Uses of Interface
weka.classifiers.evaluation.Prediction
Package
Description
-
Uses of Prediction in weka.classifiers
Modifier and TypeMethodDescriptionEvaluation.predictions()
Returns the predictions that have been collected. -
Uses of Prediction in weka.classifiers.evaluation
Modifier and TypeClassDescriptionclass
Encapsulates an evaluatable nominal prediction: the predicted probability distribution plus the actual class value.class
Encapsulates an evaluatable numeric prediction: the predicted class value plus the actual class value.Modifier and TypeMethodDescriptionEvaluationUtils.getPrediction
(Classifier classifier, Instance test) Generate a single prediction for a test instance given the pre-trained classifier.Modifier and TypeMethodDescriptionEvaluationUtils.getCVPredictions
(Classifier classifier, Instances data, int numFolds) Generate a bunch of predictions ready for processing, by performing a cross-validation on the supplied dataset.EvaluationUtils.getTestPredictions
(Classifier classifier, Instances test) Generate a bunch of predictions ready for processing, by performing a evaluation on a test set assuming the classifier is already trained.EvaluationUtils.getTrainTestPredictions
(Classifier classifier, Instances train, Instances test) Generate a bunch of predictions ready for processing, by performing a evaluation on a test set after training on the given training set.Evaluation.predictions()
Returns the predictions that have been collected.Modifier and TypeMethodDescriptionvoid
ConfusionMatrix.addPredictions
(ArrayList<Prediction> predictions) Includes a whole bunch of predictions in the confusion matrix.CostCurve.getCurve
(ArrayList<Prediction> predictions) Calculates the performance stats for the default class and return results as a set of Instances.CostCurve.getCurve
(ArrayList<Prediction> predictions, int classIndex) Calculates the performance stats for the desired class and return results as a set of Instances.MarginCurve.getCurve
(ArrayList<Prediction> predictions) Calculates the cumulative margin distribution for the set of predictions, returning the result as a set of Instances.ThresholdCurve.getCurve
(ArrayList<Prediction> predictions) Calculates the performance stats for the default class and return results as a set of Instances.ThresholdCurve.getCurve
(ArrayList<Prediction> predictions, int classIndex) Calculates the performance stats for the desired class and return results as a set of Instances. -
Uses of Prediction in weka.classifiers.evaluation.output.prediction
-
Uses of Prediction in weka.gui.visualize.plugins
Modifier and TypeMethodDescriptionVisualizePlugin.getVisualizeMenuItem
(ArrayList<Prediction> preds, Attribute classAtt) Get a JMenu or JMenuItem which contain action listeners that perform the visualization, using some but not necessarily all of the data.