public class ComplexNumber extends Number implements Scalar<ComplexNumber>, NumberContext.Enforceable<ComplexNumber>, Access2D<Double>, TransformationMatrix<Double,PhysicalStore<Double>>, Access2D.Collectable<Double,Mutate2D.Receiver<Double>>
ComplexFunction,
Serialized Form| Modifier and Type | Class and Description |
|---|---|
static class |
ComplexNumber.Normalised |
Scalar.Factory<N extends Number>ScalarOperation.Addition<T,N extends Number>, ScalarOperation.Division<T,N extends Number>, ScalarOperation.Multiplication<T,N extends Number>, ScalarOperation.Subtraction<T,N extends Number>Access2D.Aggregatable<N extends Number>, Access2D.Collectable<N extends Number,R extends Mutate2D.Receiver<N>>, Access2D.Elements, Access2D.ElementView<N extends Number>, Access2D.IndexOf, Access2D.Sliceable<N extends Number>, Access2D.Visitable<N extends Number>TransformationMatrix.Transformable<N extends Number>Structure2D.IntRowColumn, Structure2D.LongRowColumn, Structure2D.ReducibleTo1D<R extends Structure1D>, Structure2D.RowColumnCallback, Structure2D.RowColumnKey<R,C>, Structure2D.RowColumnMapper<R,C>Structure1D.BasicMapper<T>, Structure1D.IndexCallback, Structure1D.IndexMapper<T>, Structure1D.IntIndex, Structure1D.LongIndex, Structure1D.LoopCallback| Modifier and Type | Field and Description |
|---|---|
static Scalar.Factory<ComplexNumber> |
FACTORY |
double |
i |
static ComplexNumber |
I |
static ComplexNumber |
INFINITY |
static ComplexNumber |
NEG |
static ComplexNumber |
ONE |
static ComplexNumber |
TWO |
static ComplexNumber |
ZERO |
| Constructor and Description |
|---|
ComplexNumber() |
| Modifier and Type | Method and Description |
|---|---|
ComplexNumber |
add(ComplexNumber arg) |
ComplexNumber |
add(double arg) |
int |
compareTo(ComplexNumber reference) |
ComplexNumber |
conjugate()
This method will (most likely) be moved to some other interface in the future! Just have to figure
out where it fits...
|
long |
count()
count() == countRows() * countColumns()
|
long |
countColumns() |
long |
countRows() |
ComplexNumber |
divide(ComplexNumber arg) |
ComplexNumber |
divide(double arg) |
double |
doubleValue() |
double |
doubleValue(long index) |
double |
doubleValue(long row,
long col)
Extracts one element of this matrix as a double.
|
ComplexNumber |
enforce(NumberContext context)
Will call NumberContext.enforce(double) on the real and imaginary parts separately.
|
boolean |
equals(Object obj) |
float |
floatValue() |
ComplexNumber |
get() |
Double |
get(long index) |
Double |
get(long row,
long col) |
double |
getArgument() |
double |
getImaginary() |
double |
getModulus() |
double |
getReal() |
int |
hashCode() |
int |
intValue() |
ComplexNumber |
invert()
The multiplicative inverse.
|
boolean |
isAbsolute() |
static boolean |
isAbsolute(ComplexNumber value) |
static boolean |
isInfinite(ComplexNumber value) |
static boolean |
isNaN(ComplexNumber value) |
boolean |
isReal() |
static boolean |
isReal(ComplexNumber value) |
boolean |
isSmall(double comparedTo) |
static boolean |
isSmall(double comparedTo,
ComplexNumber value) |
long |
longValue() |
static ComplexNumber |
makePolar(double norm,
double phase) |
static ComplexNumber.Normalised |
makeRotation(double angle) |
ComplexNumber |
multiply(ComplexNumber arg) |
ComplexNumber |
multiply(double arg) |
ComplexNumber |
negate()
The additive inverse of this.
|
double |
norm()
this == this.signum().multiply(this.norm()) |
static ComplexNumber |
of(double real,
double imaginary) |
double |
phase() |
ComplexNumber.Normalised |
signum()
this == this.signum().multiply(this.norm()) |
ComplexNumber |
subtract(ComplexNumber arg) |
ComplexNumber |
subtract(double arg) |
void |
supplyTo(Mutate2D.Receiver<Double> receiver) |
BigDecimal |
toBigDecimal() |
MatrixStore<Double> |
toMultiplicationMatrix() |
MatrixStore<Double> |
toMultiplicationVector() |
MatrixStore<Double> |
toRotationMatrix() |
String |
toString() |
String |
toString(NumberContext context) |
void |
transform(PhysicalStore<Double> matrix) |
static ComplexNumber |
valueOf(double value) |
static ComplexNumber |
valueOf(Number number) |
byteValue, shortValueclone, finalize, getClass, notify, notifyAll, wait, wait, waitadd, divide, multiply, subtract, toPlainStringbyteValue, getNumber, shortValueasCollectable2D, asPrimitive2D, columns, elements, equals, newPrimitiveColumnCollectable, newPrimitiveRowCollectable, rows, toRawCopy2D, toString, wrap, wrap, wrapAccess2D, wrapAccess2DasCollectable1D, asPrimitive1D, axpy, dot, equals, hashCode, iterator, nonzeros, stream, supplyTo, toRawCopy1D, wrap, wrap, wrap, wrapAccess1D, wrapAccess1D, wrapAccess1DforEach, spliteratorcollectcolumn, column, column, column, column, index, index, isEmpty, isFat, isScalar, isSquare, isTall, isVector, loopAll, loopColumn, loopColumn, loopDiagonal, loopMatching, loopRow, loopRow, mapperOf, row, row, row, row, rowloopAll, loopMatching, loopRange, mapperpublic static final Scalar.Factory<ComplexNumber> FACTORY
public static final ComplexNumber I
public static final ComplexNumber INFINITY
public static final ComplexNumber NEG
public static final ComplexNumber ONE
public static final ComplexNumber TWO
public static final ComplexNumber ZERO
public final double i
public static boolean isAbsolute(ComplexNumber value)
public static boolean isInfinite(ComplexNumber value)
public static boolean isNaN(ComplexNumber value)
public static boolean isReal(ComplexNumber value)
public static boolean isSmall(double comparedTo,
ComplexNumber value)
public static ComplexNumber makePolar(double norm, double phase)
public static ComplexNumber.Normalised makeRotation(double angle)
public static ComplexNumber of(double real, double imaginary)
public static ComplexNumber valueOf(double value)
public static ComplexNumber valueOf(Number number)
public ComplexNumber add(ComplexNumber arg)
add in interface ScalarOperation.Addition<Scalar<ComplexNumber>,ComplexNumber>this + scalarAddend.public ComplexNumber add(double arg)
add in interface ScalarOperation.Addition<Scalar<ComplexNumber>,ComplexNumber>this + scalarAddend.public int compareTo(ComplexNumber reference)
compareTo in interface Comparable<ComplexNumber>public ComplexNumber conjugate()
VectorSpaceThis method will (most likely) be moved to some other interface in the future! Just have to figure out where it fits...
The conjugate transpose of a matrix and/or the conjugate of a scalar/field like ComplexNumber or Quaternion.
The conjugate transpose of a real matrix is simply its transpose.
conjugate in interface VectorSpace<Scalar<ComplexNumber>,ComplexNumber>public long count()
Structure2Dcount in interface Structure1Dcount in interface Structure2Dpublic long countColumns()
countColumns in interface Structure2Dpublic long countRows()
countRows in interface Structure2Dpublic ComplexNumber divide(ComplexNumber arg)
divide in interface ScalarOperation.Division<Scalar<ComplexNumber>,ComplexNumber>this / scalarDivisor.public ComplexNumber divide(double arg)
divide in interface ScalarOperation.Division<Scalar<ComplexNumber>,ComplexNumber>this / scalarDivisor.public double doubleValue()
doubleValue in interface AccessScalar<ComplexNumber>doubleValue in class NumberNumber.doubleValue()public double doubleValue(long index)
doubleValue in interface Access1D<Double>doubleValue in interface Access2D<Double>public double doubleValue(long row,
long col)
Access2DdoubleValue in interface Access2D<Double>row - A row index.col - A column index.public ComplexNumber enforce(NumberContext context)
enforce in interface NumberContext.Enforceable<ComplexNumber>public float floatValue()
floatValue in interface AccessScalar<ComplexNumber>floatValue in class NumberNumber.floatValue()public ComplexNumber get()
get in interface AccessScalar<ComplexNumber>public Double get(long index)
public double getArgument()
public double getImaginary()
public double getModulus()
public double getReal()
public int intValue()
intValue in interface AccessScalar<ComplexNumber>intValue in class NumberNumber.intValue()public ComplexNumber invert()
Group.Multiplicativeinvert in interface Group.Multiplicative<Scalar<ComplexNumber>>IDENTITY / this.public boolean isAbsolute()
isAbsolute in interface Scalar<ComplexNumber>Scalar.isAbsolute()public boolean isReal()
public boolean isSmall(double comparedTo)
isSmall in interface NormedVectorSpace<Scalar<ComplexNumber>,ComplexNumber>comparedTo - What to compare withpublic long longValue()
longValue in interface AccessScalar<ComplexNumber>longValue in class NumberNumber.longValue()public ComplexNumber multiply(ComplexNumber arg)
multiply in interface ScalarOperation.Multiplication<Scalar<ComplexNumber>,ComplexNumber>this * multiplicand.public ComplexNumber multiply(double arg)
multiply in interface ScalarOperation.Multiplication<Scalar<ComplexNumber>,ComplexNumber>this * scalarMultiplicand.public ComplexNumber negate()
Group.Additivenegate in interface Group.Additive<Scalar<ComplexNumber>>-this.public double norm()
NormedVectorSpacethis == this.signum().multiply(this.norm())norm in interface NormedVectorSpace<Scalar<ComplexNumber>,ComplexNumber>public double phase()
public ComplexNumber.Normalised signum()
NormedVectorSpacethis == this.signum().multiply(this.norm())signum in interface NormedVectorSpace<Scalar<ComplexNumber>,ComplexNumber>public ComplexNumber subtract(ComplexNumber arg)
subtract in interface ScalarOperation.Subtraction<Scalar<ComplexNumber>,ComplexNumber>this - scalarSubtrahend.public ComplexNumber subtract(double arg)
subtract in interface ScalarOperation.Subtraction<Scalar<ComplexNumber>,ComplexNumber>this - scalarSubtrahend.public void supplyTo(Mutate2D.Receiver<Double> receiver)
supplyTo in interface Access2D.Collectable<Double,Mutate2D.Receiver<Double>>public BigDecimal toBigDecimal()
toBigDecimal in interface Scalar<ComplexNumber>public MatrixStore<Double> toMultiplicationMatrix()
public MatrixStore<Double> toMultiplicationVector()
public MatrixStore<Double> toRotationMatrix()
public String toString()
toString in class ObjectObject.toString()public String toString(NumberContext context)
toString in interface Scalar<ComplexNumber>public void transform(PhysicalStore<Double> matrix)
transform in interface TransformationMatrix<Double,PhysicalStore<Double>>Copyright © 2018 Optimatika. All rights reserved.