Interface Matrix2fc
-
- All Known Implementing Classes:
Matrix2f
public interface Matrix2fc
Interface to a read-only view of a 2x2 matrix of single-precision floats.- Author:
- Joseph Burton
-
-
Method Summary
All Methods Instance Methods Abstract Methods Modifier and Type Method Description Matrix2f
add(Matrix2fc other, Matrix2f dest)
Component-wise addthis
andother
and store the result indest
.float
determinant()
Return the determinant of this matrix.boolean
equals(Matrix2fc m, float delta)
Compare the matrix elements ofthis
matrix with the given matrix using the givendelta
and return whether all of them are equal within a maximum difference ofdelta
.float[]
get(float[] arr)
Store this matrix into the supplied float array in column-major order.float[]
get(float[] arr, int offset)
Store this matrix into the supplied float array in column-major order at the given offset.float
get(int column, int row)
Get the matrix element value at the given column and row.java.nio.ByteBuffer
get(int index, java.nio.ByteBuffer buffer)
Store this matrix in column-major order into the suppliedByteBuffer
starting at the specified absolute buffer position/index.java.nio.FloatBuffer
get(int index, java.nio.FloatBuffer buffer)
Store this matrix in column-major order into the suppliedFloatBuffer
starting at the specified absolute buffer position/index.java.nio.ByteBuffer
get(java.nio.ByteBuffer buffer)
Store this matrix in column-major order into the suppliedByteBuffer
at the current bufferposition
.java.nio.FloatBuffer
get(java.nio.FloatBuffer buffer)
Store this matrix in column-major order into the suppliedFloatBuffer
at the current bufferposition
.Matrix2f
get(Matrix2f dest)
Get the current values ofthis
matrix and store them intodest
.Matrix3f
get(Matrix3f dest)
Get the current values ofthis
matrix and store them as the rotational component ofdest
.Matrix3x2f
get(Matrix3x2f dest)
Get the current values ofthis
matrix and store them as the rotational component ofdest
.Vector2f
getColumn(int column, Vector2f dest)
Get the column at the givencolumn
index, starting with0
.float
getRotation()
Get the angle of the rotation component ofthis
matrix.Vector2f
getRow(int row, Vector2f dest)
Get the row at the givenrow
index, starting with0
.Vector2f
getScale(Vector2f dest)
Get the scaling factors ofthis
matrix for the three base axes.Matrix2fc
getToAddress(long address)
Store this matrix in column-major order at the given off-heap address.java.nio.ByteBuffer
getTransposed(int index, java.nio.ByteBuffer buffer)
Store the transpose of this matrix in column-major order into the suppliedByteBuffer
starting at the specified absolute buffer position/index.java.nio.FloatBuffer
getTransposed(int index, java.nio.FloatBuffer buffer)
Store the transpose of this matrix in column-major order into the suppliedFloatBuffer
starting at the specified absolute buffer position/index.java.nio.ByteBuffer
getTransposed(java.nio.ByteBuffer buffer)
Store the transpose of this matrix in column-major order into the suppliedByteBuffer
at the current bufferposition
.java.nio.FloatBuffer
getTransposed(java.nio.FloatBuffer buffer)
Store the transpose of this matrix in column-major order into the suppliedFloatBuffer
at the current bufferposition
.Matrix2f
invert(Matrix2f dest)
Invert thethis
matrix and store the result indest
.boolean
isFinite()
Determine whether all matrix elements are finite floating-point values, that is, they are notNaN
and notinfinity
.Matrix2f
lerp(Matrix2fc other, float t, Matrix2f dest)
Linearly interpolatethis
andother
using the given interpolation factort
and store the result indest
.float
m00()
Return the value of the matrix element at column 0 and row 0.float
m01()
Return the value of the matrix element at column 0 and row 1.float
m10()
Return the value of the matrix element at column 1 and row 0.float
m11()
Return the value of the matrix element at column 1 and row 1.Matrix2f
mul(Matrix2fc right, Matrix2f dest)
Multiply this matrix by the suppliedright
matrix and store the result indest
.Matrix2f
mulComponentWise(Matrix2fc other, Matrix2f dest)
Component-wise multiplythis
byother
and store the result indest
.Matrix2f
mulLocal(Matrix2fc left, Matrix2f dest)
Pre-multiply this matrix by the suppliedleft
matrix and store the result indest
.Matrix2f
normal(Matrix2f dest)
Compute a normal matrix fromthis
matrix and store it intodest
.Vector2f
normalizedPositiveX(Vector2f dest)
Obtain the direction of+X
before the transformation represented bythis
orthogonal matrix is applied.Vector2f
normalizedPositiveY(Vector2f dest)
Obtain the direction of+Y
before the transformation represented bythis
orthogonal matrix is applied.Vector2f
positiveX(Vector2f dest)
Obtain the direction of+X
before the transformation represented bythis
matrix is applied.Vector2f
positiveY(Vector2f dest)
Obtain the direction of+Y
before the transformation represented bythis
matrix is applied.Matrix2f
rotate(float ang, Matrix2f dest)
Apply rotation to this matrix by rotating the given amount of radians and store the result indest
.Matrix2f
rotateLocal(float ang, Matrix2f dest)
Pre-multiply a rotation to this matrix by rotating the given amount of radians and store the result indest
.Matrix2f
scale(float x, float y, Matrix2f dest)
Apply scaling to this matrix by scaling the base axes by the given x and y factors and store the result indest
.Matrix2f
scale(float xy, Matrix2f dest)
Apply scaling to this matrix by uniformly scaling all base axes by the givenxy
factor and store the result indest
.Matrix2f
scale(Vector2fc xy, Matrix2f dest)
Apply scaling tothis
matrix by scaling the base axes by the givenxy.x
andxy.y
factors, respectively and store the result indest
.Matrix2f
scaleLocal(float x, float y, Matrix2f dest)
Pre-multiply scaling tothis
matrix by scaling the base axes by the given x and y factors and store the result indest
.Matrix2f
sub(Matrix2fc subtrahend, Matrix2f dest)
Component-wise subtractsubtrahend
fromthis
and store the result indest
.Vector2f
transform(float x, float y, Vector2f dest)
Transform the vector(x, y)
by this matrix and store the result indest
.Vector2f
transform(Vector2f v)
Transform the given vector by this matrix.Vector2f
transform(Vector2fc v, Vector2f dest)
Transform the given vector by this matrix and store the result indest
.Vector2f
transformTranspose(float x, float y, Vector2f dest)
Transform the vector(x, y)
by the transpose of this matrix and store the result indest
.Vector2f
transformTranspose(Vector2f v)
Transform the given vector by the transpose of this matrix.Vector2f
transformTranspose(Vector2fc v, Vector2f dest)
Transform the given vector by the transpose of this matrix and store the result indest
.Matrix2f
transpose(Matrix2f dest)
Transposethis
matrix and store the result indest
.
-
-
-
Method Detail
-
m00
float m00()
Return the value of the matrix element at column 0 and row 0.- Returns:
- the value of the matrix element
-
m01
float m01()
Return the value of the matrix element at column 0 and row 1.- Returns:
- the value of the matrix element
-
m10
float m10()
Return the value of the matrix element at column 1 and row 0.- Returns:
- the value of the matrix element
-
m11
float m11()
Return the value of the matrix element at column 1 and row 1.- Returns:
- the value of the matrix element
-
mul
Matrix2f mul(Matrix2fc right, Matrix2f dest)
Multiply this matrix by the suppliedright
matrix and store the result indest
.If
M
isthis
matrix andR
theright
matrix, then the new matrix will beM * R
. So when transforming a vectorv
with the new matrix by usingM * R * v
, the transformation of the right matrix will be applied first!- Parameters:
right
- the right operand of the matrix multiplicationdest
- will hold the result- Returns:
- dest
-
mulLocal
Matrix2f mulLocal(Matrix2fc left, Matrix2f dest)
Pre-multiply this matrix by the suppliedleft
matrix and store the result indest
.If
M
isthis
matrix andL
theleft
matrix, then the new matrix will beL * M
. So when transforming a vectorv
with the new matrix by usingL * M * v
, the transformation ofthis
matrix will be applied first!- Parameters:
left
- the left operand of the matrix multiplicationdest
- the destination matrix, which will hold the result- Returns:
- dest
-
determinant
float determinant()
Return the determinant of this matrix.- Returns:
- the determinant
-
invert
Matrix2f invert(Matrix2f dest)
Invert thethis
matrix and store the result indest
.- Parameters:
dest
- will hold the result- Returns:
- dest
-
transpose
Matrix2f transpose(Matrix2f dest)
Transposethis
matrix and store the result indest
.- Parameters:
dest
- will hold the result- Returns:
- dest
-
get
Matrix2f get(Matrix2f dest)
Get the current values ofthis
matrix and store them intodest
.- Parameters:
dest
- the destination matrix- Returns:
- the passed in destination
-
get
Matrix3x2f get(Matrix3x2f dest)
Get the current values ofthis
matrix and store them as the rotational component ofdest
. All other values ofdest
will be set to 0.- Parameters:
dest
- the destination matrix- Returns:
- the passed in destination
- See Also:
Matrix3x2f.set(Matrix2fc)
-
get
Matrix3f get(Matrix3f dest)
Get the current values ofthis
matrix and store them as the rotational component ofdest
. All other values ofdest
will be set to identity.- Parameters:
dest
- the destination matrix- Returns:
- the passed in destination
- See Also:
Matrix3f.set(Matrix2fc)
-
getRotation
float getRotation()
Get the angle of the rotation component ofthis
matrix.This method assumes that there is a valid rotation to be returned, i.e. that
atan2(-m10, m00) == atan2(m01, m11)
.- Returns:
- the angle
-
get
java.nio.FloatBuffer get(java.nio.FloatBuffer buffer)
Store this matrix in column-major order into the suppliedFloatBuffer
at the current bufferposition
.This method will not increment the position of the given FloatBuffer.
In order to specify the offset into the FloatBuffer at which the matrix is stored, use
get(int, FloatBuffer)
, taking the absolute position as parameter.- Parameters:
buffer
- will receive the values of this matrix in column-major order at its current position- Returns:
- the passed in buffer
- See Also:
get(int, FloatBuffer)
-
get
java.nio.FloatBuffer get(int index, java.nio.FloatBuffer buffer)
Store this matrix in column-major order into the suppliedFloatBuffer
starting at the specified absolute buffer position/index.This method will not increment the position of the given FloatBuffer.
- Parameters:
index
- the absolute position into the FloatBufferbuffer
- will receive the values of this matrix in column-major order- Returns:
- the passed in buffer
-
get
java.nio.ByteBuffer get(java.nio.ByteBuffer buffer)
Store this matrix in column-major order into the suppliedByteBuffer
at the current bufferposition
.This method will not increment the position of the given ByteBuffer.
In order to specify the offset into the ByteBuffer at which the matrix is stored, use
get(int, ByteBuffer)
, taking the absolute position as parameter.- Parameters:
buffer
- will receive the values of this matrix in column-major order at its current position- Returns:
- the passed in buffer
- See Also:
get(int, ByteBuffer)
-
get
java.nio.ByteBuffer get(int index, java.nio.ByteBuffer buffer)
Store this matrix in column-major order into the suppliedByteBuffer
starting at the specified absolute buffer position/index.This method will not increment the position of the given ByteBuffer.
- Parameters:
index
- the absolute position into the ByteBufferbuffer
- will receive the values of this matrix in column-major order- Returns:
- the passed in buffer
-
getTransposed
java.nio.FloatBuffer getTransposed(java.nio.FloatBuffer buffer)
Store the transpose of this matrix in column-major order into the suppliedFloatBuffer
at the current bufferposition
.This method will not increment the position of the given FloatBuffer.
In order to specify the offset into the FloatBuffer at which the matrix is stored, use
getTransposed(int, FloatBuffer)
, taking the absolute position as parameter.- Parameters:
buffer
- will receive the values of this matrix in column-major order at its current position- Returns:
- the passed in buffer
- See Also:
getTransposed(int, FloatBuffer)
-
getTransposed
java.nio.FloatBuffer getTransposed(int index, java.nio.FloatBuffer buffer)
Store the transpose of this matrix in column-major order into the suppliedFloatBuffer
starting at the specified absolute buffer position/index.This method will not increment the position of the given FloatBuffer.
- Parameters:
index
- the absolute position into the FloatBufferbuffer
- will receive the values of this matrix in column-major order- Returns:
- the passed in buffer
-
getTransposed
java.nio.ByteBuffer getTransposed(java.nio.ByteBuffer buffer)
Store the transpose of this matrix in column-major order into the suppliedByteBuffer
at the current bufferposition
.This method will not increment the position of the given ByteBuffer.
In order to specify the offset into the ByteBuffer at which the matrix is stored, use
getTransposed(int, ByteBuffer)
, taking the absolute position as parameter.- Parameters:
buffer
- will receive the values of this matrix in column-major order at its current position- Returns:
- the passed in buffer
- See Also:
getTransposed(int, ByteBuffer)
-
getTransposed
java.nio.ByteBuffer getTransposed(int index, java.nio.ByteBuffer buffer)
Store the transpose of this matrix in column-major order into the suppliedByteBuffer
starting at the specified absolute buffer position/index.This method will not increment the position of the given ByteBuffer.
- Parameters:
index
- the absolute position into the ByteBufferbuffer
- will receive the values of this matrix in column-major order- Returns:
- the passed in buffer
-
getToAddress
Matrix2fc getToAddress(long address)
Store this matrix in column-major order at the given off-heap address.This method will throw an
UnsupportedOperationException
when JOML is used with `-Djoml.nounsafe`.This method is unsafe as it can result in a crash of the JVM process when the specified address range does not belong to this process.
- Parameters:
address
- the off-heap address where to store this matrix- Returns:
- this
-
get
float[] get(float[] arr, int offset)
Store this matrix into the supplied float array in column-major order at the given offset.- Parameters:
arr
- the array to write the matrix values intooffset
- the offset into the array- Returns:
- the passed in array
-
get
float[] get(float[] arr)
Store this matrix into the supplied float array in column-major order.In order to specify an explicit offset into the array, use the method
get(float[], int)
.- Parameters:
arr
- the array to write the matrix values into- Returns:
- the passed in array
- See Also:
get(float[], int)
-
scale
Matrix2f scale(Vector2fc xy, Matrix2f dest)
Apply scaling tothis
matrix by scaling the base axes by the givenxy.x
andxy.y
factors, respectively and store the result indest
.If
M
isthis
matrix andS
the scaling matrix, then the new matrix will beM * S
. So when transforming a vectorv
with the new matrix by usingM * S * v
, the scaling will be applied first!- Parameters:
xy
- the factors of the x and y component, respectivelydest
- will hold the result- Returns:
- dest
-
scale
Matrix2f scale(float x, float y, Matrix2f dest)
Apply scaling to this matrix by scaling the base axes by the given x and y factors and store the result indest
.If
M
isthis
matrix andS
the scaling matrix, then the new matrix will beM * S
. So when transforming a vectorv
with the new matrix by usingM * S * v
, the scaling will be applied first!- Parameters:
x
- the factor of the x componenty
- the factor of the y componentdest
- will hold the result- Returns:
- dest
-
scale
Matrix2f scale(float xy, Matrix2f dest)
Apply scaling to this matrix by uniformly scaling all base axes by the givenxy
factor and store the result indest
.If
M
isthis
matrix andS
the scaling matrix, then the new matrix will beM * S
. So when transforming a vectorv
with the new matrix by usingM * S * v
, the scaling will be applied first!- Parameters:
xy
- the factor for all componentsdest
- will hold the result- Returns:
- dest
- See Also:
scale(float, float, Matrix2f)
-
scaleLocal
Matrix2f scaleLocal(float x, float y, Matrix2f dest)
Pre-multiply scaling tothis
matrix by scaling the base axes by the given x and y factors and store the result indest
.If
M
isthis
matrix andS
the scaling matrix, then the new matrix will beS * M
. So when transforming a vectorv
with the new matrix by usingS * M * v
, the scaling will be applied last!- Parameters:
x
- the factor of the x componenty
- the factor of the y componentdest
- will hold the result- Returns:
- dest
-
transform
Vector2f transform(Vector2f v)
Transform the given vector by this matrix.- Parameters:
v
- the vector to transform- Returns:
- v
-
transform
Vector2f transform(Vector2fc v, Vector2f dest)
Transform the given vector by this matrix and store the result indest
.- Parameters:
v
- the vector to transformdest
- will hold the result- Returns:
- dest
-
transform
Vector2f transform(float x, float y, Vector2f dest)
Transform the vector(x, y)
by this matrix and store the result indest
.- Parameters:
x
- the x coordinate of the vector to transformy
- the y coordinate of the vector to transformdest
- will hold the result- Returns:
- dest
-
transformTranspose
Vector2f transformTranspose(Vector2f v)
Transform the given vector by the transpose of this matrix.- Parameters:
v
- the vector to transform- Returns:
- v
-
transformTranspose
Vector2f transformTranspose(Vector2fc v, Vector2f dest)
Transform the given vector by the transpose of this matrix and store the result indest
.- Parameters:
v
- the vector to transformdest
- will hold the result- Returns:
- dest
-
transformTranspose
Vector2f transformTranspose(float x, float y, Vector2f dest)
Transform the vector(x, y)
by the transpose of this matrix and store the result indest
.- Parameters:
x
- the x coordinate of the vector to transformy
- the y coordinate of the vector to transformdest
- will hold the result- Returns:
- dest
-
rotate
Matrix2f rotate(float ang, Matrix2f dest)
Apply rotation to this matrix by rotating the given amount of radians and store the result indest
.The produced rotation will rotate a vector counter-clockwise around the origin.
If
M
isthis
matrix andR
the rotation matrix, then the new matrix will beM * R
. So when transforming a vectorv
with the new matrix by usingM * R * v
, the rotation will be applied first!Reference: http://en.wikipedia.org
- Parameters:
ang
- the angle in radiansdest
- will hold the result- Returns:
- dest
-
rotateLocal
Matrix2f rotateLocal(float ang, Matrix2f dest)
Pre-multiply a rotation to this matrix by rotating the given amount of radians and store the result indest
.The produced rotation will rotate a vector counter-clockwise around the origin.
If
M
isthis
matrix andR
the rotation matrix, then the new matrix will beR * M
. So when transforming a vectorv
with the new matrix by usingR * M * v
, the rotation will be applied last!Reference: http://en.wikipedia.org
- Parameters:
ang
- the angle in radiansdest
- will hold the result- Returns:
- dest
-
getRow
Vector2f getRow(int row, Vector2f dest) throws java.lang.IndexOutOfBoundsException
Get the row at the givenrow
index, starting with0
.- Parameters:
row
- the row index in[0..1]
dest
- will hold the row components- Returns:
- the passed in destination
- Throws:
java.lang.IndexOutOfBoundsException
- ifrow
is not in[0..1]
-
getColumn
Vector2f getColumn(int column, Vector2f dest) throws java.lang.IndexOutOfBoundsException
Get the column at the givencolumn
index, starting with0
.- Parameters:
column
- the column index in[0..1]
dest
- will hold the column components- Returns:
- the passed in destination
- Throws:
java.lang.IndexOutOfBoundsException
- ifcolumn
is not in[0..1]
-
get
float get(int column, int row)
Get the matrix element value at the given column and row.- Parameters:
column
- the colum index in[0..1]
row
- the row index in[0..1]
- Returns:
- the element value
-
normal
Matrix2f normal(Matrix2f dest)
Compute a normal matrix fromthis
matrix and store it intodest
.- Parameters:
dest
- will hold the result- Returns:
- dest
-
getScale
Vector2f getScale(Vector2f dest)
Get the scaling factors ofthis
matrix for the three base axes.- Parameters:
dest
- will hold the scaling factors forx
andy
- Returns:
- dest
-
positiveX
Vector2f positiveX(Vector2f dest)
Obtain the direction of+X
before the transformation represented bythis
matrix is applied.This method is equivalent to the following code:
Matrix2f inv = new Matrix2f(this).invert(); inv.transform(dir.set(1, 0)).normalize();
Ifthis
is already an orthogonal matrix, then consider usingnormalizedPositiveX(Vector2f)
instead.- Parameters:
dest
- will hold the direction of+X
- Returns:
- dest
-
normalizedPositiveX
Vector2f normalizedPositiveX(Vector2f dest)
Obtain the direction of+X
before the transformation represented bythis
orthogonal matrix is applied. This method only produces correct results ifthis
is an orthogonal matrix.This method is equivalent to the following code:
Matrix2f inv = new Matrix2f(this).transpose(); inv.transform(dir.set(1, 0));
- Parameters:
dest
- will hold the direction of+X
- Returns:
- dest
-
positiveY
Vector2f positiveY(Vector2f dest)
Obtain the direction of+Y
before the transformation represented bythis
matrix is applied.This method is equivalent to the following code:
Matrix2f inv = new Matrix2f(this).invert(); inv.transform(dir.set(0, 1)).normalize();
Ifthis
is already an orthogonal matrix, then consider usingnormalizedPositiveY(Vector2f)
instead.- Parameters:
dest
- will hold the direction of+Y
- Returns:
- dest
-
normalizedPositiveY
Vector2f normalizedPositiveY(Vector2f dest)
Obtain the direction of+Y
before the transformation represented bythis
orthogonal matrix is applied. This method only produces correct results ifthis
is an orthogonal matrix.This method is equivalent to the following code:
Matrix2f inv = new Matrix2f(this).transpose(); inv.transform(dir.set(0, 1));
- Parameters:
dest
- will hold the direction of+Y
- Returns:
- dest
-
add
Matrix2f add(Matrix2fc other, Matrix2f dest)
Component-wise addthis
andother
and store the result indest
.- Parameters:
other
- the other addenddest
- will hold the result- Returns:
- dest
-
sub
Matrix2f sub(Matrix2fc subtrahend, Matrix2f dest)
Component-wise subtractsubtrahend
fromthis
and store the result indest
.- Parameters:
subtrahend
- the subtrahenddest
- will hold the result- Returns:
- dest
-
mulComponentWise
Matrix2f mulComponentWise(Matrix2fc other, Matrix2f dest)
Component-wise multiplythis
byother
and store the result indest
.- Parameters:
other
- the other matrixdest
- will hold the result- Returns:
- dest
-
lerp
Matrix2f lerp(Matrix2fc other, float t, Matrix2f dest)
Linearly interpolatethis
andother
using the given interpolation factort
and store the result indest
.If
t
is0.0
then the result isthis
. If the interpolation factor is1.0
then the result isother
.- Parameters:
other
- the other matrixt
- the interpolation factor between 0.0 and 1.0dest
- will hold the result- Returns:
- dest
-
equals
boolean equals(Matrix2fc m, float delta)
Compare the matrix elements ofthis
matrix with the given matrix using the givendelta
and return whether all of them are equal within a maximum difference ofdelta
.Please note that this method is not used by any data structure such as
ArrayList
HashSet
orHashMap
and their operations, such asArrayList.contains(Object)
orHashSet.remove(Object)
, since those data structures only use theObject.equals(Object)
andObject.hashCode()
methods.- Parameters:
m
- the other matrixdelta
- the allowed maximum difference- Returns:
true
whether all of the matrix elements are equal;false
otherwise
-
isFinite
boolean isFinite()
Determine whether all matrix elements are finite floating-point values, that is, they are notNaN
and notinfinity
.- Returns:
true
if all components are finite floating-point values;false
otherwise
-
-