Uses of Interface
weka.filters.UnsupervisedFilter

Packages that use UnsupervisedFilter
  • Uses of UnsupervisedFilter in weka.filters.unsupervised.attribute

    Modifier and Type
    Class
    Description
    class 
    An abstract instance filter that assumes instances form time-series data and performs some merging of attribute values in the current instance with attribute attribute values of some previous (or future) instance.
    class 
    An instance filter that adds a new attribute to the dataset.
    class 
    A filter that adds a new nominal attribute representing the cluster assigned to each instance by the specified clustering algorithm.
    Either the clustering algorithm gets built with the first batch of data or one specifies are serialized clusterer model file to use instead.
    class 
    An instance filter that creates a new attribute by applying a mathematical expression to existing attributes.
    class 
    An instance filter that adds an ID attribute to the dataset.
    class 
    An instance filter that changes a percentage of a given attribute's values.
    class 
    A filter that adds new attributes with user specified type and constant value.
    class 
    Adds the labels from the given list to an attribute if they are missing.
    class 
    Centers all numeric attributes in the given dataset to have zero mean (apart from the class attribute, if set).
    class 
    Changes the date format used by a date attribute.
    class 
    A filter that uses a density-based clusterer to generate cluster membership values; filtered instances are composed of these values plus the class attribute (if set in the input data).
    class 
    An instance filter that copies a range of attributes in the dataset.
    class 
    An instance filter that discretizes a range of numeric attributes in the dataset into nominal attributes.
    class 
    This instance filter takes a range of N numeric attributes and replaces them with N-1 numeric attributes, the values of which are the difference between consecutive attribute values from the original instance.
    class 
    Converts String attributes into a set of attributes representing word occurrence (depending on the tokenizer) information from the text contained in the strings.
    class 
    Converts the given set of data into a kernel matrix.
    class 
    A filter that creates a new dataset with a Boolean attribute replacing a nominal attribute.
    class 
    Modify numeric attributes according to a given mathematical expression.
    class 
    Merges all values of the specified nominal attributes that are insufficiently frequent.
    class 
    Merges many values of a nominal attribute into one value.
    class 
    Merges two values of a nominal attribute into one value.
    class 
    Converts all nominal attributes into binary numeric attributes.
    class 
    Converts a nominal attribute (i.e.
    class 
    Normalizes all numeric values in the given dataset (apart from the class attribute, if set).
    class 
    Converts all numeric attributes into binary attributes (apart from the class attribute, if set): if the value of the numeric attribute is exactly zero, the value of the new attribute will be zero.
    class 
    Transforms numeric attributes using a given transformation method.
    class 
    A simple instance filter that renames the relation, all attribute names and all nominal attribute values.
    class 
    An attribute filter that converts ordinal nominal attributes into numeric ones

    Valid options are:
    class 
    Discretizes numeric attributes using equal frequency binning and forces the number of bins to be equal to the square root of the number of values of the numeric attribute.

    For more information, see:

    Ying Yang, Geoffrey I.
    class 
    Performs a principal components analysis and transformation of the data.
    Dimensionality reduction is accomplished by choosing enough eigenvectors to account for some percentage of the variance in the original data -- default 0.95 (95%).
    Based on code of the attribute selection scheme 'PrincipalComponents' by Mark Hall and Gabi Schmidberger.
    class 
    Reduces the dimensionality of the data by projecting it onto a lower dimensional subspace using a random matrix with columns of unit length.
    class 
    An filter that removes a range of attributes from the dataset.
    class 
    Removes attributes of a given type.
    class 
    This filter removes attributes that do not vary at all or that vary too much.
    class 
    Renames the values of nominal attributes.
    class 
    A filter that generates output with a new order of the attributes.
    class 
    Replaces all missing values for nominal and numeric attributes in a dataset with the modes and means from the training data.
    class 
    Replaces all missing values for nominal, string, numeric and date attributes in the dataset with user-supplied constant values.
    class 
    A filter that can be used to introduce missing values in a dataset.
    class 
    Standardizes all numeric attributes in the given dataset to have zero mean and unit variance (apart from the class attribute, if set).
    class 
    Converts a range of string attributes (unspecified number of values) to nominal (set number of values).
    class 
    Converts string attributes into a set of numeric attributes representing word occurrence information from the text contained in the strings.
    class 
    Swaps two values of a nominal attribute.
    class 
    An instance filter that assumes instances form time-series data and replaces attribute values in the current instance with the difference between the current value and the equivalent attribute attribute value of some previous (or future) instance.
    class 
    An instance filter that assumes instances form time-series data and replaces attribute values in the current instance with the equivalent attribute values of some previous (or future) instance.
    class 
    Transposes the data: instances become attributes and attributes become instances.
  • Uses of UnsupervisedFilter in weka.filters.unsupervised.instance

    Modifier and Type
    Class
    Description
    class 
    An instance filter that converts all incoming instances into sparse format.
    class 
    Randomly shuffles the order of instances passed through it.
    class 
    This filter takes a dataset and outputs a specified fold for cross validation.
    class 
    Determines which values (frequent or infrequent ones) of an (nominal) attribute are retained and filters the instances accordingly.
    class 
    A filter that removes instances which are incorrectly classified.
    class 
    A filter that removes a given percentage of a dataset.
    class 
    A filter that removes a given range of instances of a dataset.
    class 
    Filters instances according to the value of an attribute.
    class 
    Produces a random subsample of a dataset using either sampling with replacement or without replacement.
    class 
    Produces a random subsample of a dataset using the reservoir sampling Algorithm "R" by Vitter.
    class 
    An instance filter that converts all incoming sparse instances into non-sparse format.