Uses of Class
weka.attributeSelection.ASEvaluation
Package
Description
-
Uses of ASEvaluation in weka.attributeSelection
Modifier and TypeClassDescriptionclass
Abstract attribute set evaluator.class
CfsSubsetEval :
Evaluates the worth of a subset of attributes by considering the individual predictive ability of each feature along with the degree of redundancy between them.
Subsets of features that are highly correlated with the class while having low intercorrelation are preferred.
For more information see:
M.class
ClassifierAttributeEval :
Evaluates the worth of an attribute by using a user-specified classifier.class
Classifier subset evaluator:
Evaluates attribute subsets on training data or a separate hold out testing set.class
CorrelationAttributeEval :
Evaluates the worth of an attribute by measuring the correlation (Pearson's) between it and the class.
Nominal attributes are considered on a value by value basis by treating each value as an indicator.class
GainRatioAttributeEval :
Evaluates the worth of an attribute by measuring the gain ratio with respect to the class.
GainR(Class, Attribute) = (H(Class) - H(Class | Attribute)) / H(Attribute).class
Abstract attribute subset evaluator capable of evaluating subsets with respect to a data set that is distinct from that used to initialize/ train the subset evaluator.class
InfoGainAttributeEval :
Evaluates the worth of an attribute by measuring the information gain with respect to the class.
InfoGain(Class,Attribute) = H(Class) - H(Class | Attribute).class
OneRAttributeEval :
Evaluates the worth of an attribute by using the OneR classifier.class
Performs a principal components analysis and transformation of the data.class
ReliefFAttributeEval :
Evaluates the worth of an attribute by repeatedly sampling an instance and considering the value of the given attribute for the nearest instance of the same and different class.class
SymmetricalUncertAttributeEval :
Evaluates the worth of an attribute by measuring the symmetrical uncertainty with respect to the class.class
Abstract unsupervised attribute evaluator.class
Abstract unsupervised attribute subset evaluator.class
WrapperSubsetEval:
Evaluates attribute sets by using a learning scheme.Modifier and TypeMethodDescriptionstatic ASEvaluation
Creates a new instance of an attribute/subset evaluator given it's class name and (optional) arguments to pass to it's setOptions method.CheckAttributeSelection.getEvaluator()
Get the current evaluatorstatic ASEvaluation[]
ASEvaluation.makeCopies
(ASEvaluation model, int num) Creates copies of the current evaluator.Modifier and TypeMethodDescriptionstatic ASEvaluation[]
ASEvaluation.makeCopies
(ASEvaluation model, int num) Creates copies of the current evaluator.static void
ASEvaluation.runEvaluator
(ASEvaluation evaluator, String[] options) runs the evaluator with the given commandline optionsabstract int[]
ASSearch.search
(ASEvaluation ASEvaluator, Instances data) Searches the attribute subset/ranking space.int[]
BestFirst.search
(ASEvaluation ASEval, Instances data) Searches the attribute subset space by best first searchint[]
GreedyStepwise.search
(ASEvaluation ASEval, Instances data) Searches the attribute subset space by forward selection.int[]
Ranker.search
(ASEvaluation ASEval, Instances data) Kind of a dummy search algorithm.static String
AttributeSelection.SelectAttributes
(ASEvaluation ASEvaluator, String[] options) Perform attribute selection with a particular evaluator and a set of options specifying search method and input file etc.static String
AttributeSelection.SelectAttributes
(ASEvaluation ASEvaluator, String[] options, Instances train) Perform attribute selection with a particular evaluator and a set of options specifying search method and options for the search method and evaluator.void
AttributeSelection.setEvaluator
(ASEvaluation evaluator) set the attribute/subset evaluatorvoid
CheckAttributeSelection.setEvaluator
(ASEvaluation value) Set the evaluator to test.void
AttributeSelection.updateStatsForModelCVSplit
(Instances split, ASEvaluation evaluator, ASSearch search, int[] attributeSet, boolean doRank) Update the attribute selection stats for a cross-validation fold of the data. -
Uses of ASEvaluation in weka.classifiers.meta
Modifier and TypeMethodDescriptionAttributeSelectedClassifier.getEvaluator()
Gets the attribute evaluator usedModifier and TypeMethodDescriptionvoid
AttributeSelectedClassifier.setEvaluator
(ASEvaluation evaluator) Sets the attribute evaluator -
Uses of ASEvaluation in weka.filters.supervised.attribute
Modifier and TypeMethodDescriptionAttributeSelection.getEvaluator()
Get the name of the attribute/subset evaluatorModifier and TypeMethodDescriptionvoid
AttributeSelection.setEvaluator
(ASEvaluation evaluator) set attribute/subset evaluator -
Uses of ASEvaluation in weka.knowledgeflow.steps
Modifier and TypeMethodDescriptionASEvaluator.getEvaluator()
Get the evaluator wrapped by this stepModifier and TypeMethodDescriptionvoid
ASEvaluator.setEvaluator
(ASEvaluation eval) Set the evaluator to wrap (just calls setWrappedAlgorithm)