Uses of Interface
weka.core.BatchPredictor
Packages that use BatchPredictor
Package
Description
-
Uses of BatchPredictor in weka.classifiers
Classes in weka.classifiers that implement BatchPredictorModifier and TypeClassDescriptionclassAbstract classifier.classAbstract utility class for handling settings common to meta classifiers that build an ensemble from a single base learner.classAbstract utility class for handling settings common to meta classifiers that build an ensemble from multiple classifiers.classAbstract utility class for handling settings common to meta classifiers that build an ensemble in parallel from a single base learner.classAbstract utility class for handling settings common to meta classifiers that build an ensemble in parallel using multiple classifiers.classAbstract utility class for handling settings common to randomizable classifiers.classAbstract utility class for handling settings common to randomizable meta classifiers that build an ensemble from a single base learner.classAbstract utility class for handling settings common to randomizable meta classifiers that build an ensemble from multiple classifiers based on a given random number seed.classAbstract utility class for handling settings common to randomizable meta classifiers that build an ensemble in parallel from a single base learner.classAbstract utility class for handling settings common to meta classifiers that build an ensemble in parallel using multiple classifiers based on a given random number seed.classAbstract utility class for handling settings common to randomizable meta classifiers that build an ensemble from a single base learner.classAbstract utility class for handling settings common to meta classifiers that use a single base learner. -
Uses of BatchPredictor in weka.classifiers.bayes
Classes in weka.classifiers.bayes that implement BatchPredictorModifier and TypeClassDescriptionclassBayes Network learning using various search algorithms and quality measures.
Base class for a Bayes Network classifier.classClass for a Naive Bayes classifier using estimator classes.classClass for building and using a multinomial Naive Bayes classifier.classMultinomial naive bayes for text data.classClass for building and using an updateable multinomial Naive Bayes classifier.classClass for a Naive Bayes classifier using estimator classes. -
Uses of BatchPredictor in weka.classifiers.bayes.net
Classes in weka.classifiers.bayes.net that implement BatchPredictorModifier and TypeClassDescriptionclassBayes Network learning using various search algorithms and quality measures.
Base class for a Bayes Network classifier.classBuilds a description of a Bayes Net classifier stored in XML BIF 0.3 format.
For more details on XML BIF see:
Fabio Cozman, Marek Druzdzel, Daniel Garcia (1998).classBayes Network learning using various search algorithms and quality measures.
Base class for a Bayes Network classifier. -
Uses of BatchPredictor in weka.classifiers.functions
Classes in weka.classifiers.functions that implement BatchPredictorModifier and TypeClassDescriptionclass* Implements Gaussian processes for regression without hyperparameter-tuning.classClass for using linear regression for prediction.classClass for building and using a multinomial logistic regression model with a ridge estimator.
There are some modifications, however, compared to the paper of leCessie and van Houwelingen(1992):
If there are k classes for n instances with m attributes, the parameter matrix B to be calculated will be an m*(k-1) matrix.
The probability for class j with the exception of the last class is
Pj(Xi) = exp(XiBj)/((sum[j=1..(k-1)]exp(Xi*Bj))+1)
The last class has probability
1-(sum[j=1..(k-1)]Pj(Xi))
= 1/((sum[j=1..(k-1)]exp(Xi*Bj))+1)
The (negative) multinomial log-likelihood is thus:
L = -sum[i=1..n]{
sum[j=1..(k-1)](Yij * ln(Pj(Xi)))
+(1 - (sum[j=1..(k-1)]Yij))
* ln(1 - sum[j=1..(k-1)]Pj(Xi))
} + ridge * (B^2)
In order to find the matrix B for which L is minimised, a Quasi-Newton Method is used to search for the optimized values of the m*(k-1) variables.classA classifier that uses backpropagation to learn a multi-layer perceptron to classify instances.classImplements stochastic gradient descent for learning various linear models (binary class SVM, binary class logistic regression, squared loss, Huber loss and epsilon-insensitive loss linear regression).classImplements stochastic gradient descent for learning a linear binary class SVM or binary class logistic regression on text data.classLearns a simple linear regression model.classClassifier for building linear logistic regression models.classImplements John Platt's sequential minimal optimization algorithm for training a support vector classifier.
This implementation globally replaces all missing values and transforms nominal attributes into binary ones.classSMOreg implements the support vector machine for regression.classImplementation of the voted perceptron algorithm by Freund and Schapire. -
Uses of BatchPredictor in weka.classifiers.lazy
Classes in weka.classifiers.lazy that implement BatchPredictorModifier and TypeClassDescriptionclassK-nearest neighbours classifier.classK* is an instance-based classifier, that is the class of a test instance is based upon the class of those training instances similar to it, as determined by some similarity function.classLocally weighted learning. -
Uses of BatchPredictor in weka.classifiers.meta
Classes in weka.classifiers.meta that implement BatchPredictorModifier and TypeClassDescriptionclassClass for boosting a nominal class classifier using the Adaboost M1 method.classMeta classifier that enhances the performance of a regression base classifier.classDimensionality of training and test data is reduced by attribute selection before being passed on to a classifier.classClass for bagging a classifier to reduce variance.classClass for doing classification using regression methods.classA metaclassifier that makes its base classifier cost sensitive.classClass for performing parameter selection by cross-validation for any classifier.
For more information, see:
R.classClass for running an arbitrary classifier on data that has been passed through an arbitrary filter.classChooses the best number of iterations for an IterativeClassifier such as LogitBoost using cross-validation or a percentage split evaluation.classClass for performing additive logistic regression.classA metaclassifier for handling multi-class datasets with 2-class classifiers.classA metaclassifier for handling multi-class datasets with 2-class classifiers.classClass for selecting a classifier from among several using cross validation on the training data or the performance on the training data.classClass for building an ensemble of randomizable base classifiers.classClass for running an arbitrary classifier on data that has been passed through an arbitrary filter.classThis method constructs a decision tree based classifier that maintains highest accuracy on training data and improves on generalization accuracy as it grows in complexity.classA regression scheme that employs any classifier on a copy of the data that has the class attribute (equal-width) discretized.classCombines several classifiers using the stacking method.classClass for combining classifiers.classGeneric wrapper around any classifier to enable weighted instances support.
Uses resampling with weights if the base classifier is not implementing the weka.core.WeightedInstancesHandler interface and there are instance weights other 1.0 present. -
Uses of BatchPredictor in weka.classifiers.misc
Classes in weka.classifiers.misc that implement BatchPredictorModifier and TypeClassDescriptionclassWrapper classifier that addresses incompatible training and test data by building a mapping between the training data that a classifier has been built with and the incoming test instances' structure.classA wrapper around a serialized classifier model. -
Uses of BatchPredictor in weka.classifiers.pmml.consumer
Classes in weka.classifiers.pmml.consumer that implement BatchPredictorModifier and TypeClassDescriptionclassClass implementing import of PMML General Regression model.classClass implementing import of PMML Neural Network model.classAbstract base class for all PMML classifiers.classClass implementing import of PMML Regression model.classClass implementing import of PMML RuleSetModel.classImplements a PMML SupportVectorMachineModelclassClass implementing import of PMML TreeModel. -
Uses of BatchPredictor in weka.classifiers.rules
Classes in weka.classifiers.rules that implement BatchPredictorModifier and TypeClassDescriptionclassClass for building and using a simple decision table majority classifier.
For more information see:
Ron Kohavi: The Power of Decision Tables.classThis class implements a propositional rule learner, Repeated Incremental Pruning to Produce Error Reduction (RIPPER), which was proposed by William W.classGenerates a decision list for regression problems using separate-and-conquer.classClass for building and using a 1R classifier; in other words, uses the minimum-error attribute for prediction, discretizing numeric attributes.classClass for generating a PART decision list.classClass for building and using a 0-R classifier. -
Uses of BatchPredictor in weka.classifiers.trees
Classes in weka.classifiers.trees that implement BatchPredictorModifier and TypeClassDescriptionclassClass for building and using a decision stump.classA Hoeffding tree (VFDT) is an incremental, anytime decision tree induction algorithm that is capable of learning from massive data streams, assuming that the distribution generating examples does not change over time.classClass for generating a pruned or unpruned C4.5 decision tree.classClassifier for building 'logistic model trees', which are classification trees with logistic regression functions at the leaves.classM5Base.classClass for constructing a forest of random trees.
For more information see:
Leo Breiman (2001).classClass for constructing a tree that considers K randomly chosen attributes at each node.classFast decision tree learner. -
Uses of BatchPredictor in weka.classifiers.trees.lmt
Classes in weka.classifiers.trees.lmt that implement BatchPredictorModifier and TypeClassDescriptionclassClass for logistic model tree structure.classBase/helper class for building logistic regression models with the LogitBoost algorithm. -
Uses of BatchPredictor in weka.classifiers.trees.m5
Classes in weka.classifiers.trees.m5 that implement BatchPredictorModifier and TypeClassDescriptionclassM5Base.classThis class encapsulates a linear regression function.classConstructs a node for use in an m5 tree or rule