Uses of Interface
weka.core.Randomizable
Packages that use Randomizable
Package
Description
-
Uses of Randomizable in weka.classifiers
Classes in weka.classifiers that implement RandomizableModifier and TypeClassDescriptionclassAbstract utility class for handling settings common to randomizable classifiers.classAbstract utility class for handling settings common to randomizable meta classifiers that build an ensemble from a single base learner.classAbstract utility class for handling settings common to randomizable meta classifiers that build an ensemble from multiple classifiers based on a given random number seed.classAbstract utility class for handling settings common to randomizable meta classifiers that build an ensemble in parallel from a single base learner.classAbstract utility class for handling settings common to meta classifiers that build an ensemble in parallel using multiple classifiers based on a given random number seed.classAbstract utility class for handling settings common to randomizable meta classifiers that build an ensemble from a single base learner. -
Uses of Randomizable in weka.classifiers.functions
Classes in weka.classifiers.functions that implement RandomizableModifier and TypeClassDescriptionclass* Implements Gaussian processes for regression without hyperparameter-tuning.classA classifier that uses backpropagation to learn a multi-layer perceptron to classify instances.classImplements stochastic gradient descent for learning various linear models (binary class SVM, binary class logistic regression, squared loss, Huber loss and epsilon-insensitive loss linear regression).classImplements stochastic gradient descent for learning a linear binary class SVM or binary class logistic regression on text data. -
Uses of Randomizable in weka.classifiers.meta
Classes in weka.classifiers.meta that implement RandomizableModifier and TypeClassDescriptionclassClass for boosting a nominal class classifier using the Adaboost M1 method.classClass for bagging a classifier to reduce variance.classA metaclassifier that makes its base classifier cost sensitive.classClass for performing parameter selection by cross-validation for any classifier.
For more information, see:
R.classClass for running an arbitrary classifier on data that has been passed through an arbitrary filter.classChooses the best number of iterations for an IterativeClassifier such as LogitBoost using cross-validation or a percentage split evaluation.classClass for performing additive logistic regression.classA metaclassifier for handling multi-class datasets with 2-class classifiers.classA metaclassifier for handling multi-class datasets with 2-class classifiers.classClass for selecting a classifier from among several using cross validation on the training data or the performance on the training data.classClass for building an ensemble of randomizable base classifiers.classClass for running an arbitrary classifier on data that has been passed through an arbitrary filter.classThis method constructs a decision tree based classifier that maintains highest accuracy on training data and improves on generalization accuracy as it grows in complexity.classCombines several classifiers using the stacking method.classClass for combining classifiers.classGeneric wrapper around any classifier to enable weighted instances support.
Uses resampling with weights if the base classifier is not implementing the weka.core.WeightedInstancesHandler interface and there are instance weights other 1.0 present. -
Uses of Randomizable in weka.classifiers.trees
Classes in weka.classifiers.trees that implement RandomizableModifier and TypeClassDescriptionclassClass for constructing a forest of random trees.
For more information see:
Leo Breiman (2001).classClass for constructing a tree that considers K randomly chosen attributes at each node.classFast decision tree learner. -
Uses of Randomizable in weka.clusterers
Classes in weka.clusterers that implement RandomizableModifier and TypeClassDescriptionclassCluster data using the capopy clustering algorithm, which requires just one pass over the data.classClass implementing the Cobweb and Classit clustering algorithms.
Note: the application of node operators (merging, splitting etc.) in terms of ordering and priority differs (and is somewhat ambiguous) between the original Cobweb and Classit papers.classSimple EM (expectation maximisation) class.
EM assigns a probability distribution to each instance which indicates the probability of it belonging to each of the clusters.classCluster data using the FarthestFirst algorithm.
For more information see:
Hochbaum, Shmoys (1985).classAbstract utility class for handling settings common to randomizable clusterers.classAbstract utility class for handling settings common to randomizable clusterers.classAbstract utility class for handling settings common to randomizable clusterers.classCluster data using the k means algorithm. -
Uses of Randomizable in weka.core.neighboursearch.balltrees
Classes in weka.core.neighboursearch.balltrees that implement RandomizableModifier and TypeClassDescriptionclassThe class that builds a BallTree middle out.
For more information see also:
Andrew W. -
Uses of Randomizable in weka.datagenerators
Classes in weka.datagenerators that implement RandomizableModifier and TypeClassDescriptionclassAbstract class for data generators for classifiers.classAbstract class for cluster data generators.classAbstract superclass for data generators that generate data for classifiers and clusterers.classAbstract class for data generators for regression classifiers. -
Uses of Randomizable in weka.datagenerators.classifiers.classification
Classes in weka.datagenerators.classifiers.classification that implement RandomizableModifier and TypeClassDescriptionclassGenerates a people database and is based on the paper by Agrawal et al.:
R.classGenerates random instances based on a Bayes network.classThis generator produces data for a display with 7 LEDs.classRandomRBF data is generated by first creating a random set of centers for each class.classA data generator that produces data randomly by producing a decision list.
The decision list consists of rules.
Instances are generated randomly one by one. -
Uses of Randomizable in weka.datagenerators.classifiers.regression
Classes in weka.datagenerators.classifiers.regression that implement RandomizableModifier and TypeClassDescriptionclassA data generator for generating y according to a given expression out of randomly generated x.
E.g., the mexican hat can be generated like this:
sin(abs(a1)) / abs(a1)
In addition to this function, the amplitude can be changed and gaussian noise can be added.classA data generator for the simple 'Mexian Hat' function:
y = sin|x| / |x|
In addition to this simple function, the amplitude can be changed and gaussian noise can be added. -
Uses of Randomizable in weka.datagenerators.clusterers
Classes in weka.datagenerators.clusterers that implement RandomizableModifier and TypeClassDescriptionclassCluster data generator designed for the BIRCH System
Dataset is generated with instances in K clusters.
Instances are 2-d data points.
Each cluster is characterized by the number of data points in itits radius and its center.classA data generator that produces data points in hyperrectangular subspace clusters. -
Uses of Randomizable in weka.filters
Classes in weka.filters that implement Randomizable -
Uses of Randomizable in weka.filters.supervised.instance
Classes in weka.filters.supervised.instance that implement RandomizableModifier and TypeClassDescriptionclassProduces a random subsample of a dataset using either sampling with replacement or without replacement.
The original dataset must fit entirely in memory.classProduces a random subsample of a dataset. -
Uses of Randomizable in weka.filters.unsupervised.attribute
Classes in weka.filters.unsupervised.attribute that implement RandomizableModifier and TypeClassDescriptionclassAn instance filter that changes a percentage of a given attribute's values.classReduces the dimensionality of the data by projecting it onto a lower dimensional subspace using a random matrix with columns of unit length.classChooses a random subset of non-class attributes, either an absolute number or a percentage.classA filter that can be used to introduce missing values in a dataset. -
Uses of Randomizable in weka.filters.unsupervised.instance
Classes in weka.filters.unsupervised.instance that implement RandomizableModifier and TypeClassDescriptionclassRandomly shuffles the order of instances passed through it.classProduces a random subsample of a dataset using either sampling with replacement or without replacement.classProduces a random subsample of a dataset using the reservoir sampling Algorithm "R" by Vitter.