public class FloatArray2DMOPS extends FloatArray2DFeatureTransform<FloatArray2DMOPS.Param>
@inproceedings{BrownAl05,
author = {Matthew Brown and Richard Szeliski and Simon Winder},
title = {Multi-Image Matching Using Multi-Scale Oriented Patches},
booktitle = {CVPR '05: Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05) - Volume 1},
year = {2005},
isbn = {0-7695-2372-2},
pages = {510--517},
publisher = {IEEE Computer Society},
address = {Washington, DC, USA},
doi = {http://dx.doi.org/10.1109/CVPR.2005.235},
url = {http://www.cs.ubc.ca/~mbrown/papers/cvpr05.pdf},
}
@article{Lowe04,
author = {David G. Lowe},
title = {Distinctive Image Features from Scale-Invariant Keypoints},
journal = {International Journal of Computer Vision},
year = {2004},
volume = {60},
number = {2},
pages = {91--110},
}
| Modifier and Type | Class and Description |
|---|---|
static class |
FloatArray2DMOPS.Param |
| Modifier and Type | Field and Description |
|---|---|
FloatArray2D |
pattern |
p| Constructor and Description |
|---|
FloatArray2DMOPS(FloatArray2DMOPS.Param p)
Constructor
|
| Modifier and Type | Method and Description |
|---|---|
static List<PointMatch> |
createMatches(List<Feature> fs1,
List<Feature> fs2,
double max_sd,
AbstractModel<?> model,
double max_id,
double rod)
identify corresponding features using spatial constraints
|
static List<PointMatch> |
createMatches(List<Feature> fs1,
List<Feature> fs2,
double rod,
HashMap<Point,Feature> m1,
HashMap<Point,Feature> m2)
Identify corresponding features.
|
static List<PointMatch> |
createMatches(List<Feature> fs1,
List<Feature> fs2,
float rod)
Identify corresponding features
|
void |
extractFeatures(Collection<Feature> features)
Detect features.
|
static double[] |
featureSizeHistogram(List<Feature> features,
double min,
double max,
int bins)
get a histogram of feature sizes
|
long |
getFeatureObjectSize()
Returns the size in bytes of a Feature object.
|
static long |
getFeatureObjectSize(int fdsize) |
float |
getInitialSigma() |
int |
getMaxOctaveSize() |
FloatArray2DScaleOctave |
getOctave(int i) |
FloatArray2DScaleOctave[] |
getOctaves() |
void |
init(FloatArray2D src)
initialize the scale space as a scale pyramid having octave stubs only
|
List<Feature> |
run()
Detect features in all scale octaves.
|
List<Feature> |
run(int max_size)
Detect features in all scale octaves.
|
List<Feature> |
runOctave(int o)
detect features in the specified scale octave
|
void |
setInitialSigma(float initialSigma) |
extractFeaturespublic FloatArray2D pattern
public FloatArray2DMOPS(FloatArray2DMOPS.Param p)
public long getFeatureObjectSize()
public static long getFeatureObjectSize(int fdsize)
public FloatArray2DScaleOctave[] getOctaves()
public FloatArray2DScaleOctave getOctave(int i)
public void init(FloatArray2D src)
init in class FloatArray2DFeatureTransform<FloatArray2DMOPS.Param>src - image having a generating gaussian kernel of initial_sigma
img must be a 2d-array of float values in range [0.0f, ..., 1.0f]public List<Feature> runOctave(int o)
o - octave indexpublic List<Feature> run()
public List<Feature> run(int max_size)
public static List<PointMatch> createMatches(List<Feature> fs1, List<Feature> fs2, float rod)
fs1 - feature collection from set 1fs2 - feature collection from set 2rod - Ratio of distances (closest/next closest match)public static List<PointMatch> createMatches(List<Feature> fs1, List<Feature> fs2, double rod, HashMap<Point,Feature> m1, HashMap<Point,Feature> m2)
fs1 - feature collection from set 1fs2 - feature collection from set 2rod - Ratio of distances (closest/next closest match)public static List<PointMatch> createMatches(List<Feature> fs1, List<Feature> fs2, double max_sd, AbstractModel<?> model, double max_id, double rod)
fs1 - feature collection from set 1 sorted by decreasing sizefs2 - feature collection from set 2 sorted by decreasing sizemax_sd - maximal difference in size (ratio max/min)model - transformation model to be applied to fs2max_id - maximal distance in image space ($\sqrt{x^2+y^2}$)rod - Ratio of distances (closest/next closest match)public final void extractFeatures(Collection<Feature> features)
FloatArray2DFeatureTransformextractFeatures in class FloatArray2DFeatureTransform<FloatArray2DMOPS.Param>features - the Collection to be filledpublic static double[] featureSizeHistogram(List<Feature> features, double min, double max, int bins)
public final float getInitialSigma()
public final void setInitialSigma(float initialSigma)
public final int getMaxOctaveSize()
Copyright © 2015–2021 Fiji. All rights reserved.