Package | Description |
---|---|
org.apache.commons.math3.analysis.solvers |
Root finding algorithms, for univariate real functions.
|
org.apache.commons.math3.dfp |
Decimal floating point library for Java
|
org.apache.commons.math3.ode |
This package provides classes to solve Ordinary Differential Equations problems.
|
org.apache.commons.math3.ode.events |
This package provides classes to handle discrete events occurring during
Ordinary Differential Equations integration.
|
org.apache.commons.math3.ode.nonstiff |
This package provides classes to solve non-stiff Ordinary Differential Equations problems.
|
Modifier and Type | Method and Description |
---|---|
static double[] |
UnivariateSolverUtils.bracket(UnivariateFunction function,
double initial,
double lowerBound,
double upperBound)
This method simply calls
bracket(function, initial, lowerBound, upperBound, q, r, maximumIterations)
with q and r set to 1.0 and maximumIterations set to Integer.MAX_VALUE . |
static double[] |
UnivariateSolverUtils.bracket(UnivariateFunction function,
double initial,
double lowerBound,
double upperBound,
double q,
double r,
int maximumIterations)
This method attempts to find two values a and b satisfying
lowerBound <= a < initial < b <= upperBound
f(a) * f(b) <= 0
If f is continuous on [a,b] , this means that a
and b bracket a root of f . |
static double[] |
UnivariateSolverUtils.bracket(UnivariateFunction function,
double initial,
double lowerBound,
double upperBound,
int maximumIterations)
This method simply calls
bracket(function, initial, lowerBound, upperBound, q, r, maximumIterations)
with q and r set to 1.0. |
protected double |
SecantSolver.doSolve()
Method for implementing actual optimization algorithms in derived
classes.
|
double |
LaguerreSolver.doSolve()
Method for implementing actual optimization algorithms in derived
classes.
|
protected double |
BrentSolver.doSolve()
Method for implementing actual optimization algorithms in derived
classes.
|
protected double |
BracketingNthOrderBrentSolver.doSolve()
Method for implementing actual optimization algorithms in derived
classes.
|
protected abstract double |
BaseAbstractUnivariateSolver.doSolve()
Method for implementing actual optimization algorithms in derived
classes.
|
protected double |
RiddersSolver.doSolve()
Method for implementing actual optimization algorithms in derived
classes.
|
protected double |
MullerSolver.doSolve()
Method for implementing actual optimization algorithms in derived
classes.
|
protected double |
MullerSolver2.doSolve()
Method for implementing actual optimization algorithms in derived
classes.
|
static double |
UnivariateSolverUtils.forceSide(int maxEval,
UnivariateFunction f,
BracketedUnivariateSolver<UnivariateFunction> bracketing,
double baseRoot,
double min,
double max,
AllowedSolution allowedSolution)
Force a root found by a non-bracketing solver to lie on a specified side,
as if the solver were a bracketing one.
|
double |
BaseAbstractUnivariateSolver.solve(int maxEval,
FUNC f,
double startValue)
Solve for a zero in the vicinity of
startValue . |
double |
BaseAbstractUnivariateSolver.solve(int maxEval,
FUNC f,
double min,
double max,
double startValue)
Solve for a zero in the given interval, start at
startValue . |
T |
FieldBracketingNthOrderBrentSolver.solve(int maxEval,
RealFieldUnivariateFunction<T> f,
T min,
T max,
AllowedSolution allowedSolution)
Solve for a zero in the given interval.
|
T |
FieldBracketingNthOrderBrentSolver.solve(int maxEval,
RealFieldUnivariateFunction<T> f,
T min,
T max,
T startValue,
AllowedSolution allowedSolution)
Solve for a zero in the given interval, start at
startValue . |
double |
BracketingNthOrderBrentSolver.solve(int maxEval,
UnivariateFunction f,
double min,
double max,
AllowedSolution allowedSolution)
Solve for a zero in the given interval.
|
double |
BracketingNthOrderBrentSolver.solve(int maxEval,
UnivariateFunction f,
double min,
double max,
double startValue,
AllowedSolution allowedSolution)
Solve for a zero in the given interval, start at
startValue . |
static double |
UnivariateSolverUtils.solve(UnivariateFunction function,
double x0,
double x1)
Convenience method to find a zero of a univariate real function.
|
static double |
UnivariateSolverUtils.solve(UnivariateFunction function,
double x0,
double x1,
double absoluteAccuracy)
Convenience method to find a zero of a univariate real function.
|
protected void |
BaseAbstractUnivariateSolver.verifyBracketing(double lower,
double upper)
Check that the endpoints specify an interval and the function takes
opposite signs at the endpoints.
|
static void |
UnivariateSolverUtils.verifyBracketing(UnivariateFunction function,
double lower,
double upper)
Check that the endpoints specify an interval and the end points
bracket a root.
|
Modifier and Type | Method and Description |
---|---|
Dfp |
BracketingNthOrderBrentSolverDFP.solve(int maxEval,
UnivariateDfpFunction f,
Dfp min,
Dfp max,
AllowedSolution allowedSolution)
Deprecated.
Solve for a zero in the given interval.
|
Dfp |
BracketingNthOrderBrentSolverDFP.solve(int maxEval,
UnivariateDfpFunction f,
Dfp min,
Dfp max,
Dfp startValue,
AllowedSolution allowedSolution)
Deprecated.
Solve for a zero in the given interval, start at
startValue . |
Modifier and Type | Method and Description |
---|---|
protected FieldODEStateAndDerivative<T> |
AbstractFieldIntegrator.acceptStep(AbstractFieldStepInterpolator<T> interpolator,
T tEnd)
Accept a step, triggering events and step handlers.
|
protected double |
AbstractIntegrator.acceptStep(AbstractStepInterpolator interpolator,
double[] y,
double[] yDot,
double tEnd)
Accept a step, triggering events and step handlers.
|
abstract void |
AbstractIntegrator.integrate(ExpandableStatefulODE equations,
double t)
Integrate a set of differential equations up to the given time.
|
FieldODEStateAndDerivative<T> |
FirstOrderFieldIntegrator.integrate(FieldExpandableODE<T> equations,
FieldODEState<T> initialState,
T finalTime)
Integrate the differential equations up to the given time.
|
double |
FirstOrderIntegrator.integrate(FirstOrderDifferentialEquations equations,
double t0,
double[] y0,
double t,
double[] y)
Integrate the differential equations up to the given time.
|
double |
AbstractIntegrator.integrate(FirstOrderDifferentialEquations equations,
double t0,
double[] y0,
double t,
double[] y)
Integrate the differential equations up to the given time.
|
protected void |
MultistepIntegrator.start(double t0,
double[] y0,
double t)
Start the integration.
|
protected void |
MultistepFieldIntegrator.start(FieldExpandableODE<T> equations,
FieldODEState<T> initialState,
T t)
Start the integration.
|
Modifier and Type | Method and Description |
---|---|
boolean |
FieldEventState.evaluateStep(FieldStepInterpolator<T> interpolator)
Evaluate the impact of the proposed step on the event handler.
|
boolean |
EventState.evaluateStep(StepInterpolator interpolator)
Evaluate the impact of the proposed step on the event handler.
|
Modifier and Type | Method and Description |
---|---|
abstract void |
AdamsIntegrator.integrate(ExpandableStatefulODE equations,
double t)
Integrate a set of differential equations up to the given time.
|
abstract void |
AdaptiveStepsizeIntegrator.integrate(ExpandableStatefulODE equations,
double t)
Integrate a set of differential equations up to the given time.
|
void |
AdamsMoultonIntegrator.integrate(ExpandableStatefulODE equations,
double t)
Integrate a set of differential equations up to the given time.
|
void |
EmbeddedRungeKuttaIntegrator.integrate(ExpandableStatefulODE equations,
double t)
Integrate a set of differential equations up to the given time.
|
void |
AdamsBashforthIntegrator.integrate(ExpandableStatefulODE equations,
double t)
Integrate a set of differential equations up to the given time.
|
void |
RungeKuttaIntegrator.integrate(ExpandableStatefulODE equations,
double t)
Integrate a set of differential equations up to the given time.
|
void |
GraggBulirschStoerIntegrator.integrate(ExpandableStatefulODE equations,
double t)
Integrate a set of differential equations up to the given time.
|
FieldODEStateAndDerivative<T> |
RungeKuttaFieldIntegrator.integrate(FieldExpandableODE<T> equations,
FieldODEState<T> initialState,
T finalTime)
Integrate the differential equations up to the given time.
|
FieldODEStateAndDerivative<T> |
EmbeddedRungeKuttaFieldIntegrator.integrate(FieldExpandableODE<T> equations,
FieldODEState<T> initialState,
T finalTime)
Integrate the differential equations up to the given time.
|
FieldODEStateAndDerivative<T> |
AdamsBashforthFieldIntegrator.integrate(FieldExpandableODE<T> equations,
FieldODEState<T> initialState,
T finalTime)
Integrate the differential equations up to the given time.
|
FieldODEStateAndDerivative<T> |
AdamsMoultonFieldIntegrator.integrate(FieldExpandableODE<T> equations,
FieldODEState<T> initialState,
T finalTime)
Integrate the differential equations up to the given time.
|
abstract FieldODEStateAndDerivative<T> |
AdamsFieldIntegrator.integrate(FieldExpandableODE<T> equations,
FieldODEState<T> initialState,
T finalTime)
Integrate the differential equations up to the given time.
|
Copyright © 2003–2016 The Apache Software Foundation. All rights reserved.