public interface SingularValue<N extends Number> extends MatrixDecomposition<N>, MatrixDecomposition.Solver<N>, MatrixDecomposition.EconomySize<N>, MatrixDecomposition.RankRevealing<N>, MatrixDecomposition.Values<N>
Modifier and Type | Interface and Description |
---|---|
static interface |
SingularValue.Factory<N extends Number> |
MatrixDecomposition.Determinant<N extends Number>, MatrixDecomposition.EconomySize<N extends Number>, MatrixDecomposition.Hermitian<N extends Number>, MatrixDecomposition.Ordered<N extends Number>, MatrixDecomposition.RankRevealing<N extends Number>, MatrixDecomposition.Solver<N extends Number>, MatrixDecomposition.Values<N extends Number>
Modifier and Type | Field and Description |
---|---|
static SingularValue.Factory<BigDecimal> |
BIG |
static SingularValue.Factory<ComplexNumber> |
COMPLEX |
static SingularValue.Factory<Double> |
PRIMITIVE |
static SingularValue.Factory<Quaternion> |
QUATERNION |
static SingularValue.Factory<RationalNumber> |
RATIONAL |
TYPICAL
Modifier and Type | Method and Description |
---|---|
static <N extends Number> |
equals(MatrixStore<N> matrix,
SingularValue<N> decomposition,
NumberContext context) |
double |
getCondition()
The condition number.
|
MatrixStore<N> |
getD() |
double |
getFrobeniusNorm()
Sometimes also called the Schatten 2-norm or Hilbert-Schmidt norm.
|
double |
getKyFanNorm(int k)
Ky Fan k-norm.
|
double |
getOperatorNorm() |
MatrixStore<N> |
getQ1()
If [A] is m-by-n and its rank is r, then:
The first r columns of [Q1] span the column space, range or image of [A].
The last m-r columns of [Q1] span the left nullspace or cokernel of [A].
Calculating the QR decomposition of [A] is a faster alternative.
|
MatrixStore<N> |
getQ2()
If [A] is m-by-n and its rank is r, then:
The first r columns of [Q2] span the row space or coimage of [A].
The last n-r columns of [Q2] span the nullspace or kernel of [A].
Calculating the QR decomposition of [A]T is a faster alternative.
|
Array1D<Double> |
getSingularValues() |
default void |
getSingularValues(double[] values) |
double |
getTraceNorm() |
static <N extends Number> |
make(Access2D<N> typical) |
default MatrixStore<N> |
reconstruct() |
static <N extends Number> |
reconstruct(SingularValue<N> decomposition) |
compute, getInverse, getInverse, getSolution, getSolution, isSolvable
preallocate, preallocate, solve, solve
invert, invert, preallocate, preallocate
isFullSize, setFullSize
getRank, isFullRank
computeValuesOnly
isOrdered
decompose, isComputed, reset
static final SingularValue.Factory<BigDecimal> BIG
static final SingularValue.Factory<ComplexNumber> COMPLEX
static final SingularValue.Factory<Double> PRIMITIVE
static final SingularValue.Factory<Quaternion> QUATERNION
static final SingularValue.Factory<RationalNumber> RATIONAL
static <N extends Number> SingularValue<N> make(Access2D<N> typical)
static <N extends Number> boolean equals(MatrixStore<N> matrix, SingularValue<N> decomposition, NumberContext context)
static <N extends Number> MatrixStore<N> reconstruct(SingularValue<N> decomposition)
double getCondition()
MatrixStore<N> getD()
double getFrobeniusNorm()
double getKyFanNorm(int k)
Ky Fan k-norm.
The first Ky Fan k-norm is the operator norm (the largest singular value), and the last is called the trace norm (the sum of all singular values).
k
- The number of singular values to add up.double getOperatorNorm()
MatrixStore<N> getQ1()
MatrixStore<N> getQ2()
Array1D<Double> getSingularValues()
default void getSingularValues(double[] values)
values
- An array that will receive the singular valuesdouble getTraceNorm()
default MatrixStore<N> reconstruct()
reconstruct
in interface MatrixDecomposition<N extends Number>
Copyright © 2018 Optimatika. All rights reserved.