Package | Description |
---|---|
landmarks | |
pal.math |
Modifier and Type | Class and Description |
---|---|
static class |
AffineFromLandmarks.CandidateAffine |
class |
TransformationAttempt |
Modifier and Type | Interface and Description |
---|---|
interface |
MFWithGradient
interface for a function of several variables with a gradient
|
Modifier and Type | Class and Description |
---|---|
class |
BoundsCheckedFunction
returns a very large number instead of the function value
if arguments are out of bound (useful for minimization with
minimizers that don't check argument boundaries)
|
Modifier and Type | Method and Description |
---|---|
static double[] |
NumericalDerivative.diagonalHessian(MultivariateFunction f,
double[] x)
determine diagonal of Hessian
|
double |
MultivariateMinimum.findMinimum(MultivariateFunction f,
double[] xvec)
Find minimum close to vector x
|
double |
MultivariateMinimum.findMinimum(MultivariateFunction f,
double[] xvec,
int fxFracDigits,
int xFracDigits)
Find minimum close to vector x
(desired fractional digits for each parameter is specified)
|
static double[] |
MathUtils.getRandomArguments(MultivariateFunction mf) |
static double[] |
NumericalDerivative.gradient(MultivariateFunction f,
double[] x)
determine gradient
|
static void |
NumericalDerivative.gradient(MultivariateFunction f,
double[] x,
double[] grad)
determine gradient
|
void |
StochasticOSearch.optimize(MultivariateFunction f,
double[] xvec,
double tolfx,
double tolx) |
void |
OrthogonalSearch.optimize(MultivariateFunction f,
double[] xvec,
double tolfx,
double tolx) |
abstract void |
MultivariateMinimum.optimize(MultivariateFunction f,
double[] xvec,
double tolfx,
double tolx)
The actual optimization routine
(needs to be implemented in a subclass of MultivariateMinimum).
|
void |
GeneralizedDEOptimizer.optimize(MultivariateFunction f,
double[] xvec,
double tolfx,
double tolx)
The actual optimization routine
It finds a minimum close to vector x when the
absolute tolerance for each parameter is specified.
|
void |
DifferentialEvolution.optimize(MultivariateFunction func,
double[] xvec,
double tolfx,
double tolx) |
void |
ConjugateGradientSearch.optimize(MultivariateFunction f,
double[] x,
double tolfx,
double tolx) |
void |
ConjugateDirectionSearch.optimize(MultivariateFunction f,
double[] xvector,
double tolfx,
double tolx) |
Constructor and Description |
---|
BoundsCheckedFunction(MultivariateFunction func)
construct bound-checked multivariate function
(a large number will be returned on function evaluation if argument
is out of bounds; default is 1000000)
|
BoundsCheckedFunction(MultivariateFunction func,
double largeNumber)
construct constrained multivariate function
|
LineFunction(MultivariateFunction func)
construct univariate function from multivariate function
|
OrthogonalLineFunction(MultivariateFunction func)
construct univariate function from multivariate function
|
Copyright © 2015–2021 Fiji. All rights reserved.