Uses of Class
weka.classifiers.bayes.BayesNet
Packages that use BayesNet
Package
Description
-
Uses of BayesNet in weka.classifiers.bayes.net
Subclasses of BayesNet in weka.classifiers.bayes.netModifier and TypeClassDescriptionclassBayes Network learning using various search algorithms and quality measures.
Base class for a Bayes Network classifier.classBuilds a description of a Bayes Net classifier stored in XML BIF 0.3 format.
For more details on XML BIF see:
Fabio Cozman, Marek Druzdzel, Daniel Garcia (1998).classBayes Network learning using various search algorithms and quality measures.
Base class for a Bayes Network classifier.Methods in weka.classifiers.bayes.net with parameters of type BayesNetModifier and TypeMethodDescriptionvoidMarginCalculator.calcFullMargins(BayesNet bayesNet) voidMarginCalculator.calcMargins(BayesNet bayesNet) Calc marginal distributions of nodes in Bayesian network Note that a connected network is assumed.doubleBIFReader.divergence(BayesNet other) calculates the divergence between the probability distribution represented by this network and that of another, that is, \sum_{x\in X} P(x)log P(x)/Q(x) where X is the set of values the nodes in the network can take, P(x) the probability of this network for configuration x Q(x) the probability of the other network for configuration xintCount nr of exta arcs from other network compared to current network Note that an arc is not 'extra' if it is reversed.intBIFReader.missingArcs(BayesNet other) Count nr of arcs missing from other network compared to current network Note that an arc is not 'missing' if it is reversed.boolean[][]moralize DAG and calculate adjacency matrix representation for a Bayes Network, effecively converting the directed acyclic graph to an undirected graph.voidintBIFReader.reversedArcs(BayesNet other) Count nr of reversed arcs from other network compared to current networkvoidsynchronizes the node ordering of this Bayes network with those in the other network (if possible). -
Uses of BayesNet in weka.classifiers.bayes.net.estimate
Methods in weka.classifiers.bayes.net.estimate with parameters of type BayesNetModifier and TypeMethodDescriptiondouble[]BayesNetEstimator.distributionForInstance(BayesNet bayesNet, Instance instance) Calculates the class membership probabilities for the given test instance.double[]MultiNomialBMAEstimator.distributionForInstance(BayesNet bayesNet, Instance instance) Calculates the class membership probabilities for the given test instance.double[]SimpleEstimator.distributionForInstance(BayesNet bayesNet, Instance instance) Calculates the class membership probabilities for the given test instance.voidBayesNetEstimator.estimateCPTs(BayesNet bayesNet) estimateCPTs estimates the conditional probability tables for the Bayes Net using the network structure.voidBMAEstimator.estimateCPTs(BayesNet bayesNet) estimateCPTs estimates the conditional probability tables for the Bayes Net using the network structure.voidMultiNomialBMAEstimator.estimateCPTs(BayesNet bayesNet) estimateCPTs estimates the conditional probability tables for the Bayes Net using the network structure.voidSimpleEstimator.estimateCPTs(BayesNet bayesNet) estimateCPTs estimates the conditional probability tables for the Bayes Net using the network structure.voidinitCPTs reserves space for CPTs and set all counts to zerovoidinitCPTs reserves space for CPTs and set all counts to zerovoidinitCPTs reserves space for CPTs and set all counts to zerovoidinitCPTs reserves space for CPTs and set all counts to zerovoidBayesNetEstimator.updateClassifier(BayesNet bayesNet, Instance instance) Updates the classifier with the given instance.voidBMAEstimator.updateClassifier(BayesNet bayesNet, Instance instance) Updates the classifier with the given instance.voidMultiNomialBMAEstimator.updateClassifier(BayesNet bayesNet, Instance instance) Updates the classifier with the given instance.voidSimpleEstimator.updateClassifier(BayesNet bayesNet, Instance instance) Updates the classifier with the given instance. -
Uses of BayesNet in weka.classifiers.bayes.net.search
Methods in weka.classifiers.bayes.net.search with parameters of type BayesNetModifier and TypeMethodDescriptionvoidSearchAlgorithm.buildStructure(BayesNet bayesNet, Instances instances) buildStructure determines the network structure/graph of the network. -
Uses of BayesNet in weka.classifiers.bayes.net.search.fixed
Methods in weka.classifiers.bayes.net.search.fixed with parameters of type BayesNetModifier and TypeMethodDescriptionvoidFromFile.buildStructure(BayesNet bayesNet, Instances instances) voidNaiveBayes.buildStructure(BayesNet bayesNet, Instances instances) -
Uses of BayesNet in weka.classifiers.bayes.net.search.global
Methods in weka.classifiers.bayes.net.search.global with parameters of type BayesNetModifier and TypeMethodDescriptionvoidTAN.buildStructure(BayesNet bayesNet, Instances instances) buildStructure determines the network structure/graph of the network using the maximimum weight spanning tree algorithm of Chow and LiudoubleperformCV returns the accuracy calculated using cross validation.doubleGlobalScoreSearchAlgorithm.cumulativeCV(BayesNet bayesNet) CumulativeCV returns the accuracy calculated using cumulative cross validation.doublekFoldCV uses k-fold cross validation to measure the accuracy of a Bayes network classifier.doubleGlobalScoreSearchAlgorithm.leaveOneOutCV(BayesNet bayesNet) LeaveOneOutCV returns the accuracy calculated using Leave One Out cross validation.voidsearch determines the network structure/graph of the network with the K2 algorithm, restricted by its initial structure (which can be an empty graph, or a Naive Bayes graph.void -
Uses of BayesNet in weka.classifiers.bayes.net.search.local
Methods in weka.classifiers.bayes.net.search.local with parameters of type BayesNetModifier and TypeMethodDescriptionvoidLocalScoreSearchAlgorithm.buildStructure(BayesNet bayesNet, Instances instances) buildStructure determines the network structure/graph of the network with the K2 algorithm, restricted by its initial structure (which can be an empty graph, or a Naive Bayes graph.voidTAN.buildStructure(BayesNet bayesNet, Instances instances) buildStructure determines the network structure/graph of the network using the maximimum weight spanning tree algorithm of Chow and Liuvoidsearch determines the network structure/graph of the network with the K2 algorithm, restricted by its initial structure (which can be an empty graph, or a Naive Bayes graph.voidConstructors in weka.classifiers.bayes.net.search.local with parameters of type BayesNetModifierConstructorDescriptionLocalScoreSearchAlgorithm(BayesNet bayesNet, Instances instances) constructor