public final class RationalNumber extends Number implements Scalar<RationalNumber>, NumberContext.Enforceable<RationalNumber>
Scalar.Factory<N extends Number>ScalarOperation.Addition<T,N extends Number>, ScalarOperation.Division<T,N extends Number>, ScalarOperation.Multiplication<T,N extends Number>, ScalarOperation.Subtraction<T,N extends Number>| Modifier and Type | Field and Description |
|---|---|
static Scalar.Factory<RationalNumber> |
FACTORY |
static RationalNumber |
MAX_VALUE |
static RationalNumber |
MIN_VALUE |
static RationalNumber |
NaN |
static RationalNumber |
NEGATIVE_INFINITY |
static RationalNumber |
ONE |
static RationalNumber |
POSITIVE_INFINITY |
static RationalNumber |
TWO |
static RationalNumber |
ZERO |
| Modifier and Type | Method and Description |
|---|---|
RationalNumber |
add(double arg) |
RationalNumber |
add(RationalNumber arg) |
int |
compareTo(RationalNumber reference) |
RationalNumber |
conjugate()
This method will (most likely) be moved to some other interface in the future! Just have to figure
out where it fits...
|
RationalNumber |
divide(double arg) |
RationalNumber |
divide(RationalNumber arg) |
double |
doubleValue() |
RationalNumber |
enforce(NumberContext context) |
boolean |
equals(Object obj) |
float |
floatValue() |
RationalNumber |
get() |
int |
hashCode() |
int |
intValue() |
RationalNumber |
invert()
The multiplicative inverse.
|
boolean |
isAbsolute() |
static boolean |
isAbsolute(RationalNumber value) |
static boolean |
isInfinite(RationalNumber value) |
static boolean |
isNaN(RationalNumber value) |
boolean |
isSmall(double comparedTo) |
static boolean |
isSmall(double comparedTo,
RationalNumber value) |
long |
longValue() |
RationalNumber |
multiply(double arg) |
RationalNumber |
multiply(RationalNumber arg) |
RationalNumber |
negate()
The additive inverse of this.
|
double |
norm()
this == this.signum().multiply(this.norm()) |
static RationalNumber |
of(long numerator,
long denominator) |
static RationalNumber |
rational(double d) |
RationalNumber |
signum()
this == this.signum().multiply(this.norm()) |
RationalNumber |
subtract(double arg) |
RationalNumber |
subtract(RationalNumber arg) |
BigDecimal |
toBigDecimal() |
String |
toString() |
String |
toString(NumberContext context) |
static RationalNumber |
valueOf(double value) |
static RationalNumber |
valueOf(long value) |
static RationalNumber |
valueOf(Number number) |
byteValue, shortValueclone, finalize, getClass, notify, notifyAll, wait, wait, waitadd, divide, multiply, subtract, toPlainStringbyteValue, getNumber, shortValuepublic static final Scalar.Factory<RationalNumber> FACTORY
public static final RationalNumber MAX_VALUE
public static final RationalNumber MIN_VALUE
public static final RationalNumber NaN
public static final RationalNumber NEGATIVE_INFINITY
public static final RationalNumber ONE
public static final RationalNumber POSITIVE_INFINITY
public static final RationalNumber TWO
public static final RationalNumber ZERO
public static boolean isAbsolute(RationalNumber value)
public static boolean isInfinite(RationalNumber value)
public static boolean isNaN(RationalNumber value)
public static boolean isSmall(double comparedTo,
RationalNumber value)
public static RationalNumber of(long numerator, long denominator)
public static RationalNumber rational(double d)
public static RationalNumber valueOf(double value)
public static RationalNumber valueOf(long value)
public static RationalNumber valueOf(Number number)
public RationalNumber add(double arg)
add in interface ScalarOperation.Addition<Scalar<RationalNumber>,RationalNumber>this + scalarAddend.public RationalNumber add(RationalNumber arg)
add in interface ScalarOperation.Addition<Scalar<RationalNumber>,RationalNumber>this + scalarAddend.public int compareTo(RationalNumber reference)
compareTo in interface Comparable<RationalNumber>public RationalNumber conjugate()
VectorSpaceThis method will (most likely) be moved to some other interface in the future! Just have to figure out where it fits...
The conjugate transpose of a matrix and/or the conjugate of a scalar/field like ComplexNumber or Quaternion.
The conjugate transpose of a real matrix is simply its transpose.
conjugate in interface VectorSpace<Scalar<RationalNumber>,RationalNumber>public RationalNumber divide(double arg)
divide in interface ScalarOperation.Division<Scalar<RationalNumber>,RationalNumber>this / scalarDivisor.public RationalNumber divide(RationalNumber arg)
divide in interface ScalarOperation.Division<Scalar<RationalNumber>,RationalNumber>this / scalarDivisor.public double doubleValue()
doubleValue in interface AccessScalar<RationalNumber>doubleValue in class NumberNumber.doubleValue()public RationalNumber enforce(NumberContext context)
enforce in interface NumberContext.Enforceable<RationalNumber>public float floatValue()
floatValue in interface AccessScalar<RationalNumber>floatValue in class NumberNumber.floatValue()public RationalNumber get()
get in interface AccessScalar<RationalNumber>public int intValue()
intValue in interface AccessScalar<RationalNumber>intValue in class NumberNumber.intValue()public RationalNumber invert()
Group.Multiplicativeinvert in interface Group.Multiplicative<Scalar<RationalNumber>>IDENTITY / this.public boolean isAbsolute()
isAbsolute in interface Scalar<RationalNumber>Scalar.isAbsolute()public boolean isSmall(double comparedTo)
isSmall in interface NormedVectorSpace<Scalar<RationalNumber>,RationalNumber>comparedTo - What to compare withpublic long longValue()
longValue in interface AccessScalar<RationalNumber>longValue in class NumberNumber.longValue()public RationalNumber multiply(double arg)
multiply in interface ScalarOperation.Multiplication<Scalar<RationalNumber>,RationalNumber>this * scalarMultiplicand.public RationalNumber multiply(RationalNumber arg)
multiply in interface ScalarOperation.Multiplication<Scalar<RationalNumber>,RationalNumber>this * multiplicand.public RationalNumber negate()
Group.Additivenegate in interface Group.Additive<Scalar<RationalNumber>>-this.public double norm()
NormedVectorSpacethis == this.signum().multiply(this.norm())norm in interface NormedVectorSpace<Scalar<RationalNumber>,RationalNumber>public RationalNumber signum()
NormedVectorSpacethis == this.signum().multiply(this.norm())signum in interface NormedVectorSpace<Scalar<RationalNumber>,RationalNumber>public RationalNumber subtract(double arg)
subtract in interface ScalarOperation.Subtraction<Scalar<RationalNumber>,RationalNumber>this - scalarSubtrahend.public RationalNumber subtract(RationalNumber arg)
subtract in interface ScalarOperation.Subtraction<Scalar<RationalNumber>,RationalNumber>this - scalarSubtrahend.public BigDecimal toBigDecimal()
toBigDecimal in interface Scalar<RationalNumber>public String toString(NumberContext context)
toString in interface Scalar<RationalNumber>Copyright © 2018 Optimatika. All rights reserved.