float width, float height, float zNear, float zFar, boolean zZeroToOne)
Set this matrix to be a symmetric orthographic projection transformation for a left-handed coordinate system using the given NDC z range.Matrix4x3f
setRotationXYZ(float angleX, float angleY, float angleZ)
Set only the left 3x3 submatrix of this matrix to a rotation ofangleX
radians about the X axis, followed by a rotation ofangleY
radians about the Y axis and followed by a rotation ofangleZ
radians about the Z axis.Matrix4x3f
setRotationYXZ(float angleY, float angleX, float angleZ)
Set only the left 3x3 submatrix of this matrix to a rotation ofangleY
radians about the Y axis, followed by a rotation ofangleX
radians about the X axis and followed by a rotation ofangleZ
radians about the Z axis.Matrix4x3f
setRotationZYX(float angleZ, float angleY, float angleX)
Set only the left 3x3 submatrix of this matrix to a rotation ofangleZ
radians about the Z axis, followed by a rotation ofangleY
radians about the Y axis and followed by a rotation ofangleX
radians about the X axis.Matrix4x3f
setRow(int row, Vector4fc src)
Set the row at the givenrow
index, starting with0
.Matrix4x3f
setTranslation(float x, float y, float z)
Set only the translation components(m30, m31, m32)
of this matrix to the given values(x, y, z)
.Matrix4x3f
setTranslation(Vector3fc xyz)
Set only the translation components(m30, m31, m32)
of this matrix to the values(xyz.x, xyz.y, xyz.z)
.Matrix4x3f
shadow(float lightX, float lightY, float lightZ, float lightW, float a, float b, float c, float d)
Apply a projection transformation to this matrix that projects onto the plane specified via the general plane equationx*a + y*b + z*c + d = 0
as if casting a shadow from a given light position/direction(lightX, lightY, lightZ, lightW)
.Matrix4x3f
shadow(float lightX, float lightY, float lightZ, float lightW, float a, float b, float c, float d, Matrix4x3f dest)
Apply a projection transformation to this matrix that projects onto the plane specified via the general plane equationx*a + y*b + z*c + d = 0
as if casting a shadow from a given light position/direction(lightX, lightY, lightZ, lightW)
and store the result indest
.Matrix4x3f
shadow(float lightX, float lightY, float lightZ, float lightW, Matrix4x3f planeTransform)
Apply a projection transformation to this matrix that projects onto the plane with the general plane equationy = 0
as if casting a shadow from a given light position/direction(lightX, lightY, lightZ, lightW)
.Matrix4x3f
shadow(float lightX, float lightY, float lightZ, float lightW, Matrix4x3fc planeTransform, Matrix4x3f dest)
Apply a projection transformation to this matrix that projects onto the plane with the general plane equationy = 0
as if casting a shadow from a given light position/direction(lightX, lightY, lightZ, lightW)
and store the result indest
.Matrix4x3f
shadow(Vector4fc light, float a, float b, float c, float d)
Apply a projection transformation to this matrix that projects onto the plane specified via the general plane equationx*a + y*b + z*c + d = 0
as if casting a shadow from a given light position/directionlight
.Matrix4x3f
shadow(Vector4fc light, float a, float b, float c, float d, Matrix4x3f dest)
Apply a projection transformation to this matrix that projects onto the plane specified via the general plane equationx*a + y*b + z*c + d = 0
as if casting a shadow from a given light position/directionlight
and store the result indest
.Matrix4x3f
shadow(Vector4fc light, Matrix4x3fc planeTransform)
Apply a projection transformation to this matrix that projects onto the plane with the general plane equationy = 0
as if casting a shadow from a given light position/directionlight
.Matrix4x3f
shadow(Vector4fc light, Matrix4x3fc planeTransform, Matrix4x3f dest)
Apply a projection transformation to this matrix that projects onto the plane with the general plane equationy = 0
as if casting a shadow from a given light position/directionlight
and store the result indest
.Matrix4x3f
sub(Matrix4x3fc subtrahend)
Component-wise subtractsubtrahend
fromthis
.Matrix4x3f
sub(Matrix4x3fc subtrahend, Matrix4x3f dest)
Component-wise subtractsubtrahend
fromthis
and store the result indest
.Matrix4x3f
swap(Matrix4x3f other)
Exchange the values ofthis
matrix with the givenother
matrix.java.lang.String
toString()
Return a string representation of this matrix.java.lang.String
toString(java.text.NumberFormat formatter)
Return a string representation of this matrix by formatting the matrix elements with the givenNumberFormat
.Vector4f
transform(Vector4f v)
Transform/multiply the given vector by this matrix and store the result in that vector.Vector4f
transform(Vector4fc v, Vector4f dest)
Transform/multiply the given vector by this matrix and store the result indest
.Matrix4x3f
transformAab(float minX, float minY, float minZ, float maxX, float maxY, float maxZ, Vector3f outMin, Vector3f outMax)
Transform the axis-aligned box given as the minimum corner(minX, minY, minZ)
and maximum corner(maxX, maxY, maxZ)
bythis
matrix and compute the axis-aligned box of the result whose minimum corner is stored inoutMin
and maximum corner stored inoutMax
.Matrix4x3f
transformAab(Vector3fc min, Vector3fc max, Vector3f outMin, Vector3f outMax)
Transform the axis-aligned box given as the minimum cornermin
and maximum cornermax
bythis
matrix and compute the axis-aligned box of the result whose minimum corner is stored inoutMin
and maximum corner stored inoutMax
.Vector3f
transformDirection(Vector3f v)
Transform/multiply the given 3D-vector, as if it was a 4D-vector with w=0, by this matrix and store the result in that vector.Vector3f
transformDirection(Vector3fc v, Vector3f dest)
Transform/multiply the given 3D-vector, as if it was a 4D-vector with w=0, by this matrix and store the result indest
.Vector3f
transformPosition(Vector3f v)
Transform/multiply the given 3D-vector, as if it was a 4D-vector with w=1, by this matrix and store the result in that vector.Vector3f
transformPosition(Vector3fc v, Vector3f dest)
Transform/multiply the given 3D-vector, as if it was a 4D-vector with w=1, by this matrix and store the result indest
.Matrix4x3f
translate(float x, float y, float z)
Apply a translation to this matrix by translating by the given number of units in x, y and z.Matrix4x3f
translate(float x, float y, float z, Matrix4x3f dest)
Apply a translation to this matrix by translating by the given number of units in x, y and z and store the result indest
.Matrix4x3f
translate(Vector3fc offset)
Apply a translation to this matrix by translating by the given number of units in x, y and z.Matrix4x3f
translate(Vector3fc offset, Matrix4x3f dest)
Apply a translation to this matrix by translating by the given number of units in x, y and z and store the result indest
.Matrix4x3f
translateLocal(float x, float y, float z)
Pre-multiply a translation to this matrix by translating by the given number of units in x, y and z.Matrix4x3f
translateLocal(float x, float y, float z, Matrix4x3f dest)
Pre-multiply a translation to this matrix by translating by the given number of units in x, y and z and store the result indest
.Matrix4x3f
translateLocal(Vector3fc offset)
Pre-multiply a translation to this matrix by translating by the given number of units in x, y and z.Matrix4x3f
translateLocal(Vector3fc offset, Matrix4x3f dest)
Pre-multiply a translation to this matrix by translating by the given number of units in x, y and z and store the result indest
.Matrix4x3f
translation(float x, float y, float z)
Set this matrix to be a simple translation matrix.Matrix4x3f
translation(Vector3fc offset)
Set this matrix to be a simple translation matrix.Matrix4x3f
translationRotate(float tx, float ty, float tz, float qx, float qy, float qz, float qw)
Setthis
matrix toT * R
, whereT
is a translation by the given(tx, ty, tz)
andR
is a rotation - and possibly scaling - transformation specified by the quaternion(qx, qy, qz, qw)
.Matrix4x3f
translationRotate(float tx, float ty, float tz, Quaternionfc quat)
Setthis
matrix toT * R
, whereT
is a translation by the given(tx, ty, tz)
andR
is a rotation transformation specified by the given quaternion.Matrix4x3f
translationRotate(Vector3fc translation, Quaternionfc quat)
Setthis
matrix toT * R
, whereT
is the giventranslation
andR
is a rotation transformation specified by the given quaternion.Matrix4x3f
translationRotateInvert(float tx, float ty, float tz, float qx, float qy, float qz, float qw)
Setthis
matrix to(T * R)-1
, whereT
is a translation by the given(tx, ty, tz)
andR
is a rotation transformation specified by the quaternion(qx, qy, qz, qw)
.Matrix4x3f
translationRotateInvert(Vector3fc translation, Quaternionfc quat)
Setthis
matrix to(T * R)-1
, whereT
is the giventranslation
andR
is a rotation transformation specified by the given quaternion.Matrix4x3f
translationRotateMul(float tx, float ty, float tz, float qx, float qy, float qz, float qw, Matrix4x3fc mat)
Setthis
matrix toT * R * M
, whereT
is a translation by the given(tx, ty, tz)
,R
is a rotation - and possibly scaling - transformation specified by the quaternion(qx, qy, qz, qw)
andM
is the given matrixmat
Matrix4x3f
translationRotateMul(float tx, float ty, float tz, Quaternionfc quat, Matrix4x3fc mat)
Setthis
matrix toT * R * M
, whereT
is a translation by the given(tx, ty, tz)
,R
is a rotation - and possibly scaling - transformation specified by the given quaternion andM
is the given matrixmat
.Matrix4x3f
translationRotateScale(float tx, float ty, float tz, float qx, float qy, float qz, float qw, float sx, float sy, float sz)
Setthis
matrix toT * R * S
, whereT
is a translation by the given(tx, ty, tz)
,R
is a rotation transformation specified by the quaternion(qx, qy, qz, qw)
, andS
is a scaling transformation which scales the three axes x, y and z by(sx, sy, sz)
.Matrix4x3f
translationRotateScale(Vector3fc translation, Quaternionfc quat, Vector3fc scale)
Setthis
matrix toT * R * S
, whereT
is the giventranslation
,R
is a rotation transformation specified by the given quaternion, andS
is a scaling transformation which scales the axes byscale
.Matrix4x3f
translationRotateScaleMul(float tx, float ty, float tz, float qx, float qy, float qz, float qw, float sx, float sy, float sz, Matrix4x3f m)
Setthis
matrix toT * R * S * M
, whereT
is a translation by the given(tx, ty, tz)
,R
is a rotation transformation specified by the quaternion(qx, qy, qz, qw)
,S
is a scaling transformation which scales the three axes x, y and z by(sx, sy, sz)
.Matrix4x3f
translationRotateScaleMul(Vector3fc translation, Quaternionfc quat, Vector3fc scale, Matrix4x3f m)
Setthis
matrix toT * R * S * M
, whereT
is the giventranslation
,R
is a rotation transformation specified by the given quaternion,S
is a scaling transformation which scales the axes byscale
.Matrix4x3f
translationRotateTowards(float posX, float posY, float posZ, float dirX, float dirY, float dirZ, float upX, float upY, float upZ)
Set this matrix to a model transformation for a right-handed coordinate system, that translates to the given(posX, posY, posZ)
and aligns the local-z
axis with(dirX, dirY, dirZ)
.Matrix4x3f
translationRotateTowards(Vector3fc pos, Vector3fc dir, Vector3fc up)
Set this matrix to a model transformation for a right-handed coordinate system, that translates to the givenpos
and aligns the local-z
axis withdir
.Matrix4x3f
transpose3x3()
Transpose only the left 3x3 submatrix of this matrix and set the rest of the matrix elements to identity.Matrix3f
transpose3x3(Matrix3f dest)
Transpose only the left 3x3 submatrix of this matrix and store the result indest
.Matrix4x3f
transpose3x3(Matrix4x3f dest)
Transpose only the left 3x3 submatrix of this matrix and store the result indest
.Matrix4x3f
withLookAtUp(float upX, float upY, float upZ)
Apply a transformation to this matrix to ensure that the local Y axis (as obtained bypositiveY(Vector3f)
) will be coplanar to the plane spanned by the local Z axis (as obtained bypositiveZ(Vector3f)
) and the given vector(upX, upY, upZ)
.Matrix4x3f
withLookAtUp(float upX, float upY, float upZ, Matrix4x3f dest)
Apply a transformation to this matrix to ensure that the local Y axis (as obtained byMatrix4x3fc.positiveY(Vector3f)
) will be coplanar to the plane spanned by the local Z axis (as obtained byMatrix4x3fc.positiveZ(Vector3f)
) and the given vector(upX, upY, upZ)
, and store the result indest
.Matrix4x3f
withLookAtUp(Vector3fc up)
Apply a transformation to this matrix to ensure that the local Y axis (as obtained bypositiveY(Vector3f)
) will be coplanar to the plane spanned by the local Z axis (as obtained bypositiveZ(Vector3f)
) and the given vectorup
.Matrix4x3f
withLookAtUp(Vector3fc up, Matrix4x3f dest)
Apply a transformation to this matrix to ensure that the local Y axis (as obtained byMatrix4x3fc.positiveY(Vector3f)
) will be coplanar to the plane spanned by the local Z axis (as obtained byMatrix4x3fc.positiveZ(Vector3f)
) and the given vectorup
, and store the result indest
.void
writeExternal(java.io.ObjectOutput out)
Matrix4x3f
zero()
Set all the values within this matrix to0
.
-
-
-
Constructor Detail
-
Matrix4x3f
public Matrix4x3f()
Create a newMatrix4x3f
and set it toidentity
.
-
Matrix4x3f
public Matrix4x3f(Matrix3fc mat)
Create a newMatrix4x3f
by setting its left 3x3 submatrix to the values of the givenMatrix3fc
and the rest to identity.- Parameters:
mat
- theMatrix3fc
-
Matrix4x3f
public Matrix4x3f(Matrix4x3fc mat)
Create a newMatrix4x3f
and make it a copy of the given matrix.- Parameters:
mat
- theMatrix4x3fc
to copy the values from
-
Matrix4x3f
public Matrix4x3f(float m00, float m01, float m02, float m10, float m11, float m12, float m20, float m21, float m22, float m30, float m31, float m32)
Create a new 4x4 matrix using the supplied float values.- Parameters:
m00
- the value of m00m01
- the value of m01m02
- the value of m02m10
- the value of m10m11
- the value of m11m12
- the value of m12m20
- the value of m20m21
- the value of m21m22
- the value of m22m30
- the value of m30m31
- the value of m31m32
- the value of m32
-
Matrix4x3f
public Matrix4x3f(java.nio.FloatBuffer buffer)
Create a newMatrix4x3f
by reading its 12 float components from the givenFloatBuffer
at the buffer's current position.That FloatBuffer is expected to hold the values in column-major order.
The buffer's position will not be changed by this method.
- Parameters:
buffer
- theFloatBuffer
to read the matrix values from
-
Matrix4x3f
public Matrix4x3f(Vector3fc col0, Vector3fc col1, Vector3fc col2, Vector3fc col3)
Create a newMatrix4x3f
and initialize its four columns using the supplied vectors.- Parameters:
col0
- the first columncol1
- the second columncol2
- the third columncol3
- the fourth column
-
-
Method Detail
-
assume
public Matrix4x3f assume(int properties)
Assume the given properties about this matrix.Use one or multiple of 0,
Matrix4x3fc.PROPERTY_IDENTITY
,Matrix4x3fc.PROPERTY_TRANSLATION
,Matrix4x3fc.PROPERTY_ORTHONORMAL
.- Parameters:
properties
- bitset of the properties to assume about this matrix- Returns:
- this
-
determineProperties
public Matrix4x3f determineProperties()
Compute and set the matrix properties returned byproperties()
based on the current matrix element values.- Returns:
- this
-
properties
public int properties()
- Specified by:
properties
in interfaceMatrix4x3fc
- Returns:
- the properties of the matrix
-
m00
public float m00()
Description copied from interface:Matrix4x3fc
Return the value of the matrix element at column 0 and row 0.- Specified by:
m00
in interfaceMatrix4x3fc
- Returns:
- the value of the matrix element
-
m01
public float m01()
Description copied from interface:Matrix4x3fc
Return the value of the matrix element at column 0 and row 1.- Specified by:
m01
in interfaceMatrix4x3fc
- Returns:
- the value of the matrix element
-
m02
public float m02()
Description copied from interface:Matrix4x3fc
Return the value of the matrix element at column 0 and row 2.- Specified by:
m02
in interfaceMatrix4x3fc
- Returns:
- the value of the matrix element
-
m10
public float m10()
Description copied from interface:Matrix4x3fc
Return the value of the matrix element at column 1 and row 0.- Specified by:
m10
in interfaceMatrix4x3fc
- Returns:
- the value of the matrix element
-
m11
public float m11()
Description copied from interface:Matrix4x3fc
Return the value of the matrix element at column 1 and row 1.- Specified by:
m11
in interfaceMatrix4x3fc
- Returns:
- the value of the matrix element
-
m12
public float m12()
Description copied from interface:Matrix4x3fc
Return the value of the matrix element at column 1 and row 2.- Specified by:
m12
in interfaceMatrix4x3fc
- Returns:
- the value of the matrix element
-
m20
public float m20()
Description copied from interface:Matrix4x3fc
Return the value of the matrix element at column 2 and row 0.- Specified by:
m20
in interfaceMatrix4x3fc
- Returns:
- the value of the matrix element
-
m21
public float m21()
Description copied from interface:Matrix4x3fc
Return the value of the matrix element at column 2 and row 1.- Specified by:
m21
in interfaceMatrix4x3fc
- Returns:
- the value of the matrix element
-
m22
public float m22()
Description copied from interface:Matrix4x3fc
Return the value of the matrix element at column 2 and row 2.- Specified by:
m22
in interfaceMatrix4x3fc
- Returns:
- the value of the matrix element
-
m30
public float m30()
Description copied from interface:Matrix4x3fc
Return the value of the matrix element at column 3 and row 0.- Specified by:
m30
in interfaceMatrix4x3fc
- Returns:
- the value of the matrix element
-
m31
public float m31()
Description copied from interface:Matrix4x3fc
Return the value of the matrix element at column 3 and row 1.- Specified by:
m31
in interfaceMatrix4x3fc
- Returns:
- the value of the matrix element
-
m32
public float m32()
Description copied from interface:Matrix4x3fc
Return the value of the matrix element at column 3 and row 2.- Specified by:
m32
in interfaceMatrix4x3fc
- Returns:
- the value of the matrix element
-
m00
public Matrix4x3f m00(float m00)
Set the value of the matrix element at column 0 and row 0.- Parameters:
m00
- the new value- Returns:
- this
-
m01
public Matrix4x3f m01(float m01)
Set the value of the matrix element at column 0 and row 1.- Parameters:
m01
- the new value- Returns:
- this
-
m02
public Matrix4x3f m02(float m02)
Set the value of the matrix element at column 0 and row 2.- Parameters:
m02
- the new value- Returns:
- this
-
m10
public Matrix4x3f m10(float m10)
Set the value of the matrix element at column 1 and row 0.- Parameters:
m10
- the new value- Returns:
- this
-
m11
public Matrix4x3f m11(float m11)
Set the value of the matrix element at column 1 and row 1.- Parameters:
m11
- the new value- Returns:
- this
-
m12
public Matrix4x3f m12(float m12)
Set the value of the matrix element at column 1 and row 2.- Parameters:
m12
- the new value- Returns:
- this
-
m20
public Matrix4x3f m20(float m20)
Set the value of the matrix element at column 2 and row 0.- Parameters:
m20
- the new value- Returns:
- this
-
m21
public Matrix4x3f m21(float m21)
Set the value of the matrix element at column 2 and row 1.- Parameters:
m21
- the new value- Returns:
- this
-
m22
public Matrix4x3f m22(float m22)
Set the value of the matrix element at column 2 and row 2.- Parameters:
m22
- the new value- Returns:
- this
-
m30
public Matrix4x3f m30(float m30)
Set the value of the matrix element at column 3 and row 0.- Parameters:
m30
- the new value- Returns:
- this
-
m31
public Matrix4x3f m31(float m31)
Set the value of the matrix element at column 3 and row 1.- Parameters:
m31
- the new value- Returns:
- this
-
m32
public Matrix4x3f m32(float m32)
Set the value of the matrix element at column 3 and row 2.- Parameters:
m32
- the new value- Returns:
- this
-
identity
public Matrix4x3f identity()
Reset this matrix to the identity.Please note that if a call to
identity()
is immediately followed by a call to:translate
,rotate
,scale
,ortho
,ortho2D
,lookAt
,lookAlong
, or any of their overloads, then the call toidentity()
can be omitted and the subsequent call replaced with:translation
,rotation
,scaling
,setOrtho
,setOrtho2D
,setLookAt
,setLookAlong
, or any of their overloads.- Returns:
- this
-
set
public Matrix4x3f set(Matrix4x3fc m)
Store the values of the given matrixm
intothis
matrix.- Parameters:
m
- the matrix to copy the values from- Returns:
- this
- See Also:
Matrix4x3f(Matrix4x3fc)
,get(Matrix4x3f)
-
set
public Matrix4x3f set(Matrix4fc m)
Store the values of the upper 4x3 submatrix ofm
intothis
matrix.- Parameters:
m
- the matrix to copy the values from- Returns:
- this
- See Also:
Matrix4fc.get4x3(Matrix4x3f)
-
get
public Matrix4f get(Matrix4f dest)
Description copied from interface:Matrix4x3fc
Get the current values ofthis
matrix and store them into the upper 4x3 submatrix ofdest
.The other elements of
dest
will not be modified.- Specified by:
get
in interfaceMatrix4x3fc
- Parameters:
dest
- the destination matrix- Returns:
- dest
- See Also:
Matrix4f.set4x3(Matrix4x3fc)
-
get
public Matrix4d get(Matrix4d dest)
Description copied from interface:Matrix4x3fc
Get the current values ofthis
matrix and store them into the upper 4x3 submatrix ofdest
.The other elements of
dest
will not be modified.- Specified by:
get
in interfaceMatrix4x3fc
- Parameters:
dest
- the destination matrix- Returns:
- dest
- See Also:
Matrix4d.set4x3(Matrix4x3fc)
-
set
public Matrix4x3f set(Matrix3fc mat)
Set the left 3x3 submatrix of thisMatrix4x3f
to the givenMatrix3fc
and the rest to identity.- Parameters:
mat
- theMatrix3fc
- Returns:
- this
- See Also:
Matrix4x3f(Matrix3fc)
-
set
public Matrix4x3f set(AxisAngle4f axisAngle)
Set this matrix to be equivalent to the rotation specified by the givenAxisAngle4f
.- Parameters:
axisAngle
- theAxisAngle4f
- Returns:
- this
-
set
public Matrix4x3f set(AxisAngle4d axisAngle)
Set this matrix to be equivalent to the rotation specified by the givenAxisAngle4d
.- Parameters:
axisAngle
- theAxisAngle4d
- Returns:
- this
-
set
public Matrix4x3f set(Quaternionfc q)
Set this matrix to be equivalent to the rotation - and possibly scaling - specified by the givenQuaternionfc
.This method is equivalent to calling:
rotation(q)
- Parameters:
q
- theQuaternionfc
- Returns:
- this
- See Also:
rotation(Quaternionfc)
-
set
public Matrix4x3f set(Quaterniondc q)
Set this matrix to be equivalent to the rotation - and possibly scaling - specified by the givenQuaterniondc
.This method is equivalent to calling:
rotation(q)
- Parameters:
q
- theQuaterniondc
- Returns:
- this
-
set
public Matrix4x3f set(Vector3fc col0, Vector3fc col1, Vector3fc col2, Vector3fc col3)
Set the four columns of this matrix to the supplied vectors, respectively.- Parameters:
col0
- the first columncol1
- the second columncol2
- the third columncol3
- the fourth column- Returns:
- this
-
set3x3
public Matrix4x3f set3x3(Matrix4x3fc mat)
Set the left 3x3 submatrix of thisMatrix4x3f
to that of the givenMatrix4x3fc
and don't change the other elements.- Parameters:
mat
- theMatrix4x3fc
- Returns:
- this
-
mul
public Matrix4x3f mul(Matrix4x3fc right)
Multiply this matrix by the suppliedright
matrix and store the result inthis
.If
M
isthis
matrix andR
theright
matrix, then the new matrix will beM * R
. So when transforming a vectorv
with the new matrix by usingM * R * v
, the transformation of the right matrix will be applied first!- Parameters:
right
- the right operand of the matrix multiplication- Returns:
- this
-
mul
public Matrix4x3f mul(Matrix4x3fc right, Matrix4x3f dest)
Description copied from interface:Matrix4x3fc
Multiply this matrix by the suppliedright
matrix and store the result indest
.If
M
isthis
matrix andR
theright
matrix, then the new matrix will beM * R
. So when transforming a vectorv
with the new matrix by usingM * R * v
, the transformation of the right matrix will be applied first!- Specified by:
mul
in interfaceMatrix4x3fc
- Parameters:
right
- the right operand of the matrix multiplicationdest
- the destination matrix, which will hold the result- Returns:
- dest
-
mulTranslation
public Matrix4x3f mulTranslation(Matrix4x3fc right, Matrix4x3f dest)
Description copied from interface:Matrix4x3fc
Multiply this matrix, which is assumed to only contain a translation, by the suppliedright
matrix and store the result indest
.This method assumes that
this
matrix only contains a translation.This method will not modify either the last row of
this
or the last row ofright
.If
M
isthis
matrix andR
theright
matrix, then the new matrix will beM * R
. So when transforming a vectorv
with the new matrix by usingM * R * v
, the transformation of the right matrix will be applied first!- Specified by:
mulTranslation
in interfaceMatrix4x3fc
- Parameters:
right
- the right operand of the matrix multiplicationdest
- the destination matrix, which will hold the result- Returns:
- dest
-
mulOrtho
public Matrix4x3f mulOrtho(Matrix4x3fc view)
Multiplythis
orthographic projection matrix by the suppliedview
matrix.If
M
isthis
matrix andV
theview
matrix, then the new matrix will beM * V
. So when transforming a vectorv
with the new matrix by usingM * V * v
, the transformation of theview
matrix will be applied first!- Parameters:
view
- the matrix which to multiplythis
with- Returns:
- this
-
mulOrtho
public Matrix4x3f mulOrtho(Matrix4x3fc view, Matrix4x3f dest)
Description copied from interface:Matrix4x3fc
Multiplythis
orthographic projection matrix by the suppliedview
matrix and store the result indest
.If
M
isthis
matrix andV
theview
matrix, then the new matrix will beM * V
. So when transforming a vectorv
with the new matrix by usingM * V * v
, the transformation of theview
matrix will be applied first!- Specified by:
mulOrtho
in interfaceMatrix4x3fc
- Parameters:
view
- the matrix which to multiplythis
withdest
- the destination matrix, which will hold the result- Returns:
- dest
-
mul3x3
public Matrix4x3f mul3x3(float rm00, float rm01, float rm02, float rm10, float rm11, float rm12, float rm20, float rm21, float rm22)
Multiplythis
by the 4x3 matrix with the column vectors(rm00, rm01, rm02)
,(rm10, rm11, rm12)
,(rm20, rm21, rm22)
and(0, 0, 0)
.If
M
isthis
matrix andR
the specified matrix, then the new matrix will beM * R
. So when transforming a vectorv
with the new matrix by usingM * R * v
, the transformation of theR
matrix will be applied first!- Parameters:
rm00
- the value of the m00 elementrm01
- the value of the m01 elementrm02
- the value of the m02 elementrm10
- the value of the m10 elementrm11
- the value of the m11 elementrm12
- the value of the m12 elementrm20
- the value of the m20 elementrm21
- the value of the m21 elementrm22
- the value of the m22 element- Returns:
- this
-
mul3x3
public Matrix4x3f mul3x3(float rm00, float rm01, float rm02, float rm10, float rm11, float rm12, float rm20, float rm21, float rm22, Matrix4x3f dest)
Description copied from interface:Matrix4x3fc
Multiplythis
by the 4x3 matrix with the column vectors(rm00, rm01, rm02)
,(rm10, rm11, rm12)
,(rm20, rm21, rm22)
and(0, 0, 0)
and store the result indest
.If
M
isthis
matrix andR
the specified matrix, then the new matrix will beM * R
. So when transforming a vectorv
with the new matrix by usingM * R * v
, the transformation of theR
matrix will be applied first!- Specified by:
mul3x3
in interfaceMatrix4x3fc
- Parameters:
rm00
- the value of the m00 elementrm01
- the value of the m01 elementrm02
- the value of the m02 elementrm10
- the value of the m10 elementrm11
- the value of the m11 elementrm12
- the value of the m12 elementrm20
- the value of the m20 elementrm21
- the value of the m21 elementrm22
- the value of the m22 elementdest
- will hold the result- Returns:
- dest
-
fma
public Matrix4x3f fma(Matrix4x3fc other, float otherFactor)
Component-wise addthis
andother
by first multiplying each component ofother
byotherFactor
and adding that result tothis
.The matrix
other
will not be changed.- Parameters:
other
- the other matrixotherFactor
- the factor to multiply each of the other matrix's components- Returns:
- this
-
fma
public Matrix4x3f fma(Matrix4x3fc other, float otherFactor, Matrix4x3f dest)
Description copied from interface:Matrix4x3fc
Component-wise addthis
andother
by first multiplying each component ofother
byotherFactor
, adding that tothis
and storing the final result indest
.The other components of
dest
will be set to the ones ofthis
.The matrices
this
andother
will not be changed.- Specified by:
fma
in interfaceMatrix4x3fc
- Parameters:
other
- the other matrixotherFactor
- the factor to multiply each of the other matrix's componentsdest
- will hold the result- Returns:
- dest
-
add
public Matrix4x3f add(Matrix4x3fc other)
Component-wise addthis
andother
.- Parameters:
other
- the other addend- Returns:
- this
-
add
public Matrix4x3f add(Matrix4x3fc other, Matrix4x3f dest)
Description copied from interface:Matrix4x3fc
Component-wise addthis
andother
and store the result indest
.- Specified by:
add
in interfaceMatrix4x3fc
- Parameters:
other
- the other addenddest
- will hold the result- Returns:
- dest
-
sub
public Matrix4x3f sub(Matrix4x3fc subtrahend)
Component-wise subtractsubtrahend
fromthis
.- Parameters:
subtrahend
- the subtrahend- Returns:
- this
-
sub
public Matrix4x3f sub(Matrix4x3fc subtrahend, Matrix4x3f dest)
Description copied from interface:Matrix4x3fc
Component-wise subtractsubtrahend
fromthis
and store the result indest
.- Specified by:
sub
in interfaceMatrix4x3fc
- Parameters:
subtrahend
- the subtrahenddest
- will hold the result- Returns:
- dest
-
mulComponentWise
public Matrix4x3f mulComponentWise(Matrix4x3fc other)
Component-wise multiplythis
byother
.- Parameters:
other
- the other matrix- Returns:
- this
-
mulComponentWise
public Matrix4x3f mulComponentWise(Matrix4x3fc other, Matrix4x3f dest)
Description copied from interface:Matrix4x3fc
Component-wise multiplythis
byother
and store the result indest
.- Specified by:
mulComponentWise
in interfaceMatrix4x3fc
- Parameters:
other
- the other matrixdest
- will hold the result- Returns:
- dest
-
set
public Matrix4x3f set(float m00, float m01, float m02, float m10, float m11, float m12, float m20, float m21, float m22, float m30, float m31, float m32)
Set the values within this matrix to the supplied float values. The matrix will look like this:
m00, m10, m20, m30
m01, m11, m21, m31
m02, m12, m22, m32- Parameters:
m00
- the new value of m00m01
- the new value of m01m02
- the new value of m02m10
- the new value of m10m11
- the new value of m11m12
- the new value of m12m20
- the new value of m20m21
- the new value of m21m22
- the new value of m22m30
- the new value of m30m31
- the new value of m31m32
- the new value of m32- Returns:
- this
-
set
public Matrix4x3f set(float[] m, int off)
Set the values in the matrix using a float array that contains the matrix elements in column-major order.The results will look like this:
0, 3, 6, 9
1, 4, 7, 10
2, 5, 8, 11- Parameters:
m
- the array to read the matrix values fromoff
- the offset into the array- Returns:
- this
- See Also:
set(float[])
-
set
public Matrix4x3f set(float[] m)
Set the values in the matrix using a float array that contains the matrix elements in column-major order.The results will look like this:
0, 3, 6, 9
1, 4, 7, 10
2, 5, 8, 11- Parameters:
m
- the array to read the matrix values from- Returns:
- this
- See Also:
set(float[], int)
-
set
public Matrix4x3f set(java.nio.FloatBuffer buffer)
Set the values of this matrix by reading 12 float values from the givenFloatBuffer
in column-major order, starting at its current position.The FloatBuffer is expected to contain the values in column-major order.
The position of the FloatBuffer will not be changed by this method.
- Parameters:
buffer
- the FloatBuffer to read the matrix values from in column-major order- Returns:
- this
-
set
public Matrix4x3f set(java.nio.ByteBuffer buffer)
Set the values of this matrix by reading 12 float values from the givenByteBuffer
in column-major order, starting at its current position.The ByteBuffer is expected to contain the values in column-major order.
The position of the ByteBuffer will not be changed by this method.
- Parameters:
buffer
- the ByteBuffer to read the matrix values from in column-major order- Returns:
- this
-
set
public Matrix4x3f set(int index, java.nio.FloatBuffer buffer)
Set the values of this matrix by reading 12 float values from the givenFloatBuffer
in column-major order, starting at the specified absolute buffer position/index.The FloatBuffer is expected to contain the values in column-major order.
The position of the FloatBuffer will not be changed by this method.
- Parameters:
index
- the absolute position into the FloatBufferbuffer
- the FloatBuffer to read the matrix values from in column-major order- Returns:
- this
-
set
public Matrix4x3f set(int index, java.nio.ByteBuffer buffer)
Set the values of this matrix by reading 12 float values from the givenByteBuffer
in column-major order, starting at the specified absolute buffer position/index.The ByteBuffer is expected to contain the values in column-major order.
The position of the ByteBuffer will not be changed by this method.
- Parameters:
index
- the absolute position into the ByteBufferbuffer
- the ByteBuffer to read the matrix values from in column-major order- Returns:
- this
-
setFromAddress
public Matrix4x3f setFromAddress(long address)
Set the values of this matrix by reading 12 float values from off-heap memory in column-major order, starting at the given address.This method will throw an
UnsupportedOperationException
when JOML is used with `-Djoml.nounsafe`.This method is unsafe as it can result in a crash of the JVM process when the specified address range does not belong to this process.
- Parameters:
address
- the off-heap memory address to read the matrix values from in column-major order- Returns:
- this
-
determinant
public float determinant()
Description copied from interface:Matrix4x3fc
Return the determinant of this matrix.- Specified by:
determinant
in interfaceMatrix4x3fc
- Returns:
- the determinant
-
invert
public Matrix4x3f invert(Matrix4x3f dest)
Description copied from interface:Matrix4x3fc
Invert this matrix and write the result intodest
.- Specified by:
invert
in interfaceMatrix4x3fc
- Parameters:
dest
- will hold the result- Returns:
- dest
-
invert
public Matrix4f invert(Matrix4f dest)
Description copied from interface:Matrix4x3fc
Invert this matrix and write the result as the top 4x3 matrix intodest
and set all other values ofdest
to identity..- Specified by:
invert
in interfaceMatrix4x3fc
- Parameters:
dest
- will hold the result- Returns:
- dest
-
invert
public Matrix4x3f invert()
Invert this matrix.- Returns:
- this
-
invertOrtho
public Matrix4x3f invertOrtho(Matrix4x3f dest)
Description copied from interface:Matrix4x3fc
Invertthis
orthographic projection matrix and store the result into the givendest
.This method can be used to quickly obtain the inverse of an orthographic projection matrix.
- Specified by:
invertOrtho
in interfaceMatrix4x3fc
- Parameters:
dest
- will hold the inverse ofthis
- Returns:
- dest
-
invertOrtho
public Matrix4x3f invertOrtho()
Invertthis
orthographic projection matrix.This method can be used to quickly obtain the inverse of an orthographic projection matrix.
- Returns:
- this
-
transpose3x3
public Matrix4x3f transpose3x3()
Transpose only the left 3x3 submatrix of this matrix and set the rest of the matrix elements to identity.- Returns:
- this
-
transpose3x3
public Matrix4x3f transpose3x3(Matrix4x3f dest)
Description copied from interface:Matrix4x3fc
Transpose only the left 3x3 submatrix of this matrix and store the result indest
.All other matrix elements are left unchanged.
- Specified by:
transpose3x3
in interfaceMatrix4x3fc
- Parameters:
dest
- will hold the result- Returns:
- dest
-
transpose3x3
public Matrix3f transpose3x3(Matrix3f dest)
Description copied from interface:Matrix4x3fc
Transpose only the left 3x3 submatrix of this matrix and store the result indest
.- Specified by:
transpose3x3
in interfaceMatrix4x3fc
- Parameters:
dest
- will hold the result- Returns:
- dest
-
translation
public Matrix4x3f translation(float x, float y, float z)
Set this matrix to be a simple translation matrix.The resulting matrix can be multiplied against another transformation matrix to obtain an additional translation.
In order to post-multiply a translation transformation directly to a matrix, use
translate()
instead.- Parameters:
x
- the offset to translate in xy
- the offset to translate in yz
- the offset to translate in z- Returns:
- this
- See Also:
translate(float, float, float)
-
translation
public Matrix4x3f translation(Vector3fc offset)
Set this matrix to be a simple translation matrix.The resulting matrix can be multiplied against another transformation matrix to obtain an additional translation.
In order to post-multiply a translation transformation directly to a matrix, use
translate()
instead.- Parameters:
offset
- the offsets in x, y and z to translate- Returns:
- this
- See Also:
translate(float, float, float)
-
setTranslation
public Matrix4x3f setTranslation(float x, float y, float z)
Set only the translation components(m30, m31, m32)
of this matrix to the given values(x, y, z)
.To build a translation matrix instead, use
translation(float, float, float)
. To apply a translation, usetranslate(float, float, float)
.- Parameters:
x
- the offset to translate in xy
- the offset to translate in yz
- the offset to translate in z- Returns:
- this
- See Also:
translation(float, float, float)
,translate(float, float, float)
-
setTranslation
public Matrix4x3f setTranslation(Vector3fc xyz)
Set only the translation components(m30, m31, m32)
of this matrix to the values(xyz.x, xyz.y, xyz.z)
.To build a translation matrix instead, use
translation(Vector3fc)
. To apply a translation, usetranslate(Vector3fc)
.- Parameters:
xyz
- the units to translate in(x, y, z)
- Returns:
- this
- See Also:
translation(Vector3fc)
,translate(Vector3fc)
-
getTranslation
public Vector3f getTranslation(Vector3f dest)
Description copied from interface:Matrix4x3fc
Get only the translation components(m30, m31, m32)
of this matrix and store them in the given vectorxyz
.- Specified by:
getTranslation
in interfaceMatrix4x3fc
- Parameters:
dest
- will hold the translation components of this matrix- Returns:
- dest
-
getScale
public Vector3f getScale(Vector3f dest)
Description copied from interface:Matrix4x3fc
Get the scaling factors ofthis
matrix for the three base axes.- Specified by:
getScale
in interfaceMatrix4x3fc
- Parameters:
dest
- will hold the scaling factors forx
,y
andz
- Returns:
- dest
-
toString
public java.lang.String toString()
Return a string representation of this matrix.This method creates a new
DecimalFormat
on every invocation with the format string "0.000E0;-
".- Overrides:
toString
in classjava.lang.Object
- Returns:
- the string representation
-
toString
public java.lang.String toString(java.text.NumberFormat formatter)
Return a string representation of this matrix by formatting the matrix elements with the givenNumberFormat
.- Parameters:
formatter
- theNumberFormat
used to format the matrix values with- Returns:
- the string representation
-
get
public Matrix4x3f get(Matrix4x3f dest)
Get the current values ofthis
matrix and store them intodest
.This is the reverse method of
set(Matrix4x3fc)
and allows to obtain intermediate calculation results when chaining multiple transformations.- Specified by:
get
in interfaceMatrix4x3fc
- Parameters:
dest
- the destination matrix- Returns:
- the passed in destination
- See Also:
set(Matrix4x3fc)
-
get
public Matrix4x3d get(Matrix4x3d dest)
Get the current values ofthis
matrix and store them intodest
.This is the reverse method of
Matrix4x3d.set(Matrix4x3fc)
and allows to obtain intermediate calculation results when chaining multiple transformations.- Specified by:
get
in interfaceMatrix4x3fc
- Parameters:
dest
- the destination matrix- Returns:
- the passed in destination
- See Also:
Matrix4x3d.set(Matrix4x3fc)
-
getRotation
public AxisAngle4f getRotation(AxisAngle4f dest)
Description copied from interface:Matrix4x3fc
Get the rotational component ofthis
matrix and store the represented rotation into the givenAxisAngle4f
.- Specified by:
getRotation
in interfaceMatrix4x3fc
- Parameters:
dest
- the destinationAxisAngle4f
- Returns:
- the passed in destination
- See Also:
AxisAngle4f.set(Matrix4x3fc)
-
getRotation
public AxisAngle4d getRotation(AxisAngle4d dest)
Description copied from interface:Matrix4x3fc
Get the rotational component ofthis
matrix and store the represented rotation into the givenAxisAngle4d
.- Specified by:
getRotation
in interfaceMatrix4x3fc
- Parameters:
dest
- the destinationAxisAngle4d
- Returns:
- the passed in destination
- See Also:
AxisAngle4f.set(Matrix4x3fc)
-
getUnnormalizedRotation
public Quaternionf getUnnormalizedRotation(Quaternionf dest)
Description copied from interface:Matrix4x3fc
Get the current values ofthis
matrix and store the represented rotation into the givenQuaternionf
.This method assumes that the first three column vectors of the left 3x3 submatrix are not normalized and thus allows to ignore any additional scaling factor that is applied to the matrix.
- Specified by:
getUnnormalizedRotation
in interfaceMatrix4x3fc
- Parameters:
dest
- the destinationQuaternionf
- Returns:
- the passed in destination
- See Also:
Quaternionf.setFromUnnormalized(Matrix4x3fc)
-
getNormalizedRotation
public Quaternionf getNormalizedRotation(Quaternionf dest)
Description copied from interface:Matrix4x3fc
Get the current values ofthis
matrix and store the represented rotation into the givenQuaternionf
.This method assumes that the first three column vectors of the left 3x3 submatrix are normalized.
- Specified by:
getNormalizedRotation
in interfaceMatrix4x3fc
- Parameters:
dest
- the destinationQuaternionf
- Returns:
- the passed in destination
- See Also:
Quaternionf.setFromNormalized(Matrix4x3fc)
-
getUnnormalizedRotation
public Quaterniond getUnnormalizedRotation(Quaterniond dest)
Description copied from interface:Matrix4x3fc
Get the current values ofthis
matrix and store the represented rotation into the givenQuaterniond
.This method assumes that the first three column vectors of the left 3x3 submatrix are not normalized and thus allows to ignore any additional scaling factor that is applied to the matrix.
- Specified by:
getUnnormalizedRotation
in interfaceMatrix4x3fc
- Parameters:
dest
- the destinationQuaterniond
- Returns:
- the passed in destination
- See Also:
Quaterniond.setFromUnnormalized(Matrix4x3fc)
-
getNormalizedRotation
public Quaterniond getNormalizedRotation(Quaterniond dest)
Description copied from interface:Matrix4x3fc
Get the current values ofthis
matrix and store the represented rotation into the givenQuaterniond
.This method assumes that the first three column vectors of the left 3x3 submatrix are normalized.
- Specified by:
getNormalizedRotation
in interfaceMatrix4x3fc
- Parameters:
dest
- the destinationQuaterniond
- Returns:
- the passed in destination
- See Also:
Quaterniond.setFromNormalized(Matrix4x3fc)
-
get
public java.nio.FloatBuffer get(java.nio.FloatBuffer buffer)
Description copied from interface:Matrix4x3fc
Store this matrix in column-major order into the suppliedFloatBuffer
at the current bufferposition
.This method will not increment the position of the given FloatBuffer.
In order to specify the offset into the FloatBuffer at which the matrix is stored, use
Matrix4x3fc.get(int, FloatBuffer)
, taking the absolute position as parameter.- Specified by:
get
in interfaceMatrix4x3fc
- Parameters:
buffer
- will receive the values of this matrix in column-major order at its current position- Returns:
- the passed in buffer
- See Also:
Matrix4x3fc.get(int, FloatBuffer)
-
get
public java.nio.FloatBuffer get(int index, java.nio.FloatBuffer buffer)
Description copied from interface:Matrix4x3fc
Store this matrix in column-major order into the suppliedFloatBuffer
starting at the specified absolute buffer position/index.This method will not increment the position of the given FloatBuffer.
- Specified by:
get
in interfaceMatrix4x3fc
- Parameters:
index
- the absolute position into the FloatBufferbuffer
- will receive the values of this matrix in column-major order- Returns:
- the passed in buffer
-
get
public java.nio.ByteBuffer get(java.nio.ByteBuffer buffer)
Description copied from interface:Matrix4x3fc
Store this matrix in column-major order into the suppliedByteBuffer
at the current bufferposition
.This method will not increment the position of the given ByteBuffer.
In order to specify the offset into the ByteBuffer at which the matrix is stored, use
Matrix4x3fc.get(int, ByteBuffer)
, taking the absolute position as parameter.- Specified by:
get
in interfaceMatrix4x3fc
- Parameters:
buffer
- will receive the values of this matrix in column-major order at its current position- Returns:
- the passed in buffer
- See Also:
Matrix4x3fc.get(int, ByteBuffer)
-
get
public java.nio.ByteBuffer get(int index, java.nio.ByteBuffer buffer)
Description copied from interface:Matrix4x3fc
Store this matrix in column-major order into the suppliedByteBuffer
starting at the specified absolute buffer position/index.This method will not increment the position of the given ByteBuffer.
- Specified by:
get
in interfaceMatrix4x3fc
- Parameters:
index
- the absolute position into the ByteBufferbuffer
- will receive the values of this matrix in column-major order- Returns:
- the passed in buffer
-
getToAddress
public Matrix4x3fc getToAddress(long address)
Description copied from interface:Matrix4x3fc
Store this matrix in column-major order at the given off-heap address.This method will throw an
UnsupportedOperationException
when JOML is used with `-Djoml.nounsafe`.This method is unsafe as it can result in a crash of the JVM process when the specified address range does not belong to this process.
- Specified by:
getToAddress
in interfaceMatrix4x3fc
- Parameters:
address
- the off-heap address where to store this matrix- Returns:
- this
-
get
public float[] get(float[] arr, int offset)
Description copied from interface:Matrix4x3fc
Store this matrix into the supplied float array in column-major order at the given offset.- Specified by:
get
in interfaceMatrix4x3fc
- Parameters:
arr
- the array to write the matrix values intooffset
- the offset into the array- Returns:
- the passed in array
-
get
public float[] get(float[] arr)
Description copied from interface:Matrix4x3fc
Store this matrix into the supplied float array in column-major order.In order to specify an explicit offset into the array, use the method
Matrix4x3fc.get(float[], int)
.- Specified by:
get
in interfaceMatrix4x3fc
- Parameters:
arr
- the array to write the matrix values into- Returns:
- the passed in array
- See Also:
Matrix4x3fc.get(float[], int)
-
get4x4
public float[] get4x4(float[] arr, int offset)
Description copied from interface:Matrix4x3fc
Store a 4x4 matrix in column-major order into the supplied array at the given offset, where the upper 4x3 submatrix isthis
and the last row is(0, 0, 0, 1)
.- Specified by:
get4x4
in interfaceMatrix4x3fc
- Parameters:
arr
- the array to write the matrix values intooffset
- the offset into the array- Returns:
- the passed in array
-
get4x4
public float[] get4x4(float[] arr)
Description copied from interface:Matrix4x3fc
Store a 4x4 matrix in column-major order into the supplied array, where the upper 4x3 submatrix isthis
and the last row is(0, 0, 0, 1)
.In order to specify an explicit offset into the array, use the method
Matrix4x3fc.get4x4(float[], int)
.- Specified by:
get4x4
in interfaceMatrix4x3fc
- Parameters:
arr
- the array to write the matrix values into- Returns:
- the passed in array
- See Also:
Matrix4x3fc.get4x4(float[], int)
-
get4x4
public java.nio.FloatBuffer get4x4(java.nio.FloatBuffer buffer)
Description copied from interface:Matrix4x3fc
Store a 4x4 matrix in column-major order into the suppliedFloatBuffer
at the current bufferposition
, where the upper 4x3 submatrix isthis
and the last row is(0, 0, 0, 1)
.This method will not increment the position of the given FloatBuffer.
In order to specify the offset into the FloatBuffer at which the matrix is stored, use
Matrix4x3fc.get4x4(int, FloatBuffer)
, taking the absolute position as parameter.- Specified by:
get4x4
in interfaceMatrix4x3fc
- Parameters:
buffer
- will receive the values of this matrix in column-major order at its current position- Returns:
- the passed in buffer
- See Also:
Matrix4x3fc.get4x4(int, FloatBuffer)
-
get4x4
public java.nio.FloatBuffer get4x4(int index, java.nio.FloatBuffer buffer)
Description copied from interface:Matrix4x3fc
Store a 4x4 matrix in column-major order into the suppliedFloatBuffer
starting at the specified absolute buffer position/index, where the upper 4x3 submatrix isthis
and the last row is(0, 0, 0, 1)
.This method will not increment the position of the given FloatBuffer.
- Specified by:
get4x4
in interfaceMatrix4x3fc
- Parameters:
index
- the absolute position into the FloatBufferbuffer
- will receive the values of this matrix in column-major order- Returns:
- the passed in buffer
-
get4x4
public java.nio.ByteBuffer get4x4(java.nio.ByteBuffer buffer)
Description copied from interface:Matrix4x3fc
Store a 4x4 matrix in column-major order into the suppliedByteBuffer
at the current bufferposition
, where the upper 4x3 submatrix isthis
and the last row is(0, 0, 0, 1)
.This method will not increment the position of the given ByteBuffer.
In order to specify the offset into the ByteBuffer at which the matrix is stored, use
Matrix4x3fc.get4x4(int, ByteBuffer)
, taking the absolute position as parameter.- Specified by:
get4x4
in interfaceMatrix4x3fc
- Parameters:
buffer
- will receive the values of this matrix in column-major order at its current position- Returns:
- the passed in buffer
- See Also:
Matrix4x3fc.get4x4(int, ByteBuffer)
-
get4x4
public java.nio.ByteBuffer get4x4(int index, java.nio.ByteBuffer buffer)
Description copied from interface:Matrix4x3fc
Store a 4x4 matrix in column-major order into the suppliedByteBuffer
starting at the specified absolute buffer position/index, where the upper 4x3 submatrix isthis
and the last row is(0, 0, 0, 1)
.This method will not increment the position of the given ByteBuffer.
- Specified by:
get4x4
in interfaceMatrix4x3fc
- Parameters:
index
- the absolute position into the ByteBufferbuffer
- will receive the values of this matrix in column-major order- Returns:
- the passed in buffer
-
get3x4
public java.nio.FloatBuffer get3x4(java.nio.FloatBuffer buffer)
Description copied from interface:Matrix4x3fc
Store the left 3x3 submatrix as 3x4 matrix in column-major order into the suppliedFloatBuffer
at the current bufferposition
, with the m03, m13 and m23 components being zero.This method will not increment the position of the given FloatBuffer.
In order to specify the offset into the FloatBuffer at which the matrix is stored, use
Matrix4x3fc.get3x4(int, FloatBuffer)
, taking the absolute position as parameter.- Specified by:
get3x4
in interfaceMatrix4x3fc
- Parameters:
buffer
- will receive the values of the left 3x3 submatrix as 3x4 matrix in column-major order at its current position- Returns:
- the passed in buffer
- See Also:
Matrix4x3fc.get3x4(int, FloatBuffer)
-
get3x4
public java.nio.FloatBuffer get3x4(int index, java.nio.FloatBuffer buffer)
Description copied from interface:Matrix4x3fc
Store the left 3x3 submatrix as 3x4 matrix in column-major order into the suppliedFloatBuffer
starting at the specified absolute buffer position/index, with the m03, m13 and m23 components being zero.This method will not increment the position of the given FloatBuffer.
- Specified by:
get3x4
in interfaceMatrix4x3fc
- Parameters:
index
- the absolute position into the FloatBufferbuffer
- will receive the values of the left 3x3 submatrix as 3x4 matrix in column-major order- Returns:
- the passed in buffer
-
get3x4
public java.nio.ByteBuffer get3x4(java.nio.ByteBuffer buffer)
Description copied from interface:Matrix4x3fc
Store the left 3x3 submatrix as 3x4 matrix in column-major order into the suppliedByteBuffer
at the current bufferposition
, with the m03, m13 and m23 components being zero.This method will not increment the position of the given ByteBuffer.
In order to specify the offset into the ByteBuffer at which the matrix is stored, use
Matrix4x3fc.get3x4(int, ByteBuffer)
, taking the absolute position as parameter.- Specified by:
get3x4
in interfaceMatrix4x3fc
- Parameters:
buffer
- will receive the values of the left 3x3 submatrix as 3x4 matrix in column-major order at its current position- Returns:
- the passed in buffer
- See Also:
Matrix4x3fc.get3x4(int, ByteBuffer)
-
get3x4
public java.nio.ByteBuffer get3x4(int index, java.nio.ByteBuffer buffer)
Description copied from interface:Matrix4x3fc
Store the left 3x3 submatrix as 3x4 matrix in column-major order into the suppliedByteBuffer
starting at the specified absolute buffer position/index, with the m03, m13 and m23 components being zero.This method will not increment the position of the given ByteBuffer.
- Specified by:
get3x4
in interfaceMatrix4x3fc
- Parameters:
index
- the absolute position into the ByteBufferbuffer
- will receive the values of the left 3x3 submatrix as 3x4 matrix in column-major order- Returns:
- the passed in buffer
-
getTransposed
public java.nio.FloatBuffer getTransposed(java.nio.FloatBuffer buffer)
Description copied from interface:Matrix4x3fc
Store this matrix in row-major order into the suppliedFloatBuffer
at the current bufferposition
.This method will not increment the position of the given FloatBuffer.
In order to specify the offset into the FloatBuffer at which the matrix is stored, use
Matrix4x3fc.getTransposed(int, FloatBuffer)
, taking the absolute position as parameter.- Specified by:
getTransposed
in interfaceMatrix4x3fc
- Parameters:
buffer
- will receive the values of this matrix in row-major order at its current position- Returns:
- the passed in buffer
- See Also:
Matrix4x3fc.getTransposed(int, FloatBuffer)
-
getTransposed
public java.nio.FloatBuffer getTransposed(int index, java.nio.FloatBuffer buffer)
Description copied from interface:Matrix4x3fc
Store this matrix in row-major order into the suppliedFloatBuffer
starting at the specified absolute buffer position/index.This method will not increment the position of the given FloatBuffer.
- Specified by:
getTransposed
in interfaceMatrix4x3fc
- Parameters:
index
- the absolute position into the FloatBufferbuffer
- will receive the values of this matrix in row-major order- Returns:
- the passed in buffer
-
getTransposed
public java.nio.ByteBuffer getTransposed(java.nio.ByteBuffer buffer)
Description copied from interface:Matrix4x3fc
Store this matrix in row-major order into the suppliedByteBuffer
at the current bufferposition
.This method will not increment the position of the given ByteBuffer.
In order to specify the offset into the ByteBuffer at which the matrix is stored, use
Matrix4x3fc.getTransposed(int, ByteBuffer)
, taking the absolute position as parameter.- Specified by:
getTransposed
in interfaceMatrix4x3fc
- Parameters:
buffer
- will receive the values of this matrix in row-major order at its current position- Returns:
- the passed in buffer
- See Also:
Matrix4x3fc.getTransposed(int, ByteBuffer)
-
getTransposed
public java.nio.ByteBuffer getTransposed(int index, java.nio.ByteBuffer buffer)
Description copied from interface:Matrix4x3fc
Store this matrix in row-major order into the suppliedByteBuffer
starting at the specified absolute buffer position/index.This method will not increment the position of the given ByteBuffer.
- Specified by:
getTransposed
in interfaceMatrix4x3fc
- Parameters:
index
- the absolute position into the ByteBufferbuffer
- will receive the values of this matrix in row-major order- Returns:
- the passed in buffer
-
getTransposed
public float[] getTransposed(float[] arr, int offset)
Description copied from interface:Matrix4x3fc
Store this matrix into the supplied float array in row-major order at the given offset.- Specified by:
getTransposed
in interfaceMatrix4x3fc
- Parameters:
arr
- the array to write the matrix values intooffset
- the offset into the array- Returns:
- the passed in array
-
getTransposed
public float[] getTransposed(float[] arr)
Description copied from interface:Matrix4x3fc
Store this matrix into the supplied float array in row-major order.In order to specify an explicit offset into the array, use the method
Matrix4x3fc.getTransposed(float[], int)
.- Specified by:
getTransposed
in interfaceMatrix4x3fc
- Parameters:
arr
- the array to write the matrix values into- Returns:
- the passed in array
- See Also:
Matrix4x3fc.getTransposed(float[], int)
-
zero
public Matrix4x3f zero()
Set all the values within this matrix to0
.- Returns:
- this
-
scaling
public Matrix4x3f scaling(float factor)
Set this matrix to be a simple scale matrix, which scales all axes uniformly by the given factor.The resulting matrix can be multiplied against another transformation matrix to obtain an additional scaling.
In order to post-multiply a scaling transformation directly to a matrix, use
scale()
instead.- Parameters:
factor
- the scale factor in x, y and z- Returns:
- this
- See Also:
scale(float)
-
scaling
public Matrix4x3f scaling(float x, float y, float z)
Set this matrix to be a simple scale matrix.The resulting matrix can be multiplied against another transformation matrix to obtain an additional scaling.
In order to post-multiply a scaling transformation directly to a matrix, use
scale()
instead.- Parameters:
x
- the scale in xy
- the scale in yz
- the scale in z- Returns:
- this
- See Also:
scale(float, float, float)
-
scaling
public Matrix4x3f scaling(Vector3fc xyz)
Set this matrix to be a simple scale matrix which scales the base axes byxyz.x
,xyz.y
andxyz.z
respectively.The resulting matrix can be multiplied against another transformation matrix to obtain an additional scaling.
In order to post-multiply a scaling transformation directly to a matrix use
scale()
instead.- Parameters:
xyz
- the scale in x, y and z respectively- Returns:
- this
- See Also:
scale(Vector3fc)
-
rotation
public Matrix4x3f rotation(float angle, Vector3fc axis)
Set this matrix to a rotation matrix which rotates the given radians about a given axis.The axis described by the
axis
vector needs to be a unit vector.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
The resulting matrix can be multiplied against another transformation matrix to obtain an additional rotation.
In order to post-multiply a rotation transformation directly to a matrix, use
rotate()
instead.- Parameters:
angle
- the angle in radiansaxis
- the axis to rotate about (needs to benormalized
)- Returns:
- this
- See Also:
rotate(float, Vector3fc)
-
rotation
public Matrix4x3f rotation(AxisAngle4f axisAngle)
Set this matrix to a rotation transformation using the givenAxisAngle4f
.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
The resulting matrix can be multiplied against another transformation matrix to obtain an additional rotation.
In order to apply the rotation transformation to an existing transformation, use
rotate()
instead.Reference: http://en.wikipedia.org
- Parameters:
axisAngle
- theAxisAngle4f
(needs to benormalized
)- Returns:
- this
- See Also:
rotate(AxisAngle4f)
-
rotation
public Matrix4x3f rotation(float angle, float x, float y, float z)
Set this matrix to a rotation matrix which rotates the given radians about a given axis.The axis described by the three components needs to be a unit vector.
When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
The resulting matrix can be multiplied against another transformation matrix to obtain an additional rotation.
In order to apply the rotation transformation to an existing transformation, use
rotate()
instead.Reference: http://en.wikipedia.org
- Parameters:
angle
- the angle in radiansx
- the x-component of the rotation axisy
- the y-component of the rotation axisz
- the z-component of the rotation axis- Returns:
- this
- See Also:
rotate(float, float, float, float)
-
rotationX
public Matrix4x3f rotationX(float ang)
Set this matrix to a rotation transformation about the X axis.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
Reference: http://en.wikipedia.org
- Parameters:
ang
- the angle in radians- Returns:
- this
-
rotationY
public Matrix4x3f rotationY(float ang)
Set this matrix to a rotation transformation about the Y axis.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
Reference: http://en.wikipedia.org
- Parameters:
ang
- the angle in radians- Returns:
- this
-
rotationZ
public Matrix4x3f rotationZ(float ang)
Set this matrix to a rotation transformation about the Z axis.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
Reference: http://en.wikipedia.org
- Parameters:
ang
- the angle in radians- Returns:
- this
-
rotationXYZ
public Matrix4x3f rotationXYZ(float angleX, float angleY, float angleZ)
Set this matrix to a rotation ofangleX
radians about the X axis, followed by a rotation ofangleY
radians about the Y axis and followed by a rotation ofangleZ
radians about the Z axis.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
This method is equivalent to calling:
rotationX(angleX).rotateY(angleY).rotateZ(angleZ)
- Parameters:
angleX
- the angle to rotate about XangleY
- the angle to rotate about YangleZ
- the angle to rotate about Z- Returns:
- this
-
rotationZYX
public Matrix4x3f rotationZYX(float angleZ, float angleY, float angleX)
Set this matrix to a rotation ofangleZ
radians about the Z axis, followed by a rotation ofangleY
radians about the Y axis and followed by a rotation ofangleX
radians about the X axis.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
This method is equivalent to calling:
rotationZ(angleZ).rotateY(angleY).rotateX(angleX)
- Parameters:
angleZ
- the angle to rotate about ZangleY
- the angle to rotate about YangleX
- the angle to rotate about X- Returns:
- this
-
rotationYXZ
public Matrix4x3f rotationYXZ(float angleY, float angleX, float angleZ)
Set this matrix to a rotation ofangleY
radians about the Y axis, followed by a rotation ofangleX
radians about the X axis and followed by a rotation ofangleZ
radians about the Z axis.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
This method is equivalent to calling:
rotationY(angleY).rotateX(angleX).rotateZ(angleZ)
- Parameters:
angleY
- the angle to rotate about YangleX
- the angle to rotate about XangleZ
- the angle to rotate about Z- Returns:
- this
-
setRotationXYZ
public Matrix4x3f setRotationXYZ(float angleX, float angleY, float angleZ)
Set only the left 3x3 submatrix of this matrix to a rotation ofangleX
radians about the X axis, followed by a rotation ofangleY
radians about the Y axis and followed by a rotation ofangleZ
radians about the Z axis.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
- Parameters:
angleX
- the angle to rotate about XangleY
- the angle to rotate about YangleZ
- the angle to rotate about Z- Returns:
- this
-
setRotationZYX
public Matrix4x3f setRotationZYX(float angleZ, float angleY, float angleX)
Set only the left 3x3 submatrix of this matrix to a rotation ofangleZ
radians about the Z axis, followed by a rotation ofangleY
radians about the Y axis and followed by a rotation ofangleX
radians about the X axis.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
- Parameters:
angleZ
- the angle to rotate about ZangleY
- the angle to rotate about YangleX
- the angle to rotate about X- Returns:
- this
-
setRotationYXZ
public Matrix4x3f setRotationYXZ(float angleY, float angleX, float angleZ)
Set only the left 3x3 submatrix of this matrix to a rotation ofangleY
radians about the Y axis, followed by a rotation ofangleX
radians about the X axis and followed by a rotation ofangleZ
radians about the Z axis.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
- Parameters:
angleY
- the angle to rotate about YangleX
- the angle to rotate about XangleZ
- the angle to rotate about Z- Returns:
- this
-
rotation
public Matrix4x3f rotation(Quaternionfc quat)
Set this matrix to the rotation - and possibly scaling - transformation of the givenQuaternionfc
.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
The resulting matrix can be multiplied against another transformation matrix to obtain an additional rotation.
In order to apply the rotation transformation to an existing transformation, use
rotate()
instead.Reference: http://en.wikipedia.org
- Parameters:
quat
- theQuaternionfc
- Returns:
- this
- See Also:
rotate(Quaternionfc)
-
translationRotateScale
public Matrix4x3f translationRotateScale(float tx, float ty, float tz, float qx, float qy, float qz, float qw, float sx, float sy, float sz)
Setthis
matrix toT * R * S
, whereT
is a translation by the given(tx, ty, tz)
,R
is a rotation transformation specified by the quaternion(qx, qy, qz, qw)
, andS
is a scaling transformation which scales the three axes x, y and z by(sx, sy, sz)
.When transforming a vector by the resulting matrix the scaling transformation will be applied first, then the rotation and at last the translation.
When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
This method is equivalent to calling:
translation(tx, ty, tz).rotate(quat).scale(sx, sy, sz)
- Parameters:
tx
- the number of units by which to translate the x-componentty
- the number of units by which to translate the y-componenttz
- the number of units by which to translate the z-componentqx
- the x-coordinate of the vector part of the quaternionqy
- the y-coordinate of the vector part of the quaternionqz
- the z-coordinate of the vector part of the quaternionqw
- the scalar part of the quaternionsx
- the scaling factor for the x-axissy
- the scaling factor for the y-axissz
- the scaling factor for the z-axis- Returns:
- this
- See Also:
translation(float, float, float)
,rotate(Quaternionfc)
,scale(float, float, float)
-
translationRotateScale
public Matrix4x3f translationRotateScale(Vector3fc translation, Quaternionfc quat, Vector3fc scale)
Setthis
matrix toT * R * S
, whereT
is the giventranslation
,R
is a rotation transformation specified by the given quaternion, andS
is a scaling transformation which scales the axes byscale
.When transforming a vector by the resulting matrix the scaling transformation will be applied first, then the rotation and at last the translation.
When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
This method is equivalent to calling:
translation(translation).rotate(quat).scale(scale)
- Parameters:
translation
- the translationquat
- the quaternion representing a rotationscale
- the scaling factors- Returns:
- this
- See Also:
translation(Vector3fc)
,rotate(Quaternionfc)
-
translationRotateScaleMul
public Matrix4x3f translationRotateScaleMul(float tx, float ty, float tz, float qx, float qy, float qz, float qw, float sx, float sy, float sz, Matrix4x3f m)
Setthis
matrix toT * R * S * M
, whereT
is a translation by the given(tx, ty, tz)
,R
is a rotation transformation specified by the quaternion(qx, qy, qz, qw)
,S
is a scaling transformation which scales the three axes x, y and z by(sx, sy, sz)
.When transforming a vector by the resulting matrix the transformation described by
M
will be applied first, then the scaling, then rotation and at last the translation.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
This method is equivalent to calling:
translation(tx, ty, tz).rotate(quat).scale(sx, sy, sz).mul(m)
- Parameters:
tx
- the number of units by which to translate the x-componentty
- the number of units by which to translate the y-componenttz
- the number of units by which to translate the z-componentqx
- the x-coordinate of the vector part of the quaternionqy
- the y-coordinate of the vector part of the quaternionqz
- the z-coordinate of the vector part of the quaternionqw
- the scalar part of the quaternionsx
- the scaling factor for the x-axissy
- the scaling factor for the y-axissz
- the scaling factor for the z-axism
- the matrix to multiply by- Returns:
- this
- See Also:
translation(float, float, float)
,rotate(Quaternionfc)
,scale(float, float, float)
,mul(Matrix4x3fc)
-
translationRotateScaleMul
public Matrix4x3f translationRotateScaleMul(Vector3fc translation, Quaternionfc quat, Vector3fc scale, Matrix4x3f m)
Setthis
matrix toT * R * S * M
, whereT
is the giventranslation
,R
is a rotation transformation specified by the given quaternion,S
is a scaling transformation which scales the axes byscale
.When transforming a vector by the resulting matrix the transformation described by
M
will be applied first, then the scaling, then rotation and at last the translation.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
This method is equivalent to calling:
translation(translation).rotate(quat).scale(scale).mul(m)
- Parameters:
translation
- the translationquat
- the quaternion representing a rotationscale
- the scaling factorsm
- the matrix to multiply by- Returns:
- this
- See Also:
translation(Vector3fc)
,rotate(Quaternionfc)
-
translationRotate
public Matrix4x3f translationRotate(float tx, float ty, float tz, Quaternionfc quat)
Setthis
matrix toT * R
, whereT
is a translation by the given(tx, ty, tz)
andR
is a rotation transformation specified by the given quaternion.When transforming a vector by the resulting matrix the rotation transformation will be applied first and then the translation.
When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
This method is equivalent to calling:
translation(tx, ty, tz).rotate(quat)
- Parameters:
tx
- the number of units by which to translate the x-componentty
- the number of units by which to translate the y-componenttz
- the number of units by which to translate the z-componentquat
- the quaternion representing a rotation- Returns:
- this
- See Also:
translation(float, float, float)
,rotate(Quaternionfc)
-
translationRotate
public Matrix4x3f translationRotate(float tx, float ty, float tz, float qx, float qy, float qz, float qw)
Setthis
matrix toT * R
, whereT
is a translation by the given(tx, ty, tz)
andR
is a rotation - and possibly scaling - transformation specified by the quaternion(qx, qy, qz, qw)
.When transforming a vector by the resulting matrix the rotation - and possibly scaling - transformation will be applied first and then the translation.
When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
This method is equivalent to calling:
translation(tx, ty, tz).rotate(quat)
- Parameters:
tx
- the number of units by which to translate the x-componentty
- the number of units by which to translate the y-componenttz
- the number of units by which to translate the z-componentqx
- the x-coordinate of the vector part of the quaternionqy
- the y-coordinate of the vector part of the quaternionqz
- the z-coordinate of the vector part of the quaternionqw
- the scalar part of the quaternion- Returns:
- this
- See Also:
translation(float, float, float)
,rotate(Quaternionfc)
-
translationRotate
public Matrix4x3f translationRotate(Vector3fc translation, Quaternionfc quat)
Setthis
matrix toT * R
, whereT
is the giventranslation
andR
is a rotation transformation specified by the given quaternion.When transforming a vector by the resulting matrix the scaling transformation will be applied first, then the rotation and at last the translation.
When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
This method is equivalent to calling:
translation(translation).rotate(quat)
- Parameters:
translation
- the translationquat
- the quaternion representing a rotation- Returns:
- this
- See Also:
translation(Vector3fc)
,rotate(Quaternionfc)
-
translationRotateMul
public Matrix4x3f translationRotateMul(float tx, float ty, float tz, Quaternionfc quat, Matrix4x3fc mat)
Setthis
matrix toT * R * M
, whereT
is a translation by the given(tx, ty, tz)
,R
is a rotation - and possibly scaling - transformation specified by the given quaternion andM
is the given matrixmat
.When transforming a vector by the resulting matrix the transformation described by
M
will be applied first, then the scaling, then rotation and at last the translation.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
This method is equivalent to calling:
translation(tx, ty, tz).rotate(quat).mul(mat)
- Parameters:
tx
- the number of units by which to translate the x-componentty
- the number of units by which to translate the y-componenttz
- the number of units by which to translate the z-componentquat
- the quaternion representing a rotationmat
- the matrix to multiply with- Returns:
- this
- See Also:
translation(float, float, float)
,rotate(Quaternionfc)
,mul(Matrix4x3fc)
-
translationRotateMul
public Matrix4x3f translationRotateMul(float tx, float ty, float tz, float qx, float qy, float qz, float qw, Matrix4x3fc mat)
Setthis
matrix toT * R * M
, whereT
is a translation by the given(tx, ty, tz)
,R
is a rotation - and possibly scaling - transformation specified by the quaternion(qx, qy, qz, qw)
andM
is the given matrixmat
When transforming a vector by the resulting matrix the transformation described by
M
will be applied first, then the scaling, then rotation and at last the translation.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
This method is equivalent to calling:
translation(tx, ty, tz).rotate(quat).mul(mat)
- Parameters:
tx
- the number of units by which to translate the x-componentty
- the number of units by which to translate the y-componenttz
- the number of units by which to translate the z-componentqx
- the x-coordinate of the vector part of the quaternionqy
- the y-coordinate of the vector part of the quaternionqz
- the z-coordinate of the vector part of the quaternionqw
- the scalar part of the quaternionmat
- the matrix to multiply with- Returns:
- this
- See Also:
translation(float, float, float)
,rotate(Quaternionfc)
,mul(Matrix4x3fc)
-
translationRotateInvert
public Matrix4x3f translationRotateInvert(float tx, float ty, float tz, float qx, float qy, float qz, float qw)
Setthis
matrix to(T * R)-1
, whereT
is a translation by the given(tx, ty, tz)
andR
is a rotation transformation specified by the quaternion(qx, qy, qz, qw)
.This method is equivalent to calling:
translationRotate(...).invert()
- Parameters:
tx
- the number of units by which to translate the x-componentty
- the number of units by which to translate the y-componenttz
- the number of units by which to translate the z-componentqx
- the x-coordinate of the vector part of the quaternionqy
- the y-coordinate of the vector part of the quaternionqz
- the z-coordinate of the vector part of the quaternionqw
- the scalar part of the quaternion- Returns:
- this
- See Also:
translationRotate(float, float, float, float, float, float, float)
,invert()
-
translationRotateInvert
public Matrix4x3f translationRotateInvert(Vector3fc translation, Quaternionfc quat)
Setthis
matrix to(T * R)-1
, whereT
is the giventranslation
andR
is a rotation transformation specified by the given quaternion.This method is equivalent to calling:
translationRotate(...).invert()
- Parameters:
translation
- the translationquat
- the quaternion representing a rotation- Returns:
- this
- See Also:
translationRotate(Vector3fc, Quaternionfc)
,invert()
-
set3x3
public Matrix4x3f set3x3(Matrix3fc mat)
Set the left 3x3 submatrix of thisMatrix4x3f
to the givenMatrix3fc
and don't change the other elements.- Parameters:
mat
- the 3x3 matrix- Returns:
- this
-
transform
public Vector4f transform(Vector4f v)
Description copied from interface:Matrix4x3fc
Transform/multiply the given vector by this matrix and store the result in that vector.- Specified by:
transform
in interfaceMatrix4x3fc
- Parameters:
v
- the vector to transform and to hold the final result- Returns:
- v
- See Also:
Vector4f.mul(Matrix4x3fc)
-
transform
public Vector4f transform(Vector4fc v, Vector4f dest)
Description copied from interface:Matrix4x3fc
Transform/multiply the given vector by this matrix and store the result indest
.- Specified by:
transform
in interfaceMatrix4x3fc
- Parameters:
v
- the vector to transformdest
- will contain the result- Returns:
- dest
- See Also:
Vector4f.mul(Matrix4x3fc, Vector4f)
-
transformPosition
public Vector3f transformPosition(Vector3f v)
Description copied from interface:Matrix4x3fc
Transform/multiply the given 3D-vector, as if it was a 4D-vector with w=1, by this matrix and store the result in that vector.The given 3D-vector is treated as a 4D-vector with its w-component being 1.0, so it will represent a position/location in 3D-space rather than a direction.
In order to store the result in another vector, use
Matrix4x3fc.transformPosition(Vector3fc, Vector3f)
.- Specified by:
transformPosition
in interfaceMatrix4x3fc
- Parameters:
v
- the vector to transform and to hold the final result- Returns:
- v
- See Also:
Matrix4x3fc.transformPosition(Vector3fc, Vector3f)
,Matrix4x3fc.transform(Vector4f)
-
transformPosition
public Vector3f transformPosition(Vector3fc v, Vector3f dest)
Description copied from interface:Matrix4x3fc
Transform/multiply the given 3D-vector, as if it was a 4D-vector with w=1, by this matrix and store the result indest
.The given 3D-vector is treated as a 4D-vector with its w-component being 1.0, so it will represent a position/location in 3D-space rather than a direction.
In order to store the result in the same vector, use
Matrix4x3fc.transformPosition(Vector3f)
.- Specified by:
transformPosition
in interfaceMatrix4x3fc
- Parameters:
v
- the vector to transformdest
- will hold the result- Returns:
- dest
- See Also:
Matrix4x3fc.transformPosition(Vector3f)
,Matrix4x3fc.transform(Vector4fc, Vector4f)
-
transformDirection
public Vector3f transformDirection(Vector3f v)
Description copied from interface:Matrix4x3fc
Transform/multiply the given 3D-vector, as if it was a 4D-vector with w=0, by this matrix and store the result in that vector.The given 3D-vector is treated as a 4D-vector with its w-component being
0.0
, so it will represent a direction in 3D-space rather than a position. This method will therefore not take the translation part of the matrix into account.In order to store the result in another vector, use
Matrix4x3fc.transformDirection(Vector3fc, Vector3f)
.- Specified by:
transformDirection
in interfaceMatrix4x3fc
- Parameters:
v
- the vector to transform and to hold the final result- Returns:
- v
- See Also:
Matrix4x3fc.transformDirection(Vector3fc, Vector3f)
-
transformDirection
public Vector3f transformDirection(Vector3fc v, Vector3f dest)
Description copied from interface:Matrix4x3fc
Transform/multiply the given 3D-vector, as if it was a 4D-vector with w=0, by this matrix and store the result indest
.The given 3D-vector is treated as a 4D-vector with its w-component being
0.0
, so it will represent a direction in 3D-space rather than a position. This method will therefore not take the translation part of the matrix into account.In order to store the result in the same vector, use
Matrix4x3fc.transformDirection(Vector3f)
.- Specified by:
transformDirection
in interfaceMatrix4x3fc
- Parameters:
v
- the vector to transform and to hold the final resultdest
- will hold the result- Returns:
- dest
- See Also:
Matrix4x3fc.transformDirection(Vector3f)
-
scale
public Matrix4x3f scale(Vector3fc xyz, Matrix4x3f dest)
Description copied from interface:Matrix4x3fc
Apply scaling tothis
matrix by scaling the base axes by the givenxyz.x
,xyz.y
andxyz.z
factors, respectively and store the result indest
.If
M
isthis
matrix andS
the scaling matrix, then the new matrix will beM * S
. So when transforming a vectorv
with the new matrix by usingM * S * v
, the scaling will be applied first!- Specified by:
scale
in interfaceMatrix4x3fc
- Parameters:
xyz
- the factors of the x, y and z component, respectivelydest
- will hold the result- Returns:
- dest
-
scale
public Matrix4x3f scale(Vector3fc xyz)
Apply scaling to this matrix by scaling the base axes by the givenxyz.x
,xyz.y
andxyz.z
factors, respectively.If
M
isthis
matrix andS
the scaling matrix, then the new matrix will beM * S
. So when transforming a vectorv
with the new matrix by usingM * S * v
, the scaling will be applied first!- Parameters:
xyz
- the factors of the x, y and z component, respectively- Returns:
- this
-
scale
public Matrix4x3f scale(float xyz, Matrix4x3f dest)
Description copied from interface:Matrix4x3fc
Apply scaling to this matrix by uniformly scaling all base axes by the givenxyz
factor and store the result indest
.If
M
isthis
matrix andS
the scaling matrix, then the new matrix will beM * S
. So when transforming a vectorv
with the new matrix by usingM * S * v
, the scaling will be applied first!Individual scaling of all three axes can be applied using
Matrix4x3fc.scale(float, float, float, Matrix4x3f)
.- Specified by:
scale
in interfaceMatrix4x3fc
- Parameters:
xyz
- the factor for all componentsdest
- will hold the result- Returns:
- dest
- See Also:
Matrix4x3fc.scale(float, float, float, Matrix4x3f)
-
scale
public Matrix4x3f scale(float xyz)
Apply scaling to this matrix by uniformly scaling all base axes by the givenxyz
factor.If
M
isthis
matrix andS
the scaling matrix, then the new matrix will beM * S
. So when transforming a vectorv
with the new matrix by usingM * S * v
, the scaling will be applied first!Individual scaling of all three axes can be applied using
scale(float, float, float)
.- Parameters:
xyz
- the factor for all components- Returns:
- this
- See Also:
scale(float, float, float)
-
scaleXY
public Matrix4x3f scaleXY(float x, float y, Matrix4x3f dest)
Description copied from interface:Matrix4x3fc
Apply scaling to this matrix by by scaling the X axis byx
and the Y axis byy
and store the result indest
.If
M
isthis
matrix andS
the scaling matrix, then the new matrix will beM * S
. So when transforming a vectorv
with the new matrix by usingM * S * v
, the scaling will be applied first!- Specified by:
scaleXY
in interfaceMatrix4x3fc
- Parameters:
x
- the factor of the x componenty
- the factor of the y componentdest
- will hold the result- Returns:
- dest
-
scaleXY
public Matrix4x3f scaleXY(float x, float y)
Apply scaling to this matrix by scaling the X axis byx
and the Y axis byy
.If
M
isthis
matrix andS
the scaling matrix, then the new matrix will beM * S
. So when transforming a vectorv
with the new matrix by usingM * S * v
, the scaling will be applied first!- Parameters:
x
- the factor of the x componenty
- the factor of the y component- Returns:
- this
-
scale
public Matrix4x3f scale(float x, float y, float z, Matrix4x3f dest)
Description copied from interface:Matrix4x3fc
Apply scaling tothis
matrix by scaling the base axes by the given x, y and z factors and store the result indest
.If
M
isthis
matrix andS
the scaling matrix, then the new matrix will beM * S
. So when transforming a vectorv
with the new matrix by usingM * S * v
, the scaling will be applied first!- Specified by:
scale
in interfaceMatrix4x3fc
- Parameters:
x
- the factor of the x componenty
- the factor of the y componentz
- the factor of the z componentdest
- will hold the result- Returns:
- dest
-
scale
public Matrix4x3f scale(float x, float y, float z)
Apply scaling to this matrix by scaling the base axes by the given x, y and z factors.If
M
isthis
matrix andS
the scaling matrix, then the new matrix will beM * S
. So when transforming a vectorv
with the new matrix by usingM * S * v
, the scaling will be applied first!- Parameters:
x
- the factor of the x componenty
- the factor of the y componentz
- the factor of the z component- Returns:
- this
-
scaleLocal
public Matrix4x3f scaleLocal(float x, float y, float z, Matrix4x3f dest)
Description copied from interface:Matrix4x3fc
Pre-multiply scaling tothis
matrix by scaling the base axes by the given x, y and z factors and store the result indest
.If
M
isthis
matrix andS
the scaling matrix, then the new matrix will beS * M
. So when transforming a vectorv
with the new matrix by usingS * M * v
, the scaling will be applied last!- Specified by:
scaleLocal
in interfaceMatrix4x3fc
- Parameters:
x
- the factor of the x componenty
- the factor of the y componentz
- the factor of the z componentdest
- will hold the result- Returns:
- dest
-
scaleAround
public Matrix4x3f scaleAround(float sx, float sy, float sz, float ox, float oy, float oz, Matrix4x3f dest)
Description copied from interface:Matrix4x3fc
Apply scaling tothis
matrix by scaling the base axes by the given sx, sy and sz factors while using(ox, oy, oz)
as the scaling origin, and store the result indest
.If
M
isthis
matrix andS
the scaling matrix, then the new matrix will beM * S
. So when transforming a vectorv
with the new matrix by usingM * S * v
, the scaling will be applied first!This method is equivalent to calling:
translate(ox, oy, oz, dest).scale(sx, sy, sz).translate(-ox, -oy, -oz)
- Specified by:
scaleAround
in interfaceMatrix4x3fc
- Parameters:
sx
- the scaling factor of the x componentsy
- the scaling factor of the y componentsz
- the scaling factor of the z componentox
- the x coordinate of the scaling originoy
- the y coordinate of the scaling originoz
- the z coordinate of the scaling origindest
- will hold the result- Returns:
- dest
-
scaleAround
public Matrix4x3f scaleAround(float sx, float sy, float sz, float ox, float oy, float oz)
Apply scaling to this matrix by scaling the base axes by the given sx, sy and sz factors while using(ox, oy, oz)
as the scaling origin.If
M
isthis
matrix andS
the scaling matrix, then the new matrix will beM * S
. So when transforming a vectorv
with the new matrix by usingM * S * v
, the scaling will be applied first!This method is equivalent to calling:
translate(ox, oy, oz).scale(sx, sy, sz).translate(-ox, -oy, -oz)
- Parameters:
sx
- the scaling factor of the x componentsy
- the scaling factor of the y componentsz
- the scaling factor of the z componentox
- the x coordinate of the scaling originoy
- the y coordinate of the scaling originoz
- the z coordinate of the scaling origin- Returns:
- this
-
scaleAround
public Matrix4x3f scaleAround(float factor, float ox, float oy, float oz)
Apply scaling to this matrix by scaling all three base axes by the givenfactor
while using(ox, oy, oz)
as the scaling origin.If
M
isthis
matrix andS
the scaling matrix, then the new matrix will beM * S
. So when transforming a vectorv
with the new matrix by usingM * S * v
, the scaling will be applied first!This method is equivalent to calling:
translate(ox, oy, oz).scale(factor).translate(-ox, -oy, -oz)
- Parameters:
factor
- the scaling factor for all three axesox
- the x coordinate of the scaling originoy
- the y coordinate of the scaling originoz
- the z coordinate of the scaling origin- Returns:
- this
-
scaleAround
public Matrix4x3f scaleAround(float factor, float ox, float oy, float oz, Matrix4x3f dest)
Description copied from interface:Matrix4x3fc
Apply scaling to this matrix by scaling all three base axes by the givenfactor
while using(ox, oy, oz)
as the scaling origin, and store the result indest
.If
M
isthis
matrix andS
the scaling matrix, then the new matrix will beM * S
. So when transforming a vectorv
with the new matrix by usingM * S * v
, the scaling will be applied first!This method is equivalent to calling:
translate(ox, oy, oz, dest).scale(factor).translate(-ox, -oy, -oz)
- Specified by:
scaleAround
in interfaceMatrix4x3fc
- Parameters:
factor
- the scaling factor for all three axesox
- the x coordinate of the scaling originoy
- the y coordinate of the scaling originoz
- the z coordinate of the scaling origindest
- will hold the result- Returns:
- this
-
scaleLocal
public Matrix4x3f scaleLocal(float x, float y, float z)
Pre-multiply scaling to this matrix by scaling the base axes by the given x, y and z factors.If
M
isthis
matrix andS
the scaling matrix, then the new matrix will beS * M
. So when transforming a vectorv
with the new matrix by usingS * M * v
, the scaling will be applied last!- Parameters:
x
- the factor of the x componenty
- the factor of the y componentz
- the factor of the z component- Returns:
- this
-
rotateX
public Matrix4x3f rotateX(float ang, Matrix4x3f dest)
Description copied from interface:Matrix4x3fc
Apply rotation about the X axis to this matrix by rotating the given amount of radians and store the result indest
.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
M
isthis
matrix andR
the rotation matrix, then the new matrix will beM * R
. So when transforming a vectorv
with the new matrix by usingM * R * v
, the rotation will be applied first!Reference: http://en.wikipedia.org
- Specified by:
rotateX
in interfaceMatrix4x3fc
- Parameters:
ang
- the angle in radiansdest
- will hold the result- Returns:
- dest
-
rotateX
public Matrix4x3f rotateX(float ang)
Apply rotation about the X axis to this matrix by rotating the given amount of radians.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
M
isthis
matrix andR
the rotation matrix, then the new matrix will beM * R
. So when transforming a vectorv
with the new matrix by usingM * R * v
, the rotation will be applied first!Reference: http://en.wikipedia.org
- Parameters:
ang
- the angle in radians- Returns:
- this
-
rotateY
public Matrix4x3f rotateY(float ang, Matrix4x3f dest)
Description copied from interface:Matrix4x3fc
Apply rotation about the Y axis to this matrix by rotating the given amount of radians and store the result indest
.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
M
isthis
matrix andR
the rotation matrix, then the new matrix will beM * R
. So when transforming a vectorv
with the new matrix by usingM * R * v
, the rotation will be applied first!Reference: http://en.wikipedia.org
- Specified by:
rotateY
in interfaceMatrix4x3fc
- Parameters:
ang
- the angle in radiansdest
- will hold the result- Returns:
- dest
-
rotateY
public Matrix4x3f rotateY(float ang)
Apply rotation about the Y axis to this matrix by rotating the given amount of radians.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
M
isthis
matrix andR
the rotation matrix, then the new matrix will beM * R
. So when transforming a vectorv
with the new matrix by usingM * R * v
, the rotation will be applied first!Reference: http://en.wikipedia.org
- Parameters:
ang
- the angle in radians- Returns:
- this
-
rotateZ
public Matrix4x3f rotateZ(float ang, Matrix4x3f dest)
Description copied from interface:Matrix4x3fc
Apply rotation about the Z axis to this matrix by rotating the given amount of radians and store the result indest
.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
M
isthis
matrix andR
the rotation matrix, then the new matrix will beM * R
. So when transforming a vectorv
with the new matrix by usingM * R * v
, the rotation will be applied first!Reference: http://en.wikipedia.org
- Specified by:
rotateZ
in interfaceMatrix4x3fc
- Parameters:
ang
- the angle in radiansdest
- will hold the result- Returns:
- dest
-
rotateZ
public Matrix4x3f rotateZ(float ang)
Apply rotation about the Z axis to this matrix by rotating the given amount of radians.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
M
isthis
matrix andR
the rotation matrix, then the new matrix will beM * R
. So when transforming a vectorv
with the new matrix by usingM * R * v
, the rotation will be applied first!Reference: http://en.wikipedia.org
- Parameters:
ang
- the angle in radians- Returns:
- this
-
rotateXYZ
public Matrix4x3f rotateXYZ(Vector3f angles)
Apply rotation ofangles.x
radians about the X axis, followed by a rotation ofangles.y
radians about the Y axis and followed by a rotation ofangles.z
radians about the Z axis.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
M
isthis
matrix andR
the rotation matrix, then the new matrix will beM * R
. So when transforming a vectorv
with the new matrix by usingM * R * v
, the rotation will be applied first!This method is equivalent to calling:
rotateX(angles.x).rotateY(angles.y).rotateZ(angles.z)
- Parameters:
angles
- the Euler angles- Returns:
- this
-
rotateXYZ
public Matrix4x3f rotateXYZ(float angleX, float angleY, float angleZ)
Apply rotation ofangleX
radians about the X axis, followed by a rotation ofangleY
radians about the Y axis and followed by a rotation ofangleZ
radians about the Z axis.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
M
isthis
matrix andR
the rotation matrix, then the new matrix will beM * R
. So when transforming a vectorv
with the new matrix by usingM * R * v
, the rotation will be applied first!This method is equivalent to calling:
rotateX(angleX).rotateY(angleY).rotateZ(angleZ)
- Parameters:
angleX
- the angle to rotate about XangleY
- the angle to rotate about YangleZ
- the angle to rotate about Z- Returns:
- this
-
rotateXYZ
public Matrix4x3f rotateXYZ(float angleX, float angleY, float angleZ, Matrix4x3f dest)
Description copied from interface:Matrix4x3fc
Apply rotation ofangleX
radians about the X axis, followed by a rotation ofangleY
radians about the Y axis and followed by a rotation ofangleZ
radians about the Z axis and store the result indest
.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
M
isthis
matrix andR
the rotation matrix, then the new matrix will beM * R
. So when transforming a vectorv
with the new matrix by usingM * R * v
, the rotation will be applied first!This method is equivalent to calling:
rotateX(angleX, dest).rotateY(angleY).rotateZ(angleZ)
- Specified by:
rotateXYZ
in interfaceMatrix4x3fc
- Parameters:
angleX
- the angle to rotate about XangleY
- the angle to rotate about YangleZ
- the angle to rotate about Zdest
- will hold the result- Returns:
- dest
-
rotateZYX
public Matrix4x3f rotateZYX(Vector3f angles)
Apply rotation ofangles.z
radians about the Z axis, followed by a rotation ofangles.y
radians about the Y axis and followed by a rotation ofangles.x
radians about the X axis.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
M
isthis
matrix andR
the rotation matrix, then the new matrix will beM * R
. So when transforming a vectorv
with the new matrix by usingM * R * v
, the rotation will be applied first!This method is equivalent to calling:
rotateZ(angles.z).rotateY(angles.y).rotateX(angles.x)
- Parameters:
angles
- the Euler angles- Returns:
- this
-
rotateZYX
public Matrix4x3f rotateZYX(float angleZ, float angleY, float angleX)
Apply rotation ofangleZ
radians about the Z axis, followed by a rotation ofangleY
radians about the Y axis and followed by a rotation ofangleX
radians about the X axis.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
M
isthis
matrix andR
the rotation matrix, then the new matrix will beM * R
. So when transforming a vectorv
with the new matrix by usingM * R * v
, the rotation will be applied first!This method is equivalent to calling:
rotateZ(angleZ).rotateY(angleY).rotateX(angleX)
- Parameters:
angleZ
- the angle to rotate about ZangleY
- the angle to rotate about YangleX
- the angle to rotate about X- Returns:
- this
-
rotateZYX
public Matrix4x3f rotateZYX(float angleZ, float angleY, float angleX, Matrix4x3f dest)
Description copied from interface:Matrix4x3fc
Apply rotation ofangleZ
radians about the Z axis, followed by a rotation ofangleY
radians about the Y axis and followed by a rotation ofangleX
radians about the X axis and store the result indest
.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
M
isthis
matrix andR
the rotation matrix, then the new matrix will beM * R
. So when transforming a vectorv
with the new matrix by usingM * R * v
, the rotation will be applied first!This method is equivalent to calling:
rotateZ(angleZ, dest).rotateY(angleY).rotateX(angleX)
- Specified by:
rotateZYX
in interfaceMatrix4x3fc
- Parameters:
angleZ
- the angle to rotate about ZangleY
- the angle to rotate about YangleX
- the angle to rotate about Xdest
- will hold the result- Returns:
- dest
-
rotateYXZ
public Matrix4x3f rotateYXZ(Vector3f angles)
Apply rotation ofangles.y
radians about the Y axis, followed by a rotation ofangles.x
radians about the X axis and followed by a rotation ofangles.z
radians about the Z axis.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
M
isthis
matrix andR
the rotation matrix, then the new matrix will beM * R
. So when transforming a vectorv
with the new matrix by usingM * R * v
, the rotation will be applied first!This method is equivalent to calling:
rotateY(angles.y).rotateX(angles.x).rotateZ(angles.z)
- Parameters:
angles
- the Euler angles- Returns:
- this
-
rotateYXZ
public Matrix4x3f rotateYXZ(float angleY, float angleX, float angleZ)
Apply rotation ofangleY
radians about the Y axis, followed by a rotation ofangleX
radians about the X axis and followed by a rotation ofangleZ
radians about the Z axis.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
M
isthis
matrix andR
the rotation matrix, then the new matrix will beM * R
. So when transforming a vectorv
with the new matrix by usingM * R * v
, the rotation will be applied first!This method is equivalent to calling:
rotateY(angleY).rotateX(angleX).rotateZ(angleZ)
- Parameters:
angleY
- the angle to rotate about YangleX
- the angle to rotate about XangleZ
- the angle to rotate about Z- Returns:
- this
-
rotateYXZ
public Matrix4x3f rotateYXZ(float angleY, float angleX, float angleZ, Matrix4x3f dest)
Description copied from interface:Matrix4x3fc
Apply rotation ofangleY
radians about the Y axis, followed by a rotation ofangleX
radians about the X axis and followed by a rotation ofangleZ
radians about the Z axis and store the result indest
.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
M
isthis
matrix andR
the rotation matrix, then the new matrix will beM * R
. So when transforming a vectorv
with the new matrix by usingM * R * v
, the rotation will be applied first!This method is equivalent to calling:
rotateY(angleY, dest).rotateX(angleX).rotateZ(angleZ)
- Specified by:
rotateYXZ
in interfaceMatrix4x3fc
- Parameters:
angleY
- the angle to rotate about YangleX
- the angle to rotate about XangleZ
- the angle to rotate about Zdest
- will hold the result- Returns:
- dest
-
rotate
public Matrix4x3f rotate(float ang, float x, float y, float z, Matrix4x3f dest)
Apply rotation to this matrix by rotating the given amount of radians about the specified(x, y, z)
axis and store the result indest
.The axis described by the three components needs to be a unit vector.
When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
M
isthis
matrix andR
the rotation matrix, then the new matrix will beM * R
. So when transforming a vectorv
with the new matrix by usingM * R * v
, the rotation will be applied first!In order to set the matrix to a rotation matrix without post-multiplying the rotation transformation, use
rotation()
.Reference: http://en.wikipedia.org
- Specified by:
rotate
in interfaceMatrix4x3fc
- Parameters:
ang
- the angle in radiansx
- the x component of the axisy
- the y component of the axisz
- the z component of the axisdest
- will hold the result- Returns:
- dest
- See Also:
rotation(float, float, float, float)
-
rotate
public Matrix4x3f rotate(float ang, float x, float y, float z)
Apply rotation to this matrix by rotating the given amount of radians about the specified(x, y, z)
axis.The axis described by the three components needs to be a unit vector.
When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
M
isthis
matrix andR
the rotation matrix, then the new matrix will beM * R
. So when transforming a vectorv
with the new matrix by usingM * R * v
, the rotation will be applied first!In order to set the matrix to a rotation matrix without post-multiplying the rotation transformation, use
rotation()
.Reference: http://en.wikipedia.org
- Parameters:
ang
- the angle in radiansx
- the x component of the axisy
- the y component of the axisz
- the z component of the axis- Returns:
- this
- See Also:
rotation(float, float, float, float)
-
rotateTranslation
public Matrix4x3f rotateTranslation(float ang, float x, float y, float z, Matrix4x3f dest)
Apply rotation to this matrix, which is assumed to only contain a translation, by rotating the given amount of radians about the specified(x, y, z)
axis and store the result indest
.This method assumes
this
to only contain a translation.The axis described by the three components needs to be a unit vector.
When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
M
isthis
matrix andR
the rotation matrix, then the new matrix will beM * R
. So when transforming a vectorv
with the new matrix by usingM * R * v
, the rotation will be applied first!In order to set the matrix to a rotation matrix without post-multiplying the rotation transformation, use
rotation()
.Reference: http://en.wikipedia.org
- Specified by:
rotateTranslation
in interfaceMatrix4x3fc
- Parameters:
ang
- the angle in radiansx
- the x component of the axisy
- the y component of the axisz
- the z component of the axisdest
- will hold the result- Returns:
- dest
- See Also:
rotation(float, float, float, float)
-
rotateAround
public Matrix4x3f rotateAround(Quaternionfc quat, float ox, float oy, float oz)
Apply the rotation transformation of the givenQuaternionfc
to this matrix while using(ox, oy, oz)
as the rotation origin.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
M
isthis
matrix andQ
the rotation matrix obtained from the given quaternion, then the new matrix will beM * Q
. So when transforming a vectorv
with the new matrix by usingM * Q * v
, the quaternion rotation will be applied first!This method is equivalent to calling:
translate(ox, oy, oz).rotate(quat).translate(-ox, -oy, -oz)
Reference: http://en.wikipedia.org
- Parameters:
quat
- theQuaternionfc
ox
- the x coordinate of the rotation originoy
- the y coordinate of the rotation originoz
- the z coordinate of the rotation origin- Returns:
- this
-
rotateAround
public Matrix4x3f rotateAround(Quaternionfc quat, float ox, float oy, float oz, Matrix4x3f dest)
Description copied from interface:Matrix4x3fc
Apply the rotation - and possibly scaling - transformation of the givenQuaternionfc
to this matrix while using(ox, oy, oz)
as the rotation origin, and store the result indest
.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
M
isthis
matrix andQ
the rotation matrix obtained from the given quaternion, then the new matrix will beM * Q
. So when transforming a vectorv
with the new matrix by usingM * Q * v
, the quaternion rotation will be applied first!This method is equivalent to calling:
translate(ox, oy, oz, dest).rotate(quat).translate(-ox, -oy, -oz)
Reference: http://en.wikipedia.org
- Specified by:
rotateAround
in interfaceMatrix4x3fc
- Parameters:
quat
- theQuaternionfc
ox
- the x coordinate of the rotation originoy
- the y coordinate of the rotation originoz
- the z coordinate of the rotation origindest
- will hold the result- Returns:
- dest
-
rotationAround
public Matrix4x3f rotationAround(Quaternionfc quat, float ox, float oy, float oz)
Set this matrix to a transformation composed of a rotation of the specifiedQuaternionfc
while using(ox, oy, oz)
as the rotation origin.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
This method is equivalent to calling:
translation(ox, oy, oz).rotate(quat).translate(-ox, -oy, -oz)
Reference: http://en.wikipedia.org
- Parameters:
quat
- theQuaternionfc
ox
- the x coordinate of the rotation originoy
- the y coordinate of the rotation originoz
- the z coordinate of the rotation origin- Returns:
- this
-
rotateLocal
public Matrix4x3f rotateLocal(float ang, float x, float y, float z, Matrix4x3f dest)
Pre-multiply a rotation to this matrix by rotating the given amount of radians about the specified(x, y, z)
axis and store the result indest
.The axis described by the three components needs to be a unit vector.
When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
M
isthis
matrix andR
the rotation matrix, then the new matrix will beR * M
. So when transforming a vectorv
with the new matrix by usingR * M * v
, the rotation will be applied last!In order to set the matrix to a rotation matrix without pre-multiplying the rotation transformation, use
rotation()
.Reference: http://en.wikipedia.org
- Specified by:
rotateLocal
in interfaceMatrix4x3fc
- Parameters:
ang
- the angle in radiansx
- the x component of the axisy
- the y component of the axisz
- the z component of the axisdest
- will hold the result- Returns:
- dest
- See Also:
rotation(float, float, float, float)
-
rotateLocal
public Matrix4x3f rotateLocal(float ang, float x, float y, float z)
Pre-multiply a rotation to this matrix by rotating the given amount of radians about the specified(x, y, z)
axis.The axis described by the three components needs to be a unit vector.
When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
M
isthis
matrix andR
the rotation matrix, then the new matrix will beR * M
. So when transforming a vectorv
with the new matrix by usingR * M * v
, the rotation will be applied last!In order to set the matrix to a rotation matrix without pre-multiplying the rotation transformation, use
rotation()
.Reference: http://en.wikipedia.org
- Parameters:
ang
- the angle in radiansx
- the x component of the axisy
- the y component of the axisz
- the z component of the axis- Returns:
- this
- See Also:
rotation(float, float, float, float)
-
rotateLocalX
public Matrix4x3f rotateLocalX(float ang, Matrix4x3f dest)
Pre-multiply a rotation around the X axis to this matrix by rotating the given amount of radians about the X axis and store the result indest
.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
M
isthis
matrix andR
the rotation matrix, then the new matrix will beR * M
. So when transforming a vectorv
with the new matrix by usingR * M * v
, the rotation will be applied last!In order to set the matrix to a rotation matrix without pre-multiplying the rotation transformation, use
rotationX()
.Reference: http://en.wikipedia.org
- Parameters:
ang
- the angle in radians to rotate about the X axisdest
- will hold the result- Returns:
- dest
- See Also:
rotationX(float)
-
rotateLocalX
public Matrix4x3f rotateLocalX(float ang)
Pre-multiply a rotation to this matrix by rotating the given amount of radians about the X axis.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
M
isthis
matrix andR
the rotation matrix, then the new matrix will beR * M
. So when transforming a vectorv
with the new matrix by usingR * M * v
, the rotation will be applied last!In order to set the matrix to a rotation matrix without pre-multiplying the rotation transformation, use
rotationX()
.Reference: http://en.wikipedia.org
- Parameters:
ang
- the angle in radians to rotate about the X axis- Returns:
- this
- See Also:
rotationX(float)
-
rotateLocalY
public Matrix4x3f rotateLocalY(float ang, Matrix4x3f dest)
Pre-multiply a rotation around the Y axis to this matrix by rotating the given amount of radians about the Y axis and store the result indest
.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
M
isthis
matrix andR
the rotation matrix, then the new matrix will beR * M
. So when transforming a vectorv
with the new matrix by usingR * M * v
, the rotation will be applied last!In order to set the matrix to a rotation matrix without pre-multiplying the rotation transformation, use
rotationY()
.Reference: http://en.wikipedia.org
- Parameters:
ang
- the angle in radians to rotate about the Y axisdest
- will hold the result- Returns:
- dest
- See Also:
rotationY(float)
-
rotateLocalY
public Matrix4x3f rotateLocalY(float ang)
Pre-multiply a rotation to this matrix by rotating the given amount of radians about the Y axis.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
M
isthis
matrix andR
the rotation matrix, then the new matrix will beR * M
. So when transforming a vectorv
with the new matrix by usingR * M * v
, the rotation will be applied last!In order to set the matrix to a rotation matrix without pre-multiplying the rotation transformation, use
rotationY()
.Reference: http://en.wikipedia.org
- Parameters:
ang
- the angle in radians to rotate about the Y axis- Returns:
- this
- See Also:
rotationY(float)
-
rotateLocalZ
public Matrix4x3f rotateLocalZ(float ang, Matrix4x3f dest)
Pre-multiply a rotation around the Z axis to this matrix by rotating the given amount of radians about the Z axis and store the result indest
.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
M
isthis
matrix andR
the rotation matrix, then the new matrix will beR * M
. So when transforming a vectorv
with the new matrix by usingR * M * v
, the rotation will be applied last!In order to set the matrix to a rotation matrix without pre-multiplying the rotation transformation, use
rotationZ()
.Reference: http://en.wikipedia.org
- Parameters:
ang
- the angle in radians to rotate about the Z axisdest
- will hold the result- Returns:
- dest
- See Also:
rotationZ(float)
-
rotateLocalZ
public Matrix4x3f rotateLocalZ(float ang)
Pre-multiply a rotation to this matrix by rotating the given amount of radians about the Z axis.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
M
isthis
matrix andR
the rotation matrix, then the new matrix will beR * M
. So when transforming a vectorv
with the new matrix by usingR * M * v
, the rotation will be applied last!In order to set the matrix to a rotation matrix without pre-multiplying the rotation transformation, use
rotationY()
.Reference: http://en.wikipedia.org
- Parameters:
ang
- the angle in radians to rotate about the Z axis- Returns:
- this
- See Also:
rotationY(float)
-
translate
public Matrix4x3f translate(Vector3fc offset)
Apply a translation to this matrix by translating by the given number of units in x, y and z.If
M
isthis
matrix andT
the translation matrix, then the new matrix will beM * T
. So when transforming a vectorv
with the new matrix by usingM * T * v
, the translation will be applied first!In order to set the matrix to a translation transformation without post-multiplying it, use
translation(Vector3fc)
.- Parameters:
offset
- the number of units in x, y and z by which to translate- Returns:
- this
- See Also:
translation(Vector3fc)
-
translate
public Matrix4x3f translate(Vector3fc offset, Matrix4x3f dest)
Apply a translation to this matrix by translating by the given number of units in x, y and z and store the result indest
.If
M
isthis
matrix andT
the translation matrix, then the new matrix will beM * T
. So when transforming a vectorv
with the new matrix by usingM * T * v
, the translation will be applied first!In order to set the matrix to a translation transformation without post-multiplying it, use
translation(Vector3fc)
.- Specified by:
translate
in interfaceMatrix4x3fc
- Parameters:
offset
- the number of units in x, y and z by which to translatedest
- will hold the result- Returns:
- dest
- See Also:
translation(Vector3fc)
-
translate
public Matrix4x3f translate(float x, float y, float z, Matrix4x3f dest)
Apply a translation to this matrix by translating by the given number of units in x, y and z and store the result indest
.If
M
isthis
matrix andT
the translation matrix, then the new matrix will beM * T
. So when transforming a vectorv
with the new matrix by usingM * T * v
, the translation will be applied first!In order to set the matrix to a translation transformation without post-multiplying it, use
translation(float, float, float)
.- Specified by:
translate
in interfaceMatrix4x3fc
- Parameters:
x
- the offset to translate in xy
- the offset to translate in yz
- the offset to translate in zdest
- will hold the result- Returns:
- dest
- See Also:
translation(float, float, float)
-
translate
public Matrix4x3f translate(float x, float y, float z)
Apply a translation to this matrix by translating by the given number of units in x, y and z.If
M
isthis
matrix andT
the translation matrix, then the new matrix will beM * T
. So when transforming a vectorv
with the new matrix by usingM * T * v
, the translation will be applied first!In order to set the matrix to a translation transformation without post-multiplying it, use
translation(float, float, float)
.- Parameters:
x
- the offset to translate in xy
- the offset to translate in yz
- the offset to translate in z- Returns:
- this
- See Also:
translation(float, float, float)
-
translateLocal
public Matrix4x3f translateLocal(Vector3fc offset)
Pre-multiply a translation to this matrix by translating by the given number of units in x, y and z.If
M
isthis
matrix andT
the translation matrix, then the new matrix will beT * M
. So when transforming a vectorv
with the new matrix by usingT * M * v
, the translation will be applied last!In order to set the matrix to a translation transformation without pre-multiplying it, use
translation(Vector3fc)
.- Parameters:
offset
- the number of units in x, y and z by which to translate- Returns:
- this
- See Also:
translation(Vector3fc)
-
translateLocal
public Matrix4x3f translateLocal(Vector3fc offset, Matrix4x3f dest)
Pre-multiply a translation to this matrix by translating by the given number of units in x, y and z and store the result indest
.If
M
isthis
matrix andT
the translation matrix, then the new matrix will beT * M
. So when transforming a vectorv
with the new matrix by usingT * M * v
, the translation will be applied last!In order to set the matrix to a translation transformation without pre-multiplying it, use
translation(Vector3fc)
.- Specified by:
translateLocal
in interfaceMatrix4x3fc
- Parameters:
offset
- the number of units in x, y and z by which to translatedest
- will hold the result- Returns:
- dest
- See Also:
translation(Vector3fc)
-
translateLocal
public Matrix4x3f translateLocal(float x, float y, float z, Matrix4x3f dest)
Pre-multiply a translation to this matrix by translating by the given number of units in x, y and z and store the result indest
.If
M
isthis
matrix andT
the translation matrix, then the new matrix will beT * M
. So when transforming a vectorv
with the new matrix by usingT * M * v
, the translation will be applied last!In order to set the matrix to a translation transformation without pre-multiplying it, use
translation(float, float, float)
.- Specified by:
translateLocal
in interfaceMatrix4x3fc
- Parameters:
x
- the offset to translate in xy
- the offset to translate in yz
- the offset to translate in zdest
- will hold the result- Returns:
- dest
- See Also:
translation(float, float, float)
-
translateLocal
public Matrix4x3f translateLocal(float x, float y, float z)
Pre-multiply a translation to this matrix by translating by the given number of units in x, y and z.If
M
isthis
matrix andT
the translation matrix, then the new matrix will beT * M
. So when transforming a vectorv
with the new matrix by usingT * M * v
, the translation will be applied last!In order to set the matrix to a translation transformation without pre-multiplying it, use
translation(float, float, float)
.- Parameters:
x
- the offset to translate in xy
- the offset to translate in yz
- the offset to translate in z- Returns:
- this
- See Also:
translation(float, float, float)
-
writeExternal
public void writeExternal(java.io.ObjectOutput out) throws java.io.IOException
- Specified by:
writeExternal
in interfacejava.io.Externalizable
- Throws:
java.io.IOException
-
readExternal
public void readExternal(java.io.ObjectInput in) throws java.io.IOException
- Specified by:
readExternal
in interfacejava.io.Externalizable
- Throws:
java.io.IOException
-
ortho
public Matrix4x3f ortho(float left, float right, float bottom, float top, float zNear, float zFar, boolean zZeroToOne, Matrix4x3f dest)
Apply an orthographic projection transformation for a right-handed coordinate system using the given NDC z range to this matrix and store the result indest
.If
M
isthis
matrix andO
the orthographic projection matrix, then the new matrix will beM * O
. So when transforming a vectorv
with the new matrix by usingM * O * v
, the orthographic projection transformation will be applied first!In order to set the matrix to an orthographic projection without post-multiplying it, use
setOrtho()
.Reference: http://www.songho.ca
- Specified by:
ortho
in interfaceMatrix4x3fc
- Parameters:
left
- the distance from the center to the left frustum edgeright
- the distance from the center to the right frustum edgebottom
- the distance from the center to the bottom frustum edgetop
- the distance from the center to the top frustum edgezNear
- near clipping plane distancezFar
- far clipping plane distancezZeroToOne
- whether to use Vulkan's and Direct3D's NDC z range of[0..+1]
whentrue
or whether to use OpenGL's NDC z range of[-1..+1]
whenfalse
dest
- will hold the result- Returns:
- dest
- See Also:
setOrtho(float, float, float, float, float, float, boolean)
-
ortho
public Matrix4x3f ortho(float left, float right, float bottom, float top, float zNear, float zFar, Matrix4x3f dest)
Apply an orthographic projection transformation for a right-handed coordinate system using OpenGL's NDC z range of[-1..+1]
to this matrix and store the result indest
.If
M
isthis
matrix andO
the orthographic projection matrix, then the new matrix will beM * O
. So when transforming a vectorv
with the new matrix by usingM * O * v
, the orthographic projection transformation will be applied first!In order to set the matrix to an orthographic projection without post-multiplying it, use
setOrtho()
.Reference: http://www.songho.ca
- Specified by:
ortho
in interfaceMatrix4x3fc
- Parameters:
left
- the distance from the center to the left frustum edgeright
- the distance from the center to the right frustum edgebottom
- the distance from the center to the bottom frustum edgetop
- the distance from the center to the top frustum edgezNear
- near clipping plane distancezFar
- far clipping plane distancedest
- will hold the result- Returns:
- dest
- See Also:
setOrtho(float, float, float, float, float, float)
-
ortho
public Matrix4x3f ortho(float left, float right, float bottom, float top, float zNear, float zFar, boolean zZeroToOne)
Apply an orthographic projection transformation for a right-handed coordinate system using the given NDC z range to this matrix.If
M
isthis
matrix andO
the orthographic projection matrix, then the new matrix will beM * O
. So when transforming a vectorv
with the new matrix by usingM * O * v
, the orthographic projection transformation will be applied first!In order to set the matrix to an orthographic projection without post-multiplying it, use
setOrtho()
.Reference: http://www.songho.ca
- Parameters:
left
- the distance from the center to the left frustum edgeright
- the distance from the center to the right frustum edgebottom
- the distance from the center to the bottom frustum edgetop
- the distance from the center to the top frustum edgezNear
- near clipping plane distancezFar
- far clipping plane distancezZeroToOne
- whether to use Vulkan's and Direct3D's NDC z range of[0..+1]
whentrue
or whether to use OpenGL's NDC z range of[-1..+1]
whenfalse
- Returns:
- this
- See Also:
setOrtho(float, float, float, float, float, float, boolean)
-
ortho
public Matrix4x3f ortho(float left, float right, float bottom, float top, float zNear, float zFar)
Apply an orthographic projection transformation for a right-handed coordinate system using OpenGL's NDC z range of[-1..+1]
to this matrix.If
M
isthis
matrix andO
the orthographic projection matrix, then the new matrix will beM * O
. So when transforming a vectorv
with the new matrix by usingM * O * v
, the orthographic projection transformation will be applied first!In order to set the matrix to an orthographic projection without post-multiplying it, use
setOrtho()
.Reference: http://www.songho.ca
- Parameters:
left
- the distance from the center to the left frustum edgeright
- the distance from the center to the right frustum edgebottom
- the distance from the center to the bottom frustum edgetop
- the distance from the center to the top frustum edgezNear
- near clipping plane distancezFar
- far clipping plane distance- Returns:
- this
- See Also:
setOrtho(float, float, float, float, float, float)
-
orthoLH
public Matrix4x3f orthoLH(float left, float right, float bottom, float top, float zNear, float zFar, boolean zZeroToOne, Matrix4x3f dest)
Apply an orthographic projection transformation for a left-handed coordiante system using the given NDC z range to this matrix and store the result indest
.If
M
isthis
matrix andO
the orthographic projection matrix, then the new matrix will beM * O
. So when transforming a vectorv
with the new matrix by usingM * O * v
, the orthographic projection transformation will be applied first!In order to set the matrix to an orthographic projection without post-multiplying it, use
setOrthoLH()
.Reference: http://www.songho.ca
- Specified by:
orthoLH
in interfaceMatrix4x3fc
- Parameters:
left
- the distance from the center to the left frustum edgeright
- the distance from the center to the right frustum edgebottom
- the distance from the center to the bottom frustum edgetop
- the distance from the center to the top frustum edgezNear
- near clipping plane distancezFar
- far clipping plane distancezZeroToOne
- whether to use Vulkan's and Direct3D's NDC z range of[0..+1]
whentrue
or whether to use OpenGL's NDC z range of[-1..+1]
whenfalse
dest
- will hold the result- Returns:
- dest
- See Also:
setOrthoLH(float, float, float, float, float, float, boolean)
-
orthoLH
public Matrix4x3f orthoLH(float left, float right, float bottom, float top, float zNear, float zFar, Matrix4x3f dest)
Apply an orthographic projection transformation for a left-handed coordiante system using OpenGL's NDC z range of[-1..+1]
to this matrix and store the result indest
.If
M
isthis
matrix andO
the orthographic projection matrix, then the new matrix will beM * O
. So when transforming a vectorv
with the new matrix by usingM * O * v
, the orthographic projection transformation will be applied first!In order to set the matrix to an orthographic projection without post-multiplying it, use
setOrthoLH()
.Reference: http://www.songho.ca
- Specified by:
orthoLH
in interfaceMatrix4x3fc
- Parameters:
left
- the distance from the center to the left frustum edgeright
- the distance from the center to the right frustum edgebottom
- the distance from the center to the bottom frustum edgetop
- the distance from the center to the top frustum edgezNear
- near clipping plane distancezFar
- far clipping plane distancedest
- will hold the result- Returns:
- dest
- See Also:
setOrthoLH(float, float, float, float, float, float)
-
orthoLH
public Matrix4x3f orthoLH(float left, float right, float bottom, float top, float zNear, float zFar, boolean zZeroToOne)
Apply an orthographic projection transformation for a left-handed coordiante system using the given NDC z range to this matrix.If
M
isthis
matrix andO
the orthographic projection matrix, then the new matrix will beM * O
. So when transforming a vectorv
with the new matrix by usingM * O * v
, the orthographic projection transformation will be applied first!In order to set the matrix to an orthographic projection without post-multiplying it, use
setOrthoLH()
.Reference: http://www.songho.ca
- Parameters:
left
- the distance from the center to the left frustum edgeright
- the distance from the center to the right frustum edgebottom
- the distance from the center to the bottom frustum edgetop
- the distance from the center to the top frustum edgezNear
- near clipping plane distancezFar
- far clipping plane distancezZeroToOne
- whether to use Vulkan's and Direct3D's NDC z range of[0..+1]
whentrue
or whether to use OpenGL's NDC z range of[-1..+1]
whenfalse
- Returns:
- this
- See Also:
setOrthoLH(float, float, float, float, float, float, boolean)
-
orthoLH
public Matrix4x3f orthoLH(float left, float right, float bottom, float top, float zNear, float zFar)
Apply an orthographic projection transformation for a left-handed coordiante system using OpenGL's NDC z range of[-1..+1]
to this matrix.If
M
isthis
matrix andO
the orthographic projection matrix, then the new matrix will beM * O
. So when transforming a vectorv
with the new matrix by usingM * O * v
, the orthographic projection transformation will be applied first!In order to set the matrix to an orthographic projection without post-multiplying it, use
setOrthoLH()
.Reference: http://www.songho.ca
- Parameters:
left
- the distance from the center to the left frustum edgeright
- the distance from the center to the right frustum edgebottom
- the distance from the center to the bottom frustum edgetop
- the distance from the center to the top frustum edgezNear
- near clipping plane distancezFar
- far clipping plane distance- Returns:
- this
- See Also:
setOrthoLH(float, float, float, float, float, float)
-
setOrtho
public Matrix4x3f setOrtho(float left, float right, float bottom, float top, float zNear, float zFar, boolean zZeroToOne)
Set this matrix to be an orthographic projection transformation for a right-handed coordinate system using the given NDC z range.In order to apply the orthographic projection to an already existing transformation, use
ortho()
.Reference: http://www.songho.ca
- Parameters:
left
- the distance from the center to the left frustum edgeright
- the distance from the center to the right frustum edgebottom
- the distance from the center to the bottom frustum edgetop
- the distance from the center to the top frustum edgezNear
- near clipping plane distancezFar
- far clipping plane distancezZeroToOne
- whether to use Vulkan's and Direct3D's NDC z range of[0..+1]
whentrue
or whether to use OpenGL's NDC z range of[-1..+1]
whenfalse
- Returns:
- this
- See Also:
ortho(float, float, float, float, float, float, boolean)
-
setOrtho
public Matrix4x3f setOrtho(float left, float right, float bottom, float top, float zNear, float zFar)
Set this matrix to be an orthographic projection transformation for a right-handed coordinate system using OpenGL's NDC z range of[-1..+1]
.In order to apply the orthographic projection to an already existing transformation, use
ortho()
.Reference: http://www.songho.ca
- Parameters:
left
- the distance from the center to the left frustum edgeright
- the distance from the center to the right frustum edgebottom
- the distance from the center to the bottom frustum edgetop
- the distance from the center to the top frustum edgezNear
- near clipping plane distancezFar
- far clipping plane distance- Returns:
- this
- See Also:
ortho(float, float, float, float, float, float)
-
setOrthoLH
public Matrix4x3f setOrthoLH(float left, float right, float bottom, float top, float zNear, float zFar, boolean zZeroToOne)
Set this matrix to be an orthographic projection transformation for a left-handed coordinate system using the given NDC z range.In order to apply the orthographic projection to an already existing transformation, use
orthoLH()
.Reference: http://www.songho.ca
- Parameters:
left
- the distance from the center to the left frustum edgeright
- the distance from the center to the right frustum edgebottom
- the distance from the center to the bottom frustum edgetop
- the distance from the center to the top frustum edgezNear
- near clipping plane distancezFar
- far clipping plane distancezZeroToOne
- whether to use Vulkan's and Direct3D's NDC z range of[0..+1]
whentrue
or whether to use OpenGL's NDC z range of[-1..+1]
whenfalse
- Returns:
- this
- See Also:
orthoLH(float, float, float, float, float, float, boolean)
-
setOrthoLH
public Matrix4x3f setOrthoLH(float left, float right, float bottom, float top, float zNear, float zFar)
Set this matrix to be an orthographic projection transformation for a left-handed coordinate system using OpenGL's NDC z range of[-1..+1]
.In order to apply the orthographic projection to an already existing transformation, use
orthoLH()
.Reference: http://www.songho.ca
- Parameters:
left
- the distance from the center to the left frustum edgeright
- the distance from the center to the right frustum edgebottom
- the distance from the center to the bottom frustum edgetop
- the distance from the center to the top frustum edgezNear
- near clipping plane distancezFar
- far clipping plane distance- Returns:
- this
- See Also:
orthoLH(float, float, float, float, float, float)
-
orthoSymmetric
public Matrix4x3f orthoSymmetric(float width, float height, float zNear, float zFar, boolean zZeroToOne, Matrix4x3f dest)
Apply a symmetric orthographic projection transformation for a right-handed coordinate system using the given NDC z range to this matrix and store the result indest
.This method is equivalent to calling
ortho()
withleft=-width/2
,right=+width/2
,bottom=-height/2
andtop=+height/2
.If
M
isthis
matrix andO
the orthographic projection matrix, then the new matrix will beM * O
. So when transforming a vectorv
with the new matrix by usingM * O * v
, the orthographic projection transformation will be applied first!In order to set the matrix to a symmetric orthographic projection without post-multiplying it, use
setOrthoSymmetric()
.Reference: http://www.songho.ca
- Specified by:
orthoSymmetric
in interfaceMatrix4x3fc
- Parameters:
width
- the distance between the right and left frustum edgesheight
- the distance between the top and bottom frustum edgeszNear
- near clipping plane distancezFar
- far clipping plane distancedest
- will hold the resultzZeroToOne
- whether to use Vulkan's and Direct3D's NDC z range of[0..+1]
whentrue
or whether to use OpenGL's NDC z range of[-1..+1]
whenfalse
- Returns:
- dest
- See Also:
setOrthoSymmetric(float, float, float, float, boolean)
-
orthoSymmetric
public Matrix4x3f orthoSymmetric(float width, float height, float zNear, float zFar, Matrix4x3f dest)
Apply a symmetric orthographic projection transformation for a right-handed coordinate system using OpenGL's NDC z range of[-1..+1]
to this matrix and store the result indest
.This method is equivalent to calling
ortho()
withleft=-width/2
,right=+width/2
,bottom=-height/2
andtop=+height/2
.If
M
isthis
matrix andO
the orthographic projection matrix, then the new matrix will beM * O
. So when transforming a vectorv
with the new matrix by usingM * O * v
, the orthographic projection transformation will be applied first!In order to set the matrix to a symmetric orthographic projection without post-multiplying it, use
setOrthoSymmetric()
.Reference: http://www.songho.ca
- Specified by:
orthoSymmetric
in interfaceMatrix4x3fc
- Parameters:
width
- the distance between the right and left frustum edgesheight
- the distance between the top and bottom frustum edgeszNear
- near clipping plane distancezFar
- far clipping plane distancedest
- will hold the result- Returns:
- dest
- See Also:
setOrthoSymmetric(float, float, float, float)
-
orthoSymmetric
public Matrix4x3f orthoSymmetric(float width, float height, float zNear, float zFar, boolean zZeroToOne)
Apply a symmetric orthographic projection transformation for a right-handed coordinate system using the given NDC z range to this matrix.This method is equivalent to calling
ortho()
withleft=-width/2
,right=+width/2
,bottom=-height/2
andtop=+height/2
.If
M
isthis
matrix andO
the orthographic projection matrix, then the new matrix will beM * O
. So when transforming a vectorv
with the new matrix by usingM * O * v
, the orthographic projection transformation will be applied first!In order to set the matrix to a symmetric orthographic projection without post-multiplying it, use
setOrthoSymmetric()
.Reference: http://www.songho.ca
- Parameters:
width
- the distance between the right and left frustum edgesheight
- the distance between the top and bottom frustum edgeszNear
- near clipping plane distancezFar
- far clipping plane distancezZeroToOne
- whether to use Vulkan's and Direct3D's NDC z range of[0..+1]
whentrue
or whether to use OpenGL's NDC z range of[-1..+1]
whenfalse
- Returns:
- this
- See Also:
setOrthoSymmetric(float, float, float, float, boolean)
-
orthoSymmetric
public Matrix4x3f orthoSymmetric(float width, float height, float zNear, float zFar)
Apply a symmetric orthographic projection transformation for a right-handed coordinate system using OpenGL's NDC z range of[-1..+1]
to this matrix.This method is equivalent to calling
ortho()
withleft=-width/2
,right=+width/2
,bottom=-height/2
andtop=+height/2
.If
M
isthis
matrix andO
the orthographic projection matrix, then the new matrix will beM * O
. So when transforming a vectorv
with the new matrix by usingM * O * v
, the orthographic projection transformation will be applied first!In order to set the matrix to a symmetric orthographic projection without post-multiplying it, use
setOrthoSymmetric()
.Reference: http://www.songho.ca
- Parameters:
width
- the distance between the right and left frustum edgesheight
- the distance between the top and bottom frustum edgeszNear
- near clipping plane distancezFar
- far clipping plane distance- Returns:
- this
- See Also:
setOrthoSymmetric(float, float, float, float)
-
orthoSymmetricLH
public Matrix4x3f orthoSymmetricLH(float width, float height, float zNear, float zFar, boolean zZeroToOne, Matrix4x3f dest)
Apply a symmetric orthographic projection transformation for a left-handed coordinate system using the given NDC z range to this matrix and store the result indest
.This method is equivalent to calling
orthoLH()
withleft=-width/2
,right=+width/2
,bottom=-height/2
andtop=+height/2
.If
M
isthis
matrix andO
the orthographic projection matrix, then the new matrix will beM * O
. So when transforming a vectorv
with the new matrix by usingM * O * v
, the orthographic projection transformation will be applied first!In order to set the matrix to a symmetric orthographic projection without post-multiplying it, use
setOrthoSymmetricLH()
.Reference: http://www.songho.ca
- Specified by:
orthoSymmetricLH
in interfaceMatrix4x3fc
- Parameters:
width
- the distance between the right and left frustum edgesheight
- the distance between the top and bottom frustum edgeszNear
- near clipping plane distancezFar
- far clipping plane distancedest
- will hold the resultzZeroToOne
- whether to use Vulkan's and Direct3D's NDC z range of[0..+1]
whentrue
or whether to use OpenGL's NDC z range of[-1..+1]
whenfalse
- Returns:
- dest
- See Also:
setOrthoSymmetricLH(float, float, float, float, boolean)
-
orthoSymmetricLH
public Matrix4x3f orthoSymmetricLH(float width, float height, float zNear, float zFar, Matrix4x3f dest)
Apply a symmetric orthographic projection transformation for a left-handed coordinate system using OpenGL's NDC z range of[-1..+1]
to this matrix and store the result indest
.This method is equivalent to calling
orthoLH()
withleft=-width/2
,right=+width/2
,bottom=-height/2
andtop=+height/2
.If
M
isthis
matrix andO
the orthographic projection matrix, then the new matrix will beM * O
. So when transforming a vectorv
with the new matrix by usingM * O * v
, the orthographic projection transformation will be applied first!In order to set the matrix to a symmetric orthographic projection without post-multiplying it, use
setOrthoSymmetricLH()
.Reference: http://www.songho.ca
- Specified by:
orthoSymmetricLH
in interfaceMatrix4x3fc
- Parameters:
width
- the distance between the right and left frustum edgesheight
- the distance between the top and bottom frustum edgeszNear
- near clipping plane distancezFar
- far clipping plane distancedest
- will hold the result- Returns:
- dest
- See Also:
setOrthoSymmetricLH(float, float, float, float)
-
orthoSymmetricLH
public Matrix4x3f orthoSymmetricLH(float width, float height, float zNear, float zFar, boolean zZeroToOne)
Apply a symmetric orthographic projection transformation for a left-handed coordinate system using the given NDC z range to this matrix.This method is equivalent to calling
orthoLH()
withleft=-width/2
,right=+width/2
,bottom=-height/2
andtop=+height/2
.If
M
isthis
matrix andO
the orthographic projection matrix, then the new matrix will beM * O
. So when transforming a vectorv
with the new matrix by usingM * O * v
, the orthographic projection transformation will be applied first!In order to set the matrix to a symmetric orthographic projection without post-multiplying it, use
setOrthoSymmetricLH()
.Reference: http://www.songho.ca
- Parameters:
width
- the distance between the right and left frustum edgesheight
- the distance between the top and bottom frustum edgeszNear
- near clipping plane distancezFar
- far clipping plane distancezZeroToOne
- whether to use Vulkan's and Direct3D's NDC z range of[0..+1]
whentrue
or whether to use OpenGL's NDC z range of[-1..+1]
whenfalse
- Returns:
- this
- See Also:
setOrthoSymmetricLH(float, float, float, float, boolean)
-
orthoSymmetricLH
public Matrix4x3f orthoSymmetricLH(float width, float height, float zNear, float zFar)
Apply a symmetric orthographic projection transformation for a left-handed coordinate system using OpenGL's NDC z range of[-1..+1]
to this matrix.This method is equivalent to calling
orthoLH()
withleft=-width/2
,right=+width/2
,bottom=-height/2
andtop=+height/2
.If
M
isthis
matrix andO
the orthographic projection matrix, then the new matrix will beM * O
. So when transforming a vectorv
with the new matrix by usingM * O * v
, the orthographic projection transformation will be applied first!In order to set the matrix to a symmetric orthographic projection without post-multiplying it, use
setOrthoSymmetricLH()
.Reference: http://www.songho.ca
- Parameters:
width
- the distance between the right and left frustum edgesheight
- the distance between the top and bottom frustum edgeszNear
- near clipping plane distancezFar
- far clipping plane distance- Returns:
- this
- See Also:
setOrthoSymmetricLH(float, float, float, float)
-
setOrthoSymmetric
public Matrix4x3f setOrthoSymmetric(float width, float height, float zNear, float zFar, boolean zZeroToOne)
Set this matrix to be a symmetric orthographic projection transformation for a right-handed coordinate system using the given NDC z range.This method is equivalent to calling
setOrtho()
withleft=-width/2
,right=+width/2
,bottom=-height/2
andtop=+height/2
.In order to apply the symmetric orthographic projection to an already existing transformation, use
orthoSymmetric()
.Reference: http://www.songho.ca
- Parameters:
width
- the distance between the right and left frustum edgesheight
- the distance between the top and bottom frustum edgeszNear
- near clipping plane distancezFar
- far clipping plane distancezZeroToOne
- whether to use Vulkan's and Direct3D's NDC z range of[0..+1]
whentrue
or whether to use OpenGL's NDC z range of[-1..+1]
whenfalse
- Returns:
- this
- See Also:
orthoSymmetric(float, float, float, float, boolean)
-
setOrthoSymmetric
public Matrix4x3f setOrthoSymmetric(float width, float height, float zNear, float zFar)
Set this matrix to be a symmetric orthographic projection transformation for a right-handed coordinate system using OpenGL's NDC z range of[-1..+1]
.This method is equivalent to calling
setOrtho()
withleft=-width/2
,right=+width/2
,bottom=-height/2
andtop=+height/2
.In order to apply the symmetric orthographic projection to an already existing transformation, use
orthoSymmetric()
.Reference: http://www.songho.ca
- Parameters:
width
- the distance between the right and left frustum edgesheight
- the distance between the top and bottom frustum edgeszNear
- near clipping plane distancezFar
- far clipping plane distance- Returns:
- this
- See Also:
orthoSymmetric(float, float, float, float)
-
setOrthoSymmetricLH
public Matrix4x3f setOrthoSymmetricLH(float width, float height, float zNear, float zFar, boolean zZeroToOne)
Set this matrix to be a symmetric orthographic projection transformation for a left-handed coordinate system using the given NDC z range.This method is equivalent to calling
setOrtho()
withleft=-width/2
,right=+width/2
,bottom=-height/2
andtop=+height/2
.In order to apply the symmetric orthographic projection to an already existing transformation, use
orthoSymmetricLH()
.Reference: http://www.songho.ca
- Parameters:
width
- the distance between the right and left frustum edgesheight
- the distance between the top and bottom frustum edgeszNear
- near clipping plane distancezFar
- far clipping plane distancezZeroToOne
- whether to use Vulkan's and Direct3D's NDC z range of[0..+1]
whentrue
or whether to use OpenGL's NDC z range of[-1..+1]
whenfalse
- Returns:
- this
- See Also:
orthoSymmetricLH(float, float, float, float, boolean)
-
setOrthoSymmetricLH
public Matrix4x3f setOrthoSymmetricLH(float width, float height, float zNear, float zFar)
Set this matrix to be a symmetric orthographic projection transformation for a left-handed coordinate system using OpenGL's NDC z range of[-1..+1]
.This method is equivalent to calling
setOrthoLH()
withleft=-width/2
,right=+width/2
,bottom=-height/2
andtop=+height/2
.In order to apply the symmetric orthographic projection to an already existing transformation, use
orthoSymmetricLH()
.Reference: http://www.songho.ca
- Parameters:
width
- the distance between the right and left frustum edgesheight
- the distance between the top and bottom frustum edgeszNear
- near clipping plane distancezFar
- far clipping plane distance- Returns:
- this
- See Also:
orthoSymmetricLH(float, float, float, float)
-
ortho2D
public Matrix4x3f ortho2D(float left, float right, float bottom, float top, Matrix4x3f dest)
Apply an orthographic projection transformation for a right-handed coordinate system to this matrix and store the result indest
.This method is equivalent to calling
ortho()
withzNear=-1
andzFar=+1
.If
M
isthis
matrix andO
the orthographic projection matrix, then the new matrix will beM * O
. So when transforming a vectorv
with the new matrix by usingM * O * v
, the orthographic projection transformation will be applied first!In order to set the matrix to an orthographic projection without post-multiplying it, use
setOrtho()
.Reference: http://www.songho.ca
- Specified by:
ortho2D
in interfaceMatrix4x3fc
- Parameters:
left
- the distance from the center to the left frustum edgeright
- the distance from the center to the right frustum edgebottom
- the distance from the center to the bottom frustum edgetop
- the distance from the center to the top frustum edgedest
- will hold the result- Returns:
- dest
- See Also:
ortho(float, float, float, float, float, float, Matrix4x3f)
,setOrtho2D(float, float, float, float)
-
ortho2D
public Matrix4x3f ortho2D(float left, float right, float bottom, float top)
Apply an orthographic projection transformation for a right-handed coordinate system to this matrix.This method is equivalent to calling
ortho()
withzNear=-1
andzFar=+1
.If
M
isthis
matrix andO
the orthographic projection matrix, then the new matrix will beM * O
. So when transforming a vectorv
with the new matrix by usingM * O * v
, the orthographic projection transformation will be applied first!In order to set the matrix to an orthographic projection without post-multiplying it, use
setOrtho2D()
.Reference: http://www.songho.ca
- Parameters:
left
- the distance from the center to the left frustum edgeright
- the distance from the center to the right frustum edgebottom
- the distance from the center to the bottom frustum edgetop
- the distance from the center to the top frustum edge- Returns:
- this
- See Also:
ortho(float, float, float, float, float, float)
,setOrtho2D(float, float, float, float)
-
ortho2DLH
public Matrix4x3f ortho2DLH(float left, float right, float bottom, float top, Matrix4x3f dest)
Apply an orthographic projection transformation for a left-handed coordinate system to this matrix and store the result indest
.This method is equivalent to calling
orthoLH()
withzNear=-1
andzFar=+1
.If
M
isthis
matrix andO
the orthographic projection matrix, then the new matrix will beM * O
. So when transforming a vectorv
with the new matrix by usingM * O * v
, the orthographic projection transformation will be applied first!In order to set the matrix to an orthographic projection without post-multiplying it, use
setOrthoLH()
.Reference: http://www.songho.ca
- Specified by:
ortho2DLH
in interfaceMatrix4x3fc
- Parameters:
left
- the distance from the center to the left frustum edgeright
- the distance from the center to the right frustum edgebottom
- the distance from the center to the bottom frustum edgetop
- the distance from the center to the top frustum edgedest
- will hold the result- Returns:
- dest
- See Also:
orthoLH(float, float, float, float, float, float, Matrix4x3f)
,setOrtho2DLH(float, float, float, float)
-
ortho2DLH
public Matrix4x3f ortho2DLH(float left, float right, float bottom, float top)
Apply an orthographic projection transformation for a left-handed coordinate system to this matrix.This method is equivalent to calling
orthoLH()
withzNear=-1
andzFar=+1
.If
M
isthis
matrix andO
the orthographic projection matrix, then the new matrix will beM * O
. So when transforming a vectorv
with the new matrix by usingM * O * v
, the orthographic projection transformation will be applied first!In order to set the matrix to an orthographic projection without post-multiplying it, use
setOrtho2DLH()
.Reference: http://www.songho.ca
- Parameters:
left
- the distance from the center to the left frustum edgeright
- the distance from the center to the right frustum edgebottom
- the distance from the center to the bottom frustum edgetop
- the distance from the center to the top frustum edge- Returns:
- this
- See Also:
orthoLH(float, float, float, float, float, float)
,setOrtho2DLH(float, float, float, float)
-
setOrtho2D
public Matrix4x3f setOrtho2D(float left, float right, float bottom, float top)
Set this matrix to be an orthographic projection transformation for a right-handed coordinate system.This method is equivalent to calling
setOrtho()
withzNear=-1
andzFar=+1
.In order to apply the orthographic projection to an already existing transformation, use
ortho2D()
.Reference: http://www.songho.ca
- Parameters:
left
- the distance from the center to the left frustum edgeright
- the distance from the center to the right frustum edgebottom
- the distance from the center to the bottom frustum edgetop
- the distance from the center to the top frustum edge- Returns:
- this
- See Also:
setOrtho(float, float, float, float, float, float)
,ortho2D(float, float, float, float)
-
setOrtho2DLH
public Matrix4x3f setOrtho2DLH(float left, float right, float bottom, float top)
Set this matrix to be an orthographic projection transformation for a left-handed coordinate system.This method is equivalent to calling
setOrthoLH()
withzNear=-1
andzFar=+1
.In order to apply the orthographic projection to an already existing transformation, use
ortho2DLH()
.Reference: http://www.songho.ca
- Parameters:
left
- the distance from the center to the left frustum edgeright
- the distance from the center to the right frustum edgebottom
- the distance from the center to the bottom frustum edgetop
- the distance from the center to the top frustum edge- Returns:
- this
- See Also:
setOrthoLH(float, float, float, float, float, float)
,ortho2DLH(float, float, float, float)
-
lookAlong
public Matrix4x3f lookAlong(Vector3fc dir, Vector3fc up)
Apply a rotation transformation to this matrix to make-z
point alongdir
.If
M
isthis
matrix andL
the lookalong rotation matrix, then the new matrix will beM * L
. So when transforming a vectorv
with the new matrix by usingM * L * v
, the lookalong rotation transformation will be applied first!This is equivalent to calling
lookAt
witheye = (0, 0, 0)
andcenter = dir
.In order to set the matrix to a lookalong transformation without post-multiplying it, use
setLookAlong()
.- Parameters:
dir
- the direction in space to look alongup
- the direction of 'up'- Returns:
- this
- See Also:
lookAlong(float, float, float, float, float, float)
,lookAt(Vector3fc, Vector3fc, Vector3fc)
,setLookAlong(Vector3fc, Vector3fc)
-
lookAlong
public Matrix4x3f lookAlong(Vector3fc dir, Vector3fc up, Matrix4x3f dest)
Apply a rotation transformation to this matrix to make-z
point alongdir
and store the result indest
.If
M
isthis
matrix andL
the lookalong rotation matrix, then the new matrix will beM * L
. So when transforming a vectorv
with the new matrix by usingM * L * v
, the lookalong rotation transformation will be applied first!This is equivalent to calling
lookAt
witheye = (0, 0, 0)
andcenter = dir
.In order to set the matrix to a lookalong transformation without post-multiplying it, use
setLookAlong()
.- Specified by:
lookAlong
in interfaceMatrix4x3fc
- Parameters:
dir
- the direction in space to look alongup
- the direction of 'up'dest
- will hold the result- Returns:
- dest
- See Also:
lookAlong(float, float, float, float, float, float)
,lookAt(Vector3fc, Vector3fc, Vector3fc)
,setLookAlong(Vector3fc, Vector3fc)
-
lookAlong
public Matrix4x3f lookAlong(float dirX, float dirY, float dirZ, float upX, float upY, float upZ, Matrix4x3f dest)
Apply a rotation transformation to this matrix to make-z
point alongdir
and store the result indest
.If
M
isthis
matrix andL
the lookalong rotation matrix, then the new matrix will beM * L
. So when transforming a vectorv
with the new matrix by usingM * L * v
, the lookalong rotation transformation will be applied first!This is equivalent to calling
lookAt()
witheye = (0, 0, 0)
andcenter = dir
.In order to set the matrix to a lookalong transformation without post-multiplying it, use
setLookAlong()
- Specified by:
lookAlong
in interfaceMatrix4x3fc
- Parameters:
dirX
- the x-coordinate of the direction to look alongdirY
- the y-coordinate of the direction to look alongdirZ
- the z-coordinate of the direction to look alongupX
- the x-coordinate of the up vectorupY
- the y-coordinate of the up vectorupZ
- the z-coordinate of the up vectordest
- will hold the result- Returns:
- dest
- See Also:
lookAt(float, float, float, float, float, float, float, float, float)
,setLookAlong(float, float, float, float, float, float)
-
lookAlong
public Matrix4x3f lookAlong(float dirX, float dirY, float dirZ, float upX, float upY, float upZ)
Apply a rotation transformation to this matrix to make-z
point alongdir
.If
M
isthis
matrix andL
the lookalong rotation matrix, then the new matrix will beM * L
. So when transforming a vectorv
with the new matrix by usingM * L * v
, the lookalong rotation transformation will be applied first!This is equivalent to calling
lookAt()
witheye = (0, 0, 0)
andcenter = dir
.In order to set the matrix to a lookalong transformation without post-multiplying it, use
setLookAlong()
- Parameters:
dirX
- the x-coordinate of the direction to look alongdirY
- the y-coordinate of the direction to look alongdirZ
- the z-coordinate of the direction to look alongupX
- the x-coordinate of the up vectorupY
- the y-coordinate of the up vectorupZ
- the z-coordinate of the up vector- Returns:
- this
- See Also:
lookAt(float, float, float, float, float, float, float, float, float)
,setLookAlong(float, float, float, float, float, float)
-
setLookAlong
public Matrix4x3f setLookAlong(Vector3fc dir, Vector3fc up)
Set this matrix to a rotation transformation to make-z
point alongdir
.This is equivalent to calling
setLookAt()
witheye = (0, 0, 0)
andcenter = dir
.In order to apply the lookalong transformation to any previous existing transformation, use
lookAlong(Vector3fc, Vector3fc)
.- Parameters:
dir
- the direction in space to look alongup
- the direction of 'up'- Returns:
- this
- See Also:
setLookAlong(Vector3fc, Vector3fc)
,lookAlong(Vector3fc, Vector3fc)
-
setLookAlong
public Matrix4x3f setLookAlong(float dirX, float dirY, float dirZ, float upX, float upY, float upZ)
Set this matrix to a rotation transformation to make-z
point alongdir
.This is equivalent to calling
setLookAt()
witheye = (0, 0, 0)
andcenter = dir
.In order to apply the lookalong transformation to any previous existing transformation, use
lookAlong()
- Parameters:
dirX
- the x-coordinate of the direction to look alongdirY
- the y-coordinate of the direction to look alongdirZ
- the z-coordinate of the direction to look alongupX
- the x-coordinate of the up vectorupY
- the y-coordinate of the up vectorupZ
- the z-coordinate of the up vector- Returns:
- this
- See Also:
setLookAlong(float, float, float, float, float, float)
,lookAlong(float, float, float, float, float, float)
-
setLookAt
public Matrix4x3f setLookAt(Vector3fc eye, Vector3fc center, Vector3fc up)
Set this matrix to be a "lookat" transformation for a right-handed coordinate system, that aligns-z
withcenter - eye
.In order to not make use of vectors to specify
eye
,center
andup
but use primitives, like in the GLU function, usesetLookAt()
instead.In order to apply the lookat transformation to a previous existing transformation, use
lookAt()
.- Parameters:
eye
- the position of the cameracenter
- the point in space to look atup
- the direction of 'up'- Returns:
- this
- See Also:
setLookAt(float, float, float, float, float, float, float, float, float)
,lookAt(Vector3fc, Vector3fc, Vector3fc)
-
setLookAt
public Matrix4x3f setLookAt(float eyeX, float eyeY, float eyeZ, float centerX, float centerY, float centerZ, float upX, float upY, float upZ)
Set this matrix to be a "lookat" transformation for a right-handed coordinate system, that aligns-z
withcenter - eye
.In order to apply the lookat transformation to a previous existing transformation, use
lookAt
.- Parameters:
eyeX
- the x-coordinate of the eye/camera locationeyeY
- the y-coordinate of the eye/camera locationeyeZ
- the z-coordinate of the eye/camera locationcenterX
- the x-coordinate of the point to look atcenterY
- the y-coordinate of the point to look atcenterZ
- the z-coordinate of the point to look atupX
- the x-coordinate of the up vectorupY
- the y-coordinate of the up vectorupZ
- the z-coordinate of the up vector- Returns:
- this
- See Also:
setLookAt(Vector3fc, Vector3fc, Vector3fc)
,lookAt(float, float, float, float, float, float, float, float, float)
-
lookAt
public Matrix4x3f lookAt(Vector3fc eye, Vector3fc center, Vector3fc up, Matrix4x3f dest)
Apply a "lookat" transformation to this matrix for a right-handed coordinate system, that aligns-z
withcenter - eye
and store the result indest
.If
M
isthis
matrix andL
the lookat matrix, then the new matrix will beM * L
. So when transforming a vectorv
with the new matrix by usingM * L * v
, the lookat transformation will be applied first!In order to set the matrix to a lookat transformation without post-multiplying it, use
setLookAt(Vector3fc, Vector3fc, Vector3fc)
.- Specified by:
lookAt
in interfaceMatrix4x3fc
- Parameters:
eye
- the position of the cameracenter
- the point in space to look atup
- the direction of 'up'dest
- will hold the result- Returns:
- dest
- See Also:
lookAt(float, float, float, float, float, float, float, float, float)
,setLookAlong(Vector3fc, Vector3fc)
-
lookAt
public Matrix4x3f lookAt(Vector3fc eye, Vector3fc center, Vector3fc up)
Apply a "lookat" transformation to this matrix for a right-handed coordinate system, that aligns-z
withcenter - eye
.If
M
isthis
matrix andL
the lookat matrix, then the new matrix will beM * L
. So when transforming a vectorv
with the new matrix by usingM * L * v
, the lookat transformation will be applied first!In order to set the matrix to a lookat transformation without post-multiplying it, use
setLookAt(Vector3fc, Vector3fc, Vector3fc)
.- Parameters:
eye
- the position of the cameracenter
- the point in space to look atup
- the direction of 'up'- Returns:
- this
- See Also:
lookAt(float, float, float, float, float, float, float, float, float)
,setLookAlong(Vector3fc, Vector3fc)
-
lookAt
public Matrix4x3f lookAt(float eyeX, float eyeY, float eyeZ, float centerX, float centerY, float centerZ, float upX, float upY, float upZ, Matrix4x3f dest)
Apply a "lookat" transformation to this matrix for a right-handed coordinate system, that aligns-z
withcenter - eye
and store the result indest
.If
M
isthis
matrix andL
the lookat matrix, then the new matrix will beM * L
. So when transforming a vectorv
with the new matrix by usingM * L * v
, the lookat transformation will be applied first!In order to set the matrix to a lookat transformation without post-multiplying it, use
setLookAt()
.- Specified by:
lookAt
in interfaceMatrix4x3fc
- Parameters:
eyeX
- the x-coordinate of the eye/camera locationeyeY
- the y-coordinate of the eye/camera locationeyeZ
- the z-coordinate of the eye/camera locationcenterX
- the x-coordinate of the point to look atcenterY
- the y-coordinate of the point to look atcenterZ
- the z-coordinate of the point to look atupX
- the x-coordinate of the up vectorupY
- the y-coordinate of the up vectorupZ
- the z-coordinate of the up vectordest
- will hold the result- Returns:
- dest
- See Also:
lookAt(Vector3fc, Vector3fc, Vector3fc)
,setLookAt(float, float, float, float, float, float, float, float, float)
-
lookAt
public Matrix4x3f lookAt(float eyeX, float eyeY, float eyeZ, float centerX, float centerY, float centerZ, float upX, float upY, float upZ)
Apply a "lookat" transformation to this matrix for a right-handed coordinate system, that aligns-z
withcenter - eye
.If
M
isthis
matrix andL
the lookat matrix, then the new matrix will beM * L
. So when transforming a vectorv
with the new matrix by usingM * L * v
, the lookat transformation will be applied first!In order to set the matrix to a lookat transformation without post-multiplying it, use
setLookAt()
.- Parameters:
eyeX
- the x-coordinate of the eye/camera locationeyeY
- the y-coordinate of the eye/camera locationeyeZ
- the z-coordinate of the eye/camera locationcenterX
- the x-coordinate of the point to look atcenterY
- the y-coordinate of the point to look atcenterZ
- the z-coordinate of the point to look atupX
- the x-coordinate of the up vectorupY
- the y-coordinate of the up vectorupZ
- the z-coordinate of the up vector- Returns:
- this
- See Also:
lookAt(Vector3fc, Vector3fc, Vector3fc)
,setLookAt(float, float, float, float, float, float, float, float, float)
-
setLookAtLH
public Matrix4x3f setLookAtLH(Vector3fc eye, Vector3fc center, Vector3fc up)
Set this matrix to be a "lookat" transformation for a left-handed coordinate system, that aligns+z
withcenter - eye
.In order to not make use of vectors to specify
eye
,center
andup
but use primitives, like in the GLU function, usesetLookAtLH()
instead.In order to apply the lookat transformation to a previous existing transformation, use
lookAt()
.- Parameters:
eye
- the position of the cameracenter
- the point in space to look atup
- the direction of 'up'- Returns:
- this
- See Also:
setLookAtLH(float, float, float, float, float, float, float, float, float)
,lookAtLH(Vector3fc, Vector3fc, Vector3fc)
-
setLookAtLH
public Matrix4x3f setLookAtLH(float eyeX, float eyeY, float eyeZ, float centerX, float centerY, float centerZ, float upX, float upY, float upZ)
Set this matrix to be a "lookat" transformation for a left-handed coordinate system, that aligns+z
withcenter - eye
.In order to apply the lookat transformation to a previous existing transformation, use
lookAtLH
.- Parameters:
eyeX
- the x-coordinate of the eye/camera locationeyeY
- the y-coordinate of the eye/camera locationeyeZ
- the z-coordinate of the eye/camera locationcenterX
- the x-coordinate of the point to look atcenterY
- the y-coordinate of the point to look atcenterZ
- the z-coordinate of the point to look atupX
- the x-coordinate of the up vectorupY
- the y-coordinate of the up vectorupZ
- the z-coordinate of the up vector- Returns:
- this
- See Also:
setLookAtLH(Vector3fc, Vector3fc, Vector3fc)
,lookAtLH(float, float, float, float, float, float, float, float, float)
-
lookAtLH
public Matrix4x3f lookAtLH(Vector3fc eye, Vector3fc center, Vector3fc up, Matrix4x3f dest)
Apply a "lookat" transformation to this matrix for a left-handed coordinate system, that aligns+z
withcenter - eye
and store the result indest
.If
M
isthis
matrix andL
the lookat matrix, then the new matrix will beM * L
. So when transforming a vectorv
with the new matrix by usingM * L * v
, the lookat transformation will be applied first!In order to set the matrix to a lookat transformation without post-multiplying it, use
setLookAtLH(Vector3fc, Vector3fc, Vector3fc)
.- Specified by:
lookAtLH
in interfaceMatrix4x3fc
- Parameters:
eye
- the position of the cameracenter
- the point in space to look atup
- the direction of 'up'dest
- will hold the result- Returns:
- dest
- See Also:
lookAtLH(float, float, float, float, float, float, float, float, float)
-
lookAtLH
public Matrix4x3f lookAtLH(Vector3fc eye, Vector3fc center, Vector3fc up)
Apply a "lookat" transformation to this matrix for a left-handed coordinate system, that aligns+z
withcenter - eye
.If
M
isthis
matrix andL
the lookat matrix, then the new matrix will beM * L
. So when transforming a vectorv
with the new matrix by usingM * L * v
, the lookat transformation will be applied first!In order to set the matrix to a lookat transformation without post-multiplying it, use
setLookAtLH(Vector3fc, Vector3fc, Vector3fc)
.- Parameters:
eye
- the position of the cameracenter
- the point in space to look atup
- the direction of 'up'- Returns:
- this
- See Also:
lookAtLH(float, float, float, float, float, float, float, float, float)
-
lookAtLH
public Matrix4x3f lookAtLH(float eyeX, float eyeY, float eyeZ, float centerX, float centerY, float centerZ, float upX, float upY, float upZ, Matrix4x3f dest)
Apply a "lookat" transformation to this matrix for a left-handed coordinate system, that aligns+z
withcenter - eye
and store the result indest
.If
M
isthis
matrix andL
the lookat matrix, then the new matrix will beM * L
. So when transforming a vectorv
with the new matrix by usingM * L * v
, the lookat transformation will be applied first!In order to set the matrix to a lookat transformation without post-multiplying it, use
setLookAtLH()
.- Specified by:
lookAtLH
in interfaceMatrix4x3fc
- Parameters:
eyeX
- the x-coordinate of the eye/camera locationeyeY
- the y-coordinate of the eye/camera locationeyeZ
- the z-coordinate of the eye/camera locationcenterX
- the x-coordinate of the point to look atcenterY
- the y-coordinate of the point to look atcenterZ
- the z-coordinate of the point to look atupX
- the x-coordinate of the up vectorupY
- the y-coordinate of the up vectorupZ
- the z-coordinate of the up vectordest
- will hold the result- Returns:
- dest
- See Also:
lookAtLH(Vector3fc, Vector3fc, Vector3fc)
,setLookAtLH(float, float, float, float, float, float, float, float, float)
-
lookAtLH
public Matrix4x3f lookAtLH(float eyeX, float eyeY, float eyeZ, float centerX, float centerY, float centerZ, float upX, float upY, float upZ)
Apply a "lookat" transformation to this matrix for a left-handed coordinate system, that aligns+z
withcenter - eye
.If
M
isthis
matrix andL
the lookat matrix, then the new matrix will beM * L
. So when transforming a vectorv
with the new matrix by usingM * L * v
, the lookat transformation will be applied first!In order to set the matrix to a lookat transformation without post-multiplying it, use
setLookAtLH()
.- Parameters:
eyeX
- the x-coordinate of the eye/camera locationeyeY
- the y-coordinate of the eye/camera locationeyeZ
- the z-coordinate of the eye/camera locationcenterX
- the x-coordinate of the point to look atcenterY
- the y-coordinate of the point to look atcenterZ
- the z-coordinate of the point to look atupX
- the x-coordinate of the up vectorupY
- the y-coordinate of the up vectorupZ
- the z-coordinate of the up vector- Returns:
- this
- See Also:
lookAtLH(Vector3fc, Vector3fc, Vector3fc)
,setLookAtLH(float, float, float, float, float, float, float, float, float)
-
rotate
public Matrix4x3f rotate(Quaternionfc quat, Matrix4x3f dest)
Apply the rotation - and possibly scaling - transformation of the givenQuaternionfc
to this matrix and store the result indest
.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
M
isthis
matrix andQ
the rotation matrix obtained from the given quaternion, then the new matrix will beM * Q
. So when transforming a vectorv
with the new matrix by usingM * Q * v
, the quaternion rotation will be applied first!In order to set the matrix to a rotation transformation without post-multiplying, use
rotation(Quaternionfc)
.Reference: http://en.wikipedia.org
- Specified by:
rotate
in interfaceMatrix4x3fc
- Parameters:
quat
- theQuaternionfc
dest
- will hold the result- Returns:
- dest
- See Also:
rotation(Quaternionfc)
-
rotate
public Matrix4x3f rotate(Quaternionfc quat)
Apply the rotation - and possibly scaling - transformation of the givenQuaternionfc
to this matrix.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
M
isthis
matrix andQ
the rotation matrix obtained from the given quaternion, then the new matrix will beM * Q
. So when transforming a vectorv
with the new matrix by usingM * Q * v
, the quaternion rotation will be applied first!In order to set the matrix to a rotation transformation without post-multiplying, use
rotation(Quaternionfc)
.Reference: http://en.wikipedia.org
- Parameters:
quat
- theQuaternionfc
- Returns:
- this
- See Also:
rotation(Quaternionfc)
-
rotateTranslation
public Matrix4x3f rotateTranslation(Quaternionfc quat, Matrix4x3f dest)
Apply the rotation - and possibly scaling - transformation of the givenQuaternionfc
to this matrix, which is assumed to only contain a translation, and store the result indest
.This method assumes
this
to only contain a translation.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
M
isthis
matrix andQ
the rotation matrix obtained from the given quaternion, then the new matrix will beM * Q
. So when transforming a vectorv
with the new matrix by usingM * Q * v
, the quaternion rotation will be applied first!In order to set the matrix to a rotation transformation without post-multiplying, use
rotation(Quaternionfc)
.Reference: http://en.wikipedia.org
- Specified by:
rotateTranslation
in interfaceMatrix4x3fc
- Parameters:
quat
- theQuaternionfc
dest
- will hold the result- Returns:
- dest
- See Also:
rotation(Quaternionfc)
-
rotateLocal
public Matrix4x3f rotateLocal(Quaternionfc quat, Matrix4x3f dest)
Pre-multiply the rotation - and possibly scaling - transformation of the givenQuaternionfc
to this matrix and store the result indest
.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
M
isthis
matrix andQ
the rotation matrix obtained from the given quaternion, then the new matrix will beQ * M
. So when transforming a vectorv
with the new matrix by usingQ * M * v
, the quaternion rotation will be applied last!In order to set the matrix to a rotation transformation without pre-multiplying, use
rotation(Quaternionfc)
.Reference: http://en.wikipedia.org
- Specified by:
rotateLocal
in interfaceMatrix4x3fc
- Parameters:
quat
- theQuaternionfc
dest
- will hold the result- Returns:
- dest
- See Also:
rotation(Quaternionfc)
-
rotateLocal
public Matrix4x3f rotateLocal(Quaternionfc quat)
Pre-multiply the rotation - and possibly scaling - transformation of the givenQuaternionfc
to this matrix.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
M
isthis
matrix andQ
the rotation matrix obtained from the given quaternion, then the new matrix will beQ * M
. So when transforming a vectorv
with the new matrix by usingQ * M * v
, the quaternion rotation will be applied last!In order to set the matrix to a rotation transformation without pre-multiplying, use
rotation(Quaternionfc)
.Reference: http://en.wikipedia.org
- Parameters:
quat
- theQuaternionfc
- Returns:
- this
- See Also:
rotation(Quaternionfc)
-
rotate
public Matrix4x3f rotate(AxisAngle4f axisAngle)
Apply a rotation transformation, rotating about the givenAxisAngle4f
, to this matrix.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
M
isthis
matrix andA
the rotation matrix obtained from the givenAxisAngle4f
, then the new matrix will beM * A
. So when transforming a vectorv
with the new matrix by usingM * A * v
, theAxisAngle4f
rotation will be applied first!In order to set the matrix to a rotation transformation without post-multiplying, use
rotation(AxisAngle4f)
.Reference: http://en.wikipedia.org
- Parameters:
axisAngle
- theAxisAngle4f
(needs to benormalized
)- Returns:
- this
- See Also:
rotate(float, float, float, float)
,rotation(AxisAngle4f)
-
rotate
public Matrix4x3f rotate(AxisAngle4f axisAngle, Matrix4x3f dest)
Apply a rotation transformation, rotating about the givenAxisAngle4f
and store the result indest
.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
M
isthis
matrix andA
the rotation matrix obtained from the givenAxisAngle4f
, then the new matrix will beM * A
. So when transforming a vectorv
with the new matrix by usingM * A * v
, theAxisAngle4f
rotation will be applied first!In order to set the matrix to a rotation transformation without post-multiplying, use
rotation(AxisAngle4f)
.Reference: http://en.wikipedia.org
- Specified by:
rotate
in interfaceMatrix4x3fc
- Parameters:
axisAngle
- theAxisAngle4f
(needs to benormalized
)dest
- will hold the result- Returns:
- dest
- See Also:
rotate(float, float, float, float)
,rotation(AxisAngle4f)
-
rotate
public Matrix4x3f rotate(float angle, Vector3fc axis)
Apply a rotation transformation, rotating the given radians about the specified axis, to this matrix.The axis described by the
axis
vector needs to be a unit vector.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
M
isthis
matrix andA
the rotation matrix obtained from the given axis-angle, then the new matrix will beM * A
. So when transforming a vectorv
with the new matrix by usingM * A * v
, the axis-angle rotation will be applied first!In order to set the matrix to a rotation transformation without post-multiplying, use
rotation(float, Vector3fc)
.Reference: http://en.wikipedia.org
- Parameters:
angle
- the angle in radiansaxis
- the rotation axis (needs to benormalized
)- Returns:
- this
- See Also:
rotate(float, float, float, float)
,rotation(float, Vector3fc)
-
rotate
public Matrix4x3f rotate(float angle, Vector3fc axis, Matrix4x3f dest)
Apply a rotation transformation, rotating the given radians about the specified axis and store the result indest
.The axis described by the
axis
vector needs to be a unit vector.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
M
isthis
matrix andA
the rotation matrix obtained from the given axis-angle, then the new matrix will beM * A
. So when transforming a vectorv
with the new matrix by usingM * A * v
, the axis-angle rotation will be applied first!In order to set the matrix to a rotation transformation without post-multiplying, use
rotation(float, Vector3fc)
.Reference: http://en.wikipedia.org
- Specified by:
rotate
in interfaceMatrix4x3fc
- Parameters:
angle
- the angle in radiansaxis
- the rotation axis (needs to benormalized
)dest
- will hold the result- Returns:
- dest
- See Also:
rotate(float, float, float, float)
,rotation(float, Vector3fc)
-
reflect
public Matrix4x3f reflect(float a, float b, float c, float d, Matrix4x3f dest)
Description copied from interface:Matrix4x3fc
Apply a mirror/reflection transformation to this matrix that reflects about the given plane specified via the equationx*a + y*b + z*c + d = 0
and store the result indest
.The vector
(a, b, c)
must be a unit vector.If
M
isthis
matrix andR
the reflection matrix, then the new matrix will beM * R
. So when transforming a vectorv
with the new matrix by usingM * R * v
, the reflection will be applied first!Reference: msdn.microsoft.com
- Specified by:
reflect
in interfaceMatrix4x3fc
- Parameters:
a
- the x factor in the plane equationb
- the y factor in the plane equationc
- the z factor in the plane equationd
- the constant in the plane equationdest
- will hold the result- Returns:
- dest
-
reflect
public Matrix4x3f reflect(float a, float b, float c, float d)
Apply a mirror/reflection transformation to this matrix that reflects about the given plane specified via the equationx*a + y*b + z*c + d = 0
.The vector
(a, b, c)
must be a unit vector.If
M
isthis
matrix andR
the reflection matrix, then the new matrix will beM * R
. So when transforming a vectorv
with the new matrix by usingM * R * v
, the reflection will be applied first!Reference: msdn.microsoft.com
- Parameters:
a
- the x factor in the plane equationb
- the y factor in the plane equationc
- the z factor in the plane equationd
- the constant in the plane equation- Returns:
- this
-
reflect
public Matrix4x3f reflect(float nx, float ny, float nz, float px, float py, float pz)
Apply a mirror/reflection transformation to this matrix that reflects about the given plane specified via the plane normal and a point on the plane.If
M
isthis
matrix andR
the reflection matrix, then the new matrix will beM * R
. So when transforming a vectorv
with the new matrix by usingM * R * v
, the reflection will be applied first!- Parameters:
nx
- the x-coordinate of the plane normalny
- the y-coordinate of the plane normalnz
- the z-coordinate of the plane normalpx
- the x-coordinate of a point on the planepy
- the y-coordinate of a point on the planepz
- the z-coordinate of a point on the plane- Returns:
- this
-
reflect
public Matrix4x3f reflect(float nx, float ny, float nz, float px, float py, float pz, Matrix4x3f dest)
Description copied from interface:Matrix4x3fc
Apply a mirror/reflection transformation to this matrix that reflects about the given plane specified via the plane normal and a point on the plane, and store the result indest
.If
M
isthis
matrix andR
the reflection matrix, then the new matrix will beM * R
. So when transforming a vectorv
with the new matrix by usingM * R * v
, the reflection will be applied first!- Specified by:
reflect
in interfaceMatrix4x3fc
- Parameters:
nx
- the x-coordinate of the plane normalny
- the y-coordinate of the plane normalnz
- the z-coordinate of the plane normalpx
- the x-coordinate of a point on the planepy
- the y-coordinate of a point on the planepz
- the z-coordinate of a point on the planedest
- will hold the result- Returns:
- dest
-
reflect
public Matrix4x3f reflect(Vector3fc normal, Vector3fc point)
Apply a mirror/reflection transformation to this matrix that reflects about the given plane specified via the plane normal and a point on the plane.If
M
isthis
matrix andR
the reflection matrix, then the new matrix will beM * R
. So when transforming a vectorv
with the new matrix by usingM * R * v
, the reflection will be applied first!- Parameters:
normal
- the plane normalpoint
- a point on the plane- Returns:
- this
-
reflect
public Matrix4x3f reflect(Quaternionfc orientation, Vector3fc point)
Apply a mirror/reflection transformation to this matrix that reflects about a plane specified via the plane orientation and a point on the plane.This method can be used to build a reflection transformation based on the orientation of a mirror object in the scene. It is assumed that the default mirror plane's normal is
(0, 0, 1)
. So, if the givenQuaternionfc
is the identity (does not apply any additional rotation), the reflection plane will bez=0
, offset by the givenpoint
.If
M
isthis
matrix andR
the reflection matrix, then the new matrix will beM * R
. So when transforming a vectorv
with the new matrix by usingM * R * v
, the reflection will be applied first!- Parameters:
orientation
- the plane orientationpoint
- a point on the plane- Returns:
- this
-
reflect
public Matrix4x3f reflect(Quaternionfc orientation, Vector3fc point, Matrix4x3f dest)
Description copied from interface:Matrix4x3fc
Apply a mirror/reflection transformation to this matrix that reflects about a plane specified via the plane orientation and a point on the plane, and store the result indest
.This method can be used to build a reflection transformation based on the orientation of a mirror object in the scene. It is assumed that the default mirror plane's normal is
(0, 0, 1)
. So, if the givenQuaternionfc
is the identity (does not apply any additional rotation), the reflection plane will bez=0
, offset by the givenpoint
.If
M
isthis
matrix andR
the reflection matrix, then the new matrix will beM * R
. So when transforming a vectorv
with the new matrix by usingM * R * v
, the reflection will be applied first!- Specified by:
reflect
in interfaceMatrix4x3fc
- Parameters:
orientation
- the plane orientation relative to an implied normal vector of(0, 0, 1)
point
- a point on the planedest
- will hold the result- Returns:
- dest
-
reflect
public Matrix4x3f reflect(Vector3fc normal, Vector3fc point, Matrix4x3f dest)
Description copied from interface:Matrix4x3fc
Apply a mirror/reflection transformation to this matrix that reflects about the given plane specified via the plane normal and a point on the plane, and store the result indest
.If
M
isthis
matrix andR
the reflection matrix, then the new matrix will beM * R
. So when transforming a vectorv
with the new matrix by usingM * R * v
, the reflection will be applied first!- Specified by:
reflect
in interfaceMatrix4x3fc
- Parameters:
normal
- the plane normalpoint
- a point on the planedest
- will hold the result- Returns:
- dest
-
reflection
public Matrix4x3f reflection(float a, float b, float c, float d)
Set this matrix to a mirror/reflection transformation that reflects about the given plane specified via the equationx*a + y*b + z*c + d = 0
.The vector
(a, b, c)
must be a unit vector.Reference: msdn.microsoft.com
- Parameters:
a
- the x factor in the plane equationb
- the y factor in the plane equationc
- the z factor in the plane equationd
- the constant in the plane equation- Returns:
- this
-
reflection
public Matrix4x3f reflection(float nx, float ny, float nz, float px, float py, float pz)
Set this matrix to a mirror/reflection transformation that reflects about the given plane specified via the plane normal and a point on the plane.- Parameters:
nx
- the x-coordinate of the plane normalny
- the y-coordinate of the plane normalnz
- the z-coordinate of the plane normalpx
- the x-coordinate of a point on the planepy
- the y-coordinate of a point on the planepz
- the z-coordinate of a point on the plane- Returns:
- this
-
reflection
public Matrix4x3f reflection(Vector3fc normal, Vector3fc point)
Set this matrix to a mirror/reflection transformation that reflects about the given plane specified via the plane normal and a point on the plane.- Parameters:
normal
- the plane normalpoint
- a point on the plane- Returns:
- this
-
reflection
public Matrix4x3f reflection(Quaternionfc orientation, Vector3fc point)
Set this matrix to a mirror/reflection transformation that reflects about a plane specified via the plane orientation and a point on the plane.This method can be used to build a reflection transformation based on the orientation of a mirror object in the scene. It is assumed that the default mirror plane's normal is
(0, 0, 1)
. So, if the givenQuaternionfc
is the identity (does not apply any additional rotation), the reflection plane will bez=0
, offset by the givenpoint
.- Parameters:
orientation
- the plane orientationpoint
- a point on the plane- Returns:
- this
-
getRow
public Vector4f getRow(int row, Vector4f dest) throws java.lang.IndexOutOfBoundsException
Description copied from interface:Matrix4x3fc
Get the row at the givenrow
index, starting with0
.- Specified by:
getRow
in interfaceMatrix4x3fc
- Parameters:
row
- the row index in[0..2]
dest
- will hold the row components- Returns:
- the passed in destination
- Throws:
java.lang.IndexOutOfBoundsException
- ifrow
is not in[0..2]
-
setRow
public Matrix4x3f setRow(int row, Vector4fc src) throws java.lang.IndexOutOfBoundsException
Set the row at the givenrow
index, starting with0
.- Parameters:
row
- the row index in[0..2]
src
- the row components to set- Returns:
- this
- Throws:
java.lang.IndexOutOfBoundsException
- ifrow
is not in[0..2]
-
getColumn
public Vector3f getColumn(int column, Vector3f dest) throws java.lang.IndexOutOfBoundsException
Description copied from interface:Matrix4x3fc
Get the column at the givencolumn
index, starting with0
.- Specified by:
getColumn
in interfaceMatrix4x3fc
- Parameters:
column
- the column index in[0..2]
dest
- will hold the column components- Returns:
- the passed in destination
- Throws:
java.lang.IndexOutOfBoundsException
- ifcolumn
is not in[0..2]
-
setColumn
public Matrix4x3f setColumn(int column, Vector3fc src) throws java.lang.IndexOutOfBoundsException
Set the column at the givencolumn
index, starting with0
.- Parameters:
column
- the column index in[0..3]
src
- the column components to set- Returns:
- this
- Throws:
java.lang.IndexOutOfBoundsException
- ifcolumn
is not in[0..3]
-
normal
public Matrix4x3f normal()
Compute a normal matrix from the left 3x3 submatrix ofthis
and store it into the left 3x3 submatrix ofthis
. All other values ofthis
will be set toidentity
.The normal matrix of
m
is the transpose of the inverse ofm
.Please note that, if
this
is an orthogonal matrix or a matrix whose columns are orthogonal vectors, then this method need not be invoked, since in that casethis
itself is its normal matrix. In that case, useset3x3(Matrix4x3fc)
to set a given Matrix4x3f to only the left 3x3 submatrix of this matrix.- Returns:
- this
- See Also:
set3x3(Matrix4x3fc)
-
normal
public Matrix4x3f normal(Matrix4x3f dest)
Compute a normal matrix from the left 3x3 submatrix ofthis
and store it into the left 3x3 submatrix ofdest
. All other values ofdest
will be set toidentity
.The normal matrix of
m
is the transpose of the inverse ofm
.Please note that, if
this
is an orthogonal matrix or a matrix whose columns are orthogonal vectors, then this method need not be invoked, since in that casethis
itself is its normal matrix. In that case, useset3x3(Matrix4x3fc)
to set a given Matrix4x3f to only the left 3x3 submatrix of this matrix.- Specified by:
normal
in interfaceMatrix4x3fc
- Parameters:
dest
- will hold the result- Returns:
- dest
- See Also:
set3x3(Matrix4x3fc)
-
normal
public Matrix3f normal(Matrix3f dest)
Description copied from interface:Matrix4x3fc
Compute a normal matrix from the left 3x3 submatrix ofthis
and store it intodest
.The normal matrix of
m
is the transpose of the inverse ofm
.- Specified by:
normal
in interfaceMatrix4x3fc
- Parameters:
dest
- will hold the result- Returns:
- dest
-
cofactor3x3
public Matrix4x3f cofactor3x3()
Compute the cofactor matrix of the left 3x3 submatrix ofthis
.The cofactor matrix can be used instead of
normal()
to transform normals when the orientation of the normals with respect to the surface should be preserved.- Returns:
- this
-
cofactor3x3
public Matrix3f cofactor3x3(Matrix3f dest)
Compute the cofactor matrix of the left 3x3 submatrix ofthis
and store it intodest
.The cofactor matrix can be used instead of
normal(Matrix3f)
to transform normals when the orientation of the normals with respect to the surface should be preserved.- Specified by:
cofactor3x3
in interfaceMatrix4x3fc
- Parameters:
dest
- will hold the result- Returns:
- dest
-
cofactor3x3
public Matrix4x3f cofactor3x3(Matrix4x3f dest)
Compute the cofactor matrix of the left 3x3 submatrix ofthis
and store it intodest
. All other values ofdest
will be set toidentity
.The cofactor matrix can be used instead of
normal(Matrix4x3f)
to transform normals when the orientation of the normals with respect to the surface should be preserved.- Specified by:
cofactor3x3
in interfaceMatrix4x3fc
- Parameters:
dest
- will hold the result- Returns:
- dest
-
normalize3x3
public Matrix4x3f normalize3x3()
Normalize the left 3x3 submatrix of this matrix.The resulting matrix will map unit vectors to unit vectors, though a pair of orthogonal input unit vectors need not be mapped to a pair of orthogonal output vectors if the original matrix was not orthogonal itself (i.e. had skewing).
- Returns:
- this
-
normalize3x3
public Matrix4x3f normalize3x3(Matrix4x3f dest)
Description copied from interface:Matrix4x3fc
Normalize the left 3x3 submatrix of this matrix and store the result indest
.The resulting matrix will map unit vectors to unit vectors, though a pair of orthogonal input unit vectors need not be mapped to a pair of orthogonal output vectors if the original matrix was not orthogonal itself (i.e. had skewing).
- Specified by:
normalize3x3
in interfaceMatrix4x3fc
- Parameters:
dest
- will hold the result- Returns:
- dest
-
normalize3x3
public Matrix3f normalize3x3(Matrix3f dest)
Description copied from interface:Matrix4x3fc
Normalize the left 3x3 submatrix of this matrix and store the result indest
.The resulting matrix will map unit vectors to unit vectors, though a pair of orthogonal input unit vectors need not be mapped to a pair of orthogonal output vectors if the original matrix was not orthogonal itself (i.e. had skewing).
- Specified by:
normalize3x3
in interfaceMatrix4x3fc
- Parameters:
dest
- will hold the result- Returns:
- dest
-
frustumPlane
public Vector4f frustumPlane(int which, Vector4f dest)
Description copied from interface:Matrix4x3fc
Calculate a frustum plane ofthis
matrix, which can be a projection matrix or a combined modelview-projection matrix, and store the result in the givendest
.Generally, this method computes the frustum plane in the local frame of any coordinate system that existed before
this
transformation was applied to it in order to yield homogeneous clipping space.The plane normal, which is
(a, b, c)
, is directed "inwards" of the frustum. Any plane/point test usinga*x + b*y + c*z + d
therefore will yield a result greater than zero if the point is within the frustum (i.e. at the positive side of the frustum plane).Reference: Fast Extraction of Viewing Frustum Planes from the World-View-Projection Matrix
- Specified by:
frustumPlane
in interfaceMatrix4x3fc
- Parameters:
which
- one of the six possible planes, given as numeric constantsMatrix4x3fc.PLANE_NX
,Matrix4x3fc.PLANE_PX
,Matrix4x3fc.PLANE_NY
,Matrix4x3fc.PLANE_PY
,Matrix4x3fc.PLANE_NZ
andMatrix4x3fc.PLANE_PZ
dest
- will hold the computed plane equation. The plane equation will be normalized, meaning that(a, b, c)
will be a unit vector- Returns:
- dest
-
positiveZ
public Vector3f positiveZ(Vector3f dir)
Description copied from interface:Matrix4x3fc
Obtain the direction of+Z
before the transformation represented bythis
matrix is applied.This method uses the rotation component of the left 3x3 submatrix to obtain the direction that is transformed to
+Z
bythis
matrix.This method is equivalent to the following code:
Matrix4x3f inv = new Matrix4x3f(this).invert(); inv.transformDirection(dir.set(0, 0, 1)).normalize();
Ifthis
is already an orthogonal matrix, then consider usingMatrix4x3fc.normalizedPositiveZ(Vector3f)
instead.Reference: http://www.euclideanspace.com
- Specified by:
positiveZ
in interfaceMatrix4x3fc
- Parameters:
dir
- will hold the direction of+Z
- Returns:
- dir
-
normalizedPositiveZ
public Vector3f normalizedPositiveZ(Vector3f dir)
Description copied from interface:Matrix4x3fc
Obtain the direction of+Z
before the transformation represented bythis
orthogonal matrix is applied. This method only produces correct results ifthis
is an orthogonal matrix.This method uses the rotation component of the left 3x3 submatrix to obtain the direction that is transformed to
+Z
bythis
matrix.This method is equivalent to the following code:
Matrix4x3f inv = new Matrix4x3f(this).transpose(); inv.transformDirection(dir.set(0, 0, 1)).normalize();
Reference: http://www.euclideanspace.com
- Specified by:
normalizedPositiveZ
in interfaceMatrix4x3fc
- Parameters:
dir
- will hold the direction of+Z
- Returns:
- dir
-
positiveX
public Vector3f positiveX(Vector3f dir)
Description copied from interface:Matrix4x3fc
Obtain the direction of+X
before the transformation represented bythis
matrix is applied.This method uses the rotation component of the left 3x3 submatrix to obtain the direction that is transformed to
+X
bythis
matrix.This method is equivalent to the following code:
Matrix4x3f inv = new Matrix4x3f(this).invert(); inv.transformDirection(dir.set(1, 0, 0)).normalize();
Ifthis
is already an orthogonal matrix, then consider usingMatrix4x3fc.normalizedPositiveX(Vector3f)
instead.Reference: http://www.euclideanspace.com
- Specified by:
positiveX
in interfaceMatrix4x3fc
- Parameters:
dir
- will hold the direction of+X
- Returns:
- dir
-
normalizedPositiveX
public Vector3f normalizedPositiveX(Vector3f dir)
Description copied from interface:Matrix4x3fc
Obtain the direction of+X
before the transformation represented bythis
orthogonal matrix is applied. This method only produces correct results ifthis
is an orthogonal matrix.This method uses the rotation component of the left 3x3 submatrix to obtain the direction that is transformed to
+X
bythis
matrix.This method is equivalent to the following code:
Matrix4x3f inv = new Matrix4x3f(this).transpose(); inv.transformDirection(dir.set(1, 0, 0)).normalize();
Reference: http://www.euclideanspace.com
- Specified by:
normalizedPositiveX
in interfaceMatrix4x3fc
- Parameters:
dir
- will hold the direction of+X
- Returns:
- dir
-
positiveY
public Vector3f positiveY(Vector3f dir)
Description copied from interface:Matrix4x3fc
Obtain the direction of+Y
before the transformation represented bythis
matrix is applied.This method uses the rotation component of the left 3x3 submatrix to obtain the direction that is transformed to
+Y
bythis
matrix.This method is equivalent to the following code:
Matrix4x3f inv = new Matrix4x3f(this).invert(); inv.transformDirection(dir.set(0, 1, 0)).normalize();
Ifthis
is already an orthogonal matrix, then consider usingMatrix4x3fc.normalizedPositiveY(Vector3f)
instead.Reference: http://www.euclideanspace.com
- Specified by:
positiveY
in interfaceMatrix4x3fc
- Parameters:
dir
- will hold the direction of+Y
- Returns:
- dir
-
normalizedPositiveY
public Vector3f normalizedPositiveY(Vector3f dir)
Description copied from interface:Matrix4x3fc
Obtain the direction of+Y
before the transformation represented bythis
orthogonal matrix is applied. This method only produces correct results ifthis
is an orthogonal matrix.This method uses the rotation component of the left 3x3 submatrix to obtain the direction that is transformed to
+Y
bythis
matrix.This method is equivalent to the following code:
Matrix4x3f inv = new Matrix4x3f(this).transpose(); inv.transformDirection(dir.set(0, 1, 0)).normalize();
Reference: http://www.euclideanspace.com
- Specified by:
normalizedPositiveY
in interfaceMatrix4x3fc
- Parameters:
dir
- will hold the direction of+Y
- Returns:
- dir
-
origin
public Vector3f origin(Vector3f origin)
Description copied from interface:Matrix4x3fc
Obtain the position that gets transformed to the origin bythis
matrix. This can be used to get the position of the "camera" from a given view transformation matrix.This method is equivalent to the following code:
Matrix4x3f inv = new Matrix4x3f(this).invert(); inv.transformPosition(origin.set(0, 0, 0));
- Specified by:
origin
in interfaceMatrix4x3fc
- Parameters:
origin
- will hold the position transformed to the origin- Returns:
- origin
-
shadow
public Matrix4x3f shadow(Vector4fc light, float a, float b, float c, float d)
Apply a projection transformation to this matrix that projects onto the plane specified via the general plane equationx*a + y*b + z*c + d = 0
as if casting a shadow from a given light position/directionlight
.If
light.w
is0.0
the light is being treated as a directional light; if it is1.0
it is a point light.If
M
isthis
matrix andS
the shadow matrix, then the new matrix will beM * S
. So when transforming a vectorv
with the new matrix by usingM * S * v
, the shadow projection will be applied first!Reference: ftp.sgi.com
- Parameters:
light
- the light's vectora
- the x factor in the plane equationb
- the y factor in the plane equationc
- the z factor in the plane equationd
- the constant in the plane equation- Returns:
- this
-
shadow
public Matrix4x3f shadow(Vector4fc light, float a, float b, float c, float d, Matrix4x3f dest)
Description copied from interface:Matrix4x3fc
Apply a projection transformation to this matrix that projects onto the plane specified via the general plane equationx*a + y*b + z*c + d = 0
as if casting a shadow from a given light position/directionlight
and store the result indest
.If
light.w
is0.0
the light is being treated as a directional light; if it is1.0
it is a point light.If
M
isthis
matrix andS
the shadow matrix, then the new matrix will beM * S
. So when transforming a vectorv
with the new matrix by usingM * S * v
, the shadow projection will be applied first!Reference: ftp.sgi.com
- Specified by:
shadow
in interfaceMatrix4x3fc
- Parameters:
light
- the light's vectora
- the x factor in the plane equationb
- the y factor in the plane equationc
- the z factor in the plane equationd
- the constant in the plane equationdest
- will hold the result- Returns:
- dest
-
shadow
public Matrix4x3f shadow(float lightX, float lightY, float lightZ, float lightW, float a, float b, float c, float d)
Apply a projection transformation to this matrix that projects onto the plane specified via the general plane equationx*a + y*b + z*c + d = 0
as if casting a shadow from a given light position/direction(lightX, lightY, lightZ, lightW)
.If
lightW
is0.0
the light is being treated as a directional light; if it is1.0
it is a point light.If
M
isthis
matrix andS
the shadow matrix, then the new matrix will beM * S
. So when transforming a vectorv
with the new matrix by usingM * S * v
, the shadow projection will be applied first!Reference: ftp.sgi.com
- Parameters:
lightX
- the x-component of the light's vectorlightY
- the y-component of the light's vectorlightZ
- the z-component of the light's vectorlightW
- the w-component of the light's vectora
- the x factor in the plane equationb
- the y factor in the plane equationc
- the z factor in the plane equationd
- the constant in the plane equation- Returns:
- this
-
shadow
public Matrix4x3f shadow(float lightX, float lightY, float lightZ, float lightW, float a, float b, float c, float d, Matrix4x3f dest)
Description copied from interface:Matrix4x3fc
Apply a projection transformation to this matrix that projects onto the plane specified via the general plane equationx*a + y*b + z*c + d = 0
as if casting a shadow from a given light position/direction(lightX, lightY, lightZ, lightW)
and store the result indest
.If
lightW
is0.0
the light is being treated as a directional light; if it is1.0
it is a point light.If
M
isthis
matrix andS
the shadow matrix, then the new matrix will beM * S
. So when transforming a vectorv
with the new matrix by usingM * S * v
, the shadow projection will be applied first!Reference: ftp.sgi.com
- Specified by:
shadow
in interfaceMatrix4x3fc
- Parameters:
lightX
- the x-component of the light's vectorlightY
- the y-component of the light's vectorlightZ
- the z-component of the light's vectorlightW
- the w-component of the light's vectora
- the x factor in the plane equationb
- the y factor in the plane equationc
- the z factor in the plane equationd
- the constant in the plane equationdest
- will hold the result- Returns:
- dest
-
shadow
public Matrix4x3f shadow(Vector4fc light, Matrix4x3fc planeTransform, Matrix4x3f dest)
Description copied from interface:Matrix4x3fc
Apply a projection transformation to this matrix that projects onto the plane with the general plane equationy = 0
as if casting a shadow from a given light position/directionlight
and store the result indest
.Before the shadow projection is applied, the plane is transformed via the specified
planeTransformation
.If
light.w
is0.0
the light is being treated as a directional light; if it is1.0
it is a point light.If
M
isthis
matrix andS
the shadow matrix, then the new matrix will beM * S
. So when transforming a vectorv
with the new matrix by usingM * S * v
, the shadow projection will be applied first!- Specified by:
shadow
in interfaceMatrix4x3fc
- Parameters:
light
- the light's vectorplaneTransform
- the transformation to transform the implied planey = 0
before applying the projectiondest
- will hold the result- Returns:
- dest
-
shadow
public Matrix4x3f shadow(Vector4fc light, Matrix4x3fc planeTransform)
Apply a projection transformation to this matrix that projects onto the plane with the general plane equationy = 0
as if casting a shadow from a given light position/directionlight
.Before the shadow projection is applied, the plane is transformed via the specified
planeTransformation
.If
light.w
is0.0
the light is being treated as a directional light; if it is1.0
it is a point light.If
M
isthis
matrix andS
the shadow matrix, then the new matrix will beM * S
. So when transforming a vectorv
with the new matrix by usingM * S * v
, the shadow projection will be applied first!- Parameters:
light
- the light's vectorplaneTransform
- the transformation to transform the implied planey = 0
before applying the projection- Returns:
- this
-
shadow
public Matrix4x3f shadow(float lightX, float lightY, float lightZ, float lightW, Matrix4x3fc planeTransform, Matrix4x3f dest)
Description copied from interface:Matrix4x3fc
Apply a projection transformation to this matrix that projects onto the plane with the general plane equationy = 0
as if casting a shadow from a given light position/direction(lightX, lightY, lightZ, lightW)
and store the result indest
.Before the shadow projection is applied, the plane is transformed via the specified
planeTransformation
.If
lightW
is0.0
the light is being treated as a directional light; if it is1.0
it is a point light.If
M
isthis
matrix andS
the shadow matrix, then the new matrix will beM * S
. So when transforming a vectorv
with the new matrix by usingM * S * v
, the shadow projection will be applied first!- Specified by:
shadow
in interfaceMatrix4x3fc
- Parameters:
lightX
- the x-component of the light vectorlightY
- the y-component of the light vectorlightZ
- the z-component of the light vectorlightW
- the w-component of the light vectorplaneTransform
- the transformation to transform the implied planey = 0
before applying the projectiondest
- will hold the result- Returns:
- dest
-
shadow
public Matrix4x3f shadow(float lightX, float lightY, float lightZ, float lightW, Matrix4x3f planeTransform)
Apply a projection transformation to this matrix that projects onto the plane with the general plane equationy = 0
as if casting a shadow from a given light position/direction(lightX, lightY, lightZ, lightW)
.Before the shadow projection is applied, the plane is transformed via the specified
planeTransformation
.If
lightW
is0.0
the light is being treated as a directional light; if it is1.0
it is a point light.If
M
isthis
matrix andS
the shadow matrix, then the new matrix will beM * S
. So when transforming a vectorv
with the new matrix by usingM * S * v
, the shadow projection will be applied first!- Parameters:
lightX
- the x-component of the light vectorlightY
- the y-component of the light vectorlightZ
- the z-component of the light vectorlightW
- the w-component of the light vectorplaneTransform
- the transformation to transform the implied planey = 0
before applying the projection- Returns:
- this
-
billboardCylindrical
public Matrix4x3f billboardCylindrical(Vector3fc objPos, Vector3fc targetPos, Vector3fc up)
Set this matrix to a cylindrical billboard transformation that rotates the local +Z axis of a given object with positionobjPos
towards a target position attargetPos
while constraining a cylindrical rotation around the givenup
vector.This method can be used to create the complete model transformation for a given object, including the translation of the object to its position
objPos
.- Parameters:
objPos
- the position of the object to rotate towardstargetPos
targetPos
- the position of the target (for example the camera) towards which to rotate the objectup
- the rotation axis (must benormalized
)- Returns:
- this
-
billboardSpherical
public Matrix4x3f billboardSpherical(Vector3fc objPos, Vector3fc targetPos, Vector3fc up)
Set this matrix to a spherical billboard transformation that rotates the local +Z axis of a given object with positionobjPos
towards a target position attargetPos
.This method can be used to create the complete model transformation for a given object, including the translation of the object to its position
objPos
.If preserving an up vector is not necessary when rotating the +Z axis, then a shortest arc rotation can be obtained using
billboardSpherical(Vector3fc, Vector3fc)
.- Parameters:
objPos
- the position of the object to rotate towardstargetPos
targetPos
- the position of the target (for example the camera) towards which to rotate the objectup
- the up axis used to orient the object- Returns:
- this
- See Also:
billboardSpherical(Vector3fc, Vector3fc)
-
billboardSpherical
public Matrix4x3f billboardSpherical(Vector3fc objPos, Vector3fc targetPos)
Set this matrix to a spherical billboard transformation that rotates the local +Z axis of a given object with positionobjPos
towards a target position attargetPos
using a shortest arc rotation by not preserving any up vector of the object.This method can be used to create the complete model transformation for a given object, including the translation of the object to its position
objPos
.In order to specify an up vector which needs to be maintained when rotating the +Z axis of the object, use
billboardSpherical(Vector3fc, Vector3fc, Vector3fc)
.- Parameters:
objPos
- the position of the object to rotate towardstargetPos
targetPos
- the position of the target (for example the camera) towards which to rotate the object- Returns:
- this
- See Also:
billboardSpherical(Vector3fc, Vector3fc, Vector3fc)
-
hashCode
public int hashCode()
- Overrides:
hashCode
in classjava.lang.Object
-
equals
public boolean equals(java.lang.Object obj)
- Overrides:
equals
in classjava.lang.Object
-
equals
public boolean equals(Matrix4x3fc m, float delta)
Description copied from interface:Matrix4x3fc
Compare the matrix elements ofthis
matrix with the given matrix using the givendelta
and return whether all of them are equal within a maximum difference ofdelta
.Please note that this method is not used by any data structure such as
ArrayList
HashSet
orHashMap
and their operations, such asArrayList.contains(Object)
orHashSet.remove(Object)
, since those data structures only use theObject.equals(Object)
andObject.hashCode()
methods.- Specified by:
equals
in interfaceMatrix4x3fc
- Parameters:
m
- the other matrixdelta
- the allowed maximum difference- Returns:
true
whether all of the matrix elements are equal;false
otherwise
-
pick
public Matrix4x3f pick(float x, float y, float width, float height, int[] viewport, Matrix4x3f dest)
Description copied from interface:Matrix4x3fc
Apply a picking transformation to this matrix using the given window coordinates(x, y)
as the pick center and the given(width, height)
as the size of the picking region in window coordinates, and store the result indest
.- Specified by:
pick
in interfaceMatrix4x3fc
- Parameters:
x
- the x coordinate of the picking region center in window coordinatesy
- the y coordinate of the picking region center in window coordinateswidth
- the width of the picking region in window coordinatesheight
- the height of the picking region in window coordinatesviewport
- the viewport described by[x, y, width, height]
dest
- the destination matrix, which will hold the result- Returns:
- dest
-
pick
public Matrix4x3f pick(float x, float y, float width, float height, int[] viewport)
Apply a picking transformation to this matrix using the given window coordinates(x, y)
as the pick center and the given(width, height)
as the size of the picking region in window coordinates.- Parameters:
x
- the x coordinate of the picking region center in window coordinatesy
- the y coordinate of the picking region center in window coordinateswidth
- the width of the picking region in window coordinatesheight
- the height of the picking region in window coordinatesviewport
- the viewport described by[x, y, width, height]
- Returns:
- this
-
swap
public Matrix4x3f swap(Matrix4x3f other)
Exchange the values ofthis
matrix with the givenother
matrix.- Parameters:
other
- the other matrix to exchange the values with- Returns:
- this
-
arcball
public Matrix4x3f arcball(float radius, float centerX, float centerY, float centerZ, float angleX, float angleY, Matrix4x3f dest)
Description copied from interface:Matrix4x3fc
Apply an arcball view transformation to this matrix with the givenradius
and center(centerX, centerY, centerZ)
position of the arcball and the specified X and Y rotation angles, and store the result indest
.This method is equivalent to calling:
translate(0, 0, -radius, dest).rotateX(angleX).rotateY(angleY).translate(-centerX, -centerY, -centerZ)
- Specified by:
arcball
in interfaceMatrix4x3fc
- Parameters:
radius
- the arcball radiuscenterX
- the x coordinate of the center position of the arcballcenterY
- the y coordinate of the center position of the arcballcenterZ
- the z coordinate of the center position of the arcballangleX
- the rotation angle around the X axis in radiansangleY
- the rotation angle around the Y axis in radiansdest
- will hold the result- Returns:
- dest
-
arcball
public Matrix4x3f arcball(float radius, Vector3fc center, float angleX, float angleY, Matrix4x3f dest)
Description copied from interface:Matrix4x3fc
Apply an arcball view transformation to this matrix with the givenradius
andcenter
position of the arcball and the specified X and Y rotation angles, and store the result indest
.This method is equivalent to calling:
translate(0, 0, -radius).rotateX(angleX).rotateY(angleY).translate(-center.x, -center.y, -center.z)
- Specified by:
arcball
in interfaceMatrix4x3fc
- Parameters:
radius
- the arcball radiuscenter
- the center position of the arcballangleX
- the rotation angle around the X axis in radiansangleY
- the rotation angle around the Y axis in radiansdest
- will hold the result- Returns:
- dest
-
arcball
public Matrix4x3f arcball(float radius, float centerX, float centerY, float centerZ, float angleX, float angleY)
Apply an arcball view transformation to this matrix with the givenradius
and center(centerX, centerY, centerZ)
position of the arcball and the specified X and Y rotation angles.This method is equivalent to calling:
translate(0, 0, -radius).rotateX(angleX).rotateY(angleY).translate(-centerX, -centerY, -centerZ)
- Parameters:
radius
- the arcball radiuscenterX
- the x coordinate of the center position of the arcballcenterY
- the y coordinate of the center position of the arcballcenterZ
- the z coordinate of the center position of the arcballangleX
- the rotation angle around the X axis in radiansangleY
- the rotation angle around the Y axis in radians- Returns:
- this
-
arcball
public Matrix4x3f arcball(float radius, Vector3fc center, float angleX, float angleY)
Apply an arcball view transformation to this matrix with the givenradius
andcenter
position of the arcball and the specified X and Y rotation angles.This method is equivalent to calling:
translate(0, 0, -radius).rotateX(angleX).rotateY(angleY).translate(-center.x, -center.y, -center.z)
- Parameters:
radius
- the arcball radiuscenter
- the center position of the arcballangleX
- the rotation angle around the X axis in radiansangleY
- the rotation angle around the Y axis in radians- Returns:
- this
-
transformAab
public Matrix4x3f transformAab(float minX, float minY, float minZ, float maxX, float maxY, float maxZ, Vector3f outMin, Vector3f outMax)
Description copied from interface:Matrix4x3fc
Transform the axis-aligned box given as the minimum corner(minX, minY, minZ)
and maximum corner(maxX, maxY, maxZ)
bythis
matrix and compute the axis-aligned box of the result whose minimum corner is stored inoutMin
and maximum corner stored inoutMax
.Reference: http://dev.theomader.com
- Specified by:
transformAab
in interfaceMatrix4x3fc
- Parameters:
minX
- the x coordinate of the minimum corner of the axis-aligned boxminY
- the y coordinate of the minimum corner of the axis-aligned boxminZ
- the z coordinate of the minimum corner of the axis-aligned boxmaxX
- the x coordinate of the maximum corner of the axis-aligned boxmaxY
- the y coordinate of the maximum corner of the axis-aligned boxmaxZ
- the y coordinate of the maximum corner of the axis-aligned boxoutMin
- will hold the minimum corner of the resulting axis-aligned boxoutMax
- will hold the maximum corner of the resulting axis-aligned box- Returns:
- this
-
transformAab
public Matrix4x3f transformAab(Vector3fc min, Vector3fc max, Vector3f outMin, Vector3f outMax)
Description copied from interface:Matrix4x3fc
Transform the axis-aligned box given as the minimum cornermin
and maximum cornermax
bythis
matrix and compute the axis-aligned box of the result whose minimum corner is stored inoutMin
and maximum corner stored inoutMax
.- Specified by:
transformAab
in interfaceMatrix4x3fc
- Parameters:
min
- the minimum corner of the axis-aligned boxmax
- the maximum corner of the axis-aligned boxoutMin
- will hold the minimum corner of the resulting axis-aligned boxoutMax
- will hold the maximum corner of the resulting axis-aligned box- Returns:
- this
-
lerp
public Matrix4x3f lerp(Matrix4x3fc other, float t)
Linearly interpolatethis
andother
using the given interpolation factort
and store the result inthis
.If
t
is0.0
then the result isthis
. If the interpolation factor is1.0
then the result isother
.- Parameters:
other
- the other matrixt
- the interpolation factor between 0.0 and 1.0- Returns:
- this
-
lerp
public Matrix4x3f lerp(Matrix4x3fc other, float t, Matrix4x3f dest)
Description copied from interface:Matrix4x3fc
Linearly interpolatethis
andother
using the given interpolation factort
and store the result indest
.If
t
is0.0
then the result isthis
. If the interpolation factor is1.0
then the result isother
.- Specified by:
lerp
in interfaceMatrix4x3fc
- Parameters:
other
- the other matrixt
- the interpolation factor between 0.0 and 1.0dest
- will hold the result- Returns:
- dest
-
rotateTowards
public Matrix4x3f rotateTowards(Vector3fc dir, Vector3fc up, Matrix4x3f dest)
Apply a model transformation to this matrix for a right-handed coordinate system, that aligns the local+Z
axis withdir
and store the result indest
.If
M
isthis
matrix andL
the lookat matrix, then the new matrix will beM * L
. So when transforming a vectorv
with the new matrix by usingM * L * v
, the lookat transformation will be applied first!In order to set the matrix to a rotation transformation without post-multiplying it, use
rotationTowards()
.This method is equivalent to calling:
mul(new Matrix4x3f().lookAt(new Vector3f(), new Vector3f(dir).negate(), up).invert(), dest)
- Specified by:
rotateTowards
in interfaceMatrix4x3fc
- Parameters:
dir
- the direction to rotate towardsup
- the up vectordest
- will hold the result- Returns:
- dest
- See Also:
rotateTowards(float, float, float, float, float, float, Matrix4x3f)
,rotationTowards(Vector3fc, Vector3fc)
-
rotateTowards
public Matrix4x3f rotateTowards(Vector3fc dir, Vector3fc up)
Apply a model transformation to this matrix for a right-handed coordinate system, that aligns the local+Z
axis withdir
.If
M
isthis
matrix andL
the lookat matrix, then the new matrix will beM * L
. So when transforming a vectorv
with the new matrix by usingM * L * v
, the lookat transformation will be applied first!In order to set the matrix to a rotation transformation without post-multiplying it, use
rotationTowards()
.This method is equivalent to calling:
mul(new Matrix4x3f().lookAt(new Vector3f(), new Vector3f(dir).negate(), up).invert())
- Parameters:
dir
- the direction to orient towardsup
- the up vector- Returns:
- this
- See Also:
rotateTowards(float, float, float, float, float, float)
,rotationTowards(Vector3fc, Vector3fc)
-
rotateTowards
public Matrix4x3f rotateTowards(float dirX, float dirY, float dirZ, float upX, float upY, float upZ)
Apply a model transformation to this matrix for a right-handed coordinate system, that aligns the local+Z
axis with(dirX, dirY, dirZ)
.If
M
isthis
matrix andL
the lookat matrix, then the new matrix will beM * L
. So when transforming a vectorv
with the new matrix by usingM * L * v
, the lookat transformation will be applied first!In order to set the matrix to a rotation transformation without post-multiplying it, use
rotationTowards()
.This method is equivalent to calling:
mul(new Matrix4x3f().lookAt(0, 0, 0, -dirX, -dirY, -dirZ, upX, upY, upZ).invert())
- Parameters:
dirX
- the x-coordinate of the direction to rotate towardsdirY
- the y-coordinate of the direction to rotate towardsdirZ
- the z-coordinate of the direction to rotate towardsupX
- the x-coordinate of the up vectorupY
- the y-coordinate of the up vectorupZ
- the z-coordinate of the up vector- Returns:
- this
- See Also:
rotateTowards(Vector3fc, Vector3fc)
,rotationTowards(float, float, float, float, float, float)
-
rotateTowards
public Matrix4x3f rotateTowards(float dirX, float dirY, float dirZ, float upX, float upY, float upZ, Matrix4x3f dest)
Apply a model transformation to this matrix for a right-handed coordinate system, that aligns the local+Z
axis with(dirX, dirY, dirZ)
and store the result indest
.If
M
isthis
matrix andL
the lookat matrix, then the new matrix will beM * L
. So when transforming a vectorv
with the new matrix by usingM * L * v
, the lookat transformation will be applied first!In order to set the matrix to a rotation transformation without post-multiplying it, use
rotationTowards()
.This method is equivalent to calling:
mul(new Matrix4x3f().lookAt(0, 0, 0, -dirX, -dirY, -dirZ, upX, upY, upZ).invert(), dest)
- Specified by:
rotateTowards
in interfaceMatrix4x3fc
- Parameters:
dirX
- the x-coordinate of the direction to rotate towardsdirY
- the y-coordinate of the direction to rotate towardsdirZ
- the z-coordinate of the direction to rotate towardsupX
- the x-coordinate of the up vectorupY
- the y-coordinate of the up vectorupZ
- the z-coordinate of the up vectordest
- will hold the result- Returns:
- dest
- See Also:
rotateTowards(Vector3fc, Vector3fc)
,rotationTowards(float, float, float, float, float, float)
-
rotationTowards
public Matrix4x3f rotationTowards(Vector3fc dir, Vector3fc up)
Set this matrix to a model transformation for a right-handed coordinate system, that aligns the local-z
axis withdir
.In order to apply the rotation transformation to a previous existing transformation, use
rotateTowards
.This method is equivalent to calling:
setLookAt(new Vector3f(), new Vector3f(dir).negate(), up).invert()
- Parameters:
dir
- the direction to orient the local -z axis towardsup
- the up vector- Returns:
- this
- See Also:
rotationTowards(Vector3fc, Vector3fc)
,rotateTowards(float, float, float, float, float, float)
-
rotationTowards
public Matrix4x3f rotationTowards(float dirX, float dirY, float dirZ, float upX, float upY, float upZ)
Set this matrix to a model transformation for a right-handed coordinate system, that aligns the local-z
axis with(dirX, dirY, dirZ)
.In order to apply the rotation transformation to a previous existing transformation, use
rotateTowards
.This method is equivalent to calling:
setLookAt(0, 0, 0, -dirX, -dirY, -dirZ, upX, upY, upZ).invert()
- Parameters:
dirX
- the x-coordinate of the direction to rotate towardsdirY
- the y-coordinate of the direction to rotate towardsdirZ
- the z-coordinate of the direction to rotate towardsupX
- the x-coordinate of the up vectorupY
- the y-coordinate of the up vectorupZ
- the z-coordinate of the up vector- Returns:
- this
- See Also:
rotateTowards(Vector3fc, Vector3fc)
,rotationTowards(float, float, float, float, float, float)
-
translationRotateTowards
public Matrix4x3f translationRotateTowards(Vector3fc pos, Vector3fc dir, Vector3fc up)
Set this matrix to a model transformation for a right-handed coordinate system, that translates to the givenpos
and aligns the local-z
axis withdir
.This method is equivalent to calling:
translation(pos).rotateTowards(dir, up)
- Parameters:
pos
- the position to translate todir
- the direction to rotate towardsup
- the up vector- Returns:
- this
- See Also:
translation(Vector3fc)
,rotateTowards(Vector3fc, Vector3fc)
-
translationRotateTowards
public Matrix4x3f translationRotateTowards(float posX, float posY, float posZ, float dirX, float dirY, float dirZ, float upX, float upY, float upZ)
Set this matrix to a model transformation for a right-handed coordinate system, that translates to the given(posX, posY, posZ)
and aligns the local-z
axis with(dirX, dirY, dirZ)
.This method is equivalent to calling:
translation(posX, posY, posZ).rotateTowards(dirX, dirY, dirZ, upX, upY, upZ)
- Parameters:
posX
- the x-coordinate of the position to translate toposY
- the y-coordinate of the position to translate toposZ
- the z-coordinate of the position to translate todirX
- the x-coordinate of the direction to rotate towardsdirY
- the y-coordinate of the direction to rotate towardsdirZ
- the z-coordinate of the direction to rotate towardsupX
- the x-coordinate of the up vectorupY
- the y-coordinate of the up vectorupZ
- the z-coordinate of the up vector- Returns:
- this
- See Also:
translation(float, float, float)
,rotateTowards(float, float, float, float, float, float)
-
getEulerAnglesZYX
public Vector3f getEulerAnglesZYX(Vector3f dest)
Description copied from interface:Matrix4x3fc
Extract the Euler angles from the rotation represented by the left 3x3 submatrix ofthis
and store the extracted Euler angles indest
.This method assumes that the left 3x3 submatrix of
this
only represents a rotation without scaling.The Euler angles are always returned as the angle around X in the
Vector3f.x
field, the angle around Y in theVector3f.y
field and the angle around Z in theVector3f.z
field of the suppliedVector3f
instance.Note that the returned Euler angles must be applied in the order
Z * Y * X
to obtain the identical matrix. This means that callingMatrix4x3fc.rotateZYX(float, float, float, Matrix4x3f)
using the obtained Euler angles will yield the same rotation as the original matrix from which the Euler angles were obtained, so in the below code the matrixm2
should be identical tom
(disregarding possible floating-point inaccuracies).Matrix4x3f m = ...; // <- matrix only representing rotation Matrix4x3f n = new Matrix4x3f(); n.rotateZYX(m.getEulerAnglesZYX(new Vector3f()));
Reference: http://nghiaho.com/
- Specified by:
getEulerAnglesZYX
in interfaceMatrix4x3fc
- Parameters:
dest
- will hold the extracted Euler angles- Returns:
- dest
-
getEulerAnglesXYZ
public Vector3f getEulerAnglesXYZ(Vector3f dest)
Description copied from interface:Matrix4x3fc
Extract the Euler angles from the rotation represented by the left 3x3 submatrix ofthis
and store the extracted Euler angles indest
.This method assumes that the left 3x3 submatrix of
this
only represents a rotation without scaling.The Euler angles are always returned as the angle around X in the
Vector3f.x
field, the angle around Y in theVector3f.y
field and the angle around Z in theVector3f.z
field of the suppliedVector3f
instance.Note that the returned Euler angles must be applied in the order
X * Y * Z
to obtain the identical matrix. This means that callingMatrix4x3fc.rotateXYZ(float, float, float, Matrix4x3f)
using the obtained Euler angles will yield the same rotation as the original matrix from which the Euler angles were obtained, so in the below code the matrixm2
should be identical tom
(disregarding possible floating-point inaccuracies).Matrix4x3f m = ...; // <- matrix only representing rotation Matrix4x3f n = new Matrix4x3f(); n.rotateXYZ(m.getEulerAnglesXYZ(new Vector3f()));
Reference: http://nghiaho.com/
- Specified by:
getEulerAnglesXYZ
in interfaceMatrix4x3fc
- Parameters:
dest
- will hold the extracted Euler angles- Returns:
- dest
-
obliqueZ
public Matrix4x3f obliqueZ(float a, float b)
Apply an oblique projection transformation to this matrix with the given values fora
andb
.If
M
isthis
matrix andO
the oblique transformation matrix, then the new matrix will beM * O
. So when transforming a vectorv
with the new matrix by usingM * O * v
, the oblique transformation will be applied first!The oblique transformation is defined as:
x' = x + a*z y' = y + a*z z' = z
or in matrix form:1 0 a 0 0 1 b 0 0 0 1 0
- Parameters:
a
- the value for the z factor that applies to xb
- the value for the z factor that applies to y- Returns:
- this
-
obliqueZ
public Matrix4x3f obliqueZ(float a, float b, Matrix4x3f dest)
Apply an oblique projection transformation to this matrix with the given values fora
andb
and store the result indest
.If
M
isthis
matrix andO
the oblique transformation matrix, then the new matrix will beM * O
. So when transforming a vectorv
with the new matrix by usingM * O * v
, the oblique transformation will be applied first!The oblique transformation is defined as:
x' = x + a*z y' = y + a*z z' = z
or in matrix form:1 0 a 0 0 1 b 0 0 0 1 0
- Specified by:
obliqueZ
in interfaceMatrix4x3fc
- Parameters:
a
- the value for the z factor that applies to xb
- the value for the z factor that applies to ydest
- will hold the result- Returns:
- dest
-
withLookAtUp
public Matrix4x3f withLookAtUp(Vector3fc up)
Apply a transformation to this matrix to ensure that the local Y axis (as obtained bypositiveY(Vector3f)
) will be coplanar to the plane spanned by the local Z axis (as obtained bypositiveZ(Vector3f)
) and the given vectorup
.This effectively ensures that the resulting matrix will be equal to the one obtained from
setLookAt(Vector3fc, Vector3fc, Vector3fc)
called with the current local origin of this matrix (as obtained byorigin(Vector3f)
), the sum of this position and the negated local Z axis as well as the given vectorup
.- Parameters:
up
- the up vector- Returns:
- this
-
withLookAtUp
public Matrix4x3f withLookAtUp(Vector3fc up, Matrix4x3f dest)
Description copied from interface:Matrix4x3fc
Apply a transformation to this matrix to ensure that the local Y axis (as obtained byMatrix4x3fc.positiveY(Vector3f)
) will be coplanar to the plane spanned by the local Z axis (as obtained byMatrix4x3fc.positiveZ(Vector3f)
) and the given vectorup
, and store the result indest
.This effectively ensures that the resulting matrix will be equal to the one obtained from calling
Matrix4f.setLookAt(Vector3fc, Vector3fc, Vector3fc)
with the current local origin of this matrix (as obtained byMatrix4x3fc.origin(Vector3f)
), the sum of this position and the negated local Z axis as well as the given vectorup
.- Specified by:
withLookAtUp
in interfaceMatrix4x3fc
- Parameters:
up
- the up vectordest
- will hold the result- Returns:
- this
-
withLookAtUp
public Matrix4x3f withLookAtUp(float upX, float upY, float upZ)
Apply a transformation to this matrix to ensure that the local Y axis (as obtained bypositiveY(Vector3f)
) will be coplanar to the plane spanned by the local Z axis (as obtained bypositiveZ(Vector3f)
) and the given vector(upX, upY, upZ)
.This effectively ensures that the resulting matrix will be equal to the one obtained from
setLookAt(float, float, float, float, float, float, float, float, float)
called with the current local origin of this matrix (as obtained byorigin(Vector3f)
), the sum of this position and the negated local Z axis as well as the given vector(upX, upY, upZ)
.- Parameters:
upX
- the x coordinate of the up vectorupY
- the y coordinate of the up vectorupZ
- the z coordinate of the up vector- Returns:
- this
-
withLookAtUp
public Matrix4x3f withLookAtUp(float upX, float upY, float upZ, Matrix4x3f dest)
Description copied from interface:Matrix4x3fc
Apply a transformation to this matrix to ensure that the local Y axis (as obtained byMatrix4x3fc.positiveY(Vector3f)
) will be coplanar to the plane spanned by the local Z axis (as obtained byMatrix4x3fc.positiveZ(Vector3f)
) and the given vector(upX, upY, upZ)
, and store the result indest
.This effectively ensures that the resulting matrix will be equal to the one obtained from calling
Matrix4f.setLookAt(float, float, float, float, float, float, float, float, float)
called with the current local origin of this matrix (as obtained byMatrix4x3fc.origin(Vector3f)
), the sum of this position and the negated local Z axis as well as the given vector(upX, upY, upZ)
.- Specified by:
withLookAtUp
in interfaceMatrix4x3fc
- Parameters:
upX
- the x coordinate of the up vectorupY
- the y coordinate of the up vectorupZ
- the z coordinate of the up vectordest
- will hold the result- Returns:
- this
-
mapXZY
public Matrix4x3f mapXZY()
Multiplythis
by the matrix1 0 0 0 0 0 1 0 0 1 0 0
- Returns:
- this
-
mapXZY
public Matrix4x3f mapXZY(Matrix4x3f dest)
Description copied from interface:Matrix4x3fc
Multiplythis
by the matrix1 0 0 0 0 0 1 0 0 1 0 0
and store the result indest
.- Specified by:
mapXZY
in interfaceMatrix4x3fc
- Parameters:
dest
- will hold the result- Returns:
- dest
-
mapXZnY
public Matrix4x3f mapXZnY()
Multiplythis
by the matrix1 0 0 0 0 0 -1 0 0 1 0 0
- Returns:
- this
-
mapXZnY
public Matrix4x3f mapXZnY(Matrix4x3f dest)
Description copied from interface:Matrix4x3fc
Multiplythis
by the matrix1 0 0 0 0 0 -1 0 0 1 0 0
and store the result indest
.- Specified by:
mapXZnY
in interfaceMatrix4x3fc
- Parameters:
dest
- will hold the result- Returns:
- dest
-
mapXnYnZ
public Matrix4x3f mapXnYnZ()
Multiplythis
by the matrix1 0 0 0 0 -1 0 0 0 0 -1 0
- Returns:
- this
-
mapXnYnZ
public Matrix4x3f mapXnYnZ(Matrix4x3f dest)
Description copied from interface:Matrix4x3fc
Multiplythis
by the matrix1 0 0 0 0 -1 0 0 0 0 -1 0
and store the result indest
.- Specified by:
mapXnYnZ
in interfaceMatrix4x3fc
- Parameters:
dest
- will hold the result- Returns:
- dest
-
mapXnZY
public Matrix4x3f mapXnZY()
Multiplythis
by the matrix1 0 0 0 0 0 1 0 0 -1 0 0
- Returns:
- this
-
mapXnZY
public Matrix4x3f mapXnZY(Matrix4x3f dest)
Description copied from interface:Matrix4x3fc
Multiplythis
by the matrix1 0 0 0 0 0 1 0 0 -1 0 0
and store the result indest
.- Specified by:
mapXnZY
in interfaceMatrix4x3fc
- Parameters:
dest
- will hold the result- Returns:
- dest
-
mapXnZnY
public Matrix4x3f mapXnZnY()
Multiplythis
by the matrix1 0 0 0 0 0 -1 0 0 -1 0 0
- Returns:
- this
-
mapXnZnY
public Matrix4x3f mapXnZnY(Matrix4x3f dest)
Description copied from interface:Matrix4x3fc
Multiplythis
by the matrix1 0 0 0 0 0 -1 0 0 -1 0 0
and store the result indest
.- Specified by:
mapXnZnY
in interfaceMatrix4x3fc
- Parameters:
dest
- will hold the result- Returns:
- dest
-
mapYXZ
public Matrix4x3f mapYXZ()
Multiplythis
by the matrix0 1 0 0 1 0 0 0 0 0 1 0
- Returns:
- this
-
mapYXZ
public Matrix4x3f mapYXZ(Matrix4x3f dest)
Description copied from interface:Matrix4x3fc
Multiplythis
by the matrix0 1 0 0 1 0 0 0 0 0 1 0
and store the result indest
.- Specified by:
mapYXZ
in interfaceMatrix4x3fc
- Parameters:
dest
- will hold the result- Returns:
- dest
-
mapYXnZ
public Matrix4x3f mapYXnZ()
Multiplythis
by the matrix0 1 0 0 1 0 0 0 0 0 -1 0
- Returns:
- this
-
mapYXnZ
public Matrix4x3f mapYXnZ(Matrix4x3f dest)
Description copied from interface:Matrix4x3fc
Multiplythis
by the matrix0 1 0 0 1 0 0 0 0 0 -1 0
and store the result indest
.- Specified by:
mapYXnZ
in interfaceMatrix4x3fc
- Parameters:
dest
- will hold the result- Returns:
- dest
-
mapYZX
public Matrix4x3f mapYZX()
Multiplythis
by the matrix0 0 1 0 1 0 0 0 0 1 0 0
- Returns:
- this
-
mapYZX
public Matrix4x3f mapYZX(Matrix4x3f dest)
Description copied from interface:Matrix4x3fc
Multiplythis
by the matrix0 0 1 0 1 0 0 0 0 1 0 0
and store the result indest
.- Specified by:
mapYZX
in interfaceMatrix4x3fc
- Parameters:
dest
- will hold the result- Returns:
- dest
-
mapYZnX
public Matrix4x3f mapYZnX()
Multiplythis
by the matrix0 0 -1 0 1 0 0 0 0 1 0 0
- Returns:
- this
-
mapYZnX
public Matrix4x3f mapYZnX(Matrix4x3f dest)
Description copied from interface:Matrix4x3fc
Multiplythis
by the matrix0 0 -1 0 1 0 0 0 0 1 0 0
and store the result indest
.- Specified by:
mapYZnX
in interfaceMatrix4x3fc
- Parameters:
dest
- will hold the result- Returns:
- dest
-
mapYnXZ
public Matrix4x3f mapYnXZ()
Multiplythis
by the matrix0 -1 0 0 1 0 0 0 0 0 1 0
- Returns:
- this
-
mapYnXZ
public Matrix4x3f mapYnXZ(Matrix4x3f dest)
Description copied from interface:Matrix4x3fc
Multiplythis
by the matrix0 -1 0 0 1 0 0 0 0 0 1 0
and store the result indest
.- Specified by:
mapYnXZ
in interfaceMatrix4x3fc
- Parameters:
dest
- will hold the result- Returns:
- dest
-
mapYnXnZ
public Matrix4x3f mapYnXnZ()
Multiplythis
by the matrix0 -1 0 0 1 0 0 0 0 0 -1 0
- Returns:
- this
-
mapYnXnZ
public Matrix4x3f mapYnXnZ(Matrix4x3f dest)
Description copied from interface:Matrix4x3fc
Multiplythis
by the matrix0 -1 0 0 1 0 0 0 0 0 -1 0
and store the result indest
.- Specified by:
mapYnXnZ
in interfaceMatrix4x3fc
- Parameters:
dest
- will hold the result- Returns:
- dest
-
mapYnZX
public Matrix4x3f mapYnZX()
Multiplythis
by the matrix0 0 1 0 1 0 0 0 0 -1 0 0
- Returns:
- this
-
mapYnZX
public Matrix4x3f mapYnZX(Matrix4x3f dest)
Description copied from interface:Matrix4x3fc
Multiplythis
by the matrix0 0 1 0 1 0 0 0 0 -1 0 0
and store the result indest
.- Specified by:
mapYnZX
in interfaceMatrix4x3fc
- Parameters:
dest
- will hold the result- Returns:
- dest
-
mapYnZnX
public Matrix4x3f mapYnZnX()
Multiplythis
by the matrix0 0 -1 0 1 0 0 0 0 -1 0 0
- Returns:
- this
-
mapYnZnX
public Matrix4x3f mapYnZnX(Matrix4x3f dest)
Description copied from interface:Matrix4x3fc
Multiplythis
by the matrix0 0 -1 0 1 0 0 0 0 -1 0 0
and store the result indest
.- Specified by:
mapYnZnX
in interfaceMatrix4x3fc
- Parameters:
dest
- will hold the result- Returns:
- dest
-
mapZXY
public Matrix4x3f mapZXY()
Multiplythis
by the matrix0 1 0 0 0 0 1 0 1 0 0 0
- Returns:
- this
-
mapZXY
public Matrix4x3f mapZXY(Matrix4x3f dest)
Description copied from interface:Matrix4x3fc
Multiplythis
by the matrix0 1 0 0 0 0 1 0 1 0 0 0
and store the result indest
.- Specified by:
mapZXY
in interfaceMatrix4x3fc
- Parameters:
dest
- will hold the result- Returns:
- dest
-
mapZXnY
public Matrix4x3f mapZXnY()
Multiplythis
by the matrix0 1 0 0 0 0 -1 0 1 0 0 0
- Returns:
- this
-
mapZXnY
public Matrix4x3f mapZXnY(Matrix4x3f dest)
Description copied from interface:Matrix4x3fc
Multiplythis
by the matrix0 1 0 0 0 0 -1 0 1 0 0 0
and store the result indest
.- Specified by:
mapZXnY
in interfaceMatrix4x3fc
- Parameters:
dest
- will hold the result- Returns:
- dest
-
mapZYX
public Matrix4x3f mapZYX()
Multiplythis
by the matrix0 0 1 0 0 1 0 0 1 0 0 0
- Returns:
- this
-
mapZYX
public Matrix4x3f mapZYX(Matrix4x3f dest)
Description copied from interface:Matrix4x3fc
Multiplythis
by the matrix0 0 1 0 0 1 0 0 1 0 0 0
and store the result indest
.- Specified by:
mapZYX
in interfaceMatrix4x3fc
- Parameters:
dest
- will hold the result- Returns:
- dest
-
mapZYnX
public Matrix4x3f mapZYnX()
Multiplythis
by the matrix0 0 -1 0 0 1 0 0 1 0 0 0
- Returns:
- this
-
mapZYnX
public Matrix4x3f mapZYnX(Matrix4x3f dest)
Description copied from interface:Matrix4x3fc
Multiplythis
by the matrix0 0 -1 0 0 1 0 0 1 0 0 0
and store the result indest
.- Specified by:
mapZYnX
in interfaceMatrix4x3fc
- Parameters:
dest
- will hold the result- Returns:
- dest
-
mapZnXY
public Matrix4x3f mapZnXY()
Multiplythis
by the matrix0 -1 0 0 0 0 1 0 1 0 0 0
- Returns:
- this
-
mapZnXY
public Matrix4x3f mapZnXY(Matrix4x3f dest)
Description copied from interface:Matrix4x3fc
Multiplythis
by the matrix0 -1 0 0 0 0 1 0 1 0 0 0
and store the result indest
.- Specified by:
mapZnXY
in interfaceMatrix4x3fc
- Parameters:
dest
- will hold the result- Returns:
- dest
-
mapZnXnY
public Matrix4x3f mapZnXnY()
Multiplythis
by the matrix0 -1 0 0 0 0 -1 0 1 0 0 0
- Returns:
- this
-
mapZnXnY
public Matrix4x3f mapZnXnY(Matrix4x3f dest)
Description copied from interface:Matrix4x3fc
Multiplythis
by the matrix0 -1 0 0 0 0 -1 0 1 0 0 0
and store the result indest
.- Specified by:
mapZnXnY
in interfaceMatrix4x3fc
- Parameters:
dest
- will hold the result- Returns:
- dest
-
mapZnYX
public Matrix4x3f mapZnYX()
Multiplythis
by the matrix0 0 1 0 0 -1 0 0 1 0 0 0
- Returns:
- this
-
mapZnYX
public Matrix4x3f mapZnYX(Matrix4x3f dest)
Description copied from interface:Matrix4x3fc
Multiplythis
by the matrix0 0 1 0 0 -1 0 0 1 0 0 0
and store the result indest
.- Specified by:
mapZnYX
in interfaceMatrix4x3fc
- Parameters:
dest
- will hold the result- Returns:
- dest
-
mapZnYnX
public Matrix4x3f mapZnYnX()
Multiplythis
by the matrix0 0 -1 0 0 -1 0 0 1 0 0 0
- Returns:
- this
-
mapZnYnX
public Matrix4x3f mapZnYnX(Matrix4x3f dest)
Description copied from interface:Matrix4x3fc
Multiplythis
by the matrix0 0 -1 0 0 -1 0 0 1 0 0 0
and store the result indest
.- Specified by:
mapZnYnX
in interfaceMatrix4x3fc
- Parameters:
dest
- will hold the result- Returns:
- dest
-
mapnXYnZ
public Matrix4x3f mapnXYnZ()
Multiplythis
by the matrix-1 0 0 0 0 1 0 0 0 0 -1 0
- Returns:
- this
-
mapnXYnZ
public Matrix4x3f mapnXYnZ(Matrix4x3f dest)
Description copied from interface:Matrix4x3fc
Multiplythis
by the matrix-1 0 0 0 0 1 0 0 0 0 -1 0
and store the result indest
.- Specified by:
mapnXYnZ
in interfaceMatrix4x3fc
- Parameters:
dest
- will hold the result- Returns:
- dest
-
mapnXZY
public Matrix4x3f mapnXZY()
Multiplythis
by the matrix-1 0 0 0 0 0 1 0 0 1 0 0
- Returns:
- this
-
mapnXZY
public Matrix4x3f mapnXZY(Matrix4x3f dest)
Description copied from interface:Matrix4x3fc
Multiplythis
by the matrix-1 0 0 0 0 0 1 0 0 1 0 0
and store the result indest
.- Specified by:
mapnXZY
in interfaceMatrix4x3fc
- Parameters:
dest
- will hold the result- Returns:
- dest
-
mapnXZnY
public Matrix4x3f mapnXZnY()
Multiplythis
by the matrix-1 0 0 0 0 0 -1 0 0 1 0 0
- Returns:
- this
-
mapnXZnY
public Matrix4x3f mapnXZnY(Matrix4x3f dest)
Description copied from interface:Matrix4x3fc
Multiplythis
by the matrix-1 0 0 0 0 0 -1 0 0 1 0 0
and store the result indest
.- Specified by:
mapnXZnY
in interfaceMatrix4x3fc
- Parameters:
dest
- will hold the result- Returns:
- dest
-
mapnXnYZ
public Matrix4x3f mapnXnYZ()
Multiplythis
by the matrix-1 0 0 0 0 -1 0 0 0 0 1 0
- Returns:
- this
-
mapnXnYZ
public Matrix4x3f mapnXnYZ(Matrix4x3f dest)
Description copied from interface:Matrix4x3fc
Multiplythis
by the matrix-1 0 0 0 0 -1 0 0 0 0 1 0
and store the result indest
.- Specified by:
mapnXnYZ
in interfaceMatrix4x3fc
- Parameters:
dest
- will hold the result- Returns:
- dest
-
mapnXnYnZ
public Matrix4x3f mapnXnYnZ()
Multiplythis
by the matrix-1 0 0 0 0 -1 0 0 0 0 -1 0
- Returns:
- this
-
mapnXnYnZ
public Matrix4x3f mapnXnYnZ(Matrix4x3f dest)
Description copied from interface:Matrix4x3fc
Multiplythis
by the matrix-1 0 0 0 0 -1 0 0 0 0 -1 0
and store the result indest
.- Specified by:
mapnXnYnZ
in interfaceMatrix4x3fc
- Parameters:
dest
- will hold the result- Returns:
- dest
-
mapnXnZY
public Matrix4x3f mapnXnZY()
Multiplythis
by the matrix-1 0 0 0 0 0 1 0 0 -1 0 0
- Returns:
- this
-
mapnXnZY
public Matrix4x3f mapnXnZY(Matrix4x3f dest)
Description copied from interface:Matrix4x3fc
Multiplythis
by the matrix-1 0 0 0 0 0 1 0 0 -1 0 0
and store the result indest
.- Specified by:
mapnXnZY
in interfaceMatrix4x3fc
- Parameters:
dest
- will hold the result- Returns:
- dest
-
mapnXnZnY
public Matrix4x3f mapnXnZnY()
Multiplythis
by the matrix-1 0 0 0 0 0 -1 0 0 -1 0 0
- Returns:
- this
-
mapnXnZnY
public Matrix4x3f mapnXnZnY(Matrix4x3f dest)
Description copied from interface:Matrix4x3fc
Multiplythis
by the matrix-1 0 0 0 0 0 -1 0 0 -1 0 0
and store the result indest
.- Specified by:
mapnXnZnY
in interfaceMatrix4x3fc
- Parameters:
dest
- will hold the result- Returns:
- dest
-
mapnYXZ
public Matrix4x3f mapnYXZ()
Multiplythis
by the matrix0 1 0 0 -1 0 0 0 0 0 1 0
- Returns:
- this
-
mapnYXZ
public Matrix4x3f mapnYXZ(Matrix4x3f dest)
Description copied from interface:Matrix4x3fc
Multiplythis
by the matrix0 1 0 0 -1 0 0 0 0 0 1 0
and store the result indest
.- Specified by:
mapnYXZ
in interfaceMatrix4x3fc
- Parameters:
dest
- will hold the result- Returns:
- dest
-
mapnYXnZ
public Matrix4x3f mapnYXnZ()
Multiplythis
by the matrix0 1 0 0 -1 0 0 0 0 0 -1 0
- Returns:
- this
-
mapnYXnZ
public Matrix4x3f mapnYXnZ(Matrix4x3f dest)
Description copied from interface:Matrix4x3fc
Multiplythis
by the matrix0 1 0 0 -1 0 0 0 0 0 -1 0
and store the result indest
.- Specified by:
mapnYXnZ
in interfaceMatrix4x3fc
- Parameters:
dest
- will hold the result- Returns:
- dest
-
mapnYZX
public Matrix4x3f mapnYZX()
Multiplythis
by the matrix0 0 1 0 -1 0 0 0 0 1 0 0
- Returns:
- this
-
mapnYZX
public Matrix4x3f mapnYZX(Matrix4x3f dest)
Description copied from interface:Matrix4x3fc
Multiplythis
by the matrix0 0 1 0 -1 0 0 0 0 1 0 0
and store the result indest
.- Specified by:
mapnYZX
in interfaceMatrix4x3fc
- Parameters:
dest
- will hold the result- Returns:
- dest
-
mapnYZnX
public Matrix4x3f mapnYZnX()
Multiplythis
by the matrix0 0 -1 0 -1 0 0 0 0 1 0 0
- Returns:
- this
-
mapnYZnX
public Matrix4x3f mapnYZnX(Matrix4x3f dest)
Description copied from interface:Matrix4x3fc
Multiplythis
by the matrix0 0 -1 0 -1 0 0 0 0 1 0 0
and store the result indest
.- Specified by:
mapnYZnX
in interfaceMatrix4x3fc
- Parameters:
dest
- will hold the result- Returns:
- dest
-
mapnYnXZ
public Matrix4x3f mapnYnXZ()
Multiplythis
by the matrix0 -1 0 0 -1 0 0 0 0 0 1 0
- Returns:
- this
-
mapnYnXZ
public Matrix4x3f mapnYnXZ(Matrix4x3f dest)
Description copied from interface:Matrix4x3fc
Multiplythis
by the matrix0 -1 0 0 -1 0 0 0 0 0 1 0
and store the result indest
.- Specified by:
mapnYnXZ
in interfaceMatrix4x3fc
- Parameters:
dest
- will hold the result- Returns:
- dest
-
mapnYnXnZ
public Matrix4x3f mapnYnXnZ()
Multiplythis
by the matrix0 -1 0 0 -1 0 0 0 0 0 -1 0
- Returns:
- this
-
mapnYnXnZ
public Matrix4x3f mapnYnXnZ(Matrix4x3f dest)
Description copied from interface:Matrix4x3fc
Multiplythis
by the matrix0 -1 0 0 -1 0 0 0 0 0 -1 0
and store the result indest
.- Specified by:
mapnYnXnZ
in interfaceMatrix4x3fc
- Parameters:
dest
- will hold the result- Returns:
- dest
-
mapnYnZX
public Matrix4x3f mapnYnZX()
Multiplythis
by the matrix0 0 1 0 -1 0 0 0 0 -1 0 0
- Returns:
- this
-
mapnYnZX
public Matrix4x3f mapnYnZX(Matrix4x3f dest)
Description copied from interface:Matrix4x3fc
Multiplythis
by the matrix0 0 1 0 -1 0 0 0 0 -1 0 0
and store the result indest
.- Specified by:
mapnYnZX
in interfaceMatrix4x3fc
- Parameters:
dest
- will hold the result- Returns:
- dest
-
mapnYnZnX
public Matrix4x3f mapnYnZnX()
Multiplythis
by the matrix0 0 -1 0 -1 0 0 0 0 -1 0 0
- Returns:
- this
-
mapnYnZnX
public Matrix4x3f mapnYnZnX(Matrix4x3f dest)
Description copied from interface:Matrix4x3fc
Multiplythis
by the matrix0 0 -1 0 -1 0 0 0 0 -1 0 0
and store the result indest
.- Specified by:
mapnYnZnX
in interfaceMatrix4x3fc
- Parameters:
dest
- will hold the result- Returns:
- dest
-
mapnZXY
public Matrix4x3f mapnZXY()
Multiplythis
by the matrix0 1 0 0 0 0 1 0 -1 0 0 0
- Returns:
- this
-
mapnZXY
public Matrix4x3f mapnZXY(Matrix4x3f dest)
Description copied from interface:Matrix4x3fc
Multiplythis
by the matrix0 1 0 0 0 0 1 0 -1 0 0 0
and store the result indest
.- Specified by:
mapnZXY
in interfaceMatrix4x3fc
- Parameters:
dest
- will hold the result- Returns:
- dest
-
mapnZXnY
public Matrix4x3f mapnZXnY()
Multiplythis
by the matrix0 1 0 0 0 0 -1 0 -1 0 0 0
- Returns:
- this
-
mapnZXnY
public Matrix4x3f mapnZXnY(Matrix4x3f dest)
Description copied from interface:Matrix4x3fc
Multiplythis
by the matrix0 1 0 0 0 0 -1 0 -1 0 0 0
and store the result indest
.- Specified by:
mapnZXnY
in interfaceMatrix4x3fc
- Parameters:
dest
- will hold the result- Returns:
- dest
-
mapnZYX
public Matrix4x3f mapnZYX()
Multiplythis
by the matrix0 0 1 0 0 1 0 0 -1 0 0 0
- Returns:
- this
-
mapnZYX
public Matrix4x3f mapnZYX(Matrix4x3f dest)
Description copied from interface:Matrix4x3fc
Multiplythis
by the matrix0 0 1 0 0 1 0 0 -1 0 0 0
and store the result indest
.- Specified by:
mapnZYX
in interfaceMatrix4x3fc
- Parameters:
dest
- will hold the result- Returns:
- dest
-
mapnZYnX
public Matrix4x3f mapnZYnX()
Multiplythis
by the matrix0 0 -1 0 0 1 0 0 -1 0 0 0
- Returns:
- this
-
mapnZYnX
public Matrix4x3f mapnZYnX(Matrix4x3f dest)
Description copied from interface:Matrix4x3fc
Multiplythis
by the matrix0 0 -1 0 0 1 0 0 -1 0 0 0
and store the result indest
.- Specified by:
mapnZYnX
in interfaceMatrix4x3fc
- Parameters:
dest
- will hold the result- Returns:
- dest
-
mapnZnXY
public Matrix4x3f mapnZnXY()
Multiplythis
by the matrix0 -1 0 0 0 0 1 0 -1 0 0 0
- Returns:
- this
-
mapnZnXY
public Matrix4x3f mapnZnXY(Matrix4x3f dest)
Description copied from interface:Matrix4x3fc
Multiplythis
by the matrix0 -1 0 0 0 0 1 0 -1 0 0 0
and store the result indest
.- Specified by:
mapnZnXY
in interfaceMatrix4x3fc
- Parameters:
dest
- will hold the result- Returns:
- dest
-
mapnZnXnY
public Matrix4x3f mapnZnXnY()
Multiplythis
by the matrix0 -1 0 0 0 0 -1 0 -1 0 0 0
- Returns:
- this
-
mapnZnXnY
public Matrix4x3f mapnZnXnY(Matrix4x3f dest)
Description copied from interface:Matrix4x3fc
Multiplythis
by the matrix0 -1 0 0 0 0 -1 0 -1 0 0 0
and store the result indest
.- Specified by:
mapnZnXnY
in interfaceMatrix4x3fc
- Parameters:
dest
- will hold the result- Returns:
- dest
-
mapnZnYX
public Matrix4x3f mapnZnYX()
Multiplythis
by the matrix0 0 1 0 0 -1 0 0 -1 0 0 0
- Returns:
- this
-
mapnZnYX
public Matrix4x3f mapnZnYX(Matrix4x3f dest)
Description copied from interface:Matrix4x3fc
Multiplythis
by the matrix0 0 1 0 0 -1 0 0 -1 0 0 0
and store the result indest
.- Specified by:
mapnZnYX
in interfaceMatrix4x3fc
- Parameters:
dest
- will hold the result- Returns:
- dest
-
mapnZnYnX
public Matrix4x3f mapnZnYnX()
Multiplythis
by the matrix0 0 -1 0 0 -1 0 0 -1 0 0 0
- Returns:
- this
-
mapnZnYnX
public Matrix4x3f mapnZnYnX(Matrix4x3f dest)
Description copied from interface:Matrix4x3fc
Multiplythis
by the matrix0 0 -1 0 0 -1 0 0 -1 0 0 0
and store the result indest
.- Specified by:
mapnZnYnX
in interfaceMatrix4x3fc
- Parameters:
dest
- will hold the result- Returns:
- dest
-
negateX
public Matrix4x3f negateX()
Multiplythis
by the matrix-1 0 0 0 0 1 0 0 0 0 1 0
- Returns:
- this
-
negateX
public Matrix4x3f negateX(Matrix4x3f dest)
Description copied from interface:Matrix4x3fc
Multiplythis
by the matrix-1 0 0 0 0 1 0 0 0 0 1 0
and store the result indest
.- Specified by:
negateX
in interfaceMatrix4x3fc
- Parameters:
dest
- will hold the result- Returns:
- dest
-
negateY
public Matrix4x3f negateY()
Multiplythis
by the matrix1 0 0 0 0 -1 0 0 0 0 1 0
- Returns:
- this
-
negateY
public Matrix4x3f negateY(Matrix4x3f dest)
Description copied from interface:Matrix4x3fc
Multiplythis
by the matrix1 0 0 0 0 -1 0 0 0 0 1 0
and store the result indest
.- Specified by:
negateY
in interfaceMatrix4x3fc
- Parameters:
dest
- will hold the result- Returns:
- dest
-
negateZ
public Matrix4x3f negateZ()
Multiplythis
by the matrix1 0 0 0 0 1 0 0 0 0 -1 0
- Returns:
- this
-
negateZ
public Matrix4x3f negateZ(Matrix4x3f dest)
Description copied from interface:Matrix4x3fc
Multiplythis
by the matrix1 0 0 0 0 1 0 0 0 0 -1 0
and store the result indest
.- Specified by:
negateZ
in interfaceMatrix4x3fc
- Parameters:
dest
- will hold the result- Returns:
- dest
-
isFinite
public boolean isFinite()
Description copied from interface:Matrix4x3fc
Determine whether all matrix elements are finite floating-point values, that is, they are notNaN
and notinfinity
.- Specified by:
isFinite
in interfaceMatrix4x3fc
- Returns:
true
if all components are finite floating-point values;false
otherwise
-
clone
public java.lang.Object clone() throws java.lang.CloneNotSupportedException
- Overrides:
clone
in classjava.lang.Object
- Throws:
java.lang.CloneNotSupportedException
-
-